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Abstract. We consider in R w + 1

9 n ̂  2, the non-linear Klein-Gordon equation. We
prove for such an equation that there is a neighbourhood of zero in a Hubert space
of initial conditions for which the Cauchy problem has global solutions and on
which there is asymptotic completeness. The inverse of the wave operator
linearizes the non-linear equation. If, moreover, the equation is manifestly
Poincare covariant then the non-linear representation of the Poincare Lie
algebra, associated with the non-linear Klein-Gordon equation is integrated to a
non-linear representation of the Poincare group on an invariant neighbourhood
of zero in the Hubert space. This representation is linearized by the inverse of the
wave operator. The Hubert space is, in both cases, the closure of the space of the
differentiable vectors for the linear representation of the Poincare group,
associated with the Klein-Gordon equation, with respect to a norm defined by the
representation of the enveloping algebra.

1. Introduction

The problem of the existence of global solutions for the non-linear Klein-Gordon
equation

(D + m2)φ(t, x) = Pi φ(ί, x)9 ^ φ(ί, x), Γφ(ί, x) 1, m2 > 0, (1.1)

3 » 9 δ 2

ίelR, xelR", φ(ί, X)G(L, V = (dx, ...,dn% d—-—, Δ= Y 3f, D = ^-^-—^J? and
3x£ i=i at

n ^ l , has been studied by various authors during the last two decades under
different hypotheses on P and n. It is difficult to give here an exhaustive description
of the results already obtained and we shall only mention some of the results
which, we believe, are the most significant for the case where P is a C0 0 function
vanishing at zero together with its first derivatives.
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For n = 3, the existence of global solutions was first established by Simon [6] for
data given at t = oo and then by Simon, Taflin [7] for data at t = oo for coupled
Klein-Gordon equations with several masses, Klainerman [4] for data at t = 0 and
Shatah [5] for data at t = 0. The method used in the papers [6, 7] was that of
linearization of the non-linear equation in the sense introduced in [1]. The main
difficulty to solve was to establish time decrease properties for the second order
term in the perturbation series of the wave operator composed with the time
evolution of the linear Klein-Gordon equation. In fact, the quadratic term of the
evolution group of (1.1) appears as a coboundary of the quadratic term of the wave
operator. The higher order terms were then directly obtained from the Yang-
Feldman-Kallen equation (cf. [7, Eq. (l.Γ)]) by simply using the L00 estimate for
free solutions and common Sobolev estimates. The construction of the wave
operator gave existence of global solutions of Eq. (1.1) for small final conditions
φ0, φ0, with φ0, φ0 e C^(R3), where / is the Fourier transform of/. The method of
[4] was based on a new L2 — U° estimate for the inhomogeneous Klein-Gordon
equation which gave existence of global solutions of Eq. (1.1) for small initial
conditions φ0, φ0 e C^(R3). The result of [4] also applies to the case of systems of
Klein-Gordon equations with arbitrary combinations of masses. A common
drawback of references [6, 7, 4] is that asymptotic completeness cannot be
established on the sets of data that were considered. The method of article [5] was
basically the same as that of [6], with in addition the use of an energy estimate.

For n = 2, Hόrmander [2] proved that the life-span Tε of a solution of Eq. (1.1)
with initial conditions φo = εuo, φo = εύo, u0,ύ0eCj^(R3), ε^O at ί = 0 satisfies
εlog7]->oo as ε->0. The method in [2] is based on 1} — L™ estimates of [4]
adapted to n = 2 and on a symbolic calculus giving approximate solutions.

In the present paper we prove that in the case n^2, Eq. (1.1) has global
solutions for small initial-conditions φ0, φ0 e ^(R"), the space of (C-valued)
functions decreasing rapidly together with all their derivatives. As we shall see later
in this introduction, it is natural, because of group theoretical reasons, to take the
space ^(R")®^(RM) as the space of initial conditions for Eq. (1.1). We prove that
there is a neighbourhood of zero in &'(Rn)®Sf?(Rn) on which we have asymptotic
completeness.

To keep this article within a reasonable length, we shall impose two restrictions
on P:
i) P is a polynomial,
ii) P is covariant under Poincare transformations.

Concerning the proofs of the above result, n = 2 represents the worst case. For
this reason we only prove the results for n = 2. However, they are valid for n ̂  2 and
without the restrictions i) and ii). In fact, when n^3we can follow the same proof
except that the norm qN defined by (4.10) shall contain the factor (1 +ί)M/2. When
Eq. (1.1) is not Poincare covariant the proof is still valid taking care of the fact that
the equation changes under the Poincare group action. This will be discussed in
the appendix. In fact, we restrict our redaction to the covariant case for purely
aesthetic reasons. When P is a C00 function, which is not a polynomial it can be
considered as the sum of a polynomial of degree 3 and a C00 function with a zero of
fourth order at zero. We can follow our method to obtain the scattering operator
up to order 3 and then use classical methods for the rest term. In this case the
scattering operator is not necessarily an analytic function of the data.
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We write Eq. (1.1) as an evolution equation by introducing the variable a(t)

-είω{-ίV)φ(t), e = ± l , (1.2)

-iV) = (m2 — Δ)ί/2 and q

of (1.2) is

where ω( — iV) = (m2 — Δ)ί/2 and ώ(t,x)= —φ(t,x). The inverse of transformation
ot

) = (2iω(-ίV)y\a+(t)-a-(t)), φ(t) = 2-\a+{t) + a-(t)). (1.3)

Equation (1.1) then reads

^ (1.4)

where

(1.5)

Let 77 = {Pμ, Mα/3 \0^μ^n, O^α<jS^n} be a standard basis of the Poincare
Lie algebra p=Rw + 1£so(n, 1) in 1+rc dimensions. P o is the time translation
generator, Ph 1 ̂ ι ^ n , the space translation generators, Mij9 ί^ί<j^n, the space
rotation generators and MOj the boost generators. When n = 2 we define K = M 1 2

and Ni = MOi, i = l,2. We define a linear representation T1 of p in

(1.6a)

(1.6b)

jdi, (1.6c)

T1 is the differential of a continuous representation of the Poincare group
0>o = ]Rn+ί %SO{n, 1) in the space £ = L2(R^<C)©L2(R",<C) and E^ is the space of
differentiable vectors for this representation (cf. [8]). Suppose given once for all an
order on the set 77. Then, in the universal enveloping algebra U(p) of p, the subset
77' of all the products X\1X*j...X*d

d, where ^ 6 77, 0^α ί ? l^i^d and Xγ<X2

<...<Xd9 is well known to be a basis of £/(p). If 7=Xα

1

1...X2de77/ we define
I yI = |α| = Σ αf. Let Eh i e N be the completion of E^ with respect to the norm

m l — ( V II Tιf I I 2 W 2 M 7^

Ye77', | y | ^ i

where Ty1, ye C/(p) is defined by the canonical extension of Γ1 to the enveloping
algebra C/(ρ) of p.

We next define the non-linear analytic representation Γ of p on E^, in the sense
of [1], obtained by the fact that Eq. (1.1) is manifestly covariant:

TX=TΪ + TX, X e p , (1.8)
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where T 1 is given by (1.6) and for feEx,

%0(f)={F{f),F{f)), (1.9a)

% f(/) = 0, TM,//) = 0, (1.9b)

TMoj(f)=(xjF(f),XjF(f)), \ύjύn. (1.9c)

The homogeneous part of T of degree / will be denoted by Tι.
We can extend the linear map X ι-> Tx, from p the vector space of all mappings

from E^ to E a0, to the enveloping algebra l/(p) by defining inductively Tx = /, for 1
being the identity element in l/(p), Tγx by

Tγx(f) = ((DTγ)(f))(Tx(f)), for y et7(p) and XeV. (1.10)

Here (2λ4)(/) denotes the Frechet derivative of ̂ 4 at /. In the following, when A, B
are differential maps we shall define DA.B by (DA.B)(f) = ((DA)(f))(B(f)). This
inductive definition gives a linear map T of t/(p) into the space of polynomial
operators on E^. In fact, the vector field TX9 Xep defines a linear differential
operator ξx of degree at most one on the space C 0 0 ^ ^ ) , by ξxF = DF.Tx,
FeCco(EO0). The fact that Xv~* Tx is a non-linear representation of p implies that
X H-> ξ z is a linear representation of p on the space of linear differential operators
of degree at most one on CCO(EOD). This linear continuous representation has a
canonical extension Y\-+ ξγ to t/(ρ) on the space of linear differential operators of
arbitrary order on C^iE^. If ηγ, Ye C/(p) is the part of ξγ of degree not higher than
one, then Y\-> ηγ is a linear map of U(p) into the space of linear partial differential
operators of degree at most one on C 0 0 ^^) . Let YeU(p). We write Y=Z + a,
where a e C 1 and Z has no component on (C 1 [relative to the natural
graduation of C/(p)]. Then the previous definition of Ty gives ηγF = DF.Tz

which proves that 7i—• Tγ is a linear map on [/(p).
As in (1.8) we define Tγ, Ye l/(p) by

(l.ii)
where Γ/ is the linear part of Tγ.

The linear map X\-^Qxp(tP0)Xexp( — tP0), ί e R is an automorphism of p,
leaving all the elements of the standard basis of p invariant, except Moj9 j = l,...,n,
for which

(1.12)

For Ye (7(p) and ί e R let Y(t)e (7(p) be defined by

y(ί) = exp(ίP 0)yexp(-ίP 0). (1.13)

If a(t) is solution of (1.4) we have

^ (1.14)

d d
because —a{t)=TPo{a{i)\ j - Γ(ί) = [P 0 , Y(ήi] and definition (1.10) gives:

j t Tm{a{i)) = 7|.y(t)(α(ί)) + (DTYm.TPo

= 7JPθiy(()](α(ί))+Γy(t)Po(α(ί))
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The evolution equation (1.4) is obtained from (1.14) with 7 = 1 :

jta(t)=TPo(a(ή). (1.15)

We shall now outline the method used to prove the existence of solutions for
Eq. (1.4). The idea is to construct for N large enough an invertible analytic map
A: ΘN-+EN, defined on a neighbourhood ΘN of zero in EN which intertwines the
linear representation T 1 and the non-linear representation T of p in the sense of
[1], i e.

DA.T* = TχoA, Xep. (1.16)

The solutions of Eq. (1.4), with initial conditions α(0), at ί = 0, in a sufficiently
small neighbourhood &N of zero in EN are then given by

a(t) = A(VtA-\a(0))), ί = 0, ^ = exp(ίΓP

1

0), (1.17)

provided that VtA~\a{ϋ))^&N for ί = 0.
In this paper we have chosen A to be one of the two non-linear wave operators

for Eq. (1.4), namely the one which is formally defined by the Yang-Feldman-
Kallen equation

A = I- J V.sTPooAoVsds, J = identity. (1.18)
o

The main difficulty to prove the existence of a solution A for (1.18) which is an
injection A: Θ^ -•£00, is due to the presence of a quadratic term in TPo. We prove
the existence of A2 by using the enveloping algebra method developed in [6]
namely

\ (1.19)

where we have used the fact that TPj = 0 for 1 = j^n. The operator

m

2-2TP\®TP\ + 2 X
l

where ® denotes the projective tensor product, is invertible. Using elementary
facts about pseudo-differentiable operators, it is established in Theorem 3.7, that
the linear map f^A2(g®f) from £ to £ is continuous for
g e ^ V J Θ ^ ' V ) 1 if k is sufficiently large. We then prove that
A2(Vtg®Vtf) has the following time decay properties:

\ ίeR.

The higher order terms of A can now be obtained directly from Eq. (1.18) by
iteration, using only L00 estimates for Vtf and usual Sobolev inequalities. If we
choose N sufficiently large this gives, for each a^eEN sufficiently small, a solution
a{t) = A{VtaJeE, ί^O of Eq. (1.4), i.e. Eq. (1.14) with 7 = 1 .

1 For l ^ p ^ o o and fceN, the Sobolev space Wk-p(Rn) is the Banach space of functions
/:R"->C, being in ί/(Rπ) together with their first k derivatives
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The next step consists to apply the above method to Eq. (1.14) with Ye
This implies that TY(t)(a(t))eE and we prove that (Theorem 2.15)

Σ

where FN is a positive function bounded by a polynomial, and a^ is sufficiently
small in EN. We can now conclude that Λ(ΘN) cENiίN is sufficiently large, and that
A has a local inverse on a neighbourhood G'N of zero in EN. This shows that Eq. (1 .4)
has a solution ίi—>α(f), ί^O for each a(Q)eΘ'N and that lim(V-ta(t)) = aOQeΘN.

ί->oo

Instead of considering Eq. (1.18), we could have considered the corresponding
equation for the scattering problem at t = — oo, so we can conclude that there is a
neighbourhood 0% of zero in EN such that Eq. (1.4) has a solution t1—• a{t\ t e R for
each a(0)e&χ. In addition &% can be chosen such that there are neighbourhoods
Θjj of zero in EN and analytic wave operators Ω+ (here Ω+ = A) with the following
property (asymptotic completeness): ΩB\Θ*Ή~->0% is an analytic bijection.

Finally, we state in this paragraph the main results of this article. If Θ (resp. Θ') is
an open neighbourhood in a Banach space B (resp. B'\ let ffl(Θ, &) denotes the
space of analytic functions from 0 to &\ endowed with the topology of uniform
convergence on closed bounded subsets of Θ.

Theorem 1.1. Forn^l there exists No^0 and a neighbourhood &χ0 of zero in ENo

such that, if Θ°N = ENn(9°No for N^N0 and Θ°cc = E«)nΘo

No, then:
i) T defined by (1.8) is a non-linear analytic Lie-algebra representation on E%. For
Xey and N^N0, TX:EN+1^EN and TX:EN-^EN are analytic maps.
ii) T is the differential of a unique global non-linear analytic representation U of
0>O9 i.e. UJβ) e ΘlQ forge&θ9θe &%0 and the map gh+Ul-iUg is continuous from 0>o

into the space ^f(Θ^o,ENo), where U1 is the linear part of 17.
iii) For N^N0, the map g\-+Ul-iUg is continuous from £P§ into the space

%E)

iv) Θ°n is the set of differentiable vectors of U.

The representation U of ^ 0 has, according to the next theorem, at least two
invertible linearization operators Ω+1 and Ω I 1 , where Ω+ and Ω_ are the two
wave operators for the evolution equation (1.15).

Theorem 1.2. With the notation of Theorem ί.ί9 No can be chosen such that there
exists two analytic invertible maps Ω+ : Gχ0-+Θ%0 and Ω_ : &UO^>@NΌ, where Θχ0 and
Θχ0 are open neighbourhoods of zero in ENo, satisfying the following properties:
i) UgoΩε = ΩεoJJl, for ε= ± and g e ^ 0 , where U1 is the linear part of U.
ii) // N^.N0, then Ωε\Θ\i-*&(fi is an invertible analytic map.
iii) // h(t) = exp(tP0\ ί e R then

forε=±ί andθeΘε

No.

Theorem 1.1 and Theorem 1.2 give in particular the solution of the Cauchy
problem at t = 0 and solve the scattering problem for the evolution equation (1.15).

Theorem 1.3. In the situation of Theorem i.2 the equation

jtv(t)=TPo(v(ή),
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has a unique C1 solution tι-+v(t)eEN, ίeR. Moreover,

Km
ί->εoo

where Vt =

Translation of the first part of Theorem 1.3 to Eq. (1.1) gives the following
existence result for the non-linear Klein-Gordon equation:

Theorem 1.4. Let P be a polynomial satisfying P(0) = 0, ZλP(0) = 0, let n}>2 and let
Eq. (1.1) be relativistίc covariant. Then there are neighbourhoods &,& of zero in
y(Rπ) such that for each initial conditions (φ0, φ0) e G x Θ there is a unique solution

φeCco(RxlRn) of Eq. (1.1) such that φ(0,x) = φo(x) and ^-φ(t,x)\t=o = φo(x) far

xeR".

2. Properties of the Non-Linear Representation

In this paragraph we deduce estimates for Tγ(f^®. . ®/„), n^2, Ye U(p), and
. We then deduce an explicit expression of Txγ for Xep and YE U(p).

Let us introduce the spaces E™, ι^0, as the completions of E^, for the norms

I I ( / + , / ) I I V I I / + I I L ( R ) + | | / | | L ( R ) (2.1)

and

= Σ
YeΠ',\Y

We introduce the notation ECO = E$>. Occasionally, we shall use in this paragraph
the notation

B,=dM-iV))-\ B2 = d2{ω{-iV)y\ B3 = (ω(-iV)Γ\ B4 = I. (2.2)

We have for N^0 and ; = 1,2,3,4:

\\Bjf\\ENύCN\\f\\EN,

) + 1 . (2.3)

Here we have used the fact that ||(ω(—iF))~1g||ί,»^C||g||Loo. By commuting the
elements in the standard basis Π of p, we obtain for / = ( / + , / _ ) e £ 0 0 and iV^O:

J Ilχ"d"/Hί) ^CN\\f\\EN, (2.4)

/
> + 2. (2.5)

For later reference, we also note that

Σ Wf\\E^CNιL\\{\-Δfi2f\\ENίCN,L Σ \\d*f\\EN. (2.6)

We denote the set

{(α,Mε)|α,£eN 2, /e{l,2,3,4}M, ε e { -

by D(N, N\ n), where N, N\ n e N.
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Lemma 2.1. Let Λ/^0, w^2, and fu...JneE^. Then

- ®Λ)II** ̂  c*,» Σ II^^PiJi..,). .(« J». J W * ) (2 7)
D ( i V N )

N .) ^ ' . ^ . ' ! ) - ^ / . , J )IIL>^). J = l,2 (2.8)

Proof. It follows from definition (1.9a) of 7^0, n^2 that each component of
Ίpjίfi ® ®fn) is a sum of terms CuJβiJi,Λ- •(**nΛ. J> where Q,β e <C The first
of the inequalities (2.4) applied to each of these terms gives inequality (2.7).
Inequality (2.8) follows in a similar way from definition (1.9c) of T^..

We have similar inequalities for the £# estimates of Tn. As the proof is almost
the same and simple, we only state the result for later reference.

Lemma 2.2. Let AT^0, n ̂  2, and /^ ...,/„ e J ^ . Then

« Σ llx^K^,/!,^)...(B,JH tJJIIL-O^ (2.9)
D ( N i V + l )

i.βl)-. (Bιil/..J)llL.(R2), ; = 1,2. (2.10)

As Tx, X G p is a polynomial from E^ to E^, Proposition 10 of [1] and the next
theorem show that T is the differential of a unique analytic representation of the
Poincare group.

Theorem 2.3. // n ̂  2, N ̂  2, αnrf X zs an element of the standard basis Π of p,

I I ^ C O I I E ^ C V . J / U L

Proof. According to the definition of T£ and Lemma 2.1,

Σ l ί J J H ) (2.11)
D{N+l,N,n)

Leibnitz formula for dβ on a product implies that the terms inside the summation
sign are bounded by

/(α, β9 ί) = Q, n Σ I l x ^ ^ / J . . . ( δ ^ i n / ε n ) | | L 2 ( R 2 ) . (2.12)
βl+.~+βn = β

Introduce

J(α, >51?..., βm ί) = \\x\d^BhQ.. .(d^BJJ\\L2(m.

LetiV = 2. If |j8| = |j81| + ... + |j8II| = 2 and 1̂ -1 = 2 for some l g j g n , then j8, = 0
for / Φ ; and (using || g || χ.oo(]R2) ̂  C ||g || ̂ 2,2(]R2))

J(α,^,..., βmi)^Cn\Wψ%JB)\\L, Π l|x%ll^^,

where αx + ... + ocn = α. We choose α1 ?..., an such that |α7 | ̂  2 and |ocf| g 1, which is
possible as |αx | +. . . + |αj ̂  3. Then J(α, βu...,βn, ί) ̂ Cn\\f ||£2, where we have used
(2.3) and (2.4). If | β\ ̂  2 and | j8,| ̂  1 for 1 ̂  / ̂  n, then there exist r, s such that | ft| = 0
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for /Φr, /Φs. In this case

where αx + . . . + αn = α. We choose α 1 ? . . . , an such that |αΓ| ̂  2, |αj ̂  2, and |α{| = 0 for
/φr,s. The Sobolev inequality | |g | |n^^CWg | |^i,2< 1 R 2 ) gives now J(α,β l 9 . . . 9 β n j )
^Cn\\f\\n

El also in this case. Thus this inequality is true for all α,β ί 9 ...,βn with
| α | ^ 3 and |/J1| + ... + |/?n |g2, which together with (2.11) and (2.12) prove that

Let N^ 3. Then

J(*,βl9...9βwί)£Cn min llx ̂ B ^ I I ^ Π ll^'^'BiΛII^^. (2.13)
1 ^ ^ i

Since ΛΓ^3, n^2, and | β j +. . . +1βn\ = \β\£N9 we can choose jin (2.13) such that
| β | + 2^[iV/2] + 2^JV for l+j, [JV/2] being the integer part of JV/2. We now
choose α such that |α, | ̂ iV and |αz| ̂  1 for /Φ;. Then, according to (2.4) and (2.3)

Commutating xaι and 1 — zl for /Φ j we get

Inequality (2.12) now gives

cWl, Σ \\χVβlBilfεi)...(d^BijjLHmιN

βί + ...+βn=β

which together with inequality (2.11) proves the theorem.
We shall now make explicit the structure of Txγ, when X e p and Ye l/(p). This

will permit us to study Eq. (1.14).
For L^O and p^\ a set ^(L,p) of p-tuples ^ = (^1? .. ,^p) is defined by:

a) If L=0 then »(O,p) = {(0, ...,0)}, where 0 is the empty set.
b) If L ^ l then

j (J */i = N L ,

where N L = {1,...,L}.
For ήf—card^ ^ l , 1 ̂ i^p, we introduce the notation

î = {α ί f l,...,α ί fβ.}, where α i f l < α i t 2 < . . . < α ι . f ί i . (2.14)

For L^ί9Xl9...9XLep and η = (ηu...,ηp)e^(L,p) we define 7, Yl5..., 7pe C/(p)
by, Y=Z l 5...,XL 5

i = Xei>1,...,Xeiiei if cardi ^ l and .̂ = 1 if ^ = 0, (2.15)

where 1 is the unit element in U(p). For L=0 we define Y= 1 and Yt = 1. Let / be a
function of Z 1 ? ...,Zpel/(p). Then g(^)=/(Yi,..., Yp) defines a function of
η e &(L, p). We introduce the notation £' by

Y

Σ
Y,p
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Theorem2.4. Let YeU(p) and Xep. // Y=\ or Y=X1X2,...9Xl9 J^l , then

T£Ύ= Σ Σπ{Tγ

nl®...®TΎ

n

ζ). (2.16)
Y,P

Proof. Let YeΠ'. If Y= 1, then formula (2.16) is reduced to T£λ = T^. As XI = X,
(2.16) is true in this case. Suppose that formula (2.16) is true for | Y\ = L and let Z e p.
According to the definition (1.10) we then have TXYZ = DTXY.TZ, which gives, with

Formula (2.16) gives for \Y\ = L:

τ^z= Σ Σ

We sum over q in (2.17). Then

7">n V L L
l^P^fe Y,p

... +np = k

Σ
Y,P

(2.17)

Let

Cr,= Σ

We observe that £ Σ = Σ

i = Σ τ*Y Σ Σ
l ύ ^ \^k^ + +

Σ > which gives

Let q = n2 + ... + np. Then

Σ Σ

k = p n ι + ...+np = k

n fc-1

fe = p α = P ~ ^

n - 1 i

= V {DTYιτzγ-"®
q = p-l

= V Σ τϊ
q — p—\ ri2 + '-'+np = q

Σ
.+np=q

(2.18)
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This gives

1 = P = W nι + ...+np = n

This formula and the corresponding formulas for the other terms in (2.16) gives:

l = P = n ni + ...+np = n Y,p

+ Tγl ® Ί?l®... ® Viz) (2.19)

Let Γ = 7Z. Then 17'| = L+1. Each collection η'l9η'29 ...9η'pfor Γ is obtained from
a collection ηuη2,...9ηpΐor 7 by defining for some Z, 1 ̂  Z^ p,

and ^. = ̂  if i + J. (2.20)

This fact and (2.19) give

Tχr= Σ Σ Σ

which proves that (2.16) is true for |7 | = L + 1 if it is true for |Y| = L. Hence by
induction (2.16) is true for |Y|^0 as it is true for |7 | = 0.

Corollary2.5. Let Z^l, YeUfo), Xep, and Xtep, ί^i^p. If 7 = 1 or
Y=X1X29...,Xl9 then

Txγ= Σ Σ'Tx

p(TYl®...®TYp).
p*l Y,p

Proof. According to Theorem 2.4,

Tχγ= Σ Σ Σ Γ
np = n Y,p

Changing the order of summation we obtain

TXY= Σ Σ Σ Σ'Γ/(Γ#<8>...<8>77;)

= Σ Σ Γ7]f{77/®...®77;)

= Σ Σ'Tx

p(TYl®...®TYp).
p*i Y>P

Expressions (1.6a)-(1.6d), (1.9a)-(1.9c) of T x,Xep and Theorem 2.4 lead to an
explicit expression for TYi Ye U(ψ), suitable for establishing estimates. For
Y=XX ...XL, where L ^ l and where X1 ...XLeΠ, let &(Y) be the number of
factors equal to R or Nt or N 2 in 7. For 7= 1, let if (7) = 0. For Bh 1 ̂  i ̂  4 defined

Theorem 2.6. L ί̂ 7= ̂  ... XL9 where L^ί and Xx... XLeΠ. Let & be a basis of
the space of differential operators on R 2 with constant coefficients. If n ̂  1 and

9 then the εo-th component of Tγ(f) is:

(Tyn(f))s0= Σ {0S\Y,*,Q9D,8)
a,Q,D,ε

Y, α,β,D,ε)iεoω(-iV))x* (\
1=1



444 J. C. H. Simon and E. Taflin

where the sum is taken over |α|^0, αeN 2 , Qe0>n, D G J " , and εe{-l,l}". The
coefficients C%\Y, α, β,D, ε)e <C satisfy:
(i) Only a finite number of C^\Y, α, β,D,ε) are not equal to zero, in the sum
of (2.21),
(ii) C<M)(Y, α,β,D,e) = O,ι/

(iii) C[«)(y,α,ρ,Aβ) = O,r
>„ = () if n =

Proof It follows from expressions (1.6a)-(l 6d) and (1.9a)-(1.9c) that the theorem
is true for M = 1. Suppose that it is true for L^L0 for some Lo = 1 and let X be an
element of the standard basis of p.

Let X = PP 7 = 1,2. Then formula (2.16) of Theorem 2.4 and the induction
hypothesis give:

a,P,D,ε

3 p 1=1 ει

Let yxH^O), y2 = (O,l). Then [aj,x
α] = αJ.χ

α-^. We define, for QU)

p j ί ) (2.23)

and C[n) is equal to zero for other values of the variables. According to the
induction hypothesis, only a finite number of the coefficients Cf\PjY, α, Qu\D, ε)
are non-vanishing, C%}(PjY, α, QU),D, ε)=0 if

Σ
and CfrKPjY, α, β0 ), D, ε) = 0 if |α| > &{P}Y) = &{Y). This proves that statements (i),
(ii), and (iii) are true when the value of the first variable in C£π) is PjY.

Let X = Nj, ; = 1,2. We first consider the term T^T? in formula (2.16) of
Theorem 2.4. For this term formula (2.21) gives:

(^I?(/)) e o = Σ (C80(y, α, β, D, ε)ιεoω(- iV)xff \\ {QβJJ
a,Q,D,ε 1=1

+ C*XZa,Q,D,8)(-Xj(m2-A) + dj)x« (\ {QιDιfε))9
1=1

where [ω, x7] = — dp ~ι has been used. Since [3k, x
α] = otkx

a ~Vk, [3 k , xα]
= αfc(αfc-l)Λ:α~2yk + α f c

α"y kδ f c we obtain

2

Σ

(2-24)
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We define

d[ι\l,Np Y, oc,Q,D,S) = C$XY, a-ypQ,D,ε) (2.25)

and d$Xί,X, Y, a.,Q,D,ε) by identifying the coefficients in the expression

f\ (Q'ιgι)
I 1
I- 1

= Σ d SXUNj, Y, α, Q, D, ε) ft ( β ί g ί ) , g l,..., gn e ̂ ( R 2 ) , (2.26)
Q ( = 1

where we have defined Ck"XY, β, Q\ D, ε) = 0 if βt <0 for some 1 ̂  i^n. Expressions
(2.24), (2.25), and (2.26) give:

{Tlmf)\0= Σ (d%χi,NpY,a,Q,D,ε)
a,Q,D,ε

+ df?Ki,Nj9 7, x,Q,D,ε)iεoω(-iV))x* U^DJ,). (2.27)

Since there is, according to the induction hypothesis and statement (i) of the
theorem, only a finite number of non-vanishing terms in the sum on the left-hand
side of (2.26), there is only a finite number of coefficients rf(

o

n)(l,iV7 , Y, α, Q,D,ε)
which are not equal to zero. By statement (ii) of the theorem it follows that
4">(l,ΛΓj,y,α,β,D,β) = 0 if Σ d e g a > 1 ^ 7 1 - ^ = 171 + 1 - ^ , because the

coefficient of ( - m 2 + A) Π ( g ^ ) vanishes if £ degβj> 17| - 1 - δ n . If |α| - 1

> J&?( Y\ then the left-hand side of (2.26) is zero1. Hence d(

o

n)(l, Np 7, α, Q, D, ε) = 0 if
|α| > if (7) + 1 = &{NjY). It follows directly from (2.25) that only a finite number of
the coefficients d^\l,Nβ 7, α,Q,D,ε) are non-zero for given 7 and that
4π)(l,iV j,7,α,β,D,ε) = 0if X degft> \Y\-δn = \NjY\ -1 - δ B or |α|

= J£(NjY). To sum up, if p = 1, and n ̂  1, then
a) for only a finite number of the coefficients d£\p,Nj, 7, α, Q, D, ε) φ 0,
b) 4 w > ( p , N 7 , ) if ^

c) 4w)(p, JV,, 7, α, β, D, ε) = 0, if 17| > Se(NsY).
We next consider the terms

in the expression (2.16). Here 7 l 5..., Yp are as in Theorem 2.4. For UeE^, let
t;0 = (2ϊω(— Γf))"1(w+— w_), t;1 = 31ί;0, v2 = d2v0, v3 = 2~ι(u+ + M _ ) . Then, accord-
ing to definition (1.9c) of T£j9

h . . . υin, εo= ± 1 , (2.28)



446 J. C. H. Simon and E. Taflin

where b(ΐ)e<C, ie{0,1,2,3}" and b(i) is symmetric in iu...,iB. It is convenient to
introduce for Z e U(p):

0 = (2iω(-iV)Γί((Tz(f))+ -(Γz(/))_), (2.29)

, (2.30)

It follows from the induction hypothesis and from (2.21) that if Z e U(p) is a
product of elements of the standard basis of p and | Z | ^ L θ 5 then

(Sqz(f))0= Σ Π(Z,α,ρ,Aε)xαΠ(βAΛ) (2.31)
a,Q,D,ε 1=1

and

( W ) ) i = Σ Cl(Z>a,Q,D,ε)x"U(QιDιfει), q^l. (2.32)
Λ,Q,D,ε 1=1

As we have already proved the theorem for TPjZ, the induction hypothesis implies:

Σ Cψ{P^Z,a,Q,Dε)x^f\(QιDιQ, (2.33)
<x,Q,D,ε 1=1

where 7 = 1,2, y 1=(l,0), and y2 = (0,l).
Let

and

af{Z, a, Q, D, ε) = Cψ{P^'Z, α, β, D, ε), 7 = 1,2.

It is readily verified that, if q^ί then
(a') only a finite number of the coefficients af\Z, a, Q, D, ε) =f= 0,
(b') af{Z, α, β, D, e)=0 if Σ degβ, > |Z|,

(c') e<«(Z, α, β, A ε) = 0 if M > JS?(Z).
According to (2.28) we have for p ^ 2 :

= ΣXjX*(1)+-+*'P>b(i) Π βιk(n.«*),Q(*),D<*),
fe= 1

^ V ' (2 34)

where the sum is taken over i, α ( 1 ),..., α(p), β ( 1 ),..., Qik\ Dw,..., Diq\ ε(1),..., εm. We
define for

j , e ) = 0 (2.35)

and

d%Xp,Nj,Y,a,Q,D,ε)

= Σ Σ Π aik{YkM
k\ Qm,D*\ ε(*>), (2.36)

y,P α = y J +α( 1 ) + ...+α<ί?) k=l
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where Q = Q{ί)φ...@Q{p\ D = D{1)®...@D{P\ s = (ε[1\...,ε{

n\\...,εγ\...,ε(

n

pj) 4">,

fc = 0,1 so defined satisfy the properties (a), (b), and (c) for 2^p^n. This is

obvious for k = ί. Property (a) follows from (a') in the case fc = 0. Since

Σ degf t= Σ Σ degβ<*> and \Y\=

it follows that if £ degβj > | Y|, there exists q, depending on Yl9..., Yp91 ^ q ^ p

such that Σ degβj β ) >| YJ. But then at (Y, α(β), Q(e), D(e), ε(«>) = 0, which proves

that d{S\p, Nβ Y, α, β, D, ε) = 0. If p ^ 2 then n ̂  2. Therefore, property (b) is true for

p ^ 2 and fc = 0. Similarly, since |α |= Σ lα/l + l according to (2.36) and since

JZ>(N:Y) = 1 + Σ W ) > it Allows that rf(

0

M)(p, iV7, Y, α, β, D, e) = 0 if |α| > Jδf (NjY).

This proves that property (c) is true p ^ 2 and /c = 0. Hence the properties (a), (b), (c)
are true for n^ 1, p ^ 1. We now define, for n^

($\NjY9 α, β, D, e) = Σ 4M)(P, ̂ Y , α, β, D, ε). (2.37)

C£° so defined satisfy (2.21) by construction, with Nj Y instead of Y. Since (a), (b),
and (c) are true for n ̂  1, /? ̂  1 it follows that C£° satisfy properties (i), (ii), and (iii) of
the theorem with NjY instead of Y.

The cases X = Po and X = R are so similar that we omit them.
This proves that the theorem is true for L ^ L 0 + 1 , and hence by induction for

every L ^ l .

Corollary 2.7. Let fu...JneE^. Then, in the situation of Theorem 2.6

= Σ (
a,Q,D,ε

Differentiation in (2.21) gives this result since the coefficients are symmetric.
We now turn to the problem of proving that the linear group representation

with differential T 1 and that the analytic group representation with differential T
do have the same differential vectors in the sense of [1] in a sufficiently small
neighbourhood of zero in E, though T is not the differential of a smooth
representation.

For iVeN, let aγe E for all Ye L/(p) such that Y= 1 or Y= Xl9...,XL91 ^ L ^ N ,
where Xu...,XLeΠ. We introduce

=( Σ KlliV/2> N^O. (2.38)

We note that according to definition (1.7) of || \\EN we have

(2.39)

Lemma 2.8. Let feE^L^l and let Y=Xl9...,XL,where Xl9...,XLeΠ.
If L=ί9then

(2.40)
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If L ^ 2 and JS?(7)^ |7 | -1 , then

(2.41)

where ([s] denoting the integer part of selRJ

)=|y|-i-js?(y),

The constants CL and χL, L^O are independent of f.

Proof. According to (2.21) we estimate

ξ = , for
L2

d e g a g i η - 1 , |α|gJS?(Y) (2.42)

and

, for
L2

degβ^|7|-2,

(2.43)

As ||ω(—ι'Γ)gHχ.2^ C||g|| ^1.2, it follows that estimates of η will be obtained from
estimates of ξ. Hence we only give estimates of ξ. First, let L = 1. Then deg Q( = 0 for
ί^l^n, so

Π

(2.44)

,. It follows fromwhere we have used | |I>,/J| t«,gC||(l -2l)D,/£ l | |L2^C'| |(l -
(2.4) and (2.3) that

This and (2.44) give, as | α | ^

ξ(oί,Q,D,ε,n)^Cn\\f\\E^J(l-Λ)f\\"E-
1, (2.45)

where the constant Cn depends on a,Q,D,ε. As already pointed out in the
beginning of this proof we then also have

η(a,Q,D,Z,n)ϊCn\\f\\^m\\(l-A)f\\E- (2.46)

Let the degree of the polynomials Tx, X e p be bounded by χt + 2. It follows now,
after summation in α, Q, D, ε, n, from (2.45), (2.46), and Theorem 2.6 that

which proves (2.40). Secondly, let L ̂  2 and let S£(Y) ̂  | Y\ -1. After a permutation
of 1, ...,n, we have



Cauchy Problem for Non-Linear Klein-Gordon Equations 449

[I YΊ — l~l
ί—L— for 2 ^ / ^ n , we get from (2.42),

As

where the constant Cn depends on α, β, D, ε. Similarly, we have

(2.47)

, ( ) | | Γ 1 . (2-48)

Let the degree of the polynomials Tγ, \Y\ = L be bounded by χL+2. As before, it
now follows, after summation on α, Q, D, ε, n, from (2.47), (2.48), and Theorem 2.6
that

\Y\ = L.

^2 and let Y=XU...,XL, where Xy,...,XLeΠ. If

(2.49)

This proves (2.41).

Lemma2.9. Let feEm,
&(Y) = \Y\ then

\\%(f)\\E

where

constants C^ and χ)y| are independent off.

Proof. As in the proof of Lemma 2.9 it is sufficient to estimate ξ defined by (2.42).
According to (2.42) we have after a permutation,

deg& g d e g β ^ m - l , 1^/^π. (2.50)

then

\\QιDιftι\\L^C\\{\-Δ)QιDJJL2

and as

we obtain for |Y\ ̂  2 and if(Y)^ |Y\ -1:

; Π (Q^«/J
L2
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where β + y = a and where the product over / is absent if n = 2. We choose β and y
such that

\β\ύ\Y\-ί, \y\ύU (2.52)

which is possible as \<*\£&(Y) = \Y\. It follows from (2.4), (2.50), and (2.52) that

This gives together with (2.3) (and with a new constant C^,^):

WxβQiDJJL^Cm^\\f\\E^^ (2.53)

Similarly, we obtain, using moreover that ||g||χ,«^C||(l— Λ)g||L2, that degβ'^1,

where Q' = lx\ 1 - J ] and that degβ2 ^ ~ ,

ZC(\\x*Q2(l-Δ)D2f\\E+\\Q'Q2D2f\\E)

. (2.54)

As degβ;^ * '~ , for /^3 we have

\\QιDιfει\\L^C\\{\-Δ)QιDιfει\\L2^C\\{\-Δfb^f\\E, /£3. (2.55)

Inequalities (2.51), (2.53), (2.54), and (2.55), give for n^2:

«α,β,Ae,n)^CJ|/| |£ | r |.J|(l-/l)*»'< r>/|| J ϊ i jΠ3ll(l-^)**< r )/ll£, (2-56)

where Cn depends on α, β, D, ε and where the product over / is absent if n = 2. As
indicated in the proof of Lemma 2.8, inequality (2.56) implies that

| | | | JB, ̂  11(1 — ̂ )**<IΓ)y ll« - (2.57)

Let the degree of the polynomials Tγ be bounded by χ|Y,-h2 for given \Y\.
Inequality (2.49) now follows from (2.57), similarly as in the proof of (2.40).

Remark 2.10. It follows from the proof of Lemma 2.8 and Lemma 2.9:
i) that Tγ(f) in (2.40) is well defined for / e F = L?oc(R2)0L?oc(]R2) (resp.E) and if

(1 -Λ)feE [resp. if fe E<?(Y) and (1 - Δ)fe JE] (2.58)

ii) that Tγ{f) in (2.41) is well defined for feF (resp. E) and if

and (l-A)-b{Y)feE

and (l-ApWfeE]; (2.59)

iii) that Tγ(f) in (2.49) is well defined for feF (resp. E) and if

(\-AfW-VfeE and {\-Afh{Y)feE

[resp. if feEm_.1 and (1 -Af^^'^feE^ and (1 -Afb{Y)feE~]. (2.60)

Corollary 2.11. Inequality (2.40) (resp. (2.41), resp. {2A9)) is true if condition (2.58)
(resp. (2.59), resp. (2.60); is satisfied.
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Lemma2.12. Let K>0, feE1 and {\-Δ)feE. If \\{\-Δ)f\\E^K and if K is
sufficiently small, then

ίll/lk^OΓ(/)) !̂ll/ll (2.61)
Proof. It follows from (1.11) and (2.39) that

(2.62)

t (2.63)

Let Y be as in Lemma 2.8, with L = 1. Then (2.40) gives

recalling that 71=0. Since ^(Y)^\Y\, we get

p1(T(f))^C\\(ί-Δ)fUl + \\Cl

Choosing K such that CK(ί +K)Xl = \, we get

which, together with (2.62) and (2.63), proves the lemma.
Before stating the next lemma we remark that for N^z 1, it makes sense to say

that feE is such that ( ^ T ( / ) ) ) T < 0 0 . ( 2 . 6 4 )
\ )

As a matter of fact it follows from the definition of Tγ, that Tpγ = Tpγ = dy for
7 = (0,71,72) a n d then by (2.64) and the definition of pί that

£ < a ) . (2.65)

It follows from (2.65) and Remark 2.10 that if JV = 1, then TY(f) is well defined in
F = Lfoc0L?oc for \Y\^2 and that if N^2 then TY(f) is well defined in F for
I Y\ ̂  AT + 2. As !#(/) is well defined in F for | Y\ ̂  JV +1 it follows that Tr(/) e F for
jj 1. Hence, d*TY(f)=TP«Y(f) is locally square-integrable for |Y|^1 and

Lemma2.13. Let feE, and letρN+ 1(f)= ( Σ (pi(3αΓ(/)))2V/2<oo,iV^L ΓΛen

^ Y C ^ , (2.66)

C N fa α polynomial in ||(1 -

Proof It follows from (2.6) and the definition of norms that

^ ^ (2.67)

where 7is the unit element in l/(p) or an element of Π. Since \Y\ ̂  1, we have for
some constants C(7, α, jS):

] Σ (
\£\*\

where β = (βθ9βuβ2)
 a n d Pβ = Pβo0Pβ

ί

1Pβ

2

2^ Hence

Σ
\β\z\*\
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which shows, together with (2.67), that

\\(l-Δ)N'2f\\EίίCN Σ WTjf\\E, (2.68)
| | g N

with CN redefined. As T^T^ + T, we obtain from definition (2.38) of the
norm px\

Σ \\d%(f)\\E).

It follows from the definition (1.10) that d*Tγ(f)= TP<xγ{f), so the last inequality
gives:

\\(ί-Δ)N'2f\\Eι^CN(ρN+1(f)+ Σ | |? z(/)| |£). (2.69)
|Z|^N+1

If \Z\ =0, then fz(/) = 0. If \Z\ = 1, then it follows from Lemma 2.8, with L = 0, that

. (2.70)

For Z in the domain of summation in (2.69) and \Z\ ̂  2, we have JS?(Z) ̂  1 rg |Z| — 1.
Hence in this case Lemma 2.8 with L^2 give

(2.71)

where fe(Z) = [(|Z|-l)/2] + 2. As a matter of fact

Using that b(Z)^N+ί for JV^l and | Z | ^ N + 1, we obtain (2.70) and (2.71). It
follows from (2.70) and (2.71) that

Mί-^-^fWEi, (2.72)

where HN is polynomial with HN(0) = 0. Inequalities (2.69) and (2.72) give, with HN

redefined by a multiplicative factor:

. (2.73)

After iteration of inequality (2.73) we obtain for N^ 1 :

, (2.74)

where FN and GN are polynomials and GN has a zero of order N at zero. This proves
the lemma.

Theorem2.14. IffeE,N^l and pN+1(T(f))<oo, then

where CN+1 is a polynomial in p N + 1 ( T ( f ) ) and \\f\\El.

Proof. It follows from T= T1 + T and (2.39) that

f (2.75)
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Similarly, as in the proof of Lemma 2.13 we obtain from Lemma 2.8 and Lemma
2.9 that

where HN is a polynomial. Observing that for ρN+ί in Lemma 2.13 we have
QN+i(f) = pN+i(T{f)) we get from the last inequality and Lemma 2.13:

^+ 1(f(/))^| |/M^+ 1(Γ(/))+1/11^)^(11(1 -Λ)* ( Λ f + 1 )/U, (2.76)

where we have redefined the polynomial HN. It follows from inequalities (2.75) and
(2.76) that

N), (2.77)

where FN+1 is a polynomial. Iteration of inequality (2.77) now proves the theorem.
We can now prove that the linear operators Γ/, Ye U(p) are bounded by the

nonlinear operators Γ, on a neighbourhood of zero in E2.

Theorem 2.15. LetfeE,N^ 2, pN(T(f)) < oo. There is K > 0, independent of N and
f such that if \\(l-Δ)f\\E£K9 then

where HN is a polynomial independent of f.

Proof According to Lemma 2.12, we choose K>0 sufficiently small such that
). It follows now from Theorem 2.14 that

where CN is a polynomial in pN(T(f)) and | | / | | £ l . We can choose (α, b) h-> CN(α, b)
such that it is monotonically increasing in each variable for α, & ^ 0. Let HN(a)
= 3CN(α,2α). This proves the theorem.

It follows from Theorem 2.15 that there is a neighbourhood O of zero in E2 such
that the differentiable vectors in O of the nonlinear analytic group representation
Uin E2, defined by T are the same as those of the linear group representation S1

defined by T1. To be more specific let & be the Poincare group in 1 + 2 dimensions.
According to Definition 7 of [1], a differentiable vector of Uis an element feE2

such that the map g*-+Ug(f) is C00 from a neighbourhood of the identity in 3P
to E2.

Corollary 2.16. There is a neighbourhood O of zero in E2 such that OnE^ are the
differentiable vectors of U contained in O.

Proof. Let Oκ = {g e E2 || g \\ El < K}, K > 0 and let fe Oκ be a differentiable vector
of U. Differentiation of g^>Ug(g) at g = e, the identify in ^ 0 , in the directions
Xl9..., XL, Xt e p gives the result Γy(/), Y=X1X2,..., XL. Since /is a differentiable
vector, this shows that Tγ(f) e E2 for each Ye U(p). In particular, fpN{T(f)) < oo for
each iV^O. Since \\(l-A)f\\E<> \\f\\E2<Kit now follows from Theorem 2.15 that
| | / | | £ N < oo for k sufficiently small. Hence feE^nU^

Let feE^nOκ and let K be such that Ug is analytic on Oκ for each g in a
neighbourhood of the identity in ̂ 0 . It follows from Theorem 2.6 that Tγ '.E^ ->£«>
for each Ye U(p\ which shows that the map g-^Ug(f) is C00 at g = e and hence in
a neighbourhood of e.
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3. The Second Order Term in the Linearization Map

The second order term of the equation

(3.1)

gives as usual:

X e p . (3.2)

We will prove that there is a unique solution A2eL(®2EN, EN) if N is sufficiently
large and that A2(VJ® VJ\ where Vt = exp(ίTP

1

0) has certain decrease properties in
E and E°° norms.

We shall denote by ωM(k) = (M2 + \k\2)ί/2, M>0,ωm = ω.

Lemma 3.1. // M1 >0, M 2 >0, λ> -M1M2 and

then
i) Q(p1,p2)^ 1 2 ,
ϋ) a) QiPuPi^λ + ΪMlω^ipJω^ip,)-1 if λ^O,

b) QiVuVi)^ M^M2

λ
 ^^MSPI^MM'1 if -M1Af2<Λ<0,

in) KVMPuP2)r1\ύKun2ωM2(P2)2nι+Λ2+^^^

Proof. For statement i) it is sufficient, due to Lorentz invariance to consider the
case where p2 = 0. Then

For statement ii) we observe that

> M

= 2 2
o>M2{p2y

which proves the statement if λ ̂  0. If — M1M2 < λ < 0, then, using i) and ii) with
λ = 0, we get

- \ +
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which proves statement ii) for ~M1M2<λ<0. To prove statement iii) we first
observe that, for /?1?p2e]R2, nί ^0 , « 2 ^0,

K%n22Q(PuP2MCnun2ωMί(p1)
1-nίωM2(p2)

ί-n2. (3.3)

Leibnitz rule gives:

1
pι Σ Σ

r = 0 |ί|=ni

1
(3.4)

Pl P2Q(PI,P2)

Statement i) and inequality (3.4) give (with a new Cnun2):

VPί VP2

nι+n22

V

 2

2 Lr = 0

r+1

API) ωM2VPl)

«l+«2

~"Cπi,«2 2. ωMilPJ ωM2\P2)
0

which proves statement iii) of the lemma.

Lemma3.2. Lei ε , ε l 5 ε 2

= ±1? P i ?

2

i)

ii)

(3.5)

^ . ^ + ^ + M P i ) " " 1 . (3.6)

Proof. As the two cases ε = + 1 and ε = — 1 are similar we only consider the case
ε= + 1 . Let Q be defined by (with Mx =M2 = m in Lemma 2.1)

8(Pi> P2) = ω(p!)ω(p2) - Pi p 2 + \^2m
2, ε1? ε2 = ± . (3.7)

Then, by Lemma 2.1:

QkPuVi^W a n d δ ί P i . P i ) ^ ^ ^ 2 ^ ! ) ^ ^ ) " 1 , ε 1 ? ε 2 = ± l . (3.8)

Let

Then

So,

Using inequality (3.8), we get
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Now, since

ω(/c1)ω(fc2)^ -—=ω(kί + k2), fc1?fc2eR2, (3.11)

we get

(312)

which proves statement i) of the lemma. To prove statement ii) we first note that by
Leibnitz formula and (3.9):

| | i
\j\=n2

where i = (ίι,i2)
 a n d J — UuJi)- Using inequality

and using (3.11) with k1 =p1 + p 2 , k2= —p2 we get

W +P2UCh+h(ω(Pi +P2)Y~i2~h

Hence, for J2

\K^(ω(p1+p2UCil+i2ω(P2)1+h+j2ω(p1)
1-i2'h. (3.14)

For / = 1,2 and ΐ 2 +J2 = 0> we also have,

KH2MPI)\ ^ C^JMPIY^MP!)1-'2^2 • (3.15)
Statement iii) of Lemma 3.1 and inequalities (3.13), (3.14), and (3.15) give:

l Ί=«i
\j\=n2

which proves statement ii) of the lemma.
Introduce the functions

Γ1> (3.16)

ε,εuε2= ± 1 , p l 9 p 2 e R 2 . As, according to Lemma 3.2, the functions dBtBuB2 are
polynomially bounded together with their derivatives, we can define the linear
functions cε>εuε2: ^ ( R 2 ) + C°°(R2 x R 2 ) by

(3.17)
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For meR, let Sm(R2 xK 2) be the Frechet space of symbols / satisfying

Theorem 3.3. // fe ^(R2), then cε>εi>ε2(/) e S°(R2 x R 2) and

\rϊK(ce,ει,S2(fMχ>pUCt( Σ W'fWlΛ^ΦΓ, (3.18)

2 , ε,ε1 ?ε2 = ± 1 .

Proo/. For simplicity we omit the indices ε, ε1? ε2 of d and c. For given s, ί ̂  0 set
8. Then

- α ^ - 3 , for O ^ n ^ ί and 0^w 2 ^3.

Lemma 3.2 now gives that

WWMPuPiMPir^CMPiΓMPir"1, (3.19)

O ^ n ^ ί , 0^w2 = 3, which shows that (with a new constant Ct)

-ni, (3.20)

for O^n^ί, 0^n 2 ^3, α = 2ί + 8. Introduce

Gα(x,p)= j2e
ikxd(p,k)ω(kΓadk. (3.21)

Let #: R 2 ->C be a polynomial of degree ^ 3. Then, according to (3.20) (with a new
constant Ct)

\q(x)V;Ga(x, p)\ = \Seik'xq( - iVk)d(p, k)ω{k)~adk\

ft k)ω(kΓa\dkS Ctω(PiΓniQ, (3.22)

where β is the absolute value of the largest coefficient of q. As (3.22) is true for all q,
this gives

(3.23)

It follows from the definitions of c(f) and Ga that

x, P) = (2π)" H ί ^ ί , p)) * (P

where • is the convolution in the argument of the place of the dot. Inequality (3.23)
and Young's inequality give

for α = 2ί + 8. As a is even we obtain (with a new constant Ct)

which proves the theorem.

Theorem 3.4. Lβί fl9f2e£f(R2) and let

-p)dp, β , β 1 , f i 2 = ± l .
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Then
\ l / 2

; o ι r a ί - J \\f2L2 (3.24)

and / q \i/2

Wg^J^cl Σ W'fiWU) Wfih*, (3.25)

for some q^O and C^O, which are independent of fγ and f2.

Remark 3.5. i) Similar estimates are true if d is replaced by V^ V^d. One only has to
change q, and \\fj\\L2 can be replaced by \\{\-V)~njl2fj\\L2.
ii) If asC°°(R2 x R 2 ) is polynomially bounded together with its derivatives and

then

\\UL^C[ Σ IIFTillioo W(l-V)ι/2fj\\L2, (ΐ,;) = ( l ,2)or(2, l)

and

for some f̂ and /.

l/2/ β \l/2

Σ II^ΛII
0

Proof of Theorem 2.4. As the proofs of the two inequalities are analogous, we only
consider the case of (3.25). We introduce

g(x)= ^ J 2 (c(/2))(x,py p i 7i(p)ip, (3.26)

where c is defined by (3.16). According to Theorem 3.3, c(/ 2 )e ί S~ 1 (RxR), so it
follows from Theorem 18.1.11 of [3] that | |g | |L2^CΊ|/il |L2, where the constant C
depends only on a finite number (independent of / t ) of seminorms in
S - 1 ( R 2 x R 2 ) . This means that there exist s o ^ 0 and ίo = 0 s u c h that

C'ί Σ sup ω{pf\ V*V;(c(f2))(x, p)\.
Ofίs^so x> V

It now follows from inequality (3.18) that

w%\\lAil2,

where CtQ is independent of f2. Inequality (3.25) follows by choosing
q = 2ί0 + s0 + 8 and by defining C = Cto.

We have a similar result for the estimate of the L°° norm of gβfβl fβ2.

Theorem 3.6. Let gε,εi>ε2 be as in Theorem 3.4. Then there are q' and C independent
of fγ and f2 such that

1' \l/2 / q' \l/2

Σ iraii-o Σ IÎ ΛIIioo , (3.27)
=o / \s=o /

ε ,ε 1 ? ε 2 = ± 1 .
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Proof. For simplicity we omit the indices ε,ε1,ε2. For b^O introduce

(Fb(f2))(x,y) = ic(f2)(x,p)ei"yω{p)-bdy. (3.28)

Then, according to (3.26),

g(χ)=i(W2))(χ,χ-ym-irΐfi)Wy (3-29)

It follows from Theorem 3.3 that

'2 ί + 8 \l/2
b\ < C ( V WΠlf II2 1 Mfτ*\-t-b

which shows that Vp

tc{f2)(x,p)ω(p)~b is L1 in p, if ft^3, and that

2|α| + 8 \l/2

ί Σ ) I I^ΛIIL.) , b^3, (3.30)

where α = (α1,α2). This gives

14 \l/2

ΣII^ΛIIL-O) , b^3. (3.31)

By (3.29) we have

\g(χMι

which together with (3.31) gives

14 \l/2

IgWI^C

Choosing ft = 4 we get inequality (3.27) with q' = \A.
We now turn to the resolution of Eq. (3.2). Let fi = (fi+9fi-)

i = 1,2. Let Dε ε i E2 be the map of ̂ (R 4 )-»^(R 4 ) defined by

P2) = <ε i,ε2(PlJP2)gl(Pl)έ2(P2)J (3-32)

X where dεεuε2 is given by (3.16). We define A*, ε= ±, on

by

Let A2(Λ ®/2) = (A+(Λ ®/2), ̂ _(Λ ®/2)). As ΓP

2 G Uβ^E^ EJ it follows that
2 ( / / ) o It follows like in [6] that A2 is a solution of Eq. (3.2) in

= Σ TϊβΛtΛu.jJUι ®/2 ε 2). (3.33)
ε i , ε 2 = ± 1

Theorem 3.7. There exist constants q,q\ C, C independent of fί,f2eEo0 such that
1 / 2

(3.35)



460 J. C. H. Simon and E. Taίlin

and

( q' \ 1 / 2 / «' X1/2

U2{h®f2)\\E~ύC[ Σ ll̂ /illioo Σ WfΛlJ . (3.36)

Proof. Let us consider a term

ϊ p 0 D β i β l i β 2 ( / i β l ® / 2 β 2 )

in the construction (3.33). Due to the definition (1.9a) of TP

2

0 this term is a linear
combination of terms h:

where gi is one of the elements

-f f ^f
ωJUι9jUtt9ωJUi'

According to Theorem 3.4 and Theorem 3.6 we then have:

l/2

^ C Σ i
\ 0

and

.1/2

\\h\\L-£C'\^ΣoW
agi\\2L-) [Σjr giWl-] ,

with C,C',q,q' independent of gx and g2. Since

for r e ^ ( R 2 ) , we can replace gt by fiε. in the L00 norms of the preceding estimates of
h if we replace q by q + ί. Using the fact that ||g, | | L 2^ \\fiεi\\L

2^ WME w e obtain
(with new constants C and C)

l/2

and

l/2/ί'+l

This proves the theorem after redefining q.

Corollary 3.8. There are χ and C independent of fuf2eEO0 such that
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and

Proof. According to [2] we have

The corollary now follows from Theorem 3.7.

Theorem 3.9. There exist CNindependent offuf2eEoo and χ0 independent offί9 f2,
N^O such that

ii) if moreover, fγ =f2 =f then \\A2(f®f)\\Eri<CN\\f\\EJf\\E „
iii) if moreover, N is suffciently large then \\A2(f®f)\\EN^CN\\f\\lN°.

Proof Let Sx = Tx ®I +1® Tx for X e p and let Sγ, Ye p be the natural extension
to the enveloping algebra. As

TXA
2 = A2SX-TX, Xep,

one proves by induction that for Y=XX ...Xw X{ep,
ηπl A 2 A 2 o T2 ^

τ~Ί '7~|2 c T"Ί rτΊ2 o ΎΊ ΎΊ /Λ OTΛ
1Xl

1X2^X3 . Xn~ "' 1Xl...Xn-21Xn-ll*Xn λ X l ...Xn-1 λXn ' \J 3t)

Hence by the definition of the space Et we have

ll^2(/i®/2)ll£^ M2sy(/1®/2)|liϊ+ WTls^.^Sf^fM^

+ ll^2A3...^(/i®/2)ll£l +

...+\\τi_ιsXn(f1®f2)\\EH_2

+ T2

n(fί®f2)\\En_ί. (3.38)

If Z = Xh ...Xit, then there are numerical constants C(ZUZ2) such that

C ( f /O\ f \ V CίΎ Ύ \ίCT^ f \fQ\(TΊ f W (Ί 'XQΛ
Ovl /1 (X) Jo)— / ^l^-Ί•> £>">)\\ ±7, 1 \ )κy\ J 7 , /?;) yj.Dy)

|Z| = |Zi | + | Z 2 |

Let Yi = XiXi+1...Xn, l ^ i ^ n . Then, according to (3.39) the term
\\TiiSγι+i(fi®f2)\\El_1 in (3.38) can be bounded by a sum of terms

\C(Z1,Z2nτiftTz\f1)®{Tz

1

2fMB,-1, where \Z^\Z2\ = n-i. (3.40)

It follows from Lemma 2.1 that

)

Let qi = \Zi\, Ϊ = 1 , 2 . Then

\\T^ΛEj\\TiJ2\\EJ2 + MfΛEj+q\\f2\\Ej+q+, (3.42)
a n d ' 2 i ! 2 2

II ̂ i\^ill^JI -2^,^! l l^^3 ̂  IÎ V l l ^ 1 ^ ^ ^ 3 l l ^ i l l ^ ^ ^ - (3.43)
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Inserting (3.42) and (3.43) into inequality (3.41) and then summing up the terms in
(3.40) over qί and q2 such that q1 + q2 = n — ί, we get

h + h ^ i — 1 2

We obtain after a change of summation variables:

Σ J i i + 3 , | | / 1 | | B i i + 3 l | / 2 | | ί i J , (3.44)

for 1 ̂ ί^n, where 5yn+1 = Id. For the remaining term, \\A2(Sγ(f1(g)f2))\\E, on the
right-hand side of (3.38), equality (3.39) gives:

|Zi| + |

Using Corollary 3.8 and denoting by qt = \Z^ we obtain

Choosing χo = 3 and χo = Z> inequalities (3.38), (3.44), and (3.45) give:

By the definition of EN this proves that

M 2 ( / i ® / 2 ) l l £ ^ C ^ +Σ< j vmin(| |/ 1 | |£ π i | |/ 2 | | J ϊ f i a + 3 e o, IIΛII^^JIΛIUJ, (3.47)

N N ΠVΊ
which proves the first inequality of the theorem. If n1 ^ — then n2 ^ — ^ —- + 1

N N ΓNΊ

and if n2 ^ — then nx ^ — ^ — + 1 . This proves that

n i n2 + x 0 ' n i + * o ni — N [f] + κo+i

Hence by (3.47) (with a new

which proves the second statement of the theorem. Choosing iV^ | — | + χ o + 1 ,
we get

which proves the third statement of the theorem.

4. The Linearization Operator

In order to construct a linearization operator of the nonlinear representation T of
p, we consider equality (1.14) in £ satisfied for a sufficiently differentiable solution a
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Of (1.15)

j t TrdaM = TPom{ai{t)), ί ̂  0, (4.1)

with Y(t) given by (1.13) for YeW.
Introduce, for YeΠ'\

aγ(t)=TY(t)(aί(t))^ (4.2)

Corollary 2.5 and (4.1) then give

j t aγ(t) = TP

ι

oaγ(t) + Σ2 TP

2

o(aYί(t)®aY2(ή) + TPoY{aγ{t)), (4.3)

where

TPoγ(a1(t))= Σ ΣTP

n

o(aYl(t)®...®aYn(ή). (4.4)

According to the definition of the sum £' , Eqs. (4.3) and (4.4) define for given
Y,P

iV^O, an evolution equation for the variables {aγ}\Y\^N, where YeΠ' and aγeE
for |Y|^JV. As mentioned in the introduction, we have chosen the linearization
operator to be a solution of Eq. (1.18). We therefore study the existence of
solutions of (4.3) for which there is θeEN such that

UmV.taγ(t) = θγeE for \Y\£N, (4.5)
ί->oo

where ΘY=TYΘ. To do this we first subtract from a the terms of order one and
two in θ.

Let χ be as in Corollary 3.8. We define for N^N0 = 2χ, \Y\^N and θeEN:

aγ

ί\t)=Vtθγ=VtTγ

1θ, 42\t)= ΣA\VtθYι®VtθY2), ί e R . (4.6)
Y,2

When needed, we shall write aψ(θ9 ί), ί= 1,2, to indicate the dependence of a on θ.

Lemma 4.1. If N^N0 and θ e EN, then

Proof. Let \Y\^N in (4.6). According to definition (2.15) of Yx and Y2 we have

a) Let |Yi| ^ \Y2\. Then |Yi| ^ AT and \Y2\ ^ | — |. It follows now from Corollary 3.8
that

where we have used the equality θγ = Tγθ. Since U r - + χ ^ - τ - + -^^JV, we
obtain L2J 2 2

(4.7)
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b) If l Y ^ l ϊ i l , then we deduce similarly that (4.7) is true.
Summation over Yl9 Y2 now proves the lemma.
For N^N0, \Y\^N and θeEN, we introduce

bγ(t) = aγ{t) - aγ

ι\t) - 42>(ί), ί ̂  0. (4.8)

Supposing that the map t\->aγ(t)eE is C1 and using (3.2), Eq. (4.3) gives:

d
—bγ(t)=τP\bγ{t) + y τP

2

n(4V(0® 4 2 Λ 0 + a

at y, 2

+ 4 2 i ) ( 0 ® 4 2

2

} ( 0 + 4 V ( 0 ® b r 2 W+^Yi(

α ( 2 )(ί)), ί ̂  0. (4.9)

Let SN, iV^O, be the Hubert space of elements fγeE for |7|^iV, YeΠ' and
satisfying dafγ =fP«γ for |α| +1 Γ| g N. The norm in gN is p N defined by (2.38). Let βN

be the Banach space of continuous functions from [0, oo[ to $N with norm

qN(b) = sup ((1 + t)pN(b(t))), be@N. (4.10)

We next introduce functions F9 G, H, U which will be proven to be polynomial
maps of ENx@N into ΛN9 for N sufficiently large. For \Y\^N9 YeΠ\ θeEN and
ί^O, let

(Fy(θ,

+ Γ ^ ( ( 4 ^ ) + bYι(ή)®(a%(t)®bY2(ή), (4.11)

(Gγ(θ, b))(t) = Γ T/o(4V(0® 42

2

}(ί))

|iril>'|ίr|-2

+ Γ Γ/^ΛOβί^W), (4 1 2)

Σ r/0(6y1(i))®(4VW), ( 4 1 3 )

and let

([/y(θ, ft))(ί) = ΓPoy(ί.(ί) + a^(t) + α<2»(ί)). (4.14)

Equation (4.9) now reads:

b{t)j t θ,b)+ Uy(θ,b))(t), (4.15)

where θeENis given, b e @)N is unknown, | Y\ ^ N, t ̂  0 and N is sufficiently large.
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Lemma 4.2. There exists No^0 such that for N^N0,

pN((F(θ,b))(t))^CN(l+t)-2(\\θ\\2

EN+ \\θ\\ϊN + qN(b)2), (4.16)

and

pN((G(0, b))(ή) ύ CN(ί + t)-2\\θ\\3

EN, (4.17)

where θeEN and

Proof Let α and β be continuous function from [0, oo [ into iN. Then αy(ί) and βγ(t)
are elements of E for |Y|^JV. Introduce for |Yi|,|Y2\^N:

Wτl9 YJΛ βW) = T2

0(*Yί (t)®βγ2(t)) (4.18)

According to inequality (2.7) of Lemma 2.1 we get:

i(S)| |£«||iSy 2(S)| |£), (4.19)
Be0$ s^O

where ||5ar i(ί)||£oo|| ̂ ( ί ) ^ can be replaced by \\ari(t)\\E\\BβY2(ή\\E^. If αy(ί) = 4 1 ) (0
= Vftτ, θeEN, then using | |F ί g | | L »^C( l + | ί |)- 1 | |g | | £ 2 , we have

Hence, it follows from (2.3) that (with a new C):

(4.20)

According to (4.19) and (4.20):

Ufy^M^βMmE^Cil+ή-'WΘW^^q^β), (4.21)

where ί^O and ^ 6 ^ ( F 2 | . Similarly, we have

2 ^! !^ . , ,^^,^), (4.22)

for t ̂  0 and α e&\Yl\. Since α(ί) G S N , we have by definition AocY(t) = ocP2Y(ή + αP2r(ί).
This gives

+ | |α P 2 y i ( ί )y . (4.23)

It follows from the last inequality and inequality (4.19) that

IK/y.y^^WllE^αi+ί)-^,,^^)^,^^), (4.24)

for ί^O, oce@lYίl + 2 and βe@\YlV Similarly,

l l (/ r 1 .F 2 te/0)WL^C(l+ί)- 2

9 | y i l (α) 9 | y 2 | + 2(i8), (4.25)

for ί^O, α e ^ | y i j , and βe&]Y2\ + 2.
We first consider the case of F. Let | Yί \ SI Y\ — 2 as in the first sum on the right-

hand side of (4.11). If
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then (4.21) gives, as2 + \Yt\^\Y\^N and |Γ2 |^N:

(4.26)

Similarly, we obtain for the second sum on the right-hand side of (4.11), where

\Y2mY\-2: \\(fYl,
Y,2

(4.27)

For the third sum in (4.11), we first consider the terms with |Yi|^|Y2|. Then
ΓiVl

\Yi\£N and |Y2| + 2 ^ — + 2^N for N ^ J V 0 ^ 3 . Let JV0^3. It now follows

from (4.25) that L J

Γ
\Yi\k\Y2\

<, CN{\ + ty2{q»{a™) + qN(b))2, t Z 0. (4.28)

The estimate (4.28) and its analog for | Yt\ < | Y2\, obtained from (4.24), give for ί ̂  0:

• (4.29)Σ; uM

It now follows from estimates (4.26), (4.27), and (4.29) that for N i> No = 3:

(a(2)) + qN(b))2)

aι2ψ + (qN(b))2). (4.30)

Inequality (4.30) and Lemma 4.1 give (with a new CN):

(1 +t)2pN((F(θ,b))(t))^CN(\\θ\\i+ \\θ\\ίN+ \\θ\\

This proves inequality (4.16).
We now turn to the proof of inequality (4.17). First, let \Y2\ >\Y\ — 2 as in the

second sum on the right-hand side of (4.12) and let α = α ( 2 ) and β = a{1). It then
follows from inequality (4.19) that

Σ2 \\((fγuγ2(ai2\a{ί)))(t)\\E

\Y2\>\Y\-2

Σ M2^)llEoo||θ| |£ | y 2 l). (4.31)
Bern s^o

According to (2.3) we have

^ C ( Σ llVy^ll^+llα^)!!^). (4.32)
i = l , 2
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Using equality diA
(2)(f®g) = Ai2X(dif)®g) + A(2)(f®dig) it follows from (4.32),

the definition (4.6) of a(2) a n d Corol lary 3.8 t h a t for | Y i | ^ l :

| | M 2 ^ ) H E O O ^ C ( 1 + 5 ) - 2 Σ Σ (\\dfizΛEjθz2\\Ex+\\θzAEjdfiz2\\Ej9Z,2 i= 1, 2

for some χ 0 ^ 0 . Hence, for | Yi| ^ 1:
2\\θ\\iNo9 (4.33)

where No is redefined such that it also satisfies No ̂  χ0 + 2. Since No S N, \ Y2\ S N,
|Yi |^l we obtain from (4.31) and (4.33),

|y2|>Vι-2

Similarly, we obtain that

^ ! ! ^ , iV^iV0. (4.35)

Inequalities (4.33) and (4.35) prove that (4.17) is true, which proves the lemma.

Lemma 4.3. // JV;>0, then

PΛH(Θ9 b))(ή) ί CN(1 + ί)" 21| θ \\EN+ 2qN(b),

for θeEN+2 and be&N.

Proof. According to (4.21)

IK/y.y^ 'UWWII^αi+ί)- 2 ^ ! !^ , ,^^^^) . (4.36)

Hence, since \YX\9|y2|^iV, we get

Σ2 iK/y.y^'^WWII^Cίl + ί ) - 2 ^ ! ! ^ , ^ ^ ) . (4.37)

| r i l > f | γ | - 2

Similarly, we obtain

Σ2 IK/y.y^^'^WII^Qίl+ί)- 2^!!^,^^). (4.38)

Inequalities (4.37) and (4.38) prove the lemma.

Lemma 4.4. There exist iV0 = () and χN>0 such that

$>N((U(θ,b))(t)UCN(l+ty2(\\θ\\2EN+ \\θ\\4

EN+qN(b)2)(l + llflll

for ί^O, N^N0, ΘEEN and be@N.

Proof Let YeΠ\ |7|^iV, n ^ 3 and let Tpo{aYι(t)®...®aYn(ή) be a term in (4.4).

Then there is v such that 17V| ̂  | Yj\ for l^j^n.lt follows that | Y l ̂  ψ U y L

for j Φ v. Hence | Yj\ + 2 ̂  N for N ̂  No ̂  3 and j φ v. Inequality (2.7) of Lemma 2.1
igives:

\\TP

n

o(aYί(t)®...®aYn(t))\\E^CNΣ l|Biv*yv(i)ll* Π I I B I ^ W I I E - , (4.39)
i Ϊ Φ v
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where ie{l,2,3,4}". According to (4.20), (4.23) with a(2) = a and Lemma 4.1 we
have:

A W ^ ^ ^ W Θ W ^ , (4.40)
and

iiM^wiiiϊ-^cp ]Yύ+2(a<2\t))scpN{ώ2\mαi+1)~xii^ni. (4.41)

where No has been chosen sufficiently large. Similarly, using (4.23) we obtain for
ίφv,

^ ) . (4.42)

Since | |β i v α r v (ί) | | £ gC| |α y v (ί) | | £ , we have for a = a(1) + a(2) + b:

N N (4.43)

where No has been chosen sufficiently large. Here we have used Lemma 4.1 for the
term a(2\ Inequalities (4.39) to (4.43) give:

W0(aYi(t)®...®aYn(ή)\\E

\\Θ\\2

EN+ qN(b))», teO, N^iV 0 . (4.44)

Since TPo is a polynomial, we obtain from (4.4) and (4.44):

^ Σ ΣΊI3po(
flyiW®...®flyfl(ί))IU

n^3 Y,n

^CN(1 +tΓ2(\\θ\\2EN+ W\4EN+qN(b)2)(l

where χN is sufficiently large and N^N0. This proves the lemma.
There is a loss of two degrees in the scale of the seminorms in the estimate of

H(θ, b) in Lemma 4.3. This makes it impossible to prove the existence of solutions b
of Eq. (4.15) directly by using the method of Picard in a Banach space. However, as
we shall see, the properties of A2 permit us to overcome this difficulty by a
transformation of Eq. (4.15).

For N sufficiently large, let θ e EN and let 11-> b(t) e δN, t ̂  0 be a C 1 solution of
Eq. (4.15). Let TP

2^aY

ι}{t)®bY2{t)) be a term in the first sum of (4.13). Then, it follows
from Eqs. (3.2) and (4.15) that:

= V_t(-TP

ι

0A
2(VtθYι®bY2(ή)

+ A2((TP\®I + I®TP\)(VtθYι®bY2(ή)

+ A2(VtθYi ®(FY2(Θ, b) + GY2(Θ, b) + HY2(Θ, b) + UY2(Θ,

= V.tT
2

0(VtθYί®bγ2(t))

+ V_tA
2(VtθYl ®(FY2(Θ, b) + GY2(Θ, b) + HY2(Θ, b) + UY2(Θ,
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Hence

- V,A2(Vtθγ, ®(FΪ2(Θ, b) + GY2(Θ, b)+HY2(Θ, b) + Vyjβ, b))(t)). (4.45)

Similarly, we get for the terms in the second sum of (4.13):

- V-tA
2((FYί(θ, b) + Gϊ2(θ, b) + HYl(θ, b) + VY2φ, b)\t)® VβY2). (4.46)

Introduce, for ί^O:

+ Σ A2(bTl(t)®a$(t))9 ί^O, (4.47)
i

and

Σ2 A2(a^(t)®(FΪ2(θ, b) + GY2(Θ, b) + HY2(Θ, b) + UY2(Θ,

\Yi\>'\Y\-2

Σ^ X χ ι ι ^
|y2|>'|iΊ-2 (4.48)

According to (4.45) and (4.46) we then have:

V.t(Hγ(θ, b))(t) = V_t(h(θ, b))(t) + j t V-t(fγ(θ, b))(t), ί ^ 0 . (4.49)

Substitution of (4.50) into (4.15) and then integration in ί give:

bAt)=(/Λθ,b))(t)

- J Vt-JLFy(θ,b) + Gγ(θ,b) + hγ(θ,b) + Uγ(θ,b))(s)ds, (4.50)
t

where θeEN, be&N, \Y\£N, t^O, and N is sufficiently large.
Introduce

- j V,-s(Fy(θ, b) + Gy(θ, b) + hy(θ, b) + Uy(θ, b))(s)ds . (4.51)
t

Equation (4.50) then reads

b = K(θ9b), (4.52)

where be&N, θeEN, and N^N0 for some AΓo^0.
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Theorem 4.5. There exists No ^ 0 such that K is a polynomial map from EN x &N into

*" Und qN(K(θ,b))ίCN(\\θ\\2

EN+qN(b)2)(l + \\θ\\EN+qN(b))*»,

for N^.N0 and some constants CN and χN.

Proof The proof of this theorem is similar to the proof of the preceding lemmas in
many details. For this reason we will omit several details.

Let |Y i |> |Y |-2 . Then, in the first sum on the right-hand side of (4.47) and
(4.48), we have | 7 2 | ^ 1 and {Y^^Yl^N. Inequality (3.35) of Theorem 3.7 gives:

Since b eJ*N we have dabY2 = bpocY2.The Sobolev inequality H / H ^ ^ C £ \\d*f\\E

and | | f l^( ί) | | E ^ | |β | | E w now give: | |

^ C(ί + ί)" 11| θ\\ENqNo(b), (4.53)

for ί^O, N^NOi where we have chosen N0^3 + q. Similarly, we obtain

\\A2(aWt)®(Fγ2(θ, b) + Gϊ2(θ, b) + HY2(Θ, b) + Uϊ2(θ, b))(t))\\E

^ CII θ || Eκ(g>NJ{F(θ, b))(ή) + $>No((G(θ, b))(ή)

+ pNo((H{θ, b))(t)) + pNo((U(θ, b))(ή). (4.54)

Choosing JV0 sufficiently large and using the fact that \\Θ\\EN+2qNo(b)
^ 2 (II θ II I N o + 2 + QN0(

b)2)> it follows from Lemmas 4.2, 4.3, and 4.4 that

pNo((F(θ, b))(t)) + pNo((G(θ, 6))(ί)) + ρNo((H(θ, b))(t)) + pNo((U(θ,

This inequality and inequality (4.55) give after redefinition of No and χNo:

II A2(a^(t)®(FΪ2(θ, b) + GY2(Θ, b) + Hϊ2(θ, b) + Uyjft, b))(t)) || E

t*CNo(ί+tΓ2\\θ\\EN(\\θ\\2

Nΰ + \\θ\\tNΰ+qNo(b)2)

x(l + \\θ\\ENo + qNo(bψN°, N^N0, ί^O. (4.55)

Inequality (4.54) and its analog for | y 2 l > l ^ | —2 give:

qN(/(θ, b)) ί CN || θ || ENqNo(b), N^N0. (4.56)

Inequality (4.56) and its analog for | 7 2 |> |Y | — 2 give:

PAh(θ,bMtMCN(ί+tΓ2\\θ\\EN(\\θ\\2ENo+ \W\iNo + qNo(b)2)

x(l + \\θ\\ENo + qNoΦ)YN°> t^°> N^N0. (4.57)

It follows from the definition (4.52) of K that

qN(K(θ,b))SqN(/(θ,b))

+ i s u p ((1 + t)2pN((F(θ, b) + G(θ, b) + h(θ, b) +17(0, b))(ή). (4.58)

Lemmas 4.2 and 4.4 and inequalities (4.57), (4.58), (4.59) give:

where χN is redefined. This proves the theorem.
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Theorem 4.6. There exists iVo_0 such that if N = iV0, then there exists an open
neighbourhood ΘN of zero in EN such that the equation b = K(θ, b) has a unique
solution b(θ) e &N for each θ e ΘN. The function b: ΘN-+&N is analytic and has a zero
of order three at 0 = 0. We choose Θb i = iV0 such that Θi+1cΘir

Proof According to Theorem 4.5, K:ENx&N->3$N, ΛΓ = iV0 is an analytic map
with a zero of order at least two at the point (0, b) = (0,0). The map R defined by
Rφ, b) = b- K(θ, b) is then an analytic map from EN x &N to &N and D2R(0,0) is the
identity map on <gN. Here D2 denotes the derivative with respect to the second
argument. Since EN and J*N are Banach spaces it follows from the implicit mapping
theorem that there exists a neighbourhood ΘN of zero in EN for which the equation
R(θib) = 0 has a unique analytic solution b:ΘN-+&N. K(θ,b) considered as a
polynomial in b has an expansion

K(θ,b)= Σ h{θ,b) + ko{θ),

where b ι-> kn(θ9 b) is a monomial of degree n from ΛN into itself. It follows from the
definition of K that the polynomial 0 i—• ko(θ) has a zero of order three at 0 = 0 and
that the polynomial θ\-^kί(θ9b) has a zero of order at least one. Since the unique
solution 0h->b(0) of equation b(θ) = K{θ,b(θ)) satisfies b(0) = O, it now follows by
identification of the n-homogeneous parts, n = 1 of b(θ) = K(θ, b{θ)\ that 0 h-> b(θ)
has a zero of order three at 0 = 0. Finally, we redefine ΘN by 0 N n $ N _ 1 n . . . n 0 N o .
This proves the theorem.

For N sufficiently large, we can now deduce the existence of C 1 solutions
11—• a(t) G $N91 = 0 with given scattering data at t = oo, of Eq. (4.3). To indicate the 0
dependence of a(t) we shall write (α(0))(ί). We introduce for N = 0 the Banach space
j / / of continuous functions / :R + -x f N with norm

ll/lk + = s u p ^ ( / ( ί ) ) , AΓ = O. (4.59)

Theorem 4.7. Lβί ΘN and b he as in Theorem 4.6. There exists No = 0 such that if
N^N0 and a(θ) = a{ί\θ) + a{2\θ) + b(θχ θeΘN, then
i) a: GN^>stfχ is an analytic map,
ii) lim pN((Φ))(t)-(aw(θ))(t))=0 for θeΘN,

ί-> oo

iii) if θeΘN+l9 then t\-+{a(θ))(t)e£N, ί = 0 is the unique C 1 solution of Eq. (4.3)

satisfying the condition ii). In addition ά(0)e J / / , where (ά(θ))(t)= —(a{θ))(t).
dt

Proof. We define No which is larger than that of Lemma 4.1 and that of
Theorem 4.6.

It follows trivially from definition (4.6) of α ( 1 ) that it is analytic from EN to sί^.
According to Lemma 4.1 the map 0ι—>α(2)(0) is analytic from EN to sί^ and
according to Theorem 4.5 the map 01-» b(θ) is analytic from &N to 38N and hence α
fortiori to j ^ " . This proves statement i).

Since a — α ( 1 ) = α ( 2 ) + fc, Lemma 4.1 and Theorem 4.6 give for θeΘN:

This proves statement ii), because b(θ)e0SN according to Theorem 4.6.



472 J. C. H. Simon and E. Taflin

Let θ e &N+1. It follows from (4.6) that άψ(θ) = a%γ(θ). Hence it follows as in the
proof of statement i) that ά(i)(θ)ejtfχ. According to Theorem 4.6, b(θ)e&N+ί

which shows that the right-hand side of Eq. (4.15) is a continuous mapping in t
from [0, oo [ to Sn. b(θ) is a solution of Eq. (4.52) so, by construction, it is also a
solution of Eq. (4.15). This proves that b(θ) e s/£. The function 11-> (a(θ))(t) e «„ is
then by construction a C1 solution of Eq. (4.3). The uniqueness of this solution
follows from the uniqueness of b in Theorem 4.6. This proves statement iii).

The next theorem will permit us to solve the Cauchy problem of Eq. (4.3) with
y = l a t f = O.

Theorem4.8. There exists No^2 such that for N^N0, θh^ia^θ))^) is an
invertible analytic map from &N onto Θ'N, where &N and Θ'N are open neighbourhoods
of zero in EN. Further ΘN+1CΘN.

Proof. We can choose iV0 in Theorem 4.7 such that No ^ 2. According to Theorem
4.7 the map θ i—• (a(θ))(O) is analytic from &N to SN. We choose &No small enough so
that ρNo((a(θ))(ή)^K, ί^O, where K is given by Theorem 2.15. Since
||(1 -Λ)(fll(0))(O)||*g ρNo(W0))(O)) and pN((a(θ))(O))< oo, Theorem 2.15 gives that
||(αi(0))(O)||£N< oo. This proves that θι-^(αi(θ))(O) is an analytic map from &N to
EN. Denote this map by A: ΘN-+EN. We have DA(0) = I, / = identity in EN. By the
inverse mapping theorem there exists an open neighbourhood &'N of zero on which
A'1 exists and is analytic. We redefine ΘN such that A:ΘN-+Θ'N is an analytic
bijection. The last property is true if ΘN+ x is redefined by ΘN+ιnΘN and &'N+1 by
Θ'N+1nΘ'N.

Theorem 4.7 and Theorem 4.8 are the main tools we need to solve the Cauchy
problem for Eq. (1.15) with data at t = 0. Let us introduce the Banach space jtfN of
continuous functions /:R-xfN, with norm

U = s u p p N ( / ( ί ) ) , N^O. (4.60)
ίeR

Introduce also the equation

(ύγ(θ))(t)=TPoYit)(u1(θ))(t), ίeR, (4.61)

with data

(uγ(0))(0)=Tγ(θ)eE, \Y\£N, (4.62)

where (uγ{θ))(t) = 7V(t)((Mi(β))(ίλ (ύγ(θ))(t) = j{uγ(θ)){t\ and Ye 17'. It follows like in

(4.3) and (4.4) that Eq. (4.61) is an evolution equation for the unknown (u(θ))(t) e SN.

Theorem 4.9. There exist No ^ 0, open neighbourhoods $JJ0,0#o, Θχ0 of zero in ENo,
analytic maps U:Θ°NO-+S/NQ9 Ω+:Θ+O->&°NO, Ω_:Θ^Θ°NO and for N^N0 open
neighbourhoods 0$, &£, G^ of zero in EN, with &%+ίC0%9 &£+ iC&U, Θ^+1CΘχ
such that:
i) u: Θχ-+£/N is analytic,
ii) The maps Ω+ : Θ^ ->0jj, ί2_ : @ΰ ~*®N are analytic bisections and

lim piV((^))(ί)-KΓ1Ω(-+

1

)(0)) = O for N,
(±)t->oo

iii) t\-+(uψ))(t)e$N, θeθχ+1 is the unique C1 solution of Eq. (4.61) with initial
conditions (4.62),
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iv) if ΘEΘ°N, then (u(θ))(ήeEN for ί e R and the map t^V^u^θ))^) defines a
continuous function in t from R into the space of analytic functions from Θ^ into EN.

Proof. Let us choose NQ which is not smaller than No of Theorem 4.7 or Theorem
4.8. For N^NQ we define Θ£ as the intersection of ΘN from Theorem 4.7 and
Theorem 4.8. It then follows from Theorem 4.8 that θ\-+Ω+(θ) = (a1(θ))(0) is an
invertible analytic map from G^ onto Θ°+,N,N^N£, where Θ°+fN = Ω+(Θ^). For
a(θ) given by Theorem 4.7 we denote a+(θ) = a(θ).

There is an analog of Theorem 4.7 for Eq. (4.1) with ί^O, obtained by
considering instead of (4.5) solutions a~(θ) satisfying

lim V_t(aγ(θ))(t) = θγ=TγθeE for
r-»-oo

As above we then obtain NQ , &ΰ for N^NQ and the invertible analytic map Ω_
from OH onto 0° N, where Ω_(0) = (αΓ(0))(O).

WedefmeiVo='max(AΓ+,AΓo),< = ^ > i V n ^ > Λ r and we redefine 0^ a n d β ^ by
0 + = Ω ; \β^) and Θχ=Ω- \QN\ which are open subsets of the old ones. They are
neighbourhoods of zero in EN since Ω(±)(0) = 0.

For θ E Θχ0 we now define u(θ) by

(u(θ))(t) = (a+(Ω-\θ)))(t) for ί^O (4.63)

and

) = (a-(ΩZ\θ)))(t) for ί < 0 . (4.64)

Since (a+(θ))(0) = T(Ω+(θ)\ θeθ^ and (a-{θ))(0)=T(Ω_(θ)), θeθΰ we have
(a+(Ωlί(θ)))(0) = (a-(Ω+ί(θ)))(0)=T(θ) in gΉ for θeθ%. This proves that
ίι-φ(0))(ί) is continuous at ί = 0 and that (u(θ))(0) = T{θ\ so (4.62) is satisfied.

Statements i) and iii) of the theorem and the equality in the statement (ii) of the
theorem now follow from the corresponding statements of Theorem 4.8 and its
analog for t ^ 0.

To prove statement iv) of the theorem we remark that we have already fixed 0$,
by the definition of Θ'N in the proof of Theorem 4.8, such that

for t ^ 0 and θ eΩ+(Θ^) = Θ% and similarly for t < 0. Here K is given by Theorem
2.15. Hence \\(\-Δ)(uγφ)){t)\\E^K for ί e R . By statement i) it follows that
fc>N((u(θ))(t))<oo for 0 e 0 £ and £eR, so by Theorem 2.15 we have Wiu^θ))^)^
< oo. The map 0ι—•(w(0))(ί) is analytic according to statement i). The continuity
follows from the integral equation corresponding to Eq. (1.15). This proves the
theorem.

Theorem 4.10. There exists N'^Osuch that, ifΘ%., φ^9 &ΰ> are given by Theorem 4.9,
then

i) it is possible to choose Θ°Ή = ENnΘ%, θ^ = ENnΘ^9 &ΰ = ENn@u> in Theorem
4.9 for N^N\
ii) the invertible analytic maps Ω+ : 0^->0ft,, Ω_ : 0 ^ - > 0 ^ satisfy

DΩεTχ = TχoΩε on Θε

N> + 1 and for Xep,

where ε= + ,
iii) if &°00 = Θ°N,nE<x>, 0 ; = 0+,n£ < o > &~ = &^nEa0 then Ω{±){Θ^) = &1.
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Proof. Let JV' = iV0 + 2, where No is given by Theorem 4.9 and redefine Θε

No+i,
ι = 0,1,2, ε = 0, + , — to be the interior of the closure in ENo+i of ENo+inΘε

N>. The
open neighbourhood &ε

No+i of zero in ENo+i is included in the one defined in
Theorem 4.9. Let Φ% be given by Theorem 4.9 ϊorN^N'. Then the conclusion of
that theorem is valid for the sequence Θε

No9Θ
ε

No + l9...9Θ
ε

N9...9 ε = 0, + , —.
Let us first consider statement ii) for Ω+. Let 0 e ΘNo+λ. Then Ω+(0) e ΘNo + x and

T£θeENo + u so Θ^DΩ+(θ) (Tχ-θ) and 0h->(Tx°ί2+)(0) are analytic functions from
ΘNo+ί to ENo. According to the definition of ΘNo+2, it is dense in ΘNo+1. Let
0 e &No+2 a n d let X e p. It follows from definition (1.10) and statement ii) and iii) of
Theorem 4.7 that ax(θ) is the unique solution of the equation

d + + +

with \\aϊ(θ))(t)-VtT£θ\\E^0 as ί-^oo. Introduce α^(0) = i)fl1

+(0) (Tx

10). Then
differentiation in 0 of the equation

ft(at(θ))(t)=TPo((at(θ))(ή)

gives

— (α^ (0))(ί) = DTPo((α^(0))(ί)) • (otx(θ))(t). (4.66)

Since lim F_ί(β1

+(0))(ί) = 0, it follows that
i-+oo

' | |£^0 as ί-^oo. (4.67)

It follows from Eq. (4.61), condition (4.62) and the uniqueness of the solution of
Eq. (4.66) that a^{θ) = a^(θ).

Since according to (4.2), (α^(θ))(0) = TΛ-((α1

+(θ))(0), we get by the definition of
o£(0) and by the definition Ω+(θ) = (at(θ))(0) that

Tx((aΐ(θ))(0)) = 7i(β+(0)) = (Dal(θ) • (Tjθ))(0) = DΩ+(θ) • (Γ^β),

0 e &No+2. By continuity it now follows that this inequality is true for 0 e ΘNo + x as
@No + 2 is dense in ΘNo + ί . This proves the statement ii) for the case of Ω+. The case
of Ω_ is so similar that we omit it.

We next consider statement i) in the case of Θ^. Since the map Ω+ : Θ^-^ΘN/ is
analytic, so is the map Ω+:ΘJ;-+ΘN, for N^N'. Let θeG%.+L9 L ^ l and let
X1,...,XLeτp. The map θ\-^FXuX2f XL(Θ), obtained by differentiation of
Ω+:Θ£,+L-+ΘN> at 0, first in the direction 7^0, then in the direction T£2θ9..., and
finally, in the direction TχL is analytic from &N'+L t 0 ^ N We prove that in E:

Fχu..,χL(θ)=TY°Λ(θ)> Y=X1X2...XL, θeΘN,+L, A = Ω+. (4.68)

For L = 1 it follows from Theorem 4.9 that (4.68) is true. Suppose it is true for L.
Then, for Y=XU...,XL:
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By statement ii) and definition (1.10) we get:

which proves (4.68) by induction.
We had already chosen ΘNo in the proof of Theorem 4.8 such that

||(1 -A)Ω+(Θ)\\E^K, where K is given by Theorem 2.15. If θe&N, N^N', then it
follows from (4.68) that pN(T(Ω+(θ))<oo. Theorem 2.15 now gives that
\\Ω+(Θ)\\EN^OO. This proves that Ω+ :Θχ-+EN is analytic. Furthermore, by the
definition of 0^ and G% it follows that Ω+{G^) = G% as Ω+(G£.) = G°N;. This proves
together with (4.68) that statement ii) of Theorem 4.9 is true. We omit to prove the
remaining points of statement i). Statement iii) is evident as f2+(0£)
= 0 Ω+(&£). This proves the theorem.

We next turn to the proof of the results stated in paragraph one.

Proof of Theorem 1.1. Statement i) is a direct consequence of Theorem 2.3.
Let φ e C°°(R x R 2 ) be a solution of Eq. (1.1). The map g κ-> φg defined by

φg(z) = φ(Λ-ί(z-a))9 g = (M), z = (t9x)

defines an action 2P0 on solutions of Eq. (1.1), which by the transformation (1.2)
defines a continuous action g i—• vg of ^ 0 on solutions v of

- ι ; ( ί ) = T P > ( ί ) ) , ί 6 R , v(t)eENo+1.

Let us define Ug(v(Oj) = vg(0) and we redefine G^o as the union of the sets Ug(G'No)
over g £ 0>O9 where G'No is G°No given by Theorem 4.10 and No is Nf. G°N = ENnΰ°No is
then an open neighbourhood of zero in EN for JV ̂  JV0. It follows from statements i)
and iv) of Theorem 4.9 and from statement i) of Theorem 4.10 applied to GNo that
the map gt-> C/*-iC/g is continuous from ^ 0 into the space of analytic functions
from 0$ into EN. By construction Ug:G%0-^G^0, so Ul~ιUg is an analytic map

from Θx onto EN. We have by construction — Ugis) = Tx o Ug(s) for g(s) = exp(sX)

and X e p. This proves statements ii) and iii). Statement iv) follows from Corollary
2.16 and by translation by Ug. This proves Theorem 1.1.

Proof of Theorem 1.2. Since the differential of U is T and the differential of U1 is
T 1 it follows from part ii) of Theorem 4.10, where we have chosen No ^ N\ that for
given g e ^ 0 there exists a neighbourhood Gg of zero in ENo such that Ω+1 o Ug

= ί/ g

1 oβ+ 1 in Θg. By analytic extension this equality is true on Θχ0, which also
proves that Ω+x is defined on 0jjo. In fact, this follows from the construction of 0%0

and the uniqueness of the solutions of the scattering problem in statement ii) of
Theorem 4.9. We define &£0 by &£0 = Ω+ ̂ Θ0^). Similarly we define Ω_ and Θ^Q. It
follows from statement ii) of Theorem 4.9 that Ωε :Θ

ε

N^>Θχ is analytic as well as its
inverse. This proves statements i) and ii) of the theorem. Statement iii) follows from
statement ii) of Theorem 4.9 and by the construction of G%0. This proves
Theorem 1.2.

Proof of Theorem 1.3 and Theorem 1.4. Theorem 1.3 is a particular case of
Theorem 1.2. Let θeΘ0^ and let its image under the transformation (1.3) be φ 0 , φ0.
After a change of φ 0 , φ0 on a set of measure zero, φ0, φ0 e ^ ( R 2 ) . The map
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θ h-> (φ0, φΌ) so defined is continuous and invertible. Define & C ̂ (R 2 ) x <9̂ (R2) as
the image of this map. 0' is an open neighbourhood of zero in ^(R 2 ) x ^(R 2 ) .
There exist two neighbourhoods 0,0 of zero in ^(R 2 ) such that ΘxΘcΘ'. For
(φ0,φ o)eΘxΘ it follows from Theorem 1.3 that there exists a C1 solution

ί ι-> ϋ(ί) eEN,te R, for each JV ̂  0 of the equation — υ(t) = TPo(v(ή). Differentiation

in t of this equation shows that the map t\->v(t)eEN, JV^O is C00. Hence by
transformation (1.3) we obtain (after a change on a set of measure zero) a solution
φeC°°(RxR2) of Eq. (1.1) which satisfies the given initial conditions.

Appendix

As it was already mentioned in the introduction, the methods developed in this
paper also give existence of global solutions for time ί e R and asymptotic
completeness for Eq. (1.1) when it is not covariant under the action of the Poincare
group. In this case the inverse of the wave operator only linearizes the nonlinear
representation of the space-time translation group Rn +*. From the point of view
of fundamental physics, the Poincare co variant case is certainly more natural than
the ΊRn+1 co variant case. Moreover, the stronger results in the Poincare co variant
case are more difficult to prove, although the hypothesis in the R" + 1 co variant
case are weaker. But, as the results for the R n + 1 co variant case follow, without any
essential change in the proof of this paper and as the ΊRn+1 co variant case could be
interesting for readers mainly focused on partial differential equations, we give an
outline of the proof when Eq. (1.1) is not necessarily covariant under the Poincare
group 0>o.

Suppose that P is such that Eq. (1.1) is not Poincare covariant. Even in this case
Eq. (1.1) is RM + 1 covariant. Let first P be an analytic function. We define the Lie
algebra representation Tx, X e p on E^ as in (1.6) and the Hubert spaces Eh ί e N as
in (1.7). Tx = Tj + TX9 X 6 p is defined by formulas (1.8) and (1.9). If X, Ye Rw + \ the
radical of p, then [Tx, Tγ] = 0, where [Tx, Tγ] = DTx TY-DTY Tx. Hence Tx is a
nonlinear representation of R π + x . But, according to the hypothesis that Eq. (1.1) is
not Poincare covariant, [Tx, TY~]^T[X y], for some X, Yep, so Tx is no more a
nonlinear representation of p. The linear map X i—> Tx, X e p is extended to the
tensor algebra ί(p) by formula (1.10): Tγx = DTγTx,Xep, Γeί(p), Tγ = I. Here it is
not possible to pass to the quotient space to obtain a map from U(p) to the space of
polynomials on E^. Now we consider that Y(t)e ί(p). Then (1.12) to (1.15) are true,
but there is no chance to find a solution A of (1.16) for all Xep. However, (1.16)
turn out to have a solution for any I e R " + 1 , the radical of p. Formulas (1.17) to
(1.19) still hold. To obtain Theorem 2.15, we change definition (2.38) of pN as

where the sum is taken over all elements of degree at most N belonging to the basis
of ί(p) built from the standard basis of p by tensor products.

Theorem 3.9 is obtained by a direct calculation of the commutator
TY

1A2-A2SY, Yet(p), where Sx = Tx

ι®I + I®Tx

ι. Theorem 1.1 has the following
analog:
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Theorem 1.1'. For n^2 there exists No^0 and a neighbourhood Θ^o of zero in ENo

such that, if Θ°N = ENc\&%0 for N^N0 and Θ0

OQ = Eo0n&^0ί then:
i) Tx,XeΊRn + 1 defined by (1.8) is a nonlinear analytic Lie-algebra representation
on 0 £ . For XeΊRn + ίesφ,l) = p, TX:Θ%+1-*EN and %\Θ°N-*EN are analytic
maps.
ii) Tx, I e R " + 1 is the differential of a unique global nonlinear analytic group
representation U of ΊRn+\ i.e. UJθ)eΘ%0 for g e R π + 1, θeΘ%0 and the map
g*->Ujj-iUg is continuous from R" into the space Jt(&χo,ENo\ where U1 is the
linear part of U.
iii) For N^N0, the map gh-^l/^-il/^ is continuous from R n + 1 into the space

%
We note that the counterpart of statement iv) of Theorem 1.1 is no longer true

for the R"+ 1 covariant case. We can only conclude that Θ0^ is a set of differentiable
vectors for gi—• Ug9 geRM + 1, but not the set of all differentiable vectors.

Theorem 1.2, stating the existence of wave operators, still holds if ^ 0 is replaced
by Rw + 1 . Theorem 1.3 and Theorem 1.4, stating the existence of global solutions
for ίeR, then remain true as they are formulated. They are as a matter of fact
particular cases of Theorem l.Γ and Theorem 1.2. We also note that Theorem 1.4
can be formulated with Hubert space neighbourhoods of initial conditions
ΘN+1x&N+1,N^N0 being the image oϊΘ^+1 under the transformation (1.3) and
solution t \-+ φ{t) eΘN,te R. This follows immediately from Theorem 1.3. Theorem
1.4 as it is formulated with 0 x Θ, is as a matter of fact more difficult, because one
has to prove that the intersection of the family {^x ®N}N^No is a neighbourhood
in 5^(R3) x ί^(R3). The sets &N x ΘN are neighbourhoods in weighted energy
spaces.

Let us finally relax the hypothesis of analyticity of P in Eq. (1.1) and only
require that P is C00. Then the above modified results, i.e., Theorem l.Γ, Theorem
1.2 with R" + 1 instead of ^ 0 , and Theorems 1.3 and 1.4, are still true if, in their
formulation, analytic is systematically replaced by C00.

To sum up, as it was noted in the introduction, we have proved the existence of
global solutions for ίeR, the existence of C00 invertible wave operators and
asymptotic completeness for the massive Klein-Gordon equation (1.1) with the
most general C00 non-linearity P on a set of small initial conditions, being a
neighbourhood of zero in a weighted energy space.
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id \ (d\2

P\ω,-φ,VφJ=φ2+l-φj ~{d^)2-{d2φf

is studied in that reference for n = 2 and for smooth initial conditions with compact support.
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