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Abstract. The quantum double is shown to imply the dressing transformation on
quantum compact groups and the quantum Iwasawa decompositon in the general case.
Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras
consisting of differential operators are related to the quantum Weyl elements.
Besides, the differential geometry on a quantum leaf allows a remarkably simple
construction of irreducible *-representations of the algebras of quantum functions.
Representation spaces then consist of analytic functions on classical phase spaces.
These representations are also interpreted in the framework of quantization in the
spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient
"coherent states" are introduced and a correspondence between classical and quantum
observables is given.
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0. Introduction

Quantum groups were recently introduced by DrinfeΓd [7], Jimbo [10], and Woronow-
icz [30]. In Woronowicz's approach a comnpact quantum group is regarded as a
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deformation of the C* -algebra of continuous functions on a compact group. More
generally, a quantum group is understood as a deformation (quantization) of a Poisson
Lie group. For this reason we refer to [24] where a nice description of such a defor-
mation in the spirit of the so-called F-R-T (Faddeev-Reshetikhin-Takhtajan) approach
to quantum groups [19] is given. Besides, in [21] an interesting attempt has been
made to describe SUq(2) as a RieffeΓs strict deformation quantization of Poisson Lie
group SU(2).

Let us now summarize the structure of the paper as well as the presented results.
In Sect. 1, some basic facts about quantum groups are recalled. We follow mainly
F-R-T approach [19]. In Sect. 2, we collect some known results needed in the sequel
about Poisson Lie structure on compact groups and about the classical dressing
transformation. Besides, we want to stress the usually overlooked fact that a complex
simple Lie group G also possesses a Poisson Lie structure making the Iwasawa
decomposition a Poisson diffeomorphism provided G is considered as a real manifold
and the signs on both factors are chosen properly.

Section 3 is devoted to application of the double group construction to quantum
compact groups. In analogy with the classical case the quantum double implies the
quantum dressing transformation. In Sect. 4, the quantum double for compact groups
is described in terms of i^-matrices rather than using the representation theory as it
was done by Podles' and Woronowicz in [17]. Further we present the general case
of the quantum Iwasawa decomposition (the special case of SLq(2, C) was described
again in [17]).

The goal of the next two Sects. 5,6 is to describe explicitly quantum dressing orbits
as non-commutative *-algebras, the restriction morphism from the quantum group
onto the quantum leaf, differential calculus on the orbits and to establish the relation
with the quantum Weyl elements defined in [11,13]. The differential operators with
constant coefficients form the dual coalgebra. The dual of the restriction morphism
is described explicitly. Consequently, the quantum Weyl element can be regarded as
the base point of the quantum dressing orbit in analogy with the classical case.

In Sect. 7, we first recall some basic facts from the theory of irreducible
*-representations of compact quantum groups. After that, we present a construction
of these representations realized in a space of holomorphic functions living on the
classical Poisson leaf. Its remarkable feature is that it is related in a simple and clear
manner to the differential geometry of the quantum leaf. In Sect. 8 we want to stress
a point of view according to which the above described representations realized in
spaces of holomorphic functions can be also understood in the framework of quan-
tization methods. Besides, we introduce convenient coherent states and discuss the
correspondence principle.

1. Quantum Groups

In the F-R-T approach the basic object through which the simple quantum groups
(more precisely algebras of functions on the simple ^-groups) of types An_λ, Bn,
Cn, and Dn are introduced is the i2-matrix satisfying the Yang-Baxter equation
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where R is an N2 x iV2 matrix (N = n in the case An_ι, N = 2n in the cases C n ,
Dn, N = In + 1 in the case Bn). In the case of Λn_ι we have

n

Yj t ι ® e}J + (q - ςΓ1) ^ e t j ® e^ , (1.2)

where q G C\{0} and e- are n x n matrix units.
In the remaining cases

N N

N N

N

Σ (1.3)

the second term occurs in the Bn case only, i' — N + 1 - i, ε̂  = 1, i = 1, . . . , AT,
N N

for the cases Bn and £>n, ε̂  = 1, i = 1, . . . , —, ετ = - 1, z = h 1, . . . , N, for

the case Cn and

r ( n - l / 2 , n - 3 / 2 , . . . , 1/2,0,-1/2, . . . , - n + 1 / 2 ) for 5 n

(^i, . . . , ρN) = < ( n , n - 1, . . . , 1,-1, . . . , - n ) for C n .

{(n- l , n - 2, . . . , 1,0,0,-1, . . . , - n + 1) for D n

All the matrices iϊ are unimodular.
The algebra of holomoφhic functions on the SLq(n) group is then defined as the

factor algebra of the free associative unital C-algebra C(tτj) (ί, j = 1, . . . , ή) by the
following relations:

X 2 = T2TXR, (1.4)

= Σ ( - ^ I σ ^ • tnσn = 1 (1.5)

Here det^ T denotes the quantum determinant, T = (tt ^ J=ι,Tλ =T®I,T2 =
and l(σ) is the number of transpositions in permutation σ. R is given by (1.2) in this
case. This algebra will be denoted by ,τ^ol(SL(n)) and it is a Hopf algebra with
comultiplication

= tιk®tkj, ^ 1 = 1(8)1, (1.6)

counit
e(*tJ-) = ^ , e ( l ) = l , (1.7)
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and antipode

S ^ .) = (-<#-* Σ ί - ^ ^ i ^-i-i-.^+iσ.+. W ' ( L 8 >

where σ = (σ l 5 . . . , ^-_ l 7 a 2 + 1 , . . . , σn) = σ(l, . . . , jf - 1, j + 1, . . . , n).

Algebra of quantum functions ^ol(G) (G = SO(N), Sp(N)) is defined as the
factor algebra of free associative unital C-algebra C(ttJ-) ( i, j = 1, . . . , N) by
relations (1.4) involving the corresponding .R-matrix (1.3) and relations

τcτtc-\ =CTlC-xT = l\ (1.9)

here ί denotes the transposition and C is an C-number matrix given by C — Coq
ρ,

with ρ = (ρ1 ? . . . , ρ^) and (C o )^ = ε ^ ^ . These algebras are Hopf algebras with
comultiplication (1.6), counit (1.7) and antipode

~] , (1.10)

For q € R, the ^-matrices are real and fulfill

Any of the described algebras ,/ίτq (G) admit the following *-structure

ί* =S(tjτ). (1.12)

The star operation is an algebra antihomomorphism, coalgebra homomorphism and
involution. The resulting *-Hopf algebra is called a compact form (compact matrix
pseudogroup of [30]) and will be denoted by ,Aq{K), where K C G is the maximal
compact subgroup. In this case we shall use the symbol U for the matrix of generators
instead of T. This U satisfies (1.4) and, moreover,

S(U) = U*. (1.13)

The dual Hopf algebras to the above mentioned quantum groups are introduced
following [7, 10, 19]. Let Q be a simple Lie algebra, α 1 ? . . . , ar its simple roots and

Ai3 = 2(α ,α J )/(α J , α J ) its Cartan matrix. Algebra Uh$, h e C, is a C[[/ι]] algebra

with generators H , Xf, i = 1, . . . , r, and relations

= 0, [H^Xf] = ±(α,, α j ) X ± , [X+, X;] = ^ ^ ^ , (1.14)

(Xt)kXf(Xf)m-k = 0 (1.15)
fc=0

for i φ j , where m = 1 - Aiy qi = e -^( α ^ α z)/ 2 and

a — a

The quantum factorials and the quantum binomial coefficients are then introduced as
usual. The subscript q will be omitted if not necessary. The normalization is chosen
in such a way that (α^, α^) = 2 for the short roots.
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Algebra Uhg is a Hopf algebra with comultiplication

= Hi <g> 1 + 1 <g> Hi,
(Ί 17")

- X f ® exp(hHτ/2) + exp(-Λ/fί/2) 0 X± '

and antipode 5

f h δ f h δ , (1.18)

where 6 is the element of the Cartan subalgebra corresponding to the half-sum of
positive roots. For / i G l , the Hopf algebra Uhg admits the following *-structure

(Hif=Hι, (X±)*=X?. (1.19)

The resulting *-Hopf algebra can be also regarded as a deformation of the complexified
eneveloping algebra U(t) where I C Q is the maximal compact subalgebra.

Without loss of generality we may restrict the values of q e (0,1). Letting q = e~h

we have a pairing between Uh$ and ^Sq(K) determined by the rules

c)), (1.20a)

(x,cd) = (Δ(x),c®d), (1.20b)

* * * , (1.20c)

and by the requirement that (H^U), (Xf ,U) coincide with the corresponding
matrices in the fundamental (vector) representation of the classical Lie algebra g.
Using the "restriction" homomorphism

between the Hopf algebras which is determined by pk(T) = U we have also a pairing
between Uhg and ^ o l ( G ) .

Let φih:Uhsl(2) —• Uhg denote the canonical embedding of s/(2)-triple corre-

sponding to the i th simple root. It is not hard to see that there are corresponding

embeddings of quantum groups φhh: SUq^{2) —> Kq9 with qi = q for all simple roots

in the case of An__ι and Dn\ qi = q, for i = 1, . . . , n — 1 and qn = q2 in the Cn

case and qi = q, for i = 1, . . . , n — 1 and qn = q1^2 in the Bn case. This means that

we have a morphism of *-Hopf algebras

(1.21)

2. Poisson Lie Structure on Simple Lie Groups

There is a wide literature about this topic going back to Drinfeld's original treatment
[7] (we refer the interested reader for further details e.g. to [14,20]). In the context
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of the present paper, an important point of view is that one strengthening the role of
the Iwasawa decomposition [14]. Let

G = KxAN, (2.1a)

0R = £ θ α n , (2.1b)

be the Iwasawa decomposition of a connected simple complex Lie group and of
its Lie algebra Q considered over reals, respectively. As usual, K is the maximal
compact subgroup and AN is the solvable subgroup in G. Having equipped QR with
the form ( , •) = Im J9( , •), where B is the Killing form on the complex algebra Q,
one gets a Manin triple (gR, £, an). The subalgebras ϊ and an induce one on the other
one-cocycles

μκ: I —> t Λ 6, μAN: an —> an Λ an .

On the other hand, these cocycles determine Poisson Lie structure on the groups
K and AN, respectively. But according to the following discussion, if we want to
turn G also into a Poisson Lie group and the Iwasawa decomposition into a Poisson
diffeomorphism we have to take μAN with the opposite sign and consequently to
change the sign at the Poisson bracket on AN.

We define a classical r-matrix f e gR Λ QR by

= 5 Σ Λ Zs> (2-2)

where {Ys} and {Zs} are dual basis in an and t, respectively. The corresponding
one-cocycle μ on gR,

-ad(X)f , (2.3)

induces a Lie bracket on gR and a Poisson Lie structure on G. Having identified g |
with QR using the form (.,.) we have

0R = C~ θ an (2.4)

as a direct sum of Lie algebras. The symbol ϊ~ means that the Lie bracket in I is
taken with the opposite sign. One can check without problems that

μ\t = μκ and μ \ an = - μAN . (2.5)

An immediate consequence of (2.5) is

Proposition 3.1. The Iwasawa decomposition (2.1a) is a Poisson mapping.

Proof. It is not difficult to verify that a sufficient and necessary condition for a
subgroup H C G to be a Poisson subgroup is

μ(W C (3 Λ ί) (2.6)

(this criterion is different from that one given in [20,14]). Hence K and AN are
Poisson subgroups in G, K x ΛiV is a Poisson subgroup in G x G. As the multiplication
G x G -> G is a Poisson mapping the same is true for the diffeomorphism
K x AN -* G. Q.E.D.

Let us now compute the Poisson bracket on G explicitly. Generally it holds: if
some r-matrix is expressed as
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and ξ^(ξ^) is the right-(left-)invariant vector field on G corresponding to Xi then

{/,*} = E r<J"«f 'fζ*'9-tf ftf 9-(f" 9)) (2.7)

It follows that if r is a complex representation of g and T the corresponding
holomorphic representation of G then

= [(r <g> r ) r , T (8) T ] , (2.8)

{T* ®T} = Γ*(r* 0 τ)rT 2 - T 2(r* ® r ) ^ * . (2.9)

In our case, we are able to express f using the Weyl generators in g(B(Xa,X_a) = 1,

^2X^iX-a + bXa^X-a+Xa^^a + HaMHa). (2.10)
α>0

Note that the symbols iXa, iHa etc. are rigid in gκ, i = (—1)1//2. Taking into account
that the element

is ad(g)-invariant we obtain finally

= [(τ<g>τ)r,Γ<g>T], (2.H)

{T* 0 Γ } = - Γf(τ 0 r)rT 2 + T2(r 0 τ)rTf , (2.12)

where
r = - 2i E (X_α ® I Ω + / ί α ® i ί α ) G g ® 0 . (2.13)

It is useful to compare these relations with the correspondence rules relating the
classical case with the quantum one:

Δ(Z) = Z®\ + \®Z + i\ hμ(Z) + O(h2), (2.14a)

fg-gf = ih{f, g] + O(h2), (2.14b)

R = I -ihr + O(h2). (2.14c)

The complex unit is here necessary to guarantee reality of the Poisson bracket. In fact,
the r-matrix (2.13) should be multiplied by some positive constant to meet the rules
(2.14). This is related with renormalization of the Killing form on g. The relation
(2.11) corresponds to (1.4), the quantum counterpart to (2.12) will be discussed later
(4.7b).

Because the projections

ΠK:G-^K and ΠAN:G -> AN

induced by the Iwasawa decomposition are Poisson mappings the below defined left
action of AN on K and the right action of K on AN possess the same property:

L\AN xK -» K, L(u,g) = Πκ(ug), (2.15)

R:AN x K-> AN, R(u,g) = ΠAN(ug). (2.16)
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These actions are called dressing transformations. The following "twisted multiplica-
tion" rule is clearly valid

L(u,gxg2) = L(u,g1)L(R(u,gι),g2). (2.17)

According to [14,23], every symplectic leaf of the Poisson structure on K has
a form Xw ί, where t is an element of the maximal torus M in K and Xw is
the Schubert cell corresponding to some element W of the Weyl group. In fact, Xw

coincides with the orbit in the dressing action containing W. Perhaps this is the most
distinguishing property of the dressing transformation. Let now W = Wi ... Wτ

be the reduced decomposition of W, where Wi is the Weyl element of the 5/(2)-
triple corresponding to the ith simple root. It is known that every symplectic leaf Xw

decomposes as a direct product of symplectic leaves Xw ,

Xw — X\vn - - - ^w%k 5 (2.18)

and that two different reduced decompositions of the same Weyl element give in the
above decomposition isomorphic symplectic manifolds.

Now we give a more detailed description of the symplectic manifolds Xw.. Let
us begin with the simplest case of SU(2) Lie group. As is well known [28] in this
case this symplectic leaf is of the form

r / (i. + zz>-v>z (i + * * ) - £ \ € z e c |
L \ - ( l + zz) ' (l + zz) ι/zzj J

and the Poisson bracket on this symplectic leaf is given by

{z,z} = 2i(l + zz). (2.20)

The dressing transformation on the orbit X can be written explicitly,

L(u, z) = a2z - βa, (2.21)

where u = ( α

 λ ) G AN.

In the general case [22] the symplectic leaf (2.18) can be described as a direct
product of k copies of the symplectic manifold X with k pairs of coordinates
(zi,zι, . . . , zk, zk), where Zj is the coordinate on Xw , and with Poisson brackets

{zpzk} = iθL3{\ +zJzj)δjk i ( 2 2 2 )

where a3 — 2 for all j in the cases An_ι and Dn, a- = 2 for Wi. corresponding to

the first n — 1 roots in the cases Bn and Cn and a- — 1 for the n t h root in the case

of Bn and a3 = 4 for the n t h root in the case Cn. If φ% denotes the group embedding

corresponding to the ίth simple root then we can write in matrix form

l k (2.23)

where we assume that in the ith term in the product z% stands instead of z.

3. Quantum Dressing Transformation

The basic notion we start from in this section is the quantum double. Its definition
goes back to DrinfeΓd [7] and it was widely applied to quantum enveloping algebras
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[19]. An extensive study of related problems was given in [18]. Let us start from
the definition. Let ̂ c be a *-Hopf algebra and ( , -)'-*Ad 0 ^ c —• C be the pairing
between ^Sc and the dual vector space ^4d ^Sd is also equipped with a structure of
*-Hopf algebra following unambiguously from the rules

(uv, c) = (it (8) v, Δ(c)), (3.1a)

{Δ(u),c(g)d) = (u,dc), (3.1b)

(5ιx,c) = (ιz,5" 1c), (3.1c)

ε(u)=(u,l), (3. Id)

( l , c ) = ε ( c ) , (3.1e)

The *-algebra ^ = ̂ c 0 J&d can be turned into a *-Hopf algebra as follows. Let

be the canonical element in ̂ 4d 0 ^ c with {x s} and {αs} being dual basis in
and J4>C, respectively. Utilizing the mapping

Φ\ΛC ®^d->^d®Λc, Φ(c 0 u) = ρ(u 0 c ) / , (3.3)

one can define

Δ = (id <8>Φ 0 id) (Z\c 0 Z\d), (3.4)

ε = ε c 0 ε d , (3.5)

S = Pu(Sd®Sc)Φ. (3.6)

Here and everywhere in what follows P{J designates the permutation (flip) mapping
between the indicated factors in some tensor product.

The canonical element ρ is known to have properties [17]

(?*<? = (?£* = 1, (3.7)

(id0S c )£ = Q* , (Sd ® id)ρ* = ρ, (3.8)

and the mapping Φ fulfills the following important identities:

(εd 0 id)Φ = id ®εd , (id 0ε c )Φ - ε c 0 id, (3.9)

(id <8>Φ) (Φ 0 id) (id®Δd) = (Δd 0 id)Φ, (3.10)

(Φ 0 id) (id(8)Φ) (Δc 0 id) = (id0Zi c)Φ. (3.11)

Besides, one can define comultiplication also on <2#' — ̂ £d®^>c getting thus another
*-Hopf algebra,

Δ' = (id 0 Φ " 1 (g) id) (Δd 0 Δc). (3.12)

The mapping Φ is then an isomorphism of *-Hopf algebras. Let us denote by

the natural embeddings and by

pc =
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the projections. The mappings tc, ιd are *-algebra moφhisms and pc, pd are *-Hopf
algebra morphisms. It holds

(pc ®pd)Δ = id, (pd ®pc)Δ = Φ. (3.13)

It is useful to observe that after the natural embedding of ̂ c 0 ^ d into
the space of linear operators on ̂ c - the *-Hopf algebra structure can be extended to
hin(^Sc). This enables one to avoid the difficulties with infinite series. The *-algebra
structure is defined by

B) = mc(A ®B)Δc1 (3.14)

A*c = (A(Scff . (3.15)

To define the comultiplication embed Lin(^ c ) 0 Lin(L^c) into L i n ( ^ c 0 ^Sc). Then

ΔA(1 ® c) = Δc(Ac), (3.16a)

ΔA(c®l) = 5^(1 ® cι

k)Δc(Ac2

k)(l ® 5^), (3.16b)

where

(idΘzAc)Z\cc = X) 4 (8> 4 0 4 .

The left dressing transformation of ^&d on ̂ Λc should be a *-algebra moφhism

with some additional properties. The notion of quantum left (right) action has now
stabilized in the literature [1]. The morphism L is required to satisfy

= id, (3.17)

(id0L)L = (Δd 0 id)L . (3.18)

An important property of the classical dressing transformation is that it preserves
Poisson manifolds. This condition is reflected in the quantum case as follows. We say
that a two sided ideal S? in j&n is L-invariant if

C J&d 0 & .

After identification of Jίd 0 (<Ac/&) with ^4d 0 <y&JJίd 0 & we have the factor
action

Analogy with the classical case suggests the following definition of quantum dressing
transformation

L = Φιc, i.e., L(c) = £(l<g>c)ρ*. (3.19)

The following proposition is an immediate consequence of the identities (3.9), (3.10).

Proposition 3.1. The morphism L is a left quantum action. Every two-sided ideal
27 C ,ΛC is L-invariant.

One can consider as well the dual action. Denoting by Uc and Ud the *-Hopf
algebras dual to ,/&c and ̂ d , respectively, we have the dual morphism
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The conditions (3.17), (3.18) are then rewritten

£ ( 1 0 Z ) = Z, (3.19)

L(ξ (8) L(η 0 Z)) = L(ξη 0 Z). (3.20)

One can introduce analogously the right dressing transformation of ,/&c on ,/%d as a
morphism

R:=ΦLd:Λd-+Λd®Λc. (3.21)

Note that the mapping Φ can be rewritten as

Φ = {md 0 mc)P23(L 0 Λ). (3.22)

Using this relation and the identity (3.11) one can verify a quantum analogy of (2.17),

(id®Δc)L = ((md 0 m c )P 2 3 0 id)(L 0 (R 0 id)L)Z\C. (3.23)

Its dual version is

L(id 0m c ) = mc(L 0 L(£ 0 id)) (P23(Z\d 0 4C) 0 id). (3.24)

Here we have not introduced special symbols for multiplication and comultiplication
in the dual Hopf algebra.

It is worth emphasizing that the requirement on the classical dressing transfor-
mation is stronger, namely the symplectic leaves should coincide with the dressing
orbits. The quantum analogy is more speculative in the present moment and we shall
discuss it shortly in Sect. 6 [after the relation (6.21)].

4. Quantum Double for Compact Groups

Let us now apply this general construction to quantum compact groups, ,/£c —
, 4q(K). The dual quantum group was described in [17] on the base of the repre-
sentation theory. Here we prefer the approach exploiting existence of the quantum
.R-matrix. Let U be the vector representation of Kq. The vector representation A of
the dual group ANq contains generators of the algebra . //;d = <Aq(AN) as its entries
and is determined by the relations

(A{;U2)=R-\ (4.1a)

(Λ* U2) = R-2\ (4.1b)

In this way the pairing between ,/Sq(AN) and , €q(K) is determined unambioguously.
For example, it holds: if (ju . . . , j m , kγ, . . . . kn) is any permutation of (1 ,2 , . . . . AT),
jV = m + n, then

M . . .ΛL \Uk ...Uk ) = T\ Rk\

The product on the RHS is ordered: RkσJιy stands left to Rk fJ / whenever σ = σ7,

v < v' or σ > σ/, v = v'. Matrix Λ* of generators of ,/td can be identified with the
matrix L~ of F-R-T [19].

Owing to the unitarity of U, the equation RUιU2 — U2UXR is equivalent to

U?R~lU2 = U2R~ιU* .

The Yang-Baxter equation (1.1) then implies



108 B. Jurco and P. Stovίcek

Proposition 4.1. The *-Hopf algebra ,/3q(AN) is determined by the following rela-
tions:

RAλA2 = Λ2ΛλR, (4.2a)

A*R~ιΛ2 = Λ2RΓιΛΪ , (4.2b)

and

ΔA = A'^A , (4.3a)

S(Λ) = A'1 , (4.3b)

ε(Λ) = I; (4.3c)

the matrix A is upper triangle, the diagonal elements mutually commute and

Π > « = 1 (4-4)

The key role plays

Proposition 4.2. It holds

ρ(ΣσAσk (8) U σ) Q* = ΣσA σ 0 ί/σfc (4.5)

for all j , k.

Proof Rewrite (4.5) as

ρ(ΣσΛσk 0 Ujσ) = (ΣσΛjσ 0 Uσk)ρ

and embed this time ^d®^c into Lin(^ c ) . The canonical element ρ then corresponds
to the identity and the elements ρ{u ® d) and (u® d)ρ correspond to the mappings

and

c - ^ d(((ur) (g) id) zlc),

respectively. Thus (4.5) can be rewritten once more:

Σσ((id®(Aσsr))Δc)Ujσ = ΣσUσa(((Λ3σ,.)®id)Δc) (4.6)

for all c e Λq(K) and all j , s.
Clearly, (4.6) is valid for c = 1. The relations (3.1b), (4.3a) imply that it holds

, -))Δ(cd) = Σu(id®(ΛV3, -))Δ(c)(ιά®{Aσu, ))Δ{d),

It follows easily that the relation (4.6) is satisfied for cd provided it is satisfied both
for c and d. We conclude that it is enough to verify (4.6) only for the generators of
the algebra ^4q(K).

Letting c = Ukt in (4.6) we get

KAΛ^Uvt)UkvUjσ = Σσ^Λjα,Ukv)UσsUyt.

But owing to (4.1a) this is equivalent to

U2UxR2l

ι = R2l

ιUxU2 . Q.E.D.
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Corollary 4.3. The matrix T = U^Λ with entries belonging to the quantum double
^(K) fulfills

ιT2 = T2TιR, (4.7a)

T*R~ιT2 = T2R~λT* , (4.7b)

and

ZiΓ = T Θ T , (4.8a)

S(T) = T~\ (4.8b)

ε(T) = I. (4.8c)

The same relations are also fulfilled by T = Λ'^U in &f(K).

Remark. The identity (4.5) means that

Φ(T) = T'. (4.9)

One can regard the *-Hopf algebras ~4q(K) and ^4q(AN) as being embeded into
&) and omit the sign of tensor product. Then each element from ^4q(K) commutes
with any element from Λq(AN). The entries of the matrix T = UΛ generate some
*-subalgebra SP in & which is also sub-coalgebra owing to (4.8a). Let us now check
the relation between S^ and &.

To meet this goal we shall need a version of the non-commutative Gram-Schmidt
orthogonalization process. Let us introduce the following property of completeness
of a *-algebra ,/&'.

(*) If some positive element u e ^4 is represented by an invertible operator in all
*-representations of <s& then u is invertible in ^S.

Lemma 4.4. Let <./& be a unital ^-algebra having the property (*) and F be a matrix
from Mat(n) 0 *A having a left inversion. Denote by / 1 ? . . . , fn the columns of F.
Then there exist orthogonal vectors gλ, . . . , gn from ^ n , g*. - g^ = 0 for i φ j , and

matrices S^ G Mat(n) 0 ^&, k — 1, . . . , n, with units on the diagonal and with all
nondiagonal elements equal to zero possibly except S\3• , 1 < ί < j < k, such that it
holds

Proof The property (*) implies that if F has a left inversion then the diagonal
elements of F * F are invertible. Taking into account this observation and noting
that matrices S^ of the described type are manifestly invertible we can find the
orthogonal vectors g^ recursively:

m

]ζ Q E D

This orthogonalization process can be applied to the matrix T to decompose it into
orthogonal and upper triangle parts. It follows that if the algebra 2P is completed by the
square roots of the positive invertible elements lying on the diagonal of (T ( n ) )*T ( n )

we get the whole double @)(K).

Let us now extend the Hopf algebra ^h

q

oλ{G) to involve also quantum antiholomor-

phic functions on G. The resulting *-Hopf algebra ^Sq{G) is defined by the relations

valid for , ^ o l ( G ) and, in addition, by the relation (4.7b). The dual *-Hopf algebra
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a deformation of the enveloping algebra of the complexified Lie algebra
gR 0 C. Its detailed description should be established but we shall not need it for
our purposes. Nevertheless, it must be again valid that to the ith simple root there
corresponds an embedding

and that the ranges Ran((/5- h) generate Uhy
Owing to Corollary 4.3 we have a morphism of *~Hopf algebras

Proposition 4.5. The homomorphism K is injective.

Proof. It is sufficient to show that the dual morphism k is surjective. Note that to the
i th simple root there corresponds also a morphism ίl{K) —> &(SU(2)). According
to the results of [17], &(SU{2)) can be identified with (more precisely, regarded as
a completion of) ,/όq(SL(2,C)). Thus we get a commutative diagram

Ψi,h

4 ) > ί/(SU(2)).

Considering now the dual diagram we see that Ran(κ) contains Rm\(φt h) for all i
and hence Ran(κ) = Uh(gm). Q.E.D.

According to this proposition, &(K) can be regarded as a completion of. ^q(G)
and the relation T = UA replaces the Iwasawa decomposition in the quantum case.

Remark. We note that the relation (4.7b) entering the definition of , ^q(G) was
discovered rather recently [16,6]. Its classical counterpart is given by (2.12). What
we wanted here to demonstrate is that it follows in a straightforward manner from
the construction of the double group. Proposition 4.5 should be compared with results
of [6] where the dual *-Hopf algebra to , 4q{G) [defined by relations (4.7a, b)] was
constructed. This is in fact the quantum enveloping algebra of gR denoted by Uh(QR)
above. The resulting algebra can be easily recognized as the dual *-Hopf algebra
Ά{Kγ to the quantum double &{K). Following general ideas of F-R-T [8], &(K)*
is constructed again as a quantum double,

now with trivial comultiplication and twisted multiplication. &{Kγ ® &~{K) pos-
sesses a universal element ,7'. With a knowledge of fundemental representation r of
(J(Kγ such that

one could reduce the Iwasawa decomposition of T to the factorization problem valid
generally in any quantum double.
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5. Quantum Leaf on SUq(2)

The first step is to introduce a quantum counterpart to the Poisson leaf X (2.19),
(2.20) on SUq(2). This quantum group is generated by four generators,

U=( " bΛ , ge(0 , l ) , (5.1)
\—q b a )

satisfying relations

ab = qba , α 6 * = g 6 * α , 66* = 6 * 6 ,

aa* -a*a = (q-2- 1)6*6, aa* + 66* = 1.

In the classical case the coordinate z on X is equal to —Un/U2]_. The quantum leaf
should be described as a factor algebra ^q(SU(2))/J7w such that the image of the
element 6 is invertible (possibly after some completion). Set

z = φ*Γ1a. (5.3)

The elements z and z* generate the *-algebra of quantum functions on the leaf and,
as an easy computation shows, satisfy the relation

1 _i_ 77* — n~2(λ 4- 7* ?Λ (S 4)

More formally, denote by 3§ the factor algebra of the algebra of formal power series in
two non-commuting variables z, z* by the relation (5.4). The "restriction" morphism
of *-algebras

is defined by

The kernel

is a two-sided ideal in y
It is possible to introduce differential calculus on 5§ determined by the rules

dzz=l+<?zdz, dzz*=q2z*dz,

dzz = q~2zd-z , d2z* = 1 + q-2z*d2 ,

and consequently,
dzdz = q2dzd-z . (5.7)

Owing to (5.4), every element / from 2? can be normally ordered,

ψw(a) = (l+zz*Γι?2z, (5.5a)

ψw(b) = (1 + zz*)-1'2 . (5.5b)

This enables one to define a functional εw on J^,

ε ω (/) = /oo (5-8)
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Differential operators of finite order with constant coefficients form the dual vector
space J 1 ; the pairing between JΓ and J2? is defined by (ξ G 3\ f G 3?)

{ξ,f)=εw(ξ f), (5.9)

particularly,

One can easily check that

{dk

zdi(z*)σzη =qϊ(k-j)(k+3-l\jVΛkV.δ3σδkv; (5.10)

could be chosen for a basis in JΓ.

The pairing induces a coalgebra structure on 3£ via

®g) = {ξ,fg). (5.11)

To describe the comultiplication explicitly we have to order normally the monomials
zk(z*y. Put here and everywhere in what follows

λ = q-q~l. (5.12)

Lemma 5.1.

Proposition

A

Particularly,

It holds

x (z*

5.2. It holds

OO

x q]

min(j,/c)

- \ s(8+l)

i s(s+l)+(j+k:

(-λ)S Λ ,
[s]! ^ "
L J <x=0 i

„ (_λ ).

r ί J 1 ί*l

(5.13)

(5.15)

The next task is to compute the dual coalgebra morphism

Lemma 5.3. It holds

ψldl{\ - xz*zΓι) = q-^-ι\[j]l)2χi / Π(1 - x{q~2t ~ D),
/

where x is a complex parameter.

Proof. Start from

0 = (dJ

zdi,a - xz*z) (1 - xz*zΓ1)

= {Δ(dJ

zdi), (1 - xz*z) (g) (1 - xz*zTx),

and then apply Proposition 5.2 and relation (5.10). Q.E.D.
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Lemma 5.4. It holds

3 = 1 kγ>0 kj>0

kι+...+kj=n—j

Proof. Introduce complex functions

fF3(x) = I / f[(l - x(q-2τ - I)).

I ι=\

Then by Lemma5.3,

F,(0). Q.E.D.% 1 ! ) ^ y F,

Now we are able to order normally the elements ψw(a), φw{aγ and ψw(b) —
φw{bγ on the base of the following

Lemma 5.5. It holds

3 \1-] \3-} \j - ±1

H ) V J 2 2

[ Ί , 2 J ( ^ y V (5.16)

Proof. Using Lemma 5.4 and the identity

«+»-*-£<-•» ft) (
n=0 \ / \

we find that

where

n=0

With the help of the interpolation formula

' f o r
 * =

one is able to simplify (5.17) to get

3 I 3

co = 4v*+i>j|(i--ρ2*-1) / Π ( 1 " « 2 i ) Q R D

/
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Corollary 5.6. It holds

2=0

fc-1

[k]l

2 = 0

2 +

0 0

0 1
(5.18)

#// remaining values (ψ 1 i ; (9^9 |), [/) 6>f/2<?r ί/ί<zw

Oq

1 0

(5.18) vanish.

Corollary 5.6 is still unsatisfactory for we want to identify the images Ίpw(dkdJ

2)
with some elements from the quantum enveloping algebra. Let us note that in the
fundamental representation we are working with it holds

Set

Lemma 5.7. It holds

i w Φ ? +)kΦjy), (5.20a)

ΨWΦ = g5 fc(r-)fc^u,(i). (5.20b)

Prao/. We shall prove (5.20a), the second relation can be shown analogously.
Equation (5.20a) means that

(iiM);uy...un) = ( - i )V

for all n and arbitrary k. Clearly,

n

{Y+, Ux . .. Un) = J2

, u x . . . u n ) . . . υ n ) , (5.21)

ehH
ehH

where F + and ϋ/ on the RHS should be replaced by their representative in the
fundamental representation.

We proceed by induction in n. The equality (5.21) with n — 1 follows from
Corollary 5.6. To perform the induction step n —* n + 1 we take into account the fact
that φw is a coalgebra morphism and apply the identity (5.15) and a particular case
of (5.14), namely

s=0

f * (5.22)

Thus we are able to compute
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with ξ = φw(d^) and ξ = φw(X) and verify consequently the identity (5.21) also
with n replaced by n + 1. We omit remaining calculations which are straightforward
though a bit tedious and only note that the following identity turns out to be helpful

^ Q E D ( 5 2 3 )

6. Quantum Orbit Related to Quantum Weyl Element

Now we are able to state a relation to the quantum Weyl element which was introduced
in [11] and [13]. Below we follow notation of the paper [11]. Complete Uh($ί(2))
with an element W unambiguously determined by the relations

( J ί J ) , (6.1)
and

W®W, (6.2)

where
OO j

R Y '2

The quantum Weyl element is defined by

W = exp ( - ^ H2) W (6.4)

and fulfills

Z\(W) = R21W 0 W , (6.5)

where

is the universal .R-matrix.

Proposition 6.1.. It holds

= exp ί - - iJ 0 ff J Λ12 (6.6)

(6.7)

Proof. It is enough to apply Lemma 5.7 to the identitiy (5.15) and the result compare
with (6.2). Q.E.D.

The morphism φw can be computed also in the general case.

Proposition 6.2. It holds

j^ [J-sV. [k-s]\

(γ+)k-s pj
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Proof. We start from the equation

The LHS can be computed with the help of the relation (5.20a) and Proposition 6.1.

LHS = (- l)
UU [S]!

x (Y+y+sW ® e»
h"(y+)k-v(γ~γw.

To get the RHS we apply (5.22) and again (5.20a, b)

1 ? 1 λ <§

OO k

For the elements (Y+)j, j = 0,1,2, . . . , are linearly independent in Uh(sl(2)) and

W is invertible, one can compare the first multipliers in the tensor product to get

\ s(s+l)-(s-σ)2 λS Γ k 1

where fc — zy = 5 — σ and max(O, σ) < s < k + σ. Summing both sides

q ι (-1)* L x LHSfc (resp. RHSfc)

and using the identity

t

n \

is assumed to be equal to zero if m > n j and a quantum version of the

binomial theorem we obtain the desired result. Q.E.D.

Corollary 6.3. The morphism φw is ίnjective.
Denote by Uh(sl(2)) the completion of the quantum enveloping algebra by the

Weyl element. Then the range

^ := R a n ( ^ )

is a sub-coalgebra in ί7^(sί(2)). Clearly,

fe&w iff (ξJ)=0 for all ξ e ^ . (6.10)

As the morphism ψw is injective and <s£q(SU(2))/J7w is naturally embedded into S3

the pairing between 3& and ,Aq{SU{2))/^w is nondegenerate. In this sense 21 can

be regarded as a completion of ^4q{SU{2))/t9w.
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It is possible to describe the left dressing transformation on 2% explicitly. Let

'a β

0 a~ι

be the fundamental representation of ^βq(AN). The generators fulfill

aβ = qβa, aβ* = q~ιβ*a , α* = a ,

The relation (4.5) means that

ρ(a 0 α) ρ* =

ρ(α 0 6*)

ρ((/?0α + α " 1 0

ρ(—q~lβ 0 έ> + α"

ξ)α-g""1/3 0 6*,

= α " 1 0 6* ,

> * = / 3 0 α * + α 0 6 ,

>) α )p = α 0 α .

(6.13a)

(6.13b)

(6.13c)

(6.13d)

If

is the factor action then from (6.13a, b) and (5.3) it easily follows that

Lw(z) = a2®z-βa®l. (6.14)

One can also check by a direct computation that the elements Lw(z), Lw(z)* satisfy
(5.4).

Next we want to discuss briefly in what sense the quantum leaf can be regarded as
a quantum dressing orbit. To this end we introduce the dual dressing transformation

The *-Hopf algebra Uh(an) is dual to ^g(ΛiV), coincides with ^4q(SU(2)) as a
coalgebra and is opposite to ^q(SU(2)) as a *-algebra. Redenote the generators of
Λq(SU(2)) as follows: a as F+, α* as F~, λ " 1 ^ 3 / ^ * as K + , - λ " ^ 1 / ^ as K~.
Then it holds

0

' + , / l * ) - 0 , (6.15)

further,

F + F ~ - X2qK+K~ = 1 = F ~ F + - X2q-lK+K~ , (6.16)

( # * ) * =

and finally,

= ^ 0 F± + λ 2 i ί τ 0 K± . (6.17)

Lemma 6.4. /ί /i6>/Ĵ

V σ + 5 σ 2 " ^ " 2 a^af. (6.18)
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Proof. Identifying Uh(an) with ^4g(SU(2)) as a coalgebra we have, in view of (6.14),

{Ll(Uγ ...Un®l), (z*yzk) = {Ux...Un® \,Lw(z*yLw(z)k)

= ( - ι y + k ( { a , u,... u n ) (/?*, υ γ . . . u n ) y
x((β,Ui.--Un)(a,U1...Un))k.

Bearing in mind that the multiplication in ̂ 4q(SU(2)) is now taken in the reversed
order one easily finds that

{a,Uι...Un)=ehH'1®,..®ehHl\
n

i /-> XT TT \ 1/9 \k Λ —hH/0 —hMf) Λ r _ hHII hH10
/ ί i TT TT \ n I \ /=> / f̂ ?\ ^ 0 fin i ί. X-Λ Y X-Λ ILΠ./ Δ ^y. χ-> J t π / i

where ϋΓ and X on the RHS should be replaced by their two-dimensional
representatives. As we are interested only in the values L^ )((6*) ί y6σ0l) it is enough to
compare the coefficients standing on both sides at the matrices Xωι 0 . . .®Xωn, where
ωτ — ±. This task reduces to some combinatorics utilizing commutation relations. We
again omit some tedious but straightforward computations and restrict ourselves only
to recalling a helpful identity

^--n(n-l) ^2 g22(π) = ^-j, ̂  ( 6 1 9 )

τc£Sn

where 2(π) designates the number of transpositions in permuation π. Q.E.D.

Corollary 6.5. It holds
Lv(Uh(an) ®W) = ̂ f. (6.20)

Proof. By Lemma 6.4, L^(Uh(an)<g>l) = S*. The result then follows from Proposition
6.1 and the commutative diagram

Uh(an) <g) ̂ Γ ^ - ^ ^

5W Q.E.D. (6.21)

L v

In the classical case, the set on the LHS in (6.20) involves in fact all differential

operators of finite order evaluated at the point W = I 1 G SU(2) and tangent
\ - l 0y

to the dressing orbit. As the orbit is real analytic and connected it is determined by
this set of differential operators unambiguously. On the other hand, the coalgebra 3ζ^
determines the two-sided ideal S?w C ,/Sq(SU(2)) according to (6.10) and &w is the
quantum counterpart to the Poisson leaf. Thus the relation (6.20) suggests a quantum
analogy to the most distinguishing property of the classical dressing transformation
according to which the dressing orbits coincide with the Poisson leaves.

We conclude this section with a short description of quantum leaves on a compact
group Kq in the general case. Let us complete Uh(%) by the quantum Weyl elements
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Wi and Wi corresponding to the simple roots and, moreover, by the elements of the
maximal torus M c K in accordance with the rules

( ί , C / ) = ί , (6.22)

Δt = t®t. (6.23)

To each t e M there corresponds a one-dimensional *-representation r of ^q(K),

r(/) = ( ί ,/) . Denote by

Δn: Λq(K) -> Λq(K) ®...®Λq(K) (n copies)

a *-algebra morphism defined recursively,

Δλ = id, Δn+ι = (id<g>...®id®4)Aι

Then to each Weyl element with a reduced decomposition W = Wi . . . Wt and to
each element t G M there corresponds a quantum leaf

^ t = ^ , ® ® ^ (6-24)

with the "restriction" homomorphism

Ψwt '= (Φi, ® . . . ® V>ifc ® τ ) ^ f e + 1 : . ^ ( i f ) -^ ^ , (6.25)

where

By the results of [11,13], the image

^ t ( l ) = WH . . . T \ ί G t/^5) (6.26)

does not depend on the choice of reduced decomposition. The above papers also
provide communication relations between the quantum Weyl elements and the
generators of Uh($). This means, owing to Proposition 6.2, that we know the dual
coalgebra morphism ψwt explicitly.

7. Irreducible *-Representations for Algebras
of Quantum Functions on Compact Groups

The case of SUq(2) was originally investigated in the papers by Woronowicz [31] and
Vaksman and SoibeΓman [28]. Particularly, it was found in [28] that every irreducible
*-representation of SUq{2) is unitarily equivalent to one of the following two types
[recall the relations (5.1), (5.2)]:
(i) one-dimensional representations ξφ

φ φ (7.1)

(ii) infinite-dimensional representations πφ, given in an orthonormal basis

\n)=A-i(a*)n\0),

by formulas

πφ(a) |0) = 0 , πφ(a) \n) = (1 - q f
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Representations unitarily equivalent to those of (ii) also appeared in [9] in connection
with the Liouville model on lattice. Irreducible *-representations of SUq(3) were
investigated in [5] and generalization to the SUq(n) case by the Verma module
construction were given in [26]. A series of papers due to SoibeΓman [22,23] and
Vaksman and SoibeΓman [27] led to the following general results:
(i) Let π designate the representation given by (7.3) with eιφ = — 1 and set

πτ = πoφιh. Every irreducible *-representation of a simple compact quantum group
is equivalent to

πWr = ( ^ ® ® π i f e ® r)Δk+ι , (7.4)

where r is some one-dimensional representation (all one-dimensional representations
are of the form r:U —> t with t being an element of the maximal torus) and
W = Wt 0 . 0 W% is a reduced decomposition of some Weyl element.
Different reduced decompositions of the same Weyl element lead to equivalent
representations.

(ii) As it follows from the previous item and the description of symplectic leaves of
the corresponding Poisson Lie structure there is one-to-one correspondence between
symplectic leaves and irreducible *-representations.

As more times stressed by Vaksman and SoibeΓman this situation is very similar
to the famous method of orbits (geometric quantization) due to Kirillov, Kostant, and
Souriau. Below we support this point of view by a impressively simple construction
utilizing differential geometry of the quantum leaf. Besides, in the next section we
present another construction, though leading to the same result, based on the so-called
Berezin's quantization applied to the classical Poisson leaf.

We again start our description from the quantum leaf S% on SUq(2) which was
introduced in Sect. 5. To a complex variable η relate a quantum differential operator
Xη of infinite order,

OO j j

X

η

 = Σ ^lJ{J~l) ^di^ ( 7 5 )
j=0

and to a quantum function / G 3Z relate a formal power series

Ff(η)=(XηJ)€C[[η]]. (7.6)
Provided this power series Fj(η) is convergent it can be regarded as a holomoφhic
function on the classical Poisson leaf X = C. In this way we get a vector space of
holomoφhic functions on X. At the same time, it is a carrier space of a representation
π of the algebra Λq(SU(2))9

The representation π is well defined. Actually, the equality Fj = F^, holds if and
only if

(dlf) = {dl,f) for all j .

But whenever this case happens then, owing to (5.14),

w(c)® f)

s=0 L S J - σ=0

= {dl,ψw(c)f).
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Further, we introduce a scalar product,

f g ( \ J * y ) . (7.8)

Because of (5.15) and the relation

(%,/*} = q«s-l)(dϊ,f}*,

we have

{ F f ( η ) \ F g ( η ) ) = { Δ *

.s=0 L < S J

The RHS of (7.9) shows again that the result does not depend on the choice of / and
g. Let us recall that q G (0,1) and so λ = q - q~ι < 0. It follows that if the norm
\\Ff\\ for a nonzero element / is finite then it is positive. Restricting the representation

π to the Hubert space consisting of holomorphic functions with finite norms we get
a * -representation:

(Ff(η) I π(c)Fg(η)) = (l,f*ψw(c)g) - (1, (ΦJc*)ffg)

= {iτ(c*)Ff(η)\Fg(η)). (7.10)

Set now

and

FJη)^(Xη,fn)=qi
n(n'l>A~ιrr, n = 0, 1,2, . . . . (7.11)

Then using Lemma 5.1 and the commutation relation

one can compute

π(a*)Fn(η) = ̂  n{n+ί)A-\Xψz*d + zz*Γ</\z*T)

= qϊ
ln+X)in+2X>(XηΛz*r+i) - (1 - q

2n+Ψ2Fn+M); (7.12a)

(7.12b)

Furthermore, we have

(rf I ηk) = (l,z J(2*) f c) = δ3kq"*jl3+l\-Xy \j\\ = δokq~M+V}A] , (7.13)

and so (Fn(η))n is an orthonormal basis. Identifying Fn with the vectors \n) in (7.2)
we get exactly the representation (7.3) with eιφ = - 1.
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Having established the representation we can rewrite all the formulae only in
terms of holomorphic functions, i.e., without any reference to the quantum leaf. First,
introduce an operator Lκ depending on a positive parameter K by

LκF(η) = F(κη).

Then it is easy to verify that

± ( L q _ i - L q ) , (7.14a)

(7.14b)

τr(6) = π(6*) = qLq . (7.14c)

To get a formula for the scalar product we express the reproducing kernel K(u, ϋ)
corresponding to the basis (Fn) with the help of Euler identity (q £ (0,1)),

oo

K(u,v) := V Fniu)Fnivγ = 1 + V g ^ > „ J»ϋ)"

(7.15)

On the other hand, an application of the Jackson's (/-integral yields the identity

-q2)...(l-q21). (7.16)
n = - oo fc=n

In view of (7.9), we can write

2π oo

I f f i ^
(F(r/) I G(η)) = — / # / dμ(r)K(η,ηΓιF(ηfG(η), (7.17)

2τr J J
o o

where ^ = reιφ and c?μ(r) is a discrete measure on M+,

2 °°
r " ^ '• -qn)dr. (7.18)

The construction can be extended to a general quantum leaf 2§wt in a straightfor-
ward manner. Now we set

Xη = Xm®...®Xηk, (7.19)

where η = {ηx, ..., ηk) are coordinates on the classical Poisson leaf Xw = Ck. If
/ G oSS ,̂ c G ̂ Sq{K), ψw is replaced by ?/ t̂ and π by πwt then the relations (7.6),
(7.7), and (7.8) remain valid. Recalling the definition of the morphism ψwt we have

πwt(c)Ff(η) = (Xηι 0 .. .®Xηk,(<ψtι Θ .

= (πM 0 . . . 0 πZk 0 r ) ^ f c + 1

This means that πwt decomposes into a direct product in accordance with (7.4).
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8. Quantization of Symplectic Leaves of the Poisson Lie Structure

Here again we can confine ourselves to the simplest case, i.e., to the leaf on the
group SU{2) which is described by a pair of complex variables (2, z) and the Poisson
bracket (2.20). Traditionally, when a classical manifold is quantized (for a moment
we denote by / Λ an operator resulting from the quantization of a classical function
/) it is assumed that a relation between Poisson bracket and commutator of the form

[/Λ,5Λ] = «{/,ί?}Λ (8-1)

is valid for functions /, g from some prefered set of functions on the classical phase
space. Here K is some nonzero real parameter playing the role of the Planck constant.
The classical limit is obtained as K —» 0. In our case we assume as preferred functions
the coordinate variables z, z and as a quantization rule we take the normal ordering.
It means that for an arbitrary monomial of the form zmzn we write

(zmzn)A = (C*)mC , (8.2)

where we have used notation zA = ζ, zA = ζ*. Having this rules in mind we get a
commutation relation for ζ and C* in the form

It is easy to recognize in (8.3) the commutation relation (5.4) for ζ = (&*) ιa
in which K — q~2 — 1. In analogy with the case of usual bosonic creation and
annihilation operators one can realize the representation space H for the irreducible
*-representation π (7.3) (eτφ = — 1) as a Hubert space of analytic functions on the
complex plane. Expressing

we arrive again at the relations (7.14), (7.17). Such a realization is an analogue of
the Bargmann representation of the Fock space for usual bosonic operators [2]. Let
us stress also an analogy with Berezin's quantization on Kahler manifolds [3,15].

To proceed further in this analogy we recall the reproducing kernel defined by
(7.15). For F G H we can write

F(z) = (K(z, ) I F), (8.5)

where the variable z in K(z,υ) is assumed to be fixed. It can be easily seen that
the function Φϋ(z) — K(z,ϋ) belongs to H and from (7.17) it follows that a set
of these functions with v running over the whole complex plane constitutes an
overcomplete system of functions on H in the sense of Berezin [3]. In accordance with
basic requirements (continuity and completeness) of [12] they can be called coherent
states. It can be easily verified that these states are (unnormalized) eigenstates of the
operator ζ,

ζΦϋ(z) = ϋΦϋ(z). (8.6)

In Dirac's notation Φv(z) = \υ),

™ l ^ ' " Ί)U \n), (8.7)

F(z) =(z\F), (8.8)
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and the definition of inner product can be rewritten as a resolution of unity (understood
in a week sense)

2π oo

I μ ( r ) K { z i 2)~ι ι*> ^ι (8 9)

0 0

For later convenience we introduce a shorthanded notation for the inner product
(G I F) = Iz(G(z)F(z)). If we define according to Berezin [4] the covariant symbol
of a linear operator A on H as

A(z,z) = (z\A\z)/(z\z), (8.10)

we get a one-to-one correspondence between the operators and their covariant symbols
[3],

(AF)(z) = Iv(A(z,ϋ)F(υ)K(z,v)), (8.11)

where A(z,z) is defined by the analytic continuation of the covariant symbol. This
correspondence generalizes the normal ordering rule given by (8.2). If now A — Ax A2

we get for the covariant symbol of an operator A the following expression:

A(z,z) = Iυ(Aι(z,ΰ)A2(υ,z)K(z,ϋ)K(υiz)K(z,zΓι). (8.12)

This formula can be used as a definition of the star product of two covariant symbols
(functions on classical phase space) and can be rewritten in the following interesting
form:

A(z,z) = (Aι *A2)(z,z)

= Ax{z + (1 + zv)v'\-\ + L*_2), z)A2(z, v)\υ=z , (8.13)

where the superscript in Lv_2 refers to the variable in which the operator acts.
Expanding the right-hand side of the above equality in a Taylor series in h we see
that the correspondence principle in the form

{.,•}= lim l/(/ι)[ ,.] (8.14)
h—>0

holds. Let us remember also the formula for the trace of a bounded linear operator

ΎτA = Iz(A(z,z)). (8.15)

Coherent states as introduced here can be interpreted in terms of quantum
differential operators in the following way. Let us consider a quantum differential
operator Xη^ of infinite order

Particularly, Xη given by (7.5) is simply Xη0. Considering / € Sβ as an operator we
have owing to (5.10) and (8.6),

η, ^A=f(η,g). (8.17)

If g G AN and g η denotes the classical dressing action we can introduce thanks to
the correspondence between symbols and operators by formula

(rgf)(η,η) = (Xηη,rgf) = {Xgη^f) = f(gη,gη) (8.18)
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a mapping τg: S§ —> SZ. Let us note that this mapping is not an algebra homomor-
phism. The reason is because the classical dressing action is not Hamiltonian.

Attempting a unified approach Berezin defined quantization of a symplectic
manifold (M,ω) (ω is the symplectic form on the manifold M) as an associative
algebra Λ? with involution such that

(i) There is a family {^4h} of associative algebras with involution such that h G M+,
and the algebra ^ consists of the functions

taking values in Jίh Lsβ — 0 ^Λ. The multiplication and involution in Jί are
V heR+ )

connected with the multiplication and involution in ,/&h in the usual way

(/ * 9) (h) = f(h) * g(h), (/*) (h) = (f(h)f . (8.22)

The multiplication and involution in algebras ,A and ,Ah are denoted by the same
symbols.
(ii) Correspondence principle. There exist an associative *-algebra homomorphism

σ of ,A into the algebra C(M, C) of C functions on M with standard operations of
addition and pointwise multiplication such that for g:h —> g(h),

g(h) = hr\fx * /2 - / 2 * Λ) ih), σfo) = {σί/O, σ(/2)} (8.23)

holds,

σ(/*) = ί ( 7 ) , (8.24)

where the bar stands for complex conjugation and for any two points xx and x2 in M
there is a function f(x) from σ(.τ^) such that f(xλ) φ f(x2) [i.e., " / separates points
Xj, x2"' there are enough classical observables in σ(^A) to distinguish states].

As a special quantization of (M,α;) Berezin introduced a quantization with
additional properties
(iii) (1) ̂ h consists of C functions f(x), x G M.

(2) ./^ consists of the functions /(/ι, x), where /(/ι, x) G ,Λh for fixed /z.
(3) Homomorphism σ : ^ -> C(M,C) is given by the classical limit

σ ( / ) = lim /(ft,x). (8.25)

As noticed by Berezin all known special quantizations have also following two
properties:
(iv) The algebra ^ contains a unity, which is a function f(h,x) = 1.
(v) The algebra ^ h possesses a trace, which is given by

Tτf = cff(x)dμ(x), (8.26)

with dμ(x) being some measure on M and c some number factor.
Now from these definitions it is obvious that the correspondence between the

operators and their covariant symbols as described above fulfills all requirements
(i)-(v) for the special quantization of symplectic leaf X of the Poisson Lie structure
on SU(2). The situation is very similar to Berezin's quantization for Kahler manifolds
[3,15] where coherent states play also a prominent role as well as to the geometric
quantization on Kahler manifolds described in [29,25] where the representation space
is formed by polarized functions on classical phase space. In our case the dressing
transformation replaces the group of motions [3] from the former case.



126 B. Jurco and P. Stovίcek

References

1. Babelon, O., Bernard, D.: Dressing transformations and the origin of the quantum group
symmetries. Preprint SPhT-91-016 (1991)

2. Bargmann, V.: Ann. Math. 48, 568 (1947)
3. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153 (1975)
4. Berezin, F.A.: Covariant and contravariant symbol of operators. Izv. Akad. Nauk USSR 36,

1134 (1972) (in Russian)
5. Bragiel, K.: The twisted SU(3) group. Irreducible *-representations of the C* -algebra C(SμU(3))

algebra. Lett. Math. Phys. 17, 37 (1989)
6. Drabant, B., Schlieker, M., Weich, W., Zumino, B.: Complex quantum groups and their

enveloping algebras. Preprint MPI-PTh/91-75 (1991)
7. Drinfel'd, V.G.: Quantum groups. In: Proc. at the Intl. Cong, of Math. 1986, p. 798
8. Faddeev, L., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantum groups. In: Yang, C.N., Ge, M.L.

(eds.) Braid groups, knot theory and statistical mechanics. Singapore: World Scientific 1989
9. Faddeev, L.D., Takhtajan, L.A.: Liouville model on the lattice. Lect. Notes Phys. 246, 166 (1986)

10. Jimbo, M.: A ^-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys.
10, 63 (1985)
Jimbo, M.: A ρ-analogue of U(gl(N -hi)), Hecke algebra, and the Yang-Baxter equation. Lett.
Math. Phys. 11, 247 (1986)

11. Kirillov, A.N., Reshetikhin, N.Yu.: g-Weyl group and a multiplicative formula for universal
β-matrices. Commun. Math. Phys. 134, 421 (1990)

12. Klauder, J.R.: A coherent-state primer. In: Klauder, J.R., Skagerstam, B.-S. (eds.) Coherent
states. Singapore: World Scientific 1985

13. Levendorskii, S., SoibeΓman, Ya: Algebras of functions on compact quantum groups, Schubert
cells and quantum tori. Commun. Math. Phys. 139, 141 (1991)

14. Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations and Bruhat decompositions.
J. Diff. Geom. 31, 501 (1990)

15. Perelomov, A.M.: Generalized coherent states and their applications. Berlin, Heidelberg, New
York: Springer 1986

16. Podles, P.: Complex quantum groups and their real representations. RIMS preprint (1991)
17. Podles, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.

130, 381 (1990)
18. Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Quantum i?-matrices and factorization prob-

lems. J. Geom. Phys. 5, 533, (1988)
19. Reshetikhin, N.Yu., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras.

Algebra i analiz 1, 178 (1989) (in Russian)
20. Semenov-Tian-Shansky, M.A.: Dressing transformation and Poisson Lie group actions. Publ.

RIMS, Kyoto University 21, 1237 (1990)
21. Sheu, A.J.L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space - the

2-sphere. Commun. Math. Phys. 135, 217 (1991)

22. SoibeΓman, Ya.S.: Algebra of functions on the compact quantum group and its representations.
Algebra i analiz 2, Nl (1990) (in Russian)

23. SoibeΓman, Ya.S.: Irreducible representations of the function algebra on the quantum group
SU(n), and Schubert cells. Soviet. Math. Dokl. 40, 34 (1990)

24. Takhtajan, L.A.: Introduction to quantum groups. Lect. Notes. Phys. 370, 3 (1990)
25. Tuynman, G.M.: Generalized Bergman kernels and geometric quantization. J. Math. Phys. 28,

574 (1987)
26. Tjerk Koelink, H.: On ^representations of the Hopf *-algebra associated with the quantum

group Uq{n). Preprint
27. Vaksman, L.L., SoibeΓman, Ya.S.: On algebras of functions on the quantum group SU(n + 1)

and on the odd-dimensional quantum spheres. Algebra i analiz 2, N5 (1990) (in Russian)
28. Vaksman, L.L., SoibeΓman, Ya.S.: Function algebra on quantum group SU(2). Funk. Analiz i

Ego Priloz. 22, N3, 1 (1988) (in Russian)
29. Woodhouse, N.: Geometric quantization. Oxford: Clarendon Press 1980
30. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. I l l , 613 (1987)
31. Woronowicz, S.L.: Twisted SU(2) group. An example of a non-commutative differential calculus.

Publ. RIMS, Kyoto University 23, 117 (1987)

Communicated by N. Yu. Reshetikhin




