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Abstract. A general topological formula is given for the 517(2) quantum invariant of
a 3-manifold M at the sixth root of unity. It is expressed in terms of the homology,
Witt invariants and signature defects of the various 2-fold covers of M, and thus ties
in with basic 4-dimensional invariants. A discussion of the range of values of these
quantum invariants is included, and explicit evaluations are made for lens spaces.

Introduction

Quantum invariants of 3-manifolds were introduced by Witten in 1988 using Chern-
Simons gauge theory and path integrals [WJ, and subsequently formulated in terms
of quantum groups by Reshetikhin and Turaev [RT]. They depend on the choice of a
simple compact Lie group (the gauge group) and a root of unity q (of order three or
more).

In [KM2], the first two authors established a cabling formula and a symmetry
principle for link invariants derived from quantum groups which led to an elementary
proof of the existence of the quantum invariants for an SU(2) gauge and to evaluations
at the third and fourth roots of unity (in terms of algebraic topological invariants).
The existence of such evaluations is not surprising in light of the fact that the SU(2)
quantum invariants at q of a 3-manifold ML obtained by surgery on a framed link L
in S3 are related to the values of the Jones polynomial of L at q, and these values are
understood topologically for q of order three or four. In fact, they are also understood
at the sixth root of unity, and so it is natural to look for a corresponding evaluation
of the quantum invariants. This has been found for 3-manifolds obtained by surgery
on a single knot [KM 11. The purpose of this paper is to give a formula for arbitrary
closed oriented 3-manifolds M. We adopt the notation of [KM2J. In particular, rr(M)
denotes the SU(2) quantum invariant of M at q — exp(2τrz/r).

Recall from [KM2, Sect. 8.32] that for r = 2 (mod4), τr(M) splits as a sum of
invariants rr(M, Θ) of M equipped with a 1-dimensional cohomology class Θ. (This
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is a consequence of the symmetry principle.) In particular,

τ6(M,θ). (1)
θeHι(M-Z/2Z)

We shall give a formula for τ6(Aί. θ) in terms of certain Witt invariants of M and of
the 2-fold cover Mθ —> M naturally associated with θ (by the universal coefficient
theorem).

Theorem. Let M be a closed oriented 3-manifold. Then for any element θ in
Hι(M; Z/2Z),

T (M θ) = v/

where ε(θ) = 0 or 1 according to whether θ is zero or not, d(M) = vkHι(M; Z/3Z),
w(M) is the mod 3 Witt invariant of M (defined in (6) below), 2Θ3 is the image in Z/4Z
of the cup cube ofθ (under multiplication by 2: H3(M; Z/2Z) -> H3{M\ Z/4Z)), αntf
def3(<9) /s f/?<? mod 3 Witt defect of the 2-fold cover Mθ —> M (defined in (9)).

Note that if M is a Z/2Z-homology sphere, then τβ(M) = τ6(M,0), and the
formula in the theorem reduces to

since Af0 is just two copies of M. In particular, τβ(M) = 1 for any integral homology
sphere M.

Witt Invariants and Defects

For any integral symmetric bilinear form A, let σA denote the signature of A, and
let dA and wA denote the nullity and Witt class of A viewed as a form over Z/3Z
(lying respectively in Z and in the Witt group W(Z/3Z) = Z/4Z, see for example
[MH1). Recall that ιυA can be computed by diagonalizing A (mod 3), with diagonal
entries written as 0 or ± 1 , and then taking the trace. Set

λA = V3dA%-WA . (3)

This expression arises in the evaluation of Jones polynomials at the sixth root of
unity. In particular, for any oriented link L in S3, let Q(L) denote the quadratic form
of L (obtained by taking the sum of the Seifert form and its transpose). Then

VL = λQ(ί,) (4)

by Theorem (B.I) of [KM2], where V is the variant of the Jones polynomial defined
in [KM2, Sect. 4].

If L is a framed link, then there is another symmetric bilinear form associated with
L, the linking form A(L) with framings down the diagonal. We shall write σL, dL,
wL, and ΛL, respectively, for σA{Ly dA{Ly τυA(L), and XA(L).

Following [KM2], denote the colored framed link invariant of L with coloring k
at q = exp(2πi/6) by JL k, and write JL for JL 2. Note that JL is independent of
the orientation on L. Applying Corollary (4.11) of [KM2] at the sixth root of 1 and
Eq. (4), we have (for any orientation on L)

JL — LZJ r VL — V J S ΛQ(L) ? wJ

where ( = exp(2πz/8) (since [2] = y/3 and t = exp(2τri/24)).
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Now let M be a closed oriented 3-manifold. Choose any compact oriented 4-
manifold W bounded by M, with intersection form v4( IF), and define the mod 3 Witt
invariant of M by

w(M) = σA(W) - wA(W) (mod 4). (6)

(In particular w(ML) = σL — wL.) To see that this definition is independent of the
choice of W, note that the signature and the Witt class agree (mod 4) for closed
4-manifolds since their intersection forms are stably diagonalizable over the integers
(i.e. allow block sums with (1) 0 (—1)). The invariance of w{M) now follows from
Novikov additivity of the signature and Witt class. (The latter is immediate from the
proof in [AS, Sect. 7] which shows that the intersection form of the closed 4-manifold
obtained by gluing W and W along their common boundary is Witt equivalent to
the sum of the nondegenerate parts of the forms of W and W'.) There is a similar
definition for the modp Witt invariants for any prime p = 3 (mod4).

Next consider an m-fold cyclic cover M —> M of closed oriented 3-manifolds.
This extends to a cyclic cover W —» W of compact oriented 4-manifolds, branched
along a closed surface F in W (see for example [CG, Lemma 2.2]). Denote the
intersection forms of W and W by v4(lF) and /L(TF)

Hirzebruch's signature defect of the cover M —> M [H] (see also [KM3, Sect. 3])
is defined to be the rational number

in — 1
d e f ( Λ ί - + M) = m σ A ( W ) - σA{W) - - ^ ^ F F. (7)

This is independent of the choice of the cover W —> W by Novikov additivity and
the 6Y-signature theorem. Note that F • F is divisible by m, and so 3 def(M —> M)
is an integer.

Similarly, define the mod 3 Witt defect of the cover M -^ M by

m 2 - 1
def3(M -> M) = mwMW) - wA{W) ^ — F - F (mod4). (8)

This is well defined by Novikov additivity and the fact that the signature reduces
mod 4 to the Witt class for closed 4-manifolds. There is an analogous definition for
the modp Witt defects of covers for primes p = 3 (mod 4).

Question. Is def3(M —» M) a homotopy invariant? That is, if M —> M is the
pull back of N —> TV under a homotopy equivalence M -^ ΛΓ, then is def3(ilί —>
M) = def3(Λr -> N)Ί (The answer is probably yes. If so, then τ6(M,Θ) and
τβ(M) = Σ r ό ( ^ @) a r e homotopy invariants as well.)

Now for any closed oriented 3-manifold M and class Θ in HX(M\ Z/2Z), define

def3(<9) = def3(Mθ -> M ) , (9)

where Mθ —> Λf is the associated 2-fold cover.

Remark. The corresponding signature defect def((9) is an integer (since πi = 2),
and is related to def3(θ) by the congruence def3(θ) = def(θ) - (2w(M) - w{Mθ))
(mod 4). Thus the formula in the theorem can be rewritten as

τ sty} β\ _ λ/^ε(θ)+fi(Λ/θ)-fi(Λ/)^;(i\/)+u'(Λ/β)+2θ3+def(θ) /JQX

The preceding question asks whether or not the signature defect (mod 4) is a homotopy
invariant.
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If M = ML, then θ corresponds to a sublink E and L (consisting of those
components whose meridians μ have θ(μ) 7̂  0) and the self linking number E E
(i.e. the sum of all the entries in the linking matrix A(E)) is even.

If E is oriented, then it corresponds to an integral 2-dimensional homology class
in the 4-manifold WL obtained by adding 2-handles to B4 along L. This class can be
represented, for example, by the surface FE consisting of the cores of all the handles
attached to the components of E together with a Seifert surface for E (with interior
pushed into B4).

Note that the self intersection number of FE is equal to the self linking number
of E which is clearly independent mod 4 of the orientation on E. In fact, it reduces
mod4 to the element 2Θ3 in Z/4Z:

FE FE = E E = 2°3 (mod 4). (11)

One way to see this congruence is by Poincare duality. Indeed, one must show that
the triple self intersection of the dual of θ (which is dual to β 3 ) has the same parity
as e = 2 E ' E- This is easiest to verify by first "sliding handles" and "blowing up"
so that E consists of a single unknotted component with framing 2β. Then the dual
of θ is represented by a Seifert surface for E (disjoint from L — E) capped off with
a punctured sum of e projective planes in the surgery solid torus, and the triple self
intersection of this surface is e (mod 2).

Now observe that the two fold cover W of WL branched along FE is bounded by
the cover Mθ —» M. Thus for any framed link L for which WL — W, we have

def3((9) = 2wL -wL- e(mod4), (12)

where β = - E E.

Proof of the Theorem

As above, we adopt the notation of [KM2J. Choose a framed link L in S 3 with
M = ML and let E be the sublink corresponding to the cohomology class θ. Note
that E K is even for each component K of L (by Poincare duality). Denote the
complementary sublink L — E by E'. Then

r 6 ( M L , θ ) = - ^ Γ Σ JEuSi2u3, (13)
V S<E>

where nL denotes the number of components in L. This is just Theorem (8.32) in
[KM2] for r = 6.

By the cabling formula [KM2, Theorem (4.15) and the following remark! (at the
sixth root of 1)

τ<s

(Here IT denotes the double cable of T.)
Now for any given sublink T < E'', there are 2nEf~τ sublinks S with T < S < E'.

In particular, substituting (14) in (13) and interchanging the order of summation we
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obtain

T<E' T<S<Ef

nE'-Ί

J2T

= ^ψ^Jκo2E' (15)

since the alternating sum of the entries in any row but the first of Pascal's triangle is
zero.

Using (3) and (5) it follows from (15) that

τ6(ML,θ) = Λ/3ι+dQ-nFJιe-σL-wQ (16)

f o r a n y c h o s e n o r i e n t a t i o n o n L , w h e r e e = - E E ( d u a l t o θ3 b y ( 1 1 ) ) a n d

Q = Q(E U 2E').
In practice, formula (16) provides the easiest computation of τ6. But to show

how it is related to the Witt invariants discussed above, it is convenient to consider
separately the two cases when θ is trivial or not.

If S = 0, then E is empty, and so (16) reduces to

τ 6 (M L ,0) = y/ϊx+dQ-nLi-°L-™Q ? (17)

where Q is the quadratic form of 2L. Now 2L (with each doubled pair oppositely
oriented) has a Seifert surface obtained by replacing each component of L by an
annulus, twisted according to the framing, and then connecting these annuli with
(nL — 1) tubes. The resulting Seifert matrix is 0®AL (where O is a (nL — l ) x ( π L — 1)
matrix of 0's) and so the associated quadratic form Q is O θ ( i L + A^) = Oθ2AL =
O Θ — AL (mod 3). Thus dq = nL — 1 + dL and WQ — — wL and the formula in the
theorem follows immediately.

If θ ^ O , then we can arrange that E = L. (If not, then slide one component of
E over each of the components of E''.) Now (16) reduces to

τβ(ML, θ) = y/3{+dQie-σL-wQ , (18)

where Q is the quadratic form of L, and so it remains to prove

dQ = d(λdθ) - d(M) a n d wQ = w(M) -e-σL- d e f 3 ( 6 > ) . (19)

To establish (19), we will explicitly construct the double branched cover W^ of
WL described above (12), which is bounded by the double cover Mθ of M.

First orient L and choose a Seifert surface F in the 3-sphere. A framed link U
for the double cover of the 4-ball branched along F (with its interior pushed in B4)
is described in LAK, Sect. 2]:

View F as a 2-disc D with bands (1-handles) attached, as in Fig. la. Let ρ denote
a rotation of S 3 about the circle dD by π radians which carries the interior of D
off itself. We may assume that the bands of F all lie close to the disc ρ(D) and are
disjoint from their images under ρ, which lie close to D. Now L' consists of the
knots obtained by joining the cores of the bands with their images under ρ, and the
framing on each component is given by the number of half twists in the associated
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(a)

Fig. la,b
(b)

band. For example, the band in Fig. la with the trefoil knot tied in it has 6 right half
twists, from the knot, and 4 additional left half twists, and so is assigned the framing
2 as in Fig. lb.

Now let FL denote the closed surface in ML obtained from F (pushed into L>4)
by capping off the boundary circles with the cores of the 2-handles attached to L. The
desired double cover of WL, branched along FL, is obtained by adding 2-handles to
WLι along the lift of L = OF, and so is given by the link

L = L U l!

with modified framings on L.
To determine the new framings, observe that each component K of L has two

natural framings, one as a component of L (the L-framing k) and the other as a
curve in F (the F-framing /, which is the linking number with a pushoff in F).
The new framing on K is just the average (k + f)/2 of these two framings - this
is an integer since L K is even. To see this, note that the 2-handle attached to
K in Mi is the double cover of the corresponding one in M L , branched along its
core, and so the relative framing k — f must be halved. Thus the new framing is
/ + (k — f)/2 = (k + ,/)/2. For example, the component with L-framing 6 in Fig. la
has F-framing —2, and so has framing 2 in the cover as shown in Fig. lb.

We now claim that the linking matrix of L is equivalent mod 3 to the block sum
of the negative of the linking matrix of L and the symmetrized Seifert matrix of F
(which represents Q = Q(L))\

A(L) ΞΞ-A(L)Q Q(L) (mod 3). (20)

To prove (20), note that there are 2g + n— 1 bands in F, where g is the genus of F
and n = nL is the number of components in L. Label them (arbitrarily) with the letters
ax<bx.. . . . , a ,b .cx, . . . . cn_x, and then (for convenience) slide them over one
another so that they are attached in the order aιbιaιbι . . . a(Jbgagbgcxcx . . . c 7 i _ 1 c r t _ 1 .

Let A denote the linking matrix for the bands ax,bx, . . . , ag< bg (i.e. the ifh entry
records the number of half twists between the i{h and fh band). The corresponding
linking matrix for the bands cx. . . . . c n _ 1 has even entries, since F is orientable,
and so will be denoted by 2B. Similarly, 2C will denote the matrix which records
the linking between the first 2g bands and the last n - 1. Finally, let 2a denote the
difference of the L-framing and the F-framing of the 'Ίong" component of L (the one
which passes over every band of F ) , and let 2Ό denote the corresponding diagonal
matrix for the framing differences of the remaining components of L (corresponding
to the bands cx, . . . , cn_x).
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Now it is easily verified that the linking matrix and quadratic form for L are given
by

< / A 2C

where c
of C. A

A(L) =

is the column vector

\

+ a b
b B + ,

c C

6 B

whose 2th entry

change of basis converts

V

s +

56

όc

36

A(L) into

7 56'

5BΛ- D

3C

3B

cf

D Cf

A

2Cf

bι

B

2C

2E

\

is the sum of t

3c1

3Cf

A

2Cf

3bι\

3B

2C

2B

where s is the sum of all the entries of B and b is the column vector whose zth entry
is the sum of the entries in the zth row of B. Similarly, the linking matrix for L is of
the following block form:

(22)

row

(23)

which is congruent to — A(L) Θ Q(^)(mod3). In particular, first add the last block
of rows (and then columns) to the second block, and then add each row (column) in
the last block to the first row (column). This establishes (20).

It follows that dQ = dL - dL = d(Mθ) - d(M) (since A(L) and A(L) are
presentation matrices for the first homology of M and Mθ), which proves the first
equation of (19). Also -WQ = w^ + ιυτ, which gives the second equation of (19) using
(6) and (12), and the theorem is proved.

Remark. The invariant (93 is determined by the other invariants which appear in the
exponents in the formula in the theorem. In particular,

θ3 = d(Mθ) + def3(<9) + ε(θ) (mod 2). (24)

This is obvious if c(θ) = 0 (i.e. θ = 0), since all the terms in (24) except d(Mθ)
then vanish, and d(Mθ) = 2d(M). If ε{θ) = 1 then the link L constructed in the
proof of the theorem has an odd number of components by (22), and so d(Mθ) —
dι = Wf + 1 (mod2). Thus using (12) we have θ3 = e = 2wL — wι + def3(θ) =

Examples: Lens Spaces

Simple formulas for the quantum invariants of lens spaces L(c. a) (with c ^ 0) at
the sixth root of unity can be derived using (16) and the techniques of [KM3]. In
particular, adopting the orientation conventions of [KM3],

± 1 for c = ±l(mod3),

{ ± yfti for fcα) Ξ (0?±l)(mod3).
and for c even and θ ^ O ,

± N/3 for c/2 = ±\ (mod4).
v ' (26)

±\fii for ( c / 2 . α ) Ξ ( 0 . ± l ) or (2. =pl) (mod 4).
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(For c = 0 one readily computes rb(S2 x Sι. θ) = Λ/3 for either class θ.)

We will prove these formulas by induction on c. For convenience, assume that a/c

is a Farey fraction (i.e. a and c are coprime and 0 < a < c), and so 0 < a/c < 1.

The induction starts with the case of the 3-sphere (c = 1, or equivalently a/c = 0 or

1) which is trivially verified. Now assume c > 1, and so 0 < a/c < 1.

Recall that L(c, a) can be described by surgery on any simple chain link L

with framings a{ an chosen so that a/c = (a{, . . . . an), as shown in Fig. 2.

Here, as in [KM3], (a{, ..., an) denotes the continued fraction —\/{ax - l /(α 2 -

. . . — \/an). • .)• Geometrically, the list a{ au defines an ideal edge path in the

hyperbolic plane, with vertices oc.O. (a{), ( α ^ r ^ ) . . . . . (α,. an) = a/c on the

circle at infinity [KM3, Sect. 1]. Each component of L corresponds to an interior

vertex of this path.

Fig. 2

By the inductive assumption, L can be chosen with n > 1 so that the last

two interior vertices of the associated path, p/q = (α 1 ; . . . , an_2) and r/s =

( α l r . . . . cιn_{), are Farey fractions with p/q < a/c < r/s and ps = qr — 1. (Here

p/q = 0/1 if n ~ 2.) In particular, q and s are both less than c, and so by induction

the formulas (25, 26) hold (if applicable) for L(q.p) and L{s,r).

First let θ = 0. Note that in general

τ 6 ( M , 0 ) = s/3diM)ι-w{λIK

and so |τ 6 (L(c. α),0) | = \/3 or 1, according to whether c is divisible by 3 or not.

Thus we need only analyze the phase in formula (25).

Choose L so that an = 1, and so (c. a) = (q + s.p + r). Then

( 0 if q Ξ 0 (mod 3) .

2 if s = (/(mod3).

3 otherwise.

Indeed, L(.s,r) is given by the framed link J , obtained from L by dropping the last

component. In passing from J to L, the signature of the linking form increases by

1 (use [KM3, (1.17c)]), while the Witt class increases by 1 if q = 0, decreases by

1 if s = ry(mod3), and remains fixed otherwise (diagonalize from the top down

and use [KM3, (1.13b) and (1.17c)]). The Witt invariant is the difference of the

signature and the Witt class. Formula (25) now follows by induction, using the fact

that ps = qr - 1 (mod 3).

Now suppose that c is even and θ -φ 0. Let L{) denote the sublink of L

corresponding to the vertices p/q of type 0 (i.e. (p.q) = (0.1) (mod 2)) in the

associated path, and write nQ for the number of components in Lo and τ 0 = Lo Lo for

the sum of the framings. Similarly, define L{, n,, τx for vertices of type 1 (= (1. 1)),

and L ^ , n^, r^ for those of type oc (= (1.0)). Note that a/c is of type oc.

Observe that the characteristic sublink E corresponding to θ is just Lo U L{ (cf.

the proof of (4.6) in [KM3]), and E1 — Lx. Thus nE, =71^. To analyze the other

terms in (16), orient the components of L alternately clockwise and counterclockwise,
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as shown in Fig. 2. Then e = - E • E = - (r0 + τx) + n — 1 — 2?!^. An easy
calculation shows that the quadratic form Q = Q(E U 2LOC) is Witt equivalent to
O ? i o c 0 ί r ί _i_ 2 r ί χ , and so ^ = r i^ and wQ = n - 1 - In^. Putting these together
in (16) gives

τb(L(c. a), θ) = V3ί5(T(1+T1 ]-σL = \ / 3 Ϊ " ° f ' " . (27)

where //Ό and /ij are the two mu invariants of L(c.a) [KM3, Sect. 4].

It follows from (27) that |τ6(L(c. α), θ ) | = \/3. Since (26) can be rewritten

Γ c/2+α if cΞ()(mod4) .

rβ(L(c, α), θ ) = \/3z ^ c / 2 " ι ύ CΞΞl ( m o d 4 )> (28)

it remains to show that the exponents of i in (27) and (28) are equal.
Note that L can be chosen so that either q is even and an — 2, or s is even

and an = — 2. We assume the former, as the arguments are analogous. Thus
(c, a) = (q + 2s. p -f 2r), and (26) is assumed to hold for L(g,p).

Now L(q.p) is given by the framed link J obtained from L by dropping the
last two components. In passing from J to L, the signature of the linking form
remains unchanged (again use [KM3, (1.17c)]) and the invariant r0 + τλ increases by
2. Thus the exponent of i in (27) increases by 1. The same is true in (28). Indeed,
(c/2, a) — (q/2.p)-{-(s, 2r), and so the exponent of i in (28) increases by p+s + 2r+ 1
if c Ξ 0(mod4), and by s - p - 1 if c = 2 (mod 4). (Note that q Ξ C + 2 (mod 4)).
But both of these expressions equal 1, since ps = qr - 1 (mod 4). This completes the
proof of (26).

Range of Values

Using the arguments in the proof of the theorem, one can determine the full range of
values of the invariants τ6(Λ/, θ), and more generally of the invariants which appear
in the exponents in the formula given in the theorem. For convenience, denote the
list (ε.cLd.w.δ) = (ε(θ):d(M)<d(Mθ),w(M),dεf3(θ)) of invariants of (M. θ) by
a = σ(M. θ). (Note that we have excluded θ3 since it is determined by the other
invariants, by the remark above.) Also set

./ = {V3siL I s e Z,t G Z/4Z..S > 0} .

Proposition. The invariants σ = (ε. d, d, w. δ) assume all values in Z/2Z θ Z θ Z Θ
Z/4Z © Z/4Z satisfying the following conditions:

(i) (ϊ > d > 0,
(ii) ifd = 0, then w = 0(mod2_), and

(iii) ifε = 0 (i.e. θ = 0J, then d = 2d and δ = 0.
The full range of values of τ6(M, 0) is the set:/ - {±i}, and of rβ(AL θ) (for

θ φ 0) is the set Y - {±l ,±z}.

Proof Necessity of the conditions is easy: (i) follows from (19), (ii) follows from
the fact that σL = wL (mod 2) when d(M) = 0, and (iii) is obvious.

Sufficiency is proved by construction. It suffices to (a) produce examples of (M, θ)
with σ = (ε. 0. 0. w, εδ) for arbitrary ε and δ and even w9 (b) show how to modify
any (M. 0) to change σ by (0. 1.2, xυ. 0) for w = 0 or 1, and (c) show how to modify
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any (M.θ) with θ Φ 0 to change σ by (0,0, 1,0,-1), and by (0, 1, Lu-,-1) for
w — 0 or 1.

The lens spaces Lie, 1) (obtained by surgery with framing — c on the unknot)
provide examples for (a). In particular, using (16) one computes

σ(L(6k ± 2, 1), θ) = (ε(θ). 0, 0; 1 ± sign(A ), -ε(θ)k)

for k Φ 0, and so the values 0 < k < 4 suffice.
To achieve (b), one may take connected sums with (L(3fc, l).0) for k = 0 or — 1.

Indeed, using (16) one computes σ(L(3k. l),0) = (0, 1,2, -sign(A'), 0), and in general

σ((M, 6>)ti(M', < '. θ') + (-εε7, 0, εε ;, 0, 0),

where ε = ε(M, θ) and ε' = ε(M'', <9')
For (c), let (M, θ ) be given by a framed link L with sublink E corresponding to

θ (as above). Consider the operation of adjoining a doubled meridian with framing
k to a component of E, as shown in Fig. 3.

Fig. 3

This has the effect of block summing the linking matrix of L with (k), and the
quadratic form of L with (1 - k) θ (0) (up to Witt equivalence). From this one easily
computes the effect on σ using (16). In particular, σ changes by (0,0, 1,0,-1) for
k= 1, by (0,1,1,0,-1) for k = 0, and by (0,1,1, 1,-1) for k = 3.

The last statement in the proposition follows immediately (or can be proved
directly).

Remark. It is not so easy to determine the full range ,7~ of values of τβ(M) =
Σ Te(M-< ®) T n e proposition shows that ,7~ is a multiplicative subset of the ring
A = Z[V^ : λ/3?'], but it appears difficult to characterize this subset. It is not hard to
show that y is a proper ubset of A For example, any a + 6\/3 + c\/3z + 3di in
y—.'/ (for α, 6, c, and d integers and.^ as in the proposition) must have α + 6 + c + c/
even. Also, .T is not discrete as a subset of C. For example, τ 6 (RP 3 ) = \/3 — 1 and
τ6(L(12, 1)) = 0 (see above for the computation for lens spaces) and so the infinite
sequence τ 6 (nRP 3 ) converges to τ6(L(12, 1)). Is ,T dense in C?



Quantum invariants 617

References

[AK] Akbulut, S., Kirby, R.: Branched covers of surfaces in 4-manifold. Math. Ann. 252, 111-131
(1980)

[AS] Atiyah, M.F., Singer, I.M.: The index of elliptic operators. III. Ann. Math. 87, 546-604
(1968)

[CG] Casson, A.J., Gordon, C.McA.: On slice knots in dimension three. In: Geometric Topology.
Proc. Symp. Pure Math. XXXII, Providence, RI: Am. Math. Soc. 1976, pp. 39-53

[H] Hirzebiuch, F.: The signature theorem: Reminiscences and recreation. In: Prospects in Math.
Ann. Math. Studies 70, Princeton, NJ: Princeton Univ. Press 1971, pp. 3-31

[K] Kirby, R.C.: A calculus for framed links in S3. Invent. Math. 45, 35-56 (1978)
[KM1] Kirby, R., Melvin, P.: Evaluations of the 3-manifold invariants of Witten and Reshetikhin-

Turaev for sl(2, C). In: Geometry of Low-Dimensional Manifolds. London Math. Soc. Lect.
Note Ser. 151, Cambridge: Cambridge Univ. Press 1990, pp. 473-545

[KM2] Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin-Turaev for
sl(2,C). Invent. Math. 105, 473-545 (1991)

[KM3J Kirby, R., Melvin, P.: Dedekind sums, μ-invariants and the signature cocycle. Invent. Math.
(to appear)

[MH] Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Berlin, Heidelberg, New York:
Springer 1973

[RT] Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and
quantum groups. Invent. Math. 103, 547-597 (1991)

[W] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121,
351-399 (1989)

Communicated by N.Yu. Reshetikhin






