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Abstract. In this paper we study the global existence and asymptotic behavior of
solutions for the Maxwell-Schrodinger equations under the Coulomb gauge condi-
tion in three space dimensions with the final states given at t = + oo. This leads to
the construction of the modified wave operator for certain scattered data. It is also
shown that for the initial data in the range of the modified wave operator, the initial
value problem of the Maxwell-Schrédinger equations has the global solutions in
time.

1. Introduction and Main Results
In the present paper we consider the global existence and asymptotic behavior of

solutions for the Maxwell-Schrdodinger equations under the Coulomb gauge condi-
tion in three space dimensions:
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SR = A= = (V= i) = YV + 1A )
1o (1
_—— — R3 1.1
Zna[V<|x|*|¢| > t>0, xeR?, (L.1)
0 )2 1 /1 2 3
2i— Y +(V—id)*y ——|—=[y|* |y =0, t>0, xeR?, (1.2)
ot 4dr\ | x|
divAa=0, t=0, xeR?, (1.3)

where * denotes the convolution with respect to the spatial variables. Here, A(t, x)
is a function from [0, o0) x R® to R3 which denotes the electromagnetic real vector
potential, and ¥ (¢, x) is a function from [0, c0) x R3 to C which denotes the complex
scalar field of nonrelativistic charged particles. Equations (1.1)—(1.3) are the classi-
cal approximation to the quantum field equations for an electrodynamical non-
relativistic many body system.
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In [11, 12], Nakamitsu and M. Tsutsumi studied the solvability of the initial
value problem of the Maxwell-Schrodinger equations under the Lorentz gauge
condition, instead of the Coulomb gauge condition. In [11, 12], it is proved that
if the spatial dimensions are two or one, the initial value problem of the
Maxwell-Schrodinger equations with the Lorentz gauge condition is globally
solvable and that if the spatial dimensions are three, the initial value problem with
the Lorentz gauge condition is locally solvable. However, there seem to be no
results concerning the global existence and asymptotic behavior of solutions for
(1.1)=(1.2) in three space dimensions until now. In the present paper, instead of the
initial value problem we consider solving (1.1)—(1.3) with the final states given at
t = + oo. The difficulty of constructing the global solutions of (1.1)—(1.3) consists in
the quadratic nonlinearity of (1.1)—(1.2). In [10] Klainerman introduced the notion
of the null condition to show the global existence of small amplitude solutions for
the wave equation with quadratic nonlinear term. Recently, Bachelot [1] and
Georgiev [5] have improved the null condition technique to show the global
existence of small amplitude solutions for the Dirac-Klein—Gordon equations and
the Maxwell-Dirac equations, respectively, which are the classical field equations
related to (1.1)—(1.3). However, the null condition technique does not seem to be
directly applicable to (1.1)—(1.3), because the null condition technique is based on
the Lorentz invariance of the equations. But the Schrédinger equation does not
necessarily have the same invariance as the wave equation, and especially the
Schrédinger equation is not invariant under the Lorentz transform.

While the initial value problem is considered in [1, 5 and 10], in [3] Flato,
Simon and Taflin study the global existence and asymptotic behavior of solutions
for the Maxwell-Dirac equations with the final states given at t = 4 oo. This
corresponds to the construction of the wave operator. But in fact, the wave
operator cannot be constructed in the usual sense, because the phase of asymptotic
profile is distorted by the long range effect arising from the quadratic nonlinearity
of the Maxwell-Dirac equations. In [3] they take the phase shift of asymtotic
profile into account in order to compare the asymptotic behavior of the Maxwell-
Dirac system with that of the free dynamics (see also [5]). This corresponds to the
construction of the so-called modified wave operator. In [3] the phase function
indicating the phase shift of asymptotic profile is given as an approximate solution
of the classical Hamilton—Jacobi equation associated with a relativistic electron in
an external field. Recently, in [13] Ozawa has given a more explicit form of the
phase function for the one dimensional Schrédinger equation with power nonlin-
earity of long range effect. In [8] Hayashi and Ozawa have also shown the
existence of the modified wave operator for the derivative nonlinear Schrédinger
equation, following [13]. In this paper we shall give an explicit form of the phase
function indicating the phase shift of asymptotic profile and construct the modified
wave operator of the Maxwell-Schrédinger equations for certain scattered data.
We shall first eliminate the long range effect of the worst term by using the
difference between the propagation properties of the Maxwell wave and the
Schrodinger wave, following [ 14] and we shall next construct the phase function of
the phase shift resulting from the long range effect of the rest term in a similar way
to [13] and [8]. Since the long range effect of the Maxwell-Schrodinger equations
is more complicated than that of the decoupled nonlinear Schrédinger equation,
our proof is more complicated and delicate than that of [13] or [8].

Before we state the main results in this paper, we give several notations. For
1 < p < + oo, we denote the standard L? space on R3 by L?. For m, seR, let H"
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and H™* be the Banach spaces defined by the completion of the Schwartz space
Z(R?) in the norms

ol =11 — 4)"2v]2,
ol s = 111+ [x[2)72(1 = 4)"20] 12,

respectively. For m > 0, let H™ be the completion of .%(R?) with respect to the
semi-norm

ollgm = 1(= 4)"2v] 2.

For 1 < p < o and a nonnegative integer k, W*? denotes the Banach space of all
functions in L” with derivatives up to kth order in L?. Let the norm in W57 be
defined as follows:
(&)
- |V
0x

|vnww=< >
()

lol <k
For ve.%'(R®), ¢ denotes the Fourier transform of v. For a function v on R3, we
denote the support of v by supp v. For ze C, we denote the complex conjugate of

zby z. Let w=./— 4 and U(t) = e24". Let (1) be a real-valued function in
C*([0,00)) such that f(t) =1 fort =22 and O(t) =0 for 0 < ¢ < 1.
Now we state the main results in this paper.

p

1/p
, 1sp<oo,
LP

[l = max
Jol <k

. p=o.
L

Theorem 1.1. Let 1 > 6 > 0. Assume that A, = (ALo, A%o, AYo)eH> A H A W51,
Ay =AY, A2, A2 D)eH "W anddivAd o =divA,, =0 Weput A, (t)=
(AL (1), A% (1), A3 (1)) = coswtA .o + w~ 'sinwtA . Assume that .o€ H*" and
SUPP Y o(6) = (& 1212 1+ 0} U (& 6] <106} We put (1) = U o
Then, there exists an n > 0 such that if

IAcollgsam + 1 Avollwsr + Ay g + [Ac s + [Waolger =0, (1.4)

(1.1)—(1.3) have the unique solutions (A(t), Y (t)) satisfying

A(t)e C([0,00); H3nH"'), (1.5)
2
—A()e [} CH[0, ), H*7F), (1.6)
k=0
LE (1\ CH([0, 00); H3™ %K), (1.7)
k=0

HZ"}

o\
( >(A() A4 (1) = R(1))

ot

(1+ l)”z{HA(t) — A1) = RO|g2na + Z

.

>J A(t) — — R(1))

2|

+ {IIA(t) (0= RO 5 + Z
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' =00 (logn?) (t—+ ), (1.8)

oy !
(2] wo-ewv.y)

0 3/8
<f 1 (s) — e+ (s) &1%3-4615) =0(t" '(logt)*) (t— + ), (1.9)

1
+ )
=0

where 1 depends only on 8, R(t) = (R*(t), R?(t), R3(t)) is the solution of the following
linear problem:

f 2

t

>%(le+o ( >
: 2R PITRER o
+ [——* ]~ W+o(?>
=0 (B (513

—lLo(—’E)%(V%o)(f))ﬂe(z)z, 1>0, (1.10)

2 3
+ Y IVRI®)|;: =0 (t— + ©), (1.11)
LZ

j=1

| W+o<?-)’>

1 1 3L/ 5 X;
— —logt | — d R’ ~x lds=. (112
o B e o

Remark 1.1. (i) We note that for k > 1> 0, H* & H' & L2 But, if ve H*n H' for

oG

a positive integer k, then <T> ve L? for any multi-index o with 1 < || < k. In
(p

82

“3R— 4R = [zm 3 ‘w(

— iifl—B{lZm

~ =

o)) o

~ | =

~

0
—R(¢
ot ®

and

2
p(t, x) =

addition, for the three dimensional case, H!' < LS. For the homogeneous Sobolev
space H™(R"), see, e.g, [2, §6.3]. But note that the definition of H™(R") in the
present paper is slightly different from the one in [2, §6.3], where H™(R") is defined
as the set of all tempered distributions v such that (— 4)™?ve L*(R"). If we take
ve H™(R") modulo polynomials of degree at most [m — n/2] in the definition of
[2, §6.3], then the definition in [2, §6.3] is identical to that in the present paper (see
[2, problem 12in §6.8]). Here [m — n/2] is the largest integer that is not larger than
m —n/2 and if [m — n/2] is negative, we take zero as a polynomial of order
[m —n/2].

(i) There exists the unique solution R(t) of (1.10)—(1.11) under the assumptions
of Theorem 1.1 (see Lemma 2.4 in §2). We note that R(t) does not necessarily belong
to L2 for t = 0 and

[RM)L-=0@"") (t— + ).
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(iii) A4 (t) and . (t) are the free solutions of the Maxwell equations and the
Schrodinger equation with the initial conditions 4.(0) = A ,,, %A+(O) =A,4
0

and 4 (0) =y, respectively. Furthermore,

divA+(t):idivA+(t)=0, t20. (1.13)

~ =

(iv) Equation (1.8) shows that the phase function ¢(t, x) defined in (1.12)
indicates the phase shift of y(t, x) from the free dynamics. The first term at the
right-hand side of (1.12) corresponds to the long range effect of the Coulomb term,
that is, the last term at the left-hand side of (1.2). This part of (1.12) is the same as
the phase function given in [ 137 for the decoupled nonlinear Schrédinger equation.
The second term at the right-hand side of (1.12) corresponds to the long range effect
resulting from the coupling of the Maxwell equations and the Schrédinger
equation. R

(v) The assumption on the support of ¥, ensures that the product of 4, (¢)
and Vi . (t) decays fast enough as t - + oo. This fact is based on the difference
between the propagation properties of the Maxwell wave and the Schrddinger
wave (see Corollary 2.5(ii) in Sect. 2). The influence by the product of 4. (t) and
Vi . (t) is most difficult to control, although it does not seem to be so bad at first
sight.

(vi) We consider the Maxwell-Schrodinger equations under the Coulomb
gauge condition instead of the Lorentz gauge condition, because the former is more
usual than the latter in the nonrelativistic case from a physical point of view. Our
proof of Theorem 1.1 is also applicable to the case of the Lorentz gauge condition.

(vii) For the case of t - — oo, we can obtain the same result as Theorem 1.1
without change of the proof.

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 1.2. (i) Let 6 >0. By D, we denote the set of all scattered states
(Aso, Ay1,Wio)suchthatdivA o =divA,, =0,suppy.o = {&[E[21+0} U
{&1€] <1 — 6} and (1.4) holds. Then, for (1.1)—(1.3) the modified wave operator W, :

(Asg, As 1, Y1) <A(0),E%A(0), lp(())) is well defined on D . .

(i) Let R(W.) be the range of the modified wave operator W, given by part (i).
Then, for any (Ag, A1, Yo)e R(W,) there exist the global solutions (A(t), Y(t)) of

(1.1)—(1.3) with <A(O), %A(O), ¢(0)> = (Ao, A1, Yo) satisfying (1.5)—(1.7). Further-
more, these solutions satisfy (1.8) and (1.9) with (A 4o, A+ 1, W +0) = Wi (Ao, A1, Yo).

Remark 1.2. (i) Noting Remark 1.2(vii), we can also construct the modified wave
operator W_, which is a mapping from the scattered states as t = — oo to the
interacting states at t = 0.
(i) Corollary 1.2(ii) gives the global existence result for the initial value prob-
lem of (1.1)—(1.3). However, it is not clear what initial data belong to R(W,).
The proof of Theorem 1.1 is roughly described as follows. Since the last term at
the right-hand side of (1.1) is difficult to treat as it is, we rewrite (1.1) by using (1.2).
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We substitute (1.2) into (1.1) to obtain

82

G A= A= =iV — YV = 24117

+4—V[——*\7 (— iV — Y V) — 24]P)2 }] t>0, xeR?.
(1.14)

We also rewrite (1.2) as follows:

2i%1// + A = i(div AW + 2id- Vi

+|A] !ﬁ+i<ﬁ |1//|2>xp, t>0, xeR*. (115

Equations (1.14)—(1.15) are equivalent to (1.1)—(1.2), if the solutions (A(z), Y (¢)) are
smooth. It is well known that if the L? norm of the perturbed term is integrable in
time over [0, o), the solution of an evolution equation such as the Maxwell-
Schrédinger equations behaves like a free solution as ¢ — oco. Therefore, it is
conjectured that the long range effect arises from the second term and the last term
at the right-hand side of (1.15). The long range effect of the latter can be controlled
in the same way as the case of the decoupled nonlinear Schrédinger equation (see
Ozawa [13]). The long range effect of the former comes from the coupling of the
Maxwell equations and the Schrodinger equation. Accordingly, our main task in
the proof of Theorem 1.1 is to evaluate the long range effect of the second term
2iA - Vi at the right-hand side of (1.15). For that purpose, we first assume that the
support of Y., does not include the unit sphere centered at the origin. This
assumption ensures that the product of 4. () and Vi . (¢) decays faster as t — w0
than 4, (z) alone or Wy, (¢) alone and so the influence by the product of 4, (¢) and
Vi . (t) decays fast enough as t — co. This fact results from the difference between
the propagation properties of the Maxwell wave and the Schrédinger wave (see
Corollary 2.5(ii) in Sect. 2). After the influence by the product of A, (t) and Vi, (t)
has become negligible, the long range effect of 2i4 + Vi still remains. Therefore, we
need to introduce a long range correction in the definition of the wave operator.
The solution A(t) of the Maxwell part can be divided into three parts, that is,
A(t) = A+ (t) + R(t) + v(t). Here A.(t) is a free solution which A(t) approaches
asymptotically, R(t) is a solution of (1.10)—(1.11) which has a long range effect on
the solution of the Schrédinger part and v(t) is a remainder which decays faster as
t > oo than A, (t) and R(t). If we put

ilx|?
mit, x) = (i)"¥2e 2 <§> (),

we can take m(t, x) as an asymptotic profile of i . (¢) (see Lemma 2.1(iii) in Sect. 2).
We put
Aty = A () + R + v(1),

Y(1) = e“m(t) + u(r) ,
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where @(t, x) is defined in (1.12). If we rewrite (1.14)—(1.15) as the equations of v(z)
and u(z), the terms of slow time decay vanish and the resulting equations of v(t) and
u(t) with the final states given at t = oo become solvable in proper function spaces
under the assumptions of Theorem 1.1.

Our plan in this paper is the following. In Sect. 2 we summarize several lemmas
and one proposition needed for the proof of Theorem 1.1. In Sect. 3 we state the
proof of Theorem 1.1.

We conclude this section with several notations given. For two three-dimen-
sional complex vectors a, be C*, we puta-b = a, b, + a,b, + a3b;. We abbreviate
0/0x;,j=1,2,3 and 0/t to 0y, j = 1,2,3 and J,, respectively. For a multi-index
o= (o, qp, 2%3), We put 0% = 0510520%; and x* = x7'x32x3*. We denote the scalar
productin L? by (+,). For se R, let [s] be the largest integer that is not larger than
s. Let p be a nonnegative function in C&(R?) such that | p|;: = 1. For ¢ > 0, we

X . .
put p(x)=¢ 3p —). In the course of calculations below, various constants are
€

simply denoted by C.

2. Preliminary Results

In this section we give several lemmas and one proposition needed for the proof of
Theorem 1.1.
We start with the estimates of the evolution operator for the free Schrodinger

equation.
Lemma 2.1. Let n = 1.
(1) Let p and g be two positive constants such that ! + ! =land2<p=< + .
Then, b
U@y = @rle) =77 ooy, ve LR, 040, (21)

(i) Let g and r be two positive constants such that 2 < g < + oo for

2
k for n = 3 and n_n r = 2. Then,
2 2 g

n=12 2=<¢qg<
n_

(
where Ky is a positive constant depending only on n and q.
(iii) Let k be a nonnegative integer. Suppose that for j+|o| =<k,
(14 |x])*20% e L*(R™) and (1 + |x])/*20% . oe L*(R"). We put m(t, x) =
ilx|?

(i)™ e 2 o <§> 6(t). Then, for some K, > 0,

a0 ¥

[ U@ —=29)f(s)ds

T

1/r 0
dr) SKy I f6) l2mnds, £20, (22)

LYR")

x\
(5 exattvon o= mo

2+ + B <k L(R")

<Kyttt Y I+ xR0 ol w21, (2.3)
j+lal =k
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<t> A% {UOW 4o — m(t)}

2+ 2+ |Bl=sk L*(R")

SKpt TS A XD TR0 o ey, t 2T (2.4)
j+lad sk

where K, depends only on k and n.

Remark 2.1. Lemma 2.1(i1) implies that m(t) is asymptotically equivalent to
U)o ast— oo.

For the proofs of Lemma 2.1(i) and (ii), see, e.g., [17] and [6]. For the proof of
Lemma 2.1(iii), see [ 14, Lemma 2.1(ii)]. Lemma 2.1(ii) in [ 14] treats only the case
|f] = 0, but the proof for || # 0 is the same as that for || = 0.

The following lemma is concerned with the decay property of solution of the
free wave equation.

Lemma 2.2. (i) Let n = | and let L be a nonnegative integer. Then,

Y 026! coswtu -
jHlsL
S KL+ 07" D2 (Julgrevagey + |ullypremn-iign), >0, (2.5)
[0%0{ ™ tsin otu | - g
Jtla =L
S Ks(1 4+ 07" D2 (Jul grewagey + | ullpr-vaign), >0, (2.6)

where K3 depends only on L and n.
(i) Let n be odd spatial dimensions larger than one and let L be a nonnegative
integer. For any 6 with 1 > 6 > 0, there exists a K5 > 0 such that

S fe%dl cosotull Ly < Kol + 072 ulgrrwn-r2, £>0, (27)
jHlalsL

Y 0%0jw tsinwtul| e < Kol + 072 ullgeewaea, >0, (28)
jH+llsL

where M;(t) = {EeR™ [E]| = (1 + o)t} U {EeR™ & < (1 — d)t} and K, depends
only on L, and n.

Proof. For the proof of part (i), see [9, §1].
Part (ii) follows from the Huygens principle for the wave equation in odd spatial
dimensions larger than one. We first choose two functions ¢, ¢, € C*(R) such that

@@=¢x—aj=hz¢aa=1muﬂ§L¢A$=omuﬂg<1—%)ﬂl—&,

/

S\
¢ds(s) =1 for |s| = 1 and ¢,(s) =0 for [s] < <1 + %)/ (1 + 6). We put

o (Ix] x|
%mw—¢(u_)> ¢4a+w>
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We note that for any nonnegative integer k,
> 10:0/ds(t, %) = Ciy (1, x)e[0,00) xR".
IESTIEL:

Since the propagation speed of wave is one, we have by the Sobolev imbedding
theorem and the Huygens principle

Y 1030] cos wtu |l 1=,
JlmsL

< Y 11020 (dsc0s wtu) | - we
JHlal £ L

é C Z ” agcatj((ﬁg COS a)tu) HLZ(R")

JHlel S L+ [n2]+1

c 3 TP

JHlal S L+ 2]+ 1

IIA

0 - 2 na
<c | (1 +5r) 10+ IxD?82ul s s
JH S L+ [n/2] +1
SCA+ 072 ull oo, t21. (2.9)

By the Sobolev imbedding theorem we also have
Y llozdlullpewny £ C | 0307 cos wtu || ;2rn)
j+ 12l S L J+ 1 S L+ 2]+ 1

c > 10%ull2@ey, 20, (2.10)

JH S L+ [n/2]+1

[IA

Equations (2.9) and (2.10) show (2.7). The proof of (2.8) is the same as above. [

Remark 2.1. (1) The analogous result to Lemma 2.2(ii) also holds in even space
dimensions (see [ 15, Theorem XI. 18(a)]), although the Huygens principle does not
strictly hold in even space dimensions.

(i) Lemmas 2.2(i) and (ii) imply that the solution of the wave equation decays
faster inside and outside the light cone as t — oo than on the light cone.

We next consider the following linear wave equation:

02w — Aw = h(t,x), t>0, xeR?®, (2.11)
| Vw(@z2 + low@] 7> =0 (- ). (2.12)
We have the following proposition concerning the solvability of (2.11)-(2.12).

Proposition 2.3. Let L be an arbitrary integer with L = 2. We assume that

L—-1
h(t)ye () C/([0,o0); H-7Y)
j=0
and for some Cq > 0,
L-1
Y. (L+ 02 ezl h@)) 2 £ Co, t>0.
k=0 ]+ |o|=k
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Then, there exists a unique solution w(t) of (2.11)—(2.12) satisfying

w(t)e C([0,0); H*nH'Y, (2.13)
L—-1 )
ow(t) e ﬂ C'([0, o0); H"“‘f), (2.14)
=0
Yooazaiw) e S Ks(L+ 02 Fsup Y (L+0F 20z h() ),
I+ =k t20 j+|zl=k--1
t>0, k=1,...,L, (2.15)
S Jezeiw(e) | £ Ks(1 40tk
JHlal=k
k+1

xsup Y (L4032 eze (), >0, k=0,...,L—2, (2.16)

t20 1=k j+ |z =1
where K s depends only on L.
Proof. We first consider the following regularized problem:
02wy, — Awg, = (1 4+ 4t) L7 1p, xh(t), t>0, xeR?, (2.17)
I Vw172 + 10wz (0172 >0 (¢ = + o), (2.18)

where 0 < 4 < 1 and 0 < ¢ < 1. The solution w,,(t) of (2.17)—(2.18) is given by
wot)=— [ (1 +2s) """ Ho 'sinw( —s))p,xh(s)ds, 1=0. (2.19)
t

Formula (2.19) and a direct calculation yield

we(t)e () CH7H([0,00); HY), (2.20)
j=1
sup [(1 + O 2 w02 + > (1 + 0t 32 a2¢) wg;,(t)HLzJ < @
t=0 I1<j+]e|SL+1

(2.21)

forO<zi<land O<e< 1.
We next derive the a priori estimates independent of £ and ¢ for w,;. We take the
scalar product in L? between (2.17) and J,w,;(t) to obtain

1d

5 G 1B OIE 4+ [ Vw32 = (14 2072 (o hie) dows(0). 0> 0. (222)
Integrating (2.22) over [t, c0), we have by Young’s inequality

(14 28) "7 () [ 22| Qswiea(s) | 22 ds

[8we(6) 72 + || Vw72 <2

2

~ e 8 = e 8

IIA

(14 4s) L7111 + 5)72ds
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X {sup (1 +5)%2 Hh(SHLZ}

s>t

x {Sup (1 + )12 05wz (s) Ily}

st

=C1+ l)"l{SUP(l +5)*? Ih(S)H}

s2t

x {Sup (1+ 912 “Ws/l(s)“Lz}

s=t

2
sCl+p7! {SUP (1 + 5)3/2|h(5)||L2}

st

2
+-(1 407" {sup (1+9b? naswsz(s)lm} , 120,

st
(2.23)

NS

where C does not depend on ¢ and 4. Equation (2.23) gives us

sup (1 + 02 {I16wex (Ol 22 + | Vwea (Ol 2} < Csup (1 + 02| h(e) |2, (2.24)

=20 tz0

where C does not depend on ¢ and /. In the same way as above we obtain

sup Y (L4 0 V2026 w0l

tz20 -+ o=k

<Csup Y (L+0"P|ozdln@)e, k=2, L, (2.25)

t20 74+ 2=k—1

where C does not depend on ¢ and 4. Therefore, (2.24), (2.25) and the standard
compactness argument show the existence of a solution to (2.11)—(2.12) satisfying
(2.13) and (2.15) with the continuity in t of w,;(t) and its derivatives replaced by
L*(0, c0). The continuity in t follows from the regularity theorem of linear hyper-
bolic equation. Equation (2.16) follows immediately from (2.15) and the Gagliardo—
Nirenberg inequality (see, e.g., [4]).

We finally prove the uniqueness. We suppose that w,(t) and w,(f) are two
solutions of (2.11) and (2.12) satisfying (2.13)—(2.15). Then we put z = w; — w, to
obtain

0fz—Az=0, t>0, xeR?, (2.26)
loz@) 22+ | V(@) |2 >0 (6= + ). (2.27)
The conservation law of energy for (2.26) shows
[0z 22 + [ V2(0) 72 = [02() 172 + | V2(s) |72 O<s 1< +o0.  (228)
Letting s - + oo in (2.28), we have by (2.27)
loz(@)l7= + | V()] 7 = 0

for any ¢ = 0, which implies that w, (1) = w,(t) for t = 0. The proofis complete. [
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We next state the following lemma concerning the estimates of the phase
function defined in (1.12).

Lemma 24. We assume o€ H® 7. Then, there exists the unique solution R(t) of
(1.10)~(1.11) such that

R(t)e C([0,0); H TAH! ), (2.29)
6
J,R(t) e ﬂ Ck([O,oO); HG_") , (2.30)
k=0
sup z [sz oy ua;a:’R(r)an}
£20 k= J+lal =k
fsup [(Hr)k“ T joro R(t)rlLanKﬁnwwnéw (2.31)
120 k=0 it el =k

for some K¢ > 0. Furthermore, the phase function ¢(t, x) defined in (1.12) satisfies

i
<1 +@> 0%0] (1) ]
t Lo

< K5 ll$ oo (2.32)

supZ[lth Ylog(l + )" >

t21k=0 j+jal =k

for some K, > 0.

Proof. We note that for some C > 0,

I wollws= < Cllyollms . (2.33)
We put

H(t, x) = h(t, ) +—v<—* V- h)(t,x),

4 \|x|

o)
- i|rr3{$+o<§)%<v&+o)<§> - %o(t) mo( >}e(z)

We first verify that H(t, x) satisfies the assumption in Proposition 2.4 with L = 7.
Let k be any integer with 0 < k < 6. Leibniz’ rule shows that

Y. 10xaln(, x)|

J+ 2l =k
a/zah{ltl—yzl/‘;w(;)}. ’
azza,f'z{nrrS/Z(Vl/Lo)(f)H,

2

hit, x) = 2]t] 7 0(t)

is bounded by a sum of terms

aal {|r|-3/2§$+o<f—>9<) }
. = 0(t)>
Cloze) {ltl‘“%o@) (? }

C
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where j; +j, =j and 2, + o, = o. Since either j; + |21 or j, + |2,| is less than
[k/2] + 1 and supp6(r) = {t = 1}, we have by (2.33)

Yo 028 h® N2 £ CO+ )73 g llwaras [ o || e
JAlel =k

SCOU+ 07 Y olier, 120, (2.34)

On the other hand, since the Fourier transform of is|&|"%and &;¢&,/[EPe L™,

—V|— h
‘4nv<|x|*v >

Equations (2.34) and (2.35) show that H(t, x) satisfies the assumption in Proposi-
tion 2.3 with L =7. Therefore, by Proposition 2.3 we obtain the first half of
Lemma 2.4.

We next prove (2.32). By the Gagliardo—Nirenberg inequality (see, e.g., [4]) and
the Hardy-Littlewood-Sobolev inequality (see, e.g., [16]), we have

1
47| x|

we have

S Cllihll. (2.39)

L2

1
—u(x — y)d = v(y)dy
‘LH y)dy NPl
1/2 1/2
éCHAI v(y)dy I v(y)dy
R3|x_ | L2 R3 12
S Clol i vl . (2.36)

Let k be any integer with 0 < k < 5 and let j + || = k. Since 6,1,%0(% — y> =

- ( Vi +o) <~ — y> Leibniz’ rule shows that

gt
Iaxﬁtlmo(t y>
< Ctk Y <1 + |x|> ’ 6”‘W+0)<§—y>!
lo | + 22| = k t t

Therefore, we have by (2.37), (2.36) and (2.33),

2

(612%0)(; - y>[ =0

2

> <1+u> 020} W+o< y) dy
Jtia =k g [yl -
1 T
<Ct* 01 40) < >’ (8x2¢+o)<f—y)‘dyH
lota] + T2] = k || R® t L
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<Cr* — | 0% 1 o(x — ) 8§2$+O(X~y)ldy”
Jog | + ozl =k R? L~
—k oy o, 1/2 o 7 oy 7 1/2
=C > @2+ o) @2 4 o) 11212 4 0) (024 4 0) 1165
los] + 2] = k
=S AL YR N e N s
Joay ] + ol =k

s 05 o 122102 o 112 102 o 122

< Ct R o IR 1o I
SCt I aolfer, t=1. (2.38)
On the other hand, let k be any integer with 0 <k < 5 and letj + |o| = k. If

1 £k<5and =+ 0, we have

8“0’{R<s 2 )db

S 18%0!R(t, x)|

JAlal=k-1

+Ct*k<1 +|t|) > js"

o=k ©

xR)<s,;x>‘ds, t=>1.

(2.39)

IfO<k<5andj=0, we have

5 jair(sSx)afsat 5 g

Ja] = k laf=k ©
Therefore, (2.31), (2.39) and (2.40) yield

s, t=1. (240)

nfe )
<1 +|)‘|>1510ij<3 - )db

(1 + ")Ja IR (1)

L*

(0XR < ) ds
t

(0ZR) (s, i x> ds
t e

SC Y L+ 0 log(t +0) (1 + 0 ol

Yooy (1 +oklog(l + 1)t

k=0j+ 2=k

L*

<C ZS: Yo (1 + of(log(l + )~ !

k=1j+ |2 =k

t
+CZ Yo (I +of e log(l + 1)~ | s*||(
0

K=1]u =k

~

+C Y Y (1 + 0ft *og(l + 1)t jsk

k=0 o = k

5
+C Y (og(l+ )7 [s*(1+ 07 Hds | sollfo

k=1

sKL 4+ 07K Vs o | o

Ol v O ey =

5
+C Y (log(1+1)"
k=0

SClWaolfer, t21. (2.41)
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Equation (2.32) follows immediately from (2.38), (2.41) and the definition of
ot x). U

The following corollary is an immediate consequence of Lemmas 2.1(iii), 2.2(ii)
and 2.4.

Corollary 2.5. Let § > 0 and let all the assumptions in Theorem 1.1 be satisfied. We
put

ilx|* x
mt, x) = (it)*2e 2 1o <7>9(z) .

Let . (t), A, (t) and @(t, x) be defined as in Theorem 1.1.
(1) The following relations hold.

1 .
Y, 1o {ey (1) — em(t)} o2 = O(™) (t—0), (2.42)
j=0

O 1/4
( I | 2rwzaz{e“%(s)—efw:n(s)}ﬁads)/ =0(7?) (t->x). (243
t 2+ ol =

(i) There exists a Kg > 0 such that
Y ool {e? A (Om()} ] .2

2+ ]uf=3
< Kg(l+ 0721+ W iollie) (I Asollms mm + [ Aol
1A g+ 1 As i lws) ¥ solmer, =0, (2.44)

where Kg depends only on 6.

Proof. We first show (i). Equation (2.42) follows directly from Lemma 2.1(iii) and
Lemma 2.4. On the other hand, (2.3), (2.4), the interpolation and Lemma 2.4 yield

Y llezal{e oy ) —em@}le S CTY 1z,
2+ 22
which implies (2.43).
We next show (ii). Since
suppm(t, x) = {xeR3;[x| = (1 + &)t} u {xeR?* x| < (1 — )t}

—

for each t > 0, Lemma 2.2(ii) and Lemma 2.4 give us (2.44). [

Remark 2.2. The assumption on the support of i , o is not needed for the proof of
Corollary 2.5(i), but it is indispensable to the proof of Corollary 2.5(ii).
We conclude this section by giving the following lemma.

Lemma 2.6. Let s be a real number with s > 1 and let k be a positive integer. Then,
for some Cg > 0,

(14 7)~5(log2 + 1)) dr < Cy(l + ) log2 + 1)), =0, (245

~ — R

where Cgy, depends only on s and k. Furthermore, we can choose Cy = 5 in (2.45) for
(s, k) = (4,3), (3,4), (7/2,3) and (2, 2).

Lemma 2.6 follows immediately from the integration by parts.
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3. Proof of Theorem 1.1

Y. Tsutsumi

In this section we prove Theorem 1.1 by using the results obtained in Sect. 2.
As stated in Sect. 1, we use (1.2) to rewrite (1.1) and (1.2) as (1.14) and (1.15). We

next put
A1) = A (1) + R + v() ,
Y(e) = em(e) + u(1)
where A, (t), R(t) and ¢(t, x) are defined in Theorem 1.1 and

1x]?
mt, x) = (it)"¥2e 7 <E> o) -

t
We substitute (3.1) and (3.2) into (1.14) and (1.15) to obtain
02v—Adv=f(t)+ F(t,v,u), t>0, xeR?,
2i0,u + Au=2i(Ay + R+ v): Vu

+g(t)+ Gi(t,v,u) + Go(t,v,u), t>0, xeR?,

3
low@ i+ Y, [ Vollfz =0 (t—> ),

j=1
fu@®)|2—>0 (- 0).
Here

fm=&0+—V%% wmm}

F(t,v,u) = Fo(t, v, u) + — V{I_l (V- Folt, v, u))} ,

3.1)
(3.2)

(3.3)

(3.4

g(t) = — idpe®m + | Vo|?ePm — iel“’; Vo- {(it)_3/ze 2 (V{ﬂm)(%) Q(t)}

. 1@1 0\ —3/2 M 7 X
—ie t—z(lt) Fe 2t (Ayio) n 0(t)

+idiv(4, + R)e”m — 269 A, <§m> —2¢(A4, + R)* Vo

~ | =

1 1|>([2
+2ie (A, + R)* {(it)‘m (Vi +0) (

Joo

) ) ilx]® d
+ A, + R|?e"m — ie(it) 3% e 20 zpm(?)a—é?

o~

Gi(t,v,u) =idiv(A; + R + v)u — 2e’”’v-(§m> 270+ Vom
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1 Ix® X
+2ie"";v'{(it)_3/ze 2t (Vi o) 7 0(1)
+2(A,y + R)-ve’m+ 2(A. + R) vu
+ 2|v[%e’m + 2|v|*u ,

1 {1
G,(t,v,u) = %{m* ‘R(e""mﬁ)}e""m

1 {1 ) 1 {1 2 e
+47‘c{|xl*|m| }u+4n{|x|*|ul }e m

+ %{é*%(e’%nﬁ)}u + %{é* |u|2}u ,
where
fo) =2(V— A, — R)|m|?,
Folt, v, u) = 23(e ~“mVu) + 2V R(e'mit)
+ 23(e"? Vmit) + 23(iVu) — 2v|m|?
—4(A; + R+ 0)RE“mii) — 2(A, + R + v)|u|?.

We shall solve (3.4)—(3.7) by the contraction mapping principle. Let # be
a positive constant satisfying (1.4). By Lemmas 2.2, 2.4, Corollary 2.5(ii) and (2.35),
we obtain

Yo X e 0l = CO+ PP (L + 0 > Plog2 +1), 120, (38)

Jj=0luf=2—j

Y loxdlgle = CO+ )0l + 0 (log2 + 1)% 20, (39

2+ la] £3
where C does not depend on #. Therefore, if we choose 17 > 0 such that
n=s1, (3.10)
we have by (3.8) and (3.9)

1 1/2
(Z 2 |5§5tjf(t)llf2> <Mn(l+6) Plog2+1), tz0, (311

J=0 |uf=2—j

) 1/2 .
max{( Y Ié‘i@fg(t)lle) ) |3§559(I)IIL2}

J+la <3 j+lal<3
< Mp(1 4+ t)"2(log2 + )% t=0 (3.12)

for some M = 0, where M is independent of # for 0 < n < 1. We put
X = {[v(t), u(t)J; (t)e C([0,00) H* nH')

d,v0(t)e C([0, 0); H?),
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u(r)e fl\ CI([0, o), H?" %),

=0

sup [1+t3/2(10g(2+t)) ( D O

I=jols2

1/2
+ ) ||a;a,v(r)||2z> }élan,
ol £1

sup [(1 + 1)(log(2 + t))”( Y ozl

[« =

1/2
+ II%@U(QH?Z) nger/,

|| =2

2
sup (1 + t)(log(2 + 1)) ( Y. lozu() H22>1/ :|§ 6Mn ,

—

1/2
sup | (1 + 1)(log(2 + 1))~ ( Y | 0%0u [)HL2> } <21My,
0 =1

sup (1 + 1)(log(2 + 1) Z 1 A0%u( z)\Lz} <3(14./3 + )My ,

t=0 =

sup _( 1+ 0)(log2 + 1))~ Z <j ()|l ds>3/81§6K1M17},

1

where K, is defined in Lemma 2.1(ii). We introduce the metric d([vy, uy |, [v2, U5 ])
into X as follows:

d([v, w1, [v2u ) = ) sup [(1 + 0)*2(log(2 + 1)) 2 | 0%(v1(6) — v2(6) [ 22]

1=5jal=2 12

+ 3 sup [(1+ 0 (log(2 + 1) 72 |02 0 (v1 (1) — va(6)) [ 2]

[2/=1 120

+| IZ_3 sup [(1 + 0)(log2 + 1) 2 [ 0%(vs (1) — v2(6)) 2]

+ 2 sup [(1 4+ 6)(log(2 + 1) "2 [ 030, (v1 (1) — v2() [ 2]
e =2 120

+ ) sup [(L+ 0)(log2 + 1) ? [10%6,(ur (1) — ux(8)) |1 2]

2+ ]a =3 t=20
83, 0
+ > sup[( + t)(log(2 + 1))~ <jH0x (1t (s) — ua(s)) 7% ds) }
2|2 t=0

for [vy, uy ], [vs, u> € X. We note that X is a complete metric space with the metric
d. We first define the nonlinear mapping N, [v, u] for [v, u]e€ X. For [v, u]e X, we
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consider the linear problem:

0w — Aw =f(t) + F(t,v,u), t=0, xeR?, (3.13)

I Vw0172 + [ew@) 72 >0 (t— ). (3.14)

DM e

]

j=1

Let N; [v, u] be a mapping from [v, u] € X to a solution w(t) = (wy(t), w, (), ws(t)) of
(3.13)—(3.14). We next define the nonlinear mapping N,[v, u] as follows. For
[v,u]e X, we consider the following linear problem:

2i0,z + Az =2i(A, + R+ v)* Vz
+g(t) + Gi(t,v,u) + Go(t,v,u), 120, xeR?, (3.15)
lz@®)llr2 =0 (t—0). (3.16)

Let N, [v, u] be a mapping from [v, u] € X to a solution z(t) of (3.15)—(3.16). We put
N[v,u] = [Ni[v, u], No[v, u]]. By the definition of N, we see that the fixed point
[u, v] of the nonlinear mapping N in X are the solutions of (3.4)—(3.7). Now we
show that if n > 0 is sufficiently small, the nonlinear mapping N is a contraction

from X into X.
We first evaluate w = N;[v, u]. By Lemmas 2.2(i), 2.4 and the Gagliardo—
Nirenberg inequality (see, e.g., [4]) we have

Z H&;FO(B v, Ll) “Lz

[z =1

<C Y [lox{3Ie mVu) + VoR(emi) + J(e" Vmit)} ||

[ <1
+ 03Vl z: + [ 02lm|?) |2 + [03{(As + R + v)R(e"min) }|| 2
+02{(As + R+ 0)ul?} 2]
S CU+ [ Vo llw=) [m(@) |z u) |
+ CUlu@) || V@) [+ + [u@) |2+ Vae(e) [ r+)
+ CUo@ = I m@ e [ m@) [+ Ho@) |l m@)12-)
CUIA @ llwes + IR@ [w=) [m@) [y @) |2
CUo@ - lm@we u@ e + Lo g | m@) ] lu@)].-)
CUIA@lwr = + IR =) [u(@) | Frs
CUv@) = [u@ s + o g u@7-)
< C(L+ 7?21+ 07 (log(2 + 1) + Cllu(t) iy
+ O (L + 1) o) 47 [ o(0) |57
+ Cn3(1 + 1) *(log(2 + 1)) + C(1 + (1 + 1)~ *(og(2 + 1))?

+ (1 + 073 (10g(2 + 0)* o) 147 | v(e) |57
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+ Cn3(1+ 6772 (log(2 + )* + C(1+ mn(1 + 07 u®) |5+
+ Clo@ A 1o 1A w1
+ Cn(1 + 1) ¥ (log(2 + 1) [ u(t) |52 | u(@) |
< CO+ 021+ 1) 52(og2 + 1)* + C(1 + ) |u@ [ f2s, =0 (3.17)
for [v, u]e X. In the same way as above, we have

Y loFo(t v, ulls < COU+m)°n(1 + )7 P (log(2 + 1) + Cllu(®) |52+
Joa] =2

+ Cn(1 + 1) *log2 + 0)[u(@) | wrs, 20 (3.18)

for [v, u]e X.
We consider the regularized problem associated with (3.13)—(3.14):

0wy — Awg = (1 + 40" *p,x { f(t) + F(t,v,uw)}, t=0, xeR?*, (3.19)
Z I Vwe (0122 + [ 2wes (072 >0 (1> 0), (3.20)
where 0 < 4 < 1 and 0 < ¢ < 1. The solution w,,(z) of (3.19)—(3.20) is given by
Wi(t) = —?(1 + 45) o tsinw(t — $)p, { f(s) + F(s,v,u)}ds, t=0. (3.21)
Formula (3.21) and a direct calculation yield

w,;(t) e ﬁ C?([0,0); HYY, (3.22)
i=1
2
YooY sup [(1+ A0*020] wa(0) 2 + (1 + 20w (0] 2] < + 00 (323)

j=102|£5-jt20

for0<i<land 0 <e< 1.

We next derive the a priori estimates independent of ¢ and £ for w,;. Let o be an
arbitrary multi-index with |o| £ 1. We apply 0% to (3.19) and take the scalar
product in L? between the resulting equation and 8,0%w,;(t) to obtain

1 d ; 2 3 ; 2
||5 Oiwea (O[22 + 3 1 VOiwes(0) [ 12

j=1

= (14 )" *(p, = {02f(t) + OLF(t, v, u)}, 0, 05wy, (1)), t=0. (3.24)
Integrating (3.24) over [t, oc), we have by (3.11), (3.17), (2.36) and (3.23)

3
1602w () 72+ Y | Vw07

Jj=1

= =2 [ (L+25)"H(po* (0L (5) + OXF (s, v, u)}, 0,0%w,(5)) ds

S2 0Nz + 1 0XE (s, v, w) [l 22} 110,05 wes(s) [ 2 ds (3.25)
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Since « is an arbitrary multi-index with || < 1, we take the summation of (3.25)
over || <1 to obtain

ooz wa Ol + Y étwa )7

la) £1 I<]rf=22

=2 % [ O+ IOEF(s, v, u) |12} 103 Cwes(s) | 12 ds

1/2 L\
0% f () ”L-> + < Y. I0XF(s, v, U)1|LZ> }
7 =1 2] =1

1/2
><< 10305 Wes(s) Hf2> ds, 1=0. (3.26)
o] £1

I

At the last inequality of (3.26) we have used the Holder inequality for sequence.
Equations (3.11), (3.17), (2.36), (3.26) and Lemma 2.6 yield

Y olozewa 0+ Y 1wa0i

EES 1<l <2

<2 [ Mn(1 +5)"*(log(2 + 5))* ds
t

X sup [(1 + 1> (log(2 + 1))~ < Y, llézew.( ”L2>1/2:|

t=0

oC

+ C {0+ +5) *(log2 + )

t

+ (14 )2 us) 2«1 + 5)"*?(log(2 + )} ds

12
X sup l:(l +1)**(log(2 + 1)) 2 < Y. 10%ow.(0) |£2> :I

=0 7] =1

= {IOMn(I + 1) 3log(2 + t)* + C(1 + n)°n*(1 + 1) *(log(2 + 1))*

el s /4
+C<1+n>2<f lu ()||%’34ds>3/4<f (1+5)_6(10g(2+5))8d3>1 }

t

1/27]
X sup [(1 +1)**(log(2 + 1)) 72 ( Y Hﬁiﬁxwgz(l‘)lli2>
_

120 EES

< {10M + Cy (1 + m)°nin(l + 07> (log(2 + 1))*

X sup [(1 +0)¥2(log(2 + t))'2< Y| 85?5,»%,:&)“22)1/2 . 120, (327

(20 lo] <1

where C; does not depend on ¢ and . If we choose # > 0 so small that

Cil+m°n=sM, (3.28)
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then we obtain by (3.27)

sup [(1 +0)°(log(2 + I))“( Z H e (1) 2

t=0

II/\
II/\

+ Y llozd,wa(n)] IL2> }é 1nM . (3.29)
1

[ =

In the same way as above, we have by (3.11), (3.18), (2.36) and Lemma 2.6

Z |‘6;61W€/ HLZ+ Z lC Wef HL
[ =2 lz| =3

< {10M + Co(1 + n)°nin(1 + 1)~ *(log(2 + 1)*
1/2
X sup [(1 + 1)(log(2 + t))_2< Y. 10x8,w.a(t )H?z) } t=0, (330
t=0 o] =2
where C, does not depend on ¢ and 4. If we choose 1 > 0 so small that
Co(1 +n)°n =M, (3.31)

then we obtain by (3.30)
sup [(1 + 1)(log(2 + t))‘2< Y ledwa o)z

t=0 |2 =3
1/2
+ ) 1I5§5,Ws;.(t)l)f2> ] = 1Mp. (3.32)
x| =2

From (3.19), (3.8), (3.17), (3.18), (3.29) and (3.32), it follows that for some C > 0,

sup [(1 + )2 (log(2 + 1) "2 107 we (0 [ 2

120
+(+0log2+0) 2 3 13562 w0 Hu} =C, (3.33)
jHlal=1

where C does not depend on ¢ and 4. When we consider passage to the limit as
¢— + 0and 42— + 0,(3.29), (3.32), (3.33), a compactness argument and the regular-
ity theorem of linear hyperbolic equation show the existence of the solution w(t) to
(3.13)—(3.14) such that

w(t)e C([0,c); H> n HYY, (3.34)

(2\ C’([0,0), H* ), (3.35)

sup[(l+t)3"2(log(2+t))‘2< S arw) i

120 12

1/2
+ Y ua;@w(t)uiz> ]§11M11, (3.36)
1

o] =
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sup [(1 + 1)(log(2 + t))_2< Y, law@lz:

t=0 la| =3
1/2
+ ), l0zaw(r) llﬁ) ] < 11Mpn, (3.37)
lo| =2
sup [(1 + 12 (log(2 + 1) (|02 w(®) | .2
t=0
+ (1 +0dog2+1)"2 ) [a%e2 T w() HLZ} =C. (3.38)
T+ =1

The uniqueness of the solution follows from the same argument as in the proof of
Proposition 2.3.

We next evaluate z = N,[v, u]. By Lemmas 2.2(i), 2.4 and the Gagliardo—
Nirenberg inequality (see, e.g., [4]) we have

Y. 10%G (e v u)] g2

laf =2
S C(H AL w4+ IR =) [l ull g2

+ C(ldivolplull = + [divolwesfulwre + [[divoll,-[ullg:)

W1,7>

X X
FCU+ | V¢1|W1.m>2<tvm ;’"”Wm 0l Sm

+ CL+ [ Volw)?(lolo- | Vo lw- [Imll g2
+ ol a il Ve lwr-lim|g:)

0(t)

ix?
+C1+ (Ve le»x)z—t—<lvlly (it)_3/29T(VW+0)<E>

t
i|x|?
(it)”/zeT(VzLo)(f)H )
t Wt

+ C(L+ [ Vol )2 {(I A w2 + [ Rlw2) 0] | m]| 2

HZ

+ llollgzqm

+ (A llwr= + IR =) 0l g2 e m -}

+ CUIA+ w2 + [ RIw2=) [vllz | ul g

3
+ C([[ A+ lwr= + HR}W"“)( I ijHU> e
=1

]

+CI+ (Ve szvq)2<llvﬂff Imlig> + [vllz=lvla ml-

3
+ Y Vo lizslmlp + ol lollae Hm|’L°‘>
j=1
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2
C<Hvllm lullmz + lollzsliolla ullp:s

3
+ Y Vol Eslulles + lollz=lvlae Hultu>

i=1
SCH+n)*n*1+ 1) %(log2 +1)% t=20 (3.39)
for [v, u]e X. In the same way as above we have
Y o 1020,Gy(t, v, u)ll: < C(1+ mn?(1 +0)"2(log(2 + 1))% =0 (3.40)
lo] =1

for [v, u]e X.
On the other hand, by (2.37), the Hardy-Littlewood-Sobolev inequality (see, e.g.,
[16]) and the Gagliardo—Nirenberg inequality (see, e.g., [4]) we have

) ||a“GZ(rvu>|Lz<c”—*m (e m)

Jol <2

llem
o

+C”—*ImI2 lem] e
2,6

Ll +C”~*Iu|
w

1
—*Iul ulpe

S C(LA+ || Vollyr)* | mia | 17 | mi || 2o | m g

+C ” —xR(e'Pmu)

lulp> +C
WZ

+ Cllmim || || mom |0 ]| g2

+ C(L+ || Vo llws)? | uid | ios | m s

1/2 1/2
+ CA + | Vo | wre)? [ma | g2 || mil| p2os | ul g
12, 1/2
+ [fuullg? (vl 2o [ u] g

2 2 2 2
S C(L+ | Vollwe ) mllwsel|ull i [ m| w2 lul g2 | m)| g

1/2

1/2
+ Clim|y2=[m| g

1/2

1/2
s m] g2

] e
+ CO A+ | Vo llw=)?(lullme i s + Nl i wrs
+ iz il g2) [ s

+ CA+ || Vo =) [m i | ull

+ CUlullpzll @l + lullwrsl@lprs + llul-lldln)"?

1/2 1/2 1/2

iz i e e

) (lullgz @l s + lulpel@llps + lulesll@la) 2wl

SCH+n)*n*(1 + 1) *(logR+1))% t=0 (3.41)
for [v,u]e X. In the same way as above we have

Y. 10%0.Go(t v, = CU+min*(l + 0 2(log2 + )% t20 (342

lal =1

for [v,u]e X.
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We first consider the regularized problem associated with (3.15)—(3.16):
2i0,2, + Azy = (1 + 2) " *[2ip,* {(A+ + R+ v) V(p,*z,;)}
+ . xg(t) + p.* Gy(t, v,u) + p,x Gy(t,v,u)], t=0, xeR?,
(3.43)
zea@ 22 >0 (t—0), (3.44)

where 0 < ¢ < 1 and 0 < 1 < 1/4. By using the contraction mapping principle, we
easily see that for each ¢ and A, there exists a 7 > 0 such that (3.43)—(3.44) has the
unique solution z,,(t) satisfying

2l () CA(LT, o0 HY) | (3.45)
j=1
2
sup I:(l + )Jf)4 Z I 5?5{251(1) “L{I < 4+ o00. (3.46)
(=T i=o

Since the initial value problem of (3.43) can easily be solved globally in time, the
above solution z,;(t) can be extended to the time interval [0, o).

We next derive the a priori estimates independent of ¢ and 4 for z,;. Let o be an
arbitrary multi-index with |o| < 2. We apply d% to (3.43) and take the scalar
product in L? between the resulting equation and 0%z, (t) to obtain

d
i 11032.4(0) 172 = || Vozz, (1)) 72

+ 21(1 + /ﬂ't)h4(pe* {(A-\‘- + R + U). Va;(pa*ze}.)}> 6;281)
+ (1 + /:l)_di Z Cdlocz(zipe* {5z1(14+ + R+ U)' Vé\;z(ps*ze/‘.)}r 5;281)

oy to, =0
foa| < o] — 1

+ (1 + ;"[)_4(p8*(a;g + a;Gl(t: U, u) + a;GZ(ta v, U)), aizs}‘% L g 0. (347)

Here, the summation at the right-hand side of (3.47) is empty, when |«| = 0. By the
integration by parts we have

(ps* {(A+ + R + U). Vai(ps*zs}t)}: aizei)
=((A+ + R+ 0) V(p, #032,5), pe* 032:5)

1
= —5(dv(A. + R+ 0)(p* 03z01), po% 0323) - (3.48)
We take the imaginary part of (3.47) to obtain by (3.48)
d
I 0% z.:(0) 122

= - (1 + ;Lt)_4(diV(A+ + R + D)(ps* azzsz), Pe* a;Z;_;_)
F201 4407 Y CupR(pe {07 (A + R +0) VO (p,* 2.5) s 0322)

ap +oy =2
lop| < o — 1

+ (1 + ) *J(p, * (0%g + 02Gy + 02G,), 0%2,;)
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S ([ divAs o+ [divR = + [[dive] )| 0%z, ] ;2
+ C(I1 A+ e + IR [ wie) 1 24 |
+ Cll 0%l L2l Vzeu I 211 032es 2 + Clolwn -1 |1 26 o
+ (103912 + 103G M2 + 103G ll22) | 03zes 22, £ 20, (3.49)

if 1 <o) £2. We take the summation of (3.49) with respect to o and use (3.12),
(3.39), (3.41), the Gagliardo—Nirenberg inequality and Lemmas 2.2(i), 2.4 to obtain

d ; 2
a( < |§| - H axzel([) “Lz>

SC+mnl+07" Y 0iz,07

lo] =2

+ Cn*(1 + 1)">*(log(2 + 1))* 1022,,(2) 11 72

lo] =2

+CA+nmnl+07" Y 102z, 7

la] £2

+Cn(l+ 07 *(log2 +1)* Y %2072
2

Ja] =

+ Y loagllldizea () lze

1<la <2

+ C(A+n)*n*(1 + 1) *(log(2 + 1))* Z 1622,,(t) 1 72
a2

C+n*n (1 + 1) *(log(2 + t))2 Y, 0tz 120, (350)

lo] <2

If || = 0, we have by (3.47), (3.48) with |o| = 0 and Lemmas 2.2(i), 2.4

d
7 17640 I = = (1 + A" *(div(4+ + R + 0)(pe* 203)s 2:3)

+ (14 4)7*3(pex(g + Gy + Gy), z,3)
S CU+mn(+ 07 2017 + Clollgs [l g 12017
+ (lglez + 1Gillez + 162 ll2) 1 zea(0) |2
S C(+mn(t + 07 zu0)]17:
+ Cn(1 + 07> (log(2 + 1)? | z,:(0) | 2
+ gl + Gl + 1Gall2) a2, £20. (3.51)
Eqildations (3.50), (3.51), (3.12), the Holder inequality for sequence and Lemma 2.6
yie

Y 1@z S COU+mty [ (L+95)7" Y [0iz(s) [ 72ds

|2 = 2 ol < 2

+ f 102g(s) Il 221102 2,5(5) | .2 ds

t ol =2
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SC(+n°n (149 *(og2 + s)*d

1/2 2
X{sup [(1+t) (log(2 + 1))~ 2< > ||8;‘§zex(t)llfz> }}
120 ol <2
LY 172 1/2
+ (, |22 ||6§g(s)|lfz> ( > 6;‘6254(5)“22) ds

t o] <2

< C3(1+ )1 + 1) *(log2 + 1))*

12773 2
x {Su% [(1 + 1)(log(2 + t))_2<l ‘Zz [ 5125;.(0“22) }}

+ 5My(1 + 072 (log(2 + 0)*

1/2
X sup [(1 + t)(log(2 + t))_2< Y, 0iz.;(0) |122> } 120,
t20 |2 =2
(3.52)

where C; does not depend on ¢ and 1. If we choose # > 0 so small that

Cy(1 +n)°n = (3.53)

I\)|>—‘

then we have by (3.52)

sup [(1 + 1)(log(2 + t))‘2< Yo 6§zgx(t)|rfz>1/2] < 6My . (3.54)
(20 o) < 2
Differentiating (3.43) in ¢, we have
2i8,(0,2,3) + A(0iz,3) = 2i(1 + At) " *p,x {(A+ + R+ v)* V(p,*0,2,5)}
—8Bil(1 + A) P px{(As + R+ 0): V(p,*0,2.5)}
+2i(1 + ) *px {(0, Ay + O R + 0,0) V(py*2,;)}
+ 0L+ A) *px{g + G, + G,}], t=0. (3.55)

We take the scalar product in L? between (3.55) and 0,z,;(t) and take the imaginary
part of the resulting equality to obtain by (3.48), (3.54), (3.42), Lemmas 2.2(i), 2.4 and
the Gagliardo—Nirenberg inequality

d . . .
1025017 < (1divAw - + [diVR I + [ divol) |0z 12
+ CU A Do + IR+ 1012 Pzl 62
+ CUIA e+ 18R [+ 18,012-) | Vous 12218201

+ (lgliz + Gz + 1G22 [ 0ezeall 2
+(I0gllz + 10:Gillr2 + 10.G21112)[10i2e3 ] 12
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SCA+ il + 07 bz 7
+ C(1+n)°n*(1 + 1) 2(log2 + 1))* 1 ,za [ 12

+Qiywmm>w@wy,tzo. (3.56)
Here, we have used the fact that 0 < 4 < # at the first inequality of (3.56). Let o be
an arbitrary multi-index with |a| = 1. The application of 0% to (3.55) yields
2i0,(0%z,;) + A(0%z,;) = 2i(1 + At) *p* {(A4+ + R +v)* V(p, % 0%0,:2,1) }
+ 2i(1 + A0 *p,* {(03A 4 + O%R + 0%0)* V(p,* 012,3) }
— 8il(1 + A1) P px { (0% A+ + IR + 0%0)* V(p.* z,;)
+(Ar + R+ ) V(p,*%z,)}
+ 2i(1 4+ At) " *p,# {(020, A+ + 020, R + 0%0,0)* V(p.+ z,1)
+ (0, A+ + O,R + 0,v) V(p,*03z,;)}
+020,[(1 + At) *p,x{g+ G+ G,}], t=20. (3.57)

We take the scalar product in L? between (3.57) and 0%0,z,,(t) and take the
imaginary part of the resulting equality to obtain by (3.48), (3.54), (3.42), Lemmas
2.2(i), 2.4 and the Gagliardo—Nirenberg inequality

d . . .
7 1972:a(0) I7z < (1div Ay llz= + [ divR | + [ divell -) ] 030,2.: 172

+ CI103 Al + [ 03R = + 1050l =) | VOrzea || 1211 050,23 | 12
+ C(103 A+ 1= + I10ZR L= + 070l L)l Vzeall 22| 050,24 ] 22
+ CAx =+ IRL= + vl=) | VOzzesll 22 030,22l 12

+ C1020: A = + 1030 R =) | Vzerll 1211 0%0: 205 2

+ Clozowl el Vzea 1+ 050,25 (1 12

+ C(10:As L= + 10 R L= + 100l L=) | VORzesll 121050, 2,4 | 12
+ (103912 + 105G ll2 + 103G 2 122) [ 030 zea | 2

+ (105092 + 1030:G1 |12 + 1030, G2l 22) [ 030 zei | 2

SCL+mnl+071 Y (080,272
Bl =1
+ C(L+mn* + 1) 2(log2 +0)* Y, 0801z, 12
1Bl=1

+C(L+n°)n*(1+ 1) ?(log(2 + 1)*] 0202, ] 1.2

1
+ { [ 5i‘5t’glly} [10%0:2e3ll2, £20. (3.58)
=0

J
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Here, we have used the fact that 0 < A < 1/4 at the first inequality of (3.58).
Equations (3.56), (3.58), (3.12), the Holder inequality for sequence and Lemma 2.6

yield

Y 0%z iz < CA+mn [ (1 +5)7 |Z1 10%2,4(s) || 72 ds
t 2| <

laf =1

CL+mn® [ (1+5) 2(log2+5))> Y [0iz(s)|l22ds

jal =1

© 1
+ { Y. lélg ”LZ} 0:zea(s) || 2 ds

+

~ 8

[ Y. 11020,9(9)ll22110%052ea(s) I 2

Y e g(s)nyna“azm>||Lz]ds

ol = 1

s Col +min(1 + 1) *(log(2 + 1)*

1/2 2
X {Sup [(1 + 1)(log(2 + t))_2< ) ”a;atzel(tMlzZ) }}

t20 lal <1

+ Cs(1 +n)°n2(1 + t)" %(log(2 + 1)?

1/2
xsup| (1 +t)(10g(2+t))_2< ) Ifaiﬁzzaa(t)Hé) ]

t=z00L lal <1

+ 10Mn(1 + 1)~ 2(log(2 + 1))*

xsup | (1 + 1)(log(2 +1))~?

t>20L
1/2
X( > ||<9§“<0:ZM(I)H§2> J t20, (3.59)
lol =1
where C, and C5 do not depend on ¢ and . If we choose # > 0 so small that
1
Call+mn =3, (3.60)
s 1
Cs(l+n)’n = M, (3.61)

then we obtain by (3.58)

sup[(1+t)(log(2+t) < Y 0%0,2,,(0) | 22 >1/2:|§21M;1. (3.62)

t=0
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Furthermore, from (3.43), (3.54), (3.62), (3.39), (3.41), the Hélder inequality for
sequence and the Gagliardo—Nirenberg inequality it follows that

Y 148z Ol2 2 ), 110%0:2,4() | 12

o =1 o] = 1

+2 ) 0% {(As + R+ 0) V(po#z:)} 12

lal =1

+ Z [ 0%p.*{g + G, + Gy }|l,>

lof =1

1/2
<2./3 ( Yo a;atzgi(r)rﬁz)

lo| =1
+ C([ A+ lwr> + [RIwr= + o|wee) |22l 52

+ ), (l%gllez + 103Gy ll2 + [103Gallz2)
la] =1

< [(42/3 + )My + Co(1 + n)n(Mn)
+ Co {1+ (1 + )% 0?11+ 0" Mlog2 + 1)%, 20,

(3.63)

where C4 and C, do not depend on ¢ and 4. If we choose # > 0 so small that
Csl+mm=1, (3.64)
C{1+(0+n’n=M, (3.65)

then we obtain by (3.62),

sup [(1 + 0)(log2+1))7* Y, {A&izei(t)le‘J <3(14/3+ HMn. (3.66)

t=0 la] =1
Let o be an arbitrary multi-index with |«| < 2. The application of 0% to (3.43)
yields
2i0,(0%z2.3) + A(03zes) = (1 + 20 * 0% [2ip.* {(A+ + R+ 0)* V(p,*25) }
+p.xg9+ p. %G +p.xG,], 120, xeR>. (3.67)

%2 as t — oo, we have by (3.67) and Duhamel’s principle

Since z,;(t) - 0 in H
i
2
+ p,x0%g + p,x05G + p,x05G,]ds, t=0. (3.68)

We take the L83 (¢, co; L*) norm of (3.68) to obtain by Lemma 2.1(ii) with ¢ = 4
and r = 8/3,

03z(1) = }O (1 +25)"*U(t — 8)[2ip, # X {(A+ + R+ 0) V(p,*2,5)}

0 3/8 0
<§ 10%2,(5) 175 ds) S2K, [ 02{(As + R+ v) V(p,*2z,)} | 12 ds

t

+ Ky [ 10%glr2ds + Ky [ 103Gy [|,2ds
t t

+ Ky [ 103G, z2ds, 20, (3.69)
t
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where K is defined in Lemma 2.1 (ii). The summation of (3.69) over |a| < 2 gives us

/8
) (j 1022,2(5) 115 d )

la] £2
©

S2K; [ ) 1A + R+0) V(p,xz,)} 12 ds

t |af=2

o0

+ K[ Y I0%gllds + Ky [ Y 165Gy llz=ds
<2

o] t|a) <2

t
+Ki | ) 110%Gy2ds, t20. (3.70)
t <2

[or]

Lemmas 2.2(i), 2.3, (3.54), (3.64) and the Gagliardo—Nirenberg inequality yield
> 0%{(As + R+ 0) V(p,#2,:) } ()2

[x] =2
= C[(H/h = + IRl + lvlle=)l ze 2

+ ) (10344 - + 13RI + 1030 ) | e | 2

o] = 1
+ ) (10:A4 e + [ 03R [ L=) | zi |l 1
lal =2
+ Y |a§DHL““ZaA”W1"‘:l
la] =2
<C(+nn*( +s)"2(log2 +5))% s=0. (3.71)

By (3.70), (3.71), (3.12), (3.39), (3.41) and Lemma 2.6 we have
0 8/3 3/8
> < [ 0%zea(s) Il dS)
CK mn® | (1 2(log(2 + s))?ds
+ K, My f “2(log(2 + 5))?ds
+ CK (1 +n)*n? [ (1497 2(log(2 + s))*ds
t

+ Ky (1 +n)*n? [ (14 5)72(og(2 + 5))* ds
t

< {SK Mn + Cs(1 +n)°n(Kym}(1+6)" Hlog2 +1)% 20, (3.72)
where Cg does not depend on ¢ and A. If we choose > 0 so small that

Cs(l+m’ns=M, (3.73)
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then we obtain by (3.71)

oc 3/8
sup[(1+t><log(2+z)>-2 Y (Jna;zmns“ ) }géKan. (3.74)

£20 lri=2\ 1

When we consider passage to the limit as ¢ > + 0 and 4 — + 0, (3.54), (3.62),
(3.66), (3.74), a compactness argument and the regularity theorem of linear theory
show the existence of the solution z(t) to (3.15)—(3.16) such that

(1] CI([0, o), H3 ), (3.75)

sup [(1 + 1) (log(2 + z))‘2< 10%2( |;Lz> ] < 6My, (3.76)
|oc| <2

t=20

sup [(1 + t)(log(2 + l))‘2< | 0%0,z(t |Lz> } <21Mpn, (3.77)
|1| <1

t=0

sup [(1+t)(10g(2+t))_2< Y |42z ()Ily) }§3(14 3+ )My, (3.78)

t20 o) =1

sup [(1 + t)(log2 + 1)) Y. <Ofo 1022(s) ] 542 d >3/8} <6K,Mn. (3.79)

t20 lu <2

We now prove the uniqueness of the solution z(t) satisfying (3.75)—(3.79). We
suppose that z, (t) and z,(t) are two solutions of (3.15)—(3.16) satisfying (3.75)—(3.79).
If we put Z(t) = z,(t) — z,(t), then Z(t) satisfies (3.15) with g(t) = G, (¢, v, u)
= G,(t, v, u) = 0. Accordingly, in the same way as the case of the regularized
problem we can prove that if # > 0 is chosen so small that (3.53) holds, Z (¢) satisfies
(3.54) with 4Mn replaced by zero. This implies the uniqueness.

Thus, if we choose # > 0 so small that (3.10), (3.28), (3.31), (3.53), (3.60), (3.61),
(3.64), (3.65) and (3.73) hold, then (3.34)—(3.38) and (3.75)—(3.79) show that N [v, u] is
a mapping from X to X. In the same way as above, we can prove that if n > 0 is
chosen sufficiently small, then

d(N [Ul> ul]a N[UZa u2]) é %d([vla ul]a [029 uZ])7 [171, ul]’ [027 u?.] ex.

Consequently, we conclude that if # > 0 is sufficiently small, then N [v,u] is
a contraction mapping from X to X. Therefore, there exists a unique fixed point
[v, u]€ X such that [v, u] = N [v, u]. Since [v, u] belongs to the image of N, v and
u must satisfy (3.34)—(3.38) and (3.75)—(3.79), respectively. Furthermore, by Corol-
lary 2.5(1) and the definition of the mapping N we can conclude that if we define
A(t)and y(t) asin (3.1) and (3.2), respectively, then A(t) and v () are the solutions of
(1.14)—(1.15) satisfying (1.5)—(1.9).

We next show that A(t) satisfies the Coulomb gauge condition (1.3). We first
note that (4r|x|)~! is the fundamental solution of — A. The application of the
divergence operator to (1.14) yields

0f(divA) — A(divA) =0, t>0, xeR?. (3.80)
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Since div 4 is a solution of (3.80), div satisfies the energy identity:
16, div A0 72 + || Vdiv A@)]|72 = [ 2, div A(s)]| 72 + || Vdiv A(s) 172
= | é,div A (s) + 8,div R(s)

+ {0,div A(s) — 8,div A (s) — 0,div R(s)} | 72

+ || Vdiv A, (s) + Vdiv R(s)

+ {Vdiv A(s) — Vdiv A (s)

— VdivR(s)} ||}, 0<t, s<oo. (3.81)
Letting s — o0 in (3.81), we have by (1.8), (2.31) and (1.13)

6, div A@) |72 + || Vdiv A2 =0, 20,

which implies that 4(t) satisfies the Coulomb gauge condition (1.3). We can easily
verify that (1.1)—(1.2) are equivalent to (1.14)—(1.15) for the solutions in the class of
(1.5)—(1.7). Therefore, we conclude that (A4(z), Y(t)) are the solutions of (1.1)—(1.3)
satisfying (1.5)—(1.9).

It remains only to prove the uniqueness of the solutions satisfying (1.5)—(1.9).
We omit the proof of the uniqueness, because the uniqueness follows from a similar
(but slightly simpler) argument to above. For the details, see [13] and [14].

Concluding Remarks. (i) In the proof of Theorem 1.1 we have not used the gauge
condition (1.3) at all, although the use of (1.3) makes the proof a little simpler. This
is because we intend to make it clear that the gauge condition (1.3) does not play
any essential role in the proof of Theorem 1.1. But the gauge condition plays an
important role in the paper [5], which treats the initial value problem of the
Maxwell-Dirac equations. It seems important to investigate the relation between
the Maxwell-Schrédinger equations and the gauge condition.

(i) The global existence of small amplitude solutions for the initial value
problem of the covariant nonlinear wave equation has been studied through the
L* — L? estimates with weights related to the generators of the Poincaré group
(see, e.g., [1, Sand 10]). Recently in [7], Hayashi has proved the global existence of
small amplitude solutions for the initial value problem of the Schrédinger equation
with quadratic nonlinearity by using the L* — L? estimates with weights related to
the generators of the Schrdodinger group. It is conjectured that the global existence
of small amplitude solutions for the initial value problem of the Maxwell-
Schrodinger equations could be proved through the L™ — L? estimates with
weights related to the generators of the Poincaré group and the Schrédinger group,
although the Poincaré group and the Schrédinger group are not necessarily
compatible.
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