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Abstract. In this article we generalize some results on the equivalence of Dirac
quantization and intrinsic quantization proven in [3]: We consider systems with
first class constraints that may be considered as the vanishing of the momentum
map to a lifted group action, but drop the assumption that the group action is free
as well as the assumption that the group is compact. Using a generalized Weyl
ordering prescription applicable to arbitrary cotangent bundles we derive neces-
sary and sufficient conditions for the equivalence of the two approaches for
different classes of functions analogous to those for the free case, although the
proofs given in [3] must be considerably modified and refined due to the non-
compactness of the orbits and the lack of sufficiently many invariant vector fields.
The same strong obstruction as in the free case is found if one requires equivalence
for all invariant functions, essentially only admitting trivial bundles.

1. Introduction

The different approaches to the quantization of systems with first class constraints,
namely extrinsic (in particular Dirac) quantization, which first quantizes the
unconstrained system and then imposes the constraints as conditions on the states,
and intrinsic quantization, which first classically eliminates the constraints and
then quantizes the resulting unconstrained system, are known not to be equivalent
in general. However, for the case that the constraints consist in the vanishing of the
canonical momentum map belonging to the lift of a group action on configuration
space, some general positive results have been proven in the literature concerning
the existence of a natural isomorphism between the Hubert spaces which inter-
twines the operators corresponding to observables at most linear in the momenta
([4-6, 3] and references cited therein).

In [3] we have proven for the case of the free action of a compact group that for
a reasonable quantization scheme this natural isomorphism of Hubert spaces
intertwines the operators corresponding to observables of higher order in the
momenta only under additional, rather restrictive conditions. In these proofs the
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existence of sufficiently many invariant polynomials and of sufficiently many
invariant vector fields was extensively used.

In the case of a non-free action there are more restrictions on invariant
polynomials than in the free case: As the isotropy group of a point acts on the
tangent space of the extrinsic configuration space E at that point in a nontrivial
way, the coefficients Tμι 'βk(q) of the polynomials Tμi • 'μκ(q)pμι . . . pμk at the
fixed point q are not independent but have to be invariant under the isotropy group
of the respective point. Furthermore, the proof for free group actions given in [3]
crucially depends on the compactness of G and the existence of sufficiently many
invariant vector fields, which allow to write any invariant polynomial as a linear
combination of polynomials of the form (X1 v . . . v Xk)

μi 'μkpμι . . . pμk for
invariant vector fields Xt. In the case of a non-free action this is no longer possible:
In the extreme case that the normalizer of the typical isotropy group I in G equals
I there are no invariant vertical vector fields at all, whereas the set of invariant
vertical polynomials certainly is nonzero.

Hence, one might hope that under favourable circumstances the requirement of
the Dirac equivalence condition for invariant polynomials might be less restrictive
in the non-free case than in the free case, as the class of functions which have to
fulfill the equivalence condition is subject to more restrictions.

In this article we shall show, however, that the same restrictive theorems as for
free actions hold. In particular, if the Dirac equivalence condition shall hold for
arbitrary invariant polynomials, the extended configuration space has to be a triv-
ial bundle over the reduced configuration space, provided the latter is simply
connected.

In more detail, the situation we are going to examine is the following: Let an
arbitrary Lie group G with Lie algebra & act properly on a manifold E such that all
isotropy groups are conjugate to a fixed subgroup I. (This means no severe
restriction, since it is known that for a proper group action there is an open dense
subset of E of points fulfilling that condition. All operators we are going to study
are local differential operators and we shall only be concerned with formal
selfadjointness anyway. Giving up the properness of the action would imply that
the reduced configuration space is not even Hausdorff.) E will play the role of the
extrinsic configuration space. We assume that the system is subject to the first class
constraints J?A — 0 \/A e @, where f denotes the canonical momentum map to the
lifted action of G on Γ*£. The reduced phase space is f~ι(G)IG which under the
conditions above is canonically isomorphic to T*Q with Q = E/G. Hence, we may
consider Q as the reduced configuration space.

In the following section we shall briefly review the structure of the spaces we are
considering and the G-invariant metrics on them. In Sect. 3 we shall shortly
summarize the results of [5] on the existence of a natural isomorphism and sketch
the quantization method we are going to use for the quantization of arbitrary
observables. This quantization is the modification of the generalized Weyl ordering
prescription of [7], used in [3].

In the last section we are going to prove the equivalence theorems. It will be
shown that even with the strongest possible restriction on the set of admissible
functions on Γ*£, which singles out a unique representative corresponding to an
observable on Γ*β, the "orbit volume" generally has to be constant in order for the
equivalence to hold for all quadratic observables. This in particular forbids the
possibility of getting a formal equivalence in the case that the isotropy groups are
not all conjugate, since in that case the orbit volume never is constant.
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With weaker restrictions on the set of admissible functions on Γ*£ even much
more restrictive necessary and sufficient conditions for the equivalence will follow.
If one admits all invariant functions on Γ*£ as representatives of observables on
7*g, the extended configuration space has to be a trivial bundle over g, provided
Q is simply connected.

These negative results are of particular importance, since even more elaborate
extrinsic quantization schemes like BRST quantization are under certain technical
assumptions for globally G-ίnvariant functions equivalent to Dirac quantization.

2. The Structure of Simple G-Spaces

In this section we summarize some well known facts about the structure of
a manifold E on which a Lie group G acts properly such that all isotropy groups
are conjugate to a fixed subgroup I cz G [2]:

Due to the properness of the G-action, I is compact. Let N denote the
normalizer of I in G and Gq the isotropy group of q e E. The subset

P:={qeE\Gq = l}

is a submanifold of E which has the structure of a left N/I-principal bundle over
Q:= E/G. The manifold E is an associated bundle with fiber G/I on which N/I acts
from the right. We denote the bundle projection by π: E -> Q and by CS, Jr, J the
Lie algebras corresponding to G, N and I, respectively.

There is a one-to-one correspondence between G-invariant metrics g on E and
triples (g, α, h), where g is a metric on Q, α is a connection form on P as an
N/I-principal bundle over Q, and h is a smooth mapping assigning to any ^ e g a n
invariant Riemannian metric h(q) on the orbit π " 1 ^ ) .

As in the free case, the vertical distribution on E is defined by the tangent spaces
to the orbits. For a given metric g a G-invariant horizontal distribution on E can be
defined as the orthogonal complement of the tangent spaces to the orbits. For any
q e E the isotropy group Gq of q acts on the tangent space TqE. In particular, for
q G P, I acts on TqE leaving the vectors tangent to P invariant. For an orthogonal
representation of a compact group any invariant subspace not containing any
invariant vector is orthogonal to every invariant vector. Using this fact and some
dimension arguments, one may show that the horizontal vectors at a point qeP
defined as above are tangent to P. Hence, the restriction of the horizontal distribu-
tion on E to P defines a connection on P. On the other hand, given a connection
and hence a horizontal distribution on P, there obviously is a unique G-invariant
horizontal distribution on E whose restriction to P coincides with the horizontal
distribution on P.

The metric g on Q may now be defined as in the free case by

g(X(φ9 Ϋ(q)) = g{X\q\ Ϋh(q))

for some qeπ'1 (q\ where Xh denotes the horizontal lift of X. h(q) is just the metric
on the orbit π " 1 ^ ) induced by g.

For qeP we denote by 34? q the horizontal space at q9 for a vector field X over
E by 3^(X) its horizontal projection, by V(X) its vertical projection.
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Now, given (g, α, h), we may set

g{q)(X9 X) := g(n(q)){n*X, π*X) + h(q)(r(X)9 r(X)) ,

which obviously defines a G-invariant metric g on E.

3. Dirac Quantization on Simple G-Spaces

We shall first give a short summary of those results of [5] which will be needed in
the following and then present the quantization scheme for arbitrary observables
used in [3] for the case of free group actions:

In order to avoid dealing with half-forms instead of half-densities we assume
that E and Q are orientable. We denote by Ω1/2(E) the space of half-densities on E,
by Ωj(yS(£) the space of half-densities φ fulfilling the Dirac condition

by Ω1/2(Q) the space of half-density on Q, and by H i n t the closure of the subset of
Ω1/2(Q) consisting of square integrable half-densities, which is just the intrinsic
Hubert space. Here, any function on Γ*£ of the form f(aq) = uq(Xq) + g(q) for
some vector field X on E and some function g e έF(Q) is quantized by an operator
l(f) defined by:

2(f)φ:=(-iLx + g)φ, (1)

where Lx denotes the Lie derivative of half-densities.
If G is compact we may define H p h y s in an analogous way as the closure of the

subset of Ωp^yS(£) consisting of square integrable half-densities, whereas the non-
vanishing elements of Ωpl2

s(E) are never square integrable in the non-compact case,
where £{#A)

 o n ly n a s generalized eigenfunctions to the eigenvalue zero.
We assume that there is a nowhere vanishing half-density s0 on G/I that is

G-invariant from the left and N or, equivalently, N/I-invariant from the right.
Using s0 we may define half-forms s(π(q)) on all orbits via an arbitrary local
trivialization of P, which induces a trivialization of E and hence an identification of
the orbits with G/I. Hence, we may define a smooth bijection:

by

(Uφ)(q)((Vt,Xμ)):= s(π(q)) ((F;)) φ((π,Zμ)) ,

where {Vu Xμ) is a frame at q which consists of vertical vectors (Vi) and arbitrary
vectors (Xμ). For this construction the N/I-invariance from the right is needed for
s(π(q)) to be well defined, independent of the choice of the trivialization, and the
G-invariance from the left is needed for the image of U to fulfill the Dirac condition.

The existence of s0 is equivalent to the condition

IdetAdJ = 1 V n ε N , (2)
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where Ad denotes the representation of N on ΉjJ induced by the adjoint repre-
sentation of G on ^ [5]. This condition implies, and for the case of connected N is
equivalent to:

tr ad^ = 0 MA e JΓ , (3)

which is in particular fulfilled for all compact groups and more generally for all
groups admitting a biinvariant nondegenerate metric. In the following we shall
always assume that condition (2) is satisfied.

In this case U defines a smooth bijection which intertwines the operators
corresponding to invariant observables at most linear in the momenta. Further-
more, if G is compact, U even defines an isomorphism of the Hubert spaces
H i n t and H p h y s when s0 is suitably normalized such that vol(G/I) = 1.

Now we choose a G-invariant metric g on E. The metrics g on E and g on
Q induce canonical measures dμ and dμ on E and <2, respectively, leading to
canonical isomorphisms:

where ( J ^ C ( £ ) ) G denotes the set of G-invariant complex smooth functions on E.
With these identifications, the isomorphism U may be written in a simple form.

To this end we define a function K by

κ(q) =

where qeP nπ~ι{q) and the At form an orthonormal basis of the normal space
Jί to J> in {§ with respect to some fixed Ad(I)-invariant scalar product on ^ (such
a scalar product always exists since I is compact by the properness of the action).
Here, condition (2) guarantees that K is well defined. With this definition the
isomorphism takes the same form as in the free case:

U: &*{Q) -> (&€(E))G cz &*{E\ φint H+ π*(^ψ) . (4)

We call an open subset D of E cylinder-shaped if there is a local trivialization
Φ:U cz E-+ KxG/I and open subsets F c K c β and W a G/I such that
D = Φ~1(Vx W) and the volume of D is finite. With this definition one may easily
show the following lemma, which gives a kind of substitute for the unitarity of U in
case of a non-compact group:

Lemma 1. Let D be cylinder-shaped. Then there is a constant CD such that

where χD is the characteristic function of D.

For the quantization of arbitrary functions on T*E and Γ*Q we use the
modified form of the generalized Weyl ordering [7] presented in [3] which uses
functions instead of half-densities. The operators J2(/) corresponding to a function
which is a polynomial in the momenta is defined in a coordinate independent way,
yielding formally selfadjoint differential operators whose degree is the degree of the
respective polynomial.
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Using coordinates x on the respective configuration space £ or Q, a very
explicit local expression for Q{f) may be derived for polynomials with support in
the domain of the coordinate charts: F o r / = τh'" ίrn(x)piι . . . piγn we get

dυh . . . dvin

xχ{x,vx){{exp*φ){{Qxpx°Ix)*φ)}{x,v)\v = 0 (5)

for a suitable cutoff function χ and smooth function 0, φ of sufficiently rapid
decrease. Here Ix denotes the reflection in TXE: Ix(v) = — v. As the quantization
scheme maps the sum of two functions to the sum of the corresponding operators,
we may restrict ourselves in the following to such functions with suitable support.

Functions which are at most linear in the momenta: f(aq) = otq(Xq) + g{q) are
quantized by

Ά{f)φ = I - i(vx + \divXj + g(q)\φ , (6)

which is equivalent to (1), whereas / = TlJPiPj is quantized by the operator

(7)

4. Equivalence Theorems

Before proving equivalence theorems analogous to those proven in [3] for the free
and compact case, we state two rather technical lemmas which will be needed in the
following for the non-compact case and whose proofs may be found in the
appendix:

Lemma 2. Let K be constant. Let D = Φ~1(Vx W) be a cylinder-shaped open subset
and X a G-ίnυariant vector field on E such that the support ofπ^X is contained in V.
Them

\ div X dμ = 0 .
D

Lemma 3. Assume K is constant. Let D be a cylinder-shaped open subset of E, and
φ, φ E (# ' C (£)) G with the projections of the supports of φ and φ lying in a suitable
coordinate patch ofQ. Let χD denote the characteristic function ofD, φ = χDφ. Then
formula (5) holds for the matrix element <φ, l(f)φ}, although φ is not a smooth
function of rapid decrease.

The last lemma is nontrivial, since, even in the case of the configuration space being
R", formula (5) generally is only valid for smooth functions of rapid decrease, as
otherwise there are boundary terms when moving the derivatives acting on φ to
φ via partial integration. The validity of (5) is guaranteed by the special form of
D and the invariance of φ and φ.

With those prerequisites we may now examine the equivalence problem for
arbitrary observables which are polynomial in the momenta: First, we recall that to
a given observable fe ^(T*Q) corresponds a whole equivalence class of functions
on Γ*£, elements of which differ by functions vanishing on the constraint set. The
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equivalence condition for observables is the requirement that the canonical
isomorphism U intertwines the operators l(f) on ^ c ( β ) and J ( / ) on (^C(E))G

for suitable representativesfe 3F(T*E) of/ As explained in [3] we have to restrict
the class of admissible representatives to at least those which are globally G-
invariant, but in order to get less restrictive equivalence theorems it is usually
appropriate to restrict this class even more:

In [3] we called a polynomial horizontal (vertical), if it is a polynomial in the
horizontal (vertical) momenta only (defined via the horizontal distribution corres-
ponding to the connection form α), and strongly admissible if it is the sum of
invariant horizontal and vertical polynomials. The strongest possible restriction is
that to invariant horizontal representatives, which fixes a unique representative to
any fe^F(T*Q). However, since those polynomials do not have any vertical part,
the corresponding operators do have a very big (possibly generalized) eigenspace in
J^ c (£) to the eigenvalue 0. Since this is a very unpleasant feature from a practical
point of view (in particular, if one wants to compute Green's functions), one is
interested in admitting at least strongly admissible functions.

For the different restrictions on the admissible representatives we get the
following three theorems which give necessary and sufficient conditions for the
equivalence to hold for the respective classes:

Theorem 4. The Dirac equivalence condition for arbitrary "horizontal" quadratic
observables holds iff the volume K of the orbits satisfies the equation Vd log(κ ) = 0. In
particular, if Q is compact or the metric g does not admit any Killing vector fields,
K has to be constant. On the other hand, if K is constant, then the Dirac equivalence
condition holds for arbitrary "horizontal" observables.

Proof As any horizontal vector on P is I-invariant, it has a continuation to
a G-invariant horizontal vector field on E. Hence, the proof of the necessary
condition Vd log(κ ) = 0 given in [3, Theorem 6] for the free case completely goes
through in the generalized case.

Now, let K be constant. As for free group actions, any horizontal polynomial /is
a linear combination of polynomials of the form (X1 v . . . v Xk)

μi μkpμί . . . pμk

for invariant horizontal vector fields Xt. This may be easily seen using a local
trivialization of E, which induces a local embedding i: U a Q -• E of Q in E, and
the fact that any horizontal vector field over ί(Q) has a unique G-invariant
continuation to E. Hence, using the fact that for any

ir-kD(x,λa)\λ = o = κ- 1 -^D(π(x),/Γ«π(α)) | ; l = o , (9)

= (Tqπ)*(exp*iq)φ)\#>q , (8)

and the constancy of K, the proof given in [3, Theorem 4] may be easily modified

for the generalized case: For any φ, φe^^iQ) and any α e / x , we get

where

D(x,v) = χ(x9v){(exp*\l/)((expz° Ix)*φ)}(ΰ)

for suitable cutoff functions χ on TE and χ on TQ.

D(x, v) = χ(x, υ){(exp*Uψ)((expχoIx)*Uφ)}(v) ,
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As in the case of a free action, the G-invariant function (X1 v . . . v Xr)
11 lr

xpiί . . . pir for G-invariant vector fields Xu . . . , Xr on E corresponds via (4) to
the function (π^-XΊ v . . . v π*Xr)

μι "μrpμι . . . pμr on Γ * g , we get from (9):

d f d D(x,ΰ)\v = 0
dz; * . . . 67t?r ^ y μ i . . . όυμr

for any invariant horizontal function T11 lrpiχ . . . piγ corresponding to
fμx... μrp^^ . . , pμr on Γ*(λ Here we used the fact that any operator of the form

k

may be obtained as a linear combination of operators of the
* ^ Wi

form/i—• -—τf(λa)\λ = 0 for suitable vectors a. By Lemmas 1 and 3 we conclude:

(χDUφ, £(Th • • • ίr

Piι pir)Uφ} = CD(φ, Ά(fμί • ••μrpμι . . . p μ r ) φ ) (10)

for any cylinder-shaped subset D = Φ~1(Vx W) and any φ, φ with support con-
tained in V.

As the metric is G-invariant, invariant functions are quantized by invariant
operators. Hence, we get from (10):

^ . . . pir)U = Ά(f^' ^pμί . . . pμr) . Q.E.D.

Theorem 5. A necessary condition for the Dirac equivalence condition for strongly
admissible quadratic observables to be fulfilled is that the orbits are totally geodesic
submanifolds of P. In this case, the Dirac equivalence condition is satisfied for strongly
admissible polynomials of arbitrary order.

Proof We choose a local trivialisation of E and adapted coordinates
(x ) = (φα j χμ). For any G-invariant function p(x) and any vertical quadratic
polynomial, i.e., any polynomial of the form/= Tij(x)piPj with

J^αμ _ J^μα __ J^μv _ Q (11)

for all μ, v, α, Eq. (7) yields:

ίjpίPj) = p£(Tίj

PiPj) - T(ViP) Vj

If Γis an invariant tensor field, then /and p/are strongly admissible polynomials
corresponding to the zero function on Γ*(λ Hence, J ( / ) and Ά(pf) have to vanish
on ΩllyS(E\ which gives the necessary condition:

Tij{ViVjP) + 2(ViP)(VjTij) = 0. (12)

Now, even if T is not invariant, the invariance of the function p and the metric
g guarantee that (ViVjp) and {Vip) are invariant tensor fields. Hence, as Φg is an
affine transformation for any g e G by the invariance of the metric g:

(13)
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Introducing the Christoffel symbols Γ)ki a direct computation using the invari-
ance of p and the verticality condition (11) yields:

TiS(ViVjp) + 2(ViP)(VjTij) = T^Γίβdμp . (14)

If for an arbitrary choice of the Taβ in a fixed point there was a continuation to
a G-invariant tensor field we could immediately conclude from (12) that Γ%β in that
arbitrary point was zero, and hence the orbits were totally geodesic submanifolds.

Now, for a non-free action a choice of Taβ(q) in a fixed point qeE only admits
a G-invariant continuation if it is invariant under the isotropy group Gq. However,
as the group action preserves verticality, for an arbitrary Taβ(q) the tensor

is Gg-invariant and vertical. Hence, (12), (14), and (13), and the fact that for any
geGq and fe^(E) {ΦXf(q) =f(q) imply:

0 = f^(q)Γ!ίe(q)dμp = yol(Gq)T^(q)Γ^(q)dtιp ,

where vol(G^) denotes the volume of the isotropy group Gq with respect to the
Haar measure dμGq- (It is finite, as any isotropy group is compact by the properness
of the action.) Thus, p being an arbitrary G-invariant function, Γ£β(q) = 0 for any
qeE, and the orbits have to be totally geodesic submanifolds.

Using Theorem 4 we still have to prove that, provided the orbits are totally
geodesic submanifolds, any vertical invariant polynomial is quantized by an
operator vanishing on (# ' C (£)) G . However, this may be easily shown using the
formula (written in the notation of the preceding proof):

d*

dλ kD(x, λa)\λ = 0 = 0 MaeΨ'x = Tx{G-x) ,

which follows from the invariance of the elements of (#"C(E))G along the orbits and
the fact that vertical geodesies do not leave the orbits by definition of totally
geodesic submanifolds. With Lemma 3 the vanishing of the operators correspond-
ing to a vertical invariant polynomial on (#" C (£)) G follows. Q.E.D.

Theorem 6. The Dirac equivalence condition for arbitrary invariant quadratic ob-
servables is fulfilled iff the orbits are totally geodesic submanifolds of P and the
connection form a on the N / G principal bundle P induced by the metric g on E is flat.
Then it is satisfied for invariant polynomials of arbitrary order. In particular, if Q is
simply connected, E admits a metric such that the Dirac equivalence condition is
fulfilled if and only if P and hence E are trivial bundles over Q.P = Q x N / G ,
E ^ Q x G/I.

Proof Let the Dirac equivalence condition for arbitrary invariant quadratic func-
tions on Γ * £ be satisfied. Then, by the preceding theorem, the orbits are totally
geodesic submanifolds. For an arbitrary point qeP a E any tangent vector to P, so
in particular the fundamental vector A*(q) to an arbitrary A e Jf, is I-invariant and
hence has a continuation to a G-invariant vertical vector field η. Choosing any
horizontal invariant vector field X\ the function / = TlJPiPj for T = η v Xh is an
invariant quadratic polynomial corresponding to the zero function on Γ*g, and
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hence has to be quantized by an operator vanishing on (J r C (£)) G . As in the free
case a direct computation, using (7), yields the condition άi\(VηX

h) = 0. Using the
fact that gη is again an invariant vector field for any G-invariant function g, we
conclude from the vanishing of the corresponding operators on the physical states
that VηX

h has to be vertical for any η, yielding, as in the free case:

for all f,ίef(0.
Now, the horizontal vector fields at any point in P are tangent to P. Hence,

[ Yh, Xh~\ is tangent to P when restricted to P. By its orthogonality to any
fundamental vector field A* for AeJίii has to be horizontal. Thus, we have shown
that the horizontal distribution must be integrable and hence, the connection on
P has to be flat.

If Q is simply connected, P has to be a trivial principal bundle, and hence, E has
to be a trivial bundle as well.

Now assume that the orbits are totally geodesic and α is flat. As in this case any
geodesic on E projects to a geodesic on Q that only depends on the projection of the
starting velocity and the starting point we get:

dk

Using again the fact that any operator of the form/^> —-r -—r-rf\v = 0 may be

obtained as a linear combination of operators of the form/i—> -—j(f(λa)\λ = 0 for

suitable vectors a, we may conclude that Q(Tlγ' lm(x)pil . . . Pim) only depends on
the horizontal part of T. Hence, using Theorem 4, Theorem 6 is proven. Q.E.D.

Appendix: Proofs of Lemmas 2, 3

Proof of Lemma 2. X may be uniquely decomposed into a vertical and a horizontal
invariant vector field, so we may assume that X is either horizontal or vertical.

We first show that (div X)(q) — 0 for any qe Q for any invariant vertical vector
field X. Without loss of generality we may assume qeP. Let ^ = J> © Jt be
a reductive decomposition of ^ (which always exists since I is compact), and (At)
a basis of Jt. Then, the fundamental vector fields Af form a basis of the tangent
spaces to the orbits in an open neighbourhood of P in E and we may, without loss
of generality, choose the basis (At) such that X(q) = Af(q). As div Af = 0 by the
G-invariance of the metric,

div(fAf)(q) = (Af.fHq) = |

Now, using the transformation behaviour of fundamental vector fields:

and the invariance of X, we get:

X(gq) = (Aά^ngq) = ((kάβ){A3)*{gq)
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and hence:

(div X)(q) = - (Ade x p ( M.)){| ί = 0 = (ad^)i = - (adAι)
jj = - t r ϋ d ^ = 0 .

Here, the last equality follows from condition (3), as A1 must be in Jί, the
Lie-algebra of the normalizer N of I, for X to be even I-invariant.

Now assume that X is a horizontal invariant vector field, i.e., the horizontal lift
of a vector field X on Q: X = Xh. Choosing again, without loss of generality,
a point qeP and a basis At like above, we get by the Levi-Civita formula defining
the connection V:

as all other terms vanish by the horizontality and invariance of X. Using

3e(Vγ»xh) = (VγX)h

we get:

div Xh = (X% = π*(div X) + hijXhhij,

where h^ = g(Af, A*) and (htj) is the inverse matrix of (/zί7 ).

Now, tijXhhίj = det(g(Af,Af)y1XhdQt(g(Af,Af)) = κ-1Xhκ = O by the
constancy of K.

Hence,

J div Xdμ = j π*(div X)dμ oc J div Xdu = 0 ,
D D v

where the final equality follows from the condition on the support of X. Q.E.D.

Proof of Lemma 3: Formula (5) is a priori only applicable to functions φ, φ of rapid
decrease. However, it is still applicable to φ e ( ^ c ( £ ) ) G if φ is smooth with compact
support. (We are only dealing with formal differential operators and formal
selfadjointness; a rigorous functional analytical treatment would require the use of

d
generalized states in a Gelfand triple.) For such φ the derivative acting on

φ may be expressed by covariant derivatives Vt (with additional curvature terms
arising in general) and moved to φ via partial integration. Here, no boundary terms
arise, since φ is smooth and has compact support.

On the contrary, for φ = χvφ there will be boundary terms and formula (5) is
not valid in general for (φ, l(f)φ} for arbitrary smooth φ and an arbitrary open
set U of finite volume. In the case of D being cylinder-shaped and φe{^^(E))G

however, all boundary terms may be easily seen to be of the form J^ div Xdμ for
some vector fields X, which are invariant due to the invariance of φ, φ and the
metric g. Hence, under the assumptions of the lemma, the boundary terms vanish
by Lemma 2 and formula (5) holds. Q.E.D.
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