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Abstract. Further contributions developing a super analogue of the classical
Selberg trace formula, the Selberg super-trace formula, are presented. This paper
deals with the calculation of contributions arising from elliptic and parabolic
conjugacy classes to the Selberg super-trace formula for super Riemann surfaces.
Analytic properties and the functional equation for the corresponding Selberg
super-zeta function Ro, Ri and Z s , respectively, are derived and discussed. In
particular, the elliptic contributions to a super Fuchsian group only alter the
multiplicities of the "trivial" zeros and poles of the Selberg super-zeta function Ro,
R1 and Z s , respectively, already due to the hyperbolic conjugacy classes. The
parabolic conjugacy classes introduce new features in the analytical structure.

I. Introduction

In this paper I want to present further contributions to develop a super analogue to
the classical Selberg trace formula. This includes also an investigation of the
analytic properties of the Selberg super-zeta functions.

Trace formulae emerge in various fields of mathematics and physics, in the
latter particularly in the study of fundamental forces. The original version of the
Selberg trace formula by Selberg [55] has come from the intention to study number
theoretical problems. Actually the Selberg trace formula has some striking similar-
ities with the Weil formula [66] and there is in fact a close relation between the
areas of analytic number theory, eigenvalues on compact Riemann surfaces and the
Selberg trace formula (e.g. [33]). Of particular interest in all these studies are the
analytic properties (zeros and poles) of the Selberg zeta-function Z(s).

There are other reasons as well for studying trace formulae in particular in
physics. The Selberg trace formula is a special case of a general class of trace
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formulae connecting classical mechanics and quantum theory. Quite typically,
trace formulae for quantum systems emerge in the semiclassical approximation of
the Feynman kernel (propagator) as systematically developed by Gutzwiller [30]
(see also Littlejohn [37], and Sieber and Steiner [56] and references therein). In
particular in the study of quantum chaos, the arising dynamical zeta-functions,
where the Selberg zeta-function is just one, serves as an important tool in the
"Quantization of Chaos," see e.g. Refs. [4, 44, 56].

The Selberg trace formula is Gutzwiller's trace formula on closed Riemann
surfaces. In its simplest form the Selberg trace formula reads [33, 34, 55] (pn is
defined by En = pi + ^ with En the eigenvalues of the non-euclidean Laplacian on
the Riemann surface, respectively, on the fundamental domain J*)

J ph(p)taήh*pdp + Σ Σ-^f- (1.1)

denotes the (non-euclidean) area of ϊF (in the actual case A = 4π(g — 1)
with g the genus of the Riemann surface), and the summation of the classification
γ is a summation over distinct hyperbolic conjugacy classes, tesselating the
hyperbolic plane J f (Pioncare upper half-plane, Poincare disc, Lobaschevsky
plane) J f = {(x, y ) | x e R , y > 0 } , endowed with the hyperbolic geometry
ds2 = (dx2 + dy2)/y2, by fundamental domains & of Γ. Γ/J? then actually is
a Riemann surface defined by the action of Γ on 2tf. Equation (1.1) is an exact
formula, as rediscovered by Gutzwiller [31] by considering the trace of the heat
kernel (Feynman path integral), respectively the resolvent kernel for the free
motion of the entire Poincare upper half-plane [26, 28].

The trace formula (1.1) can be used to analyse classical and quantum motion on
closed Riemann surfaces, e.g. Ref. [67], the Hadamard-Gutzwiller model [3], and
Artin's billiard [44], respectively. These models are studied in the context of the
question of quantum chaos on hyperbolic spaces (Balazs and Voros [5]). Further-
more, Eq. (1.1) can be used to calculate determinants of Maass Laplacians
A[±] = — y2{dl + dy) + ikydx + k(k ± 1) on Riemann surfaces, see Bolte and
Steiner [12], DΉoker and Phong [16, 18], and Takhtajan and Zograf [59], i.e. the
latter define d e t ^ ) oc Z'(l) for k = 0, 1, and d e t ^ ) oc Z(k) otherwise, where
Z(s) is the Selberg zeta function.

Clearly, the trace formula (1.1) can be generalized to automorphic /c-forms [34],
to higher dimensional hyperbolic spaces and generalized Lorentz groups, see
Arthur [2], Subia [58] and Venkov [61, 62], respectively. Also bordered Riemann
surfaces can be included, see e.g. Ref. [67], Bolte and Steiner [13] and Venkov [62],
and automorphic potentials as well [65]. Further, Selberg trace formulae can be
used to determine corrections to Weyl's law on Riemann surfaces [4,63,64], and to
study the analytic properties of the Selberg zeta function (Hejhal [34], McKean
[38], Selberg [55], Steiner [57] and Venkov [63, 64]).

Whereas the study of Laplacians on Riemann surfaces and their determinants
is, of course, of important mathematical interest, the full power of the formalism in
the study of fundamental forces is revealed in the Polyakov approach to string
theory, see DΉoker and Phong [15, 16], Green, Schwarz and Wittern [25] and
Polyakov [49, 50]. The convergence properties of the perturbation expansion can
be analysed by the growing properties of the Selberg zeta function with respect to
the genus g [29], and actually the perturbation expansion is highly divergent and
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not Borel summable. Of course, there is not only a bosonic string theory but there
is a fermionic, supersymmetric, heterotic and adelic version, too. It is therefore
evident that corresponding trace formulae and a theory of harmonic analysis on
corresponding hyperbolic spaces (super, . . . ) should be developed to deal with
fermionic strings (DΉoker and Phong [17], Gliozzi, Scherk and Olive [20], Green
and Schwarz [23], Moore, Nelson and Polchinski [45], Neveu and Schwarz [46],
Polyakov [50] and Ramond [52]), respectively superstrings, see Green and
Schwarz [22, 24, 54].

Quite analogously as in the bosonic case, the considerations of Fuchsian
groups, a Selberg trace formula, Selberg zeta functions and determinants of
Laplacians expressed by Selberg zeta functions, can be incorporated into the
theory of supersymmetry (Aoki [1], Baranov et al. [6-9], and [27]). However, as
started by the work of Baranov et al. [6, 7] and more thoroughly studied in [27],
the first version of the super analogue of the Selberg trace formula was developed
only for hyperbolic conjugacy classes of super Fuchsian groups. As is well-
known, a complete study of the Selberg trace formula (and its generalizations) must
include elliptic and parabolic conjugacy classes, too. In particular, the parabolic
conjugacy classes in general give rise to a continuous spectrum of the relevant
Laplacians on the corresponding fundamental domains 3F. From the Polyakov
point of view in string theory, the incorporation of elliptic and parabolic conjugacy
classes correspond to punctured Riemann surfaces, where vertex operators are
attached, and cusps at infinity ("in" and "out-popping" strings), respectively, and
therefore should provide a more comprehensive approach.

In a previous publication [27] I have completed the study of the Selberg
super-trace formula as introduced by Baranov et al. [6-9]. However, only hyper-
bolic conjugacy classes were taken into account. The main objective of this paper
will be the incorporation of elliptic and parabolic conjugacy classes into the super
analogue of the Selberg trace formula. Whereas the case of the elliptic conjugacy
classes is not too difficult to handle, the parabolic conjugacy classes must be treated
carefully due to the arising continuous spectrum of the Dirac-Laplace operator D,
and the Selberg super-trace formula must be regularized by subtracting this
contribution. I am only concerned with the developing of the Selberg super-trace
formula, respectively the investigation of the analytic properties of the Selberg
super-zeta functions. My motivation is therefore to develop a superanalogue as
close as possible to the classical Selberg trace formula. I will rely heavily on the
classical reports on the subject of the theory of automorphic forms, i.e. Hejhal [34]
and Venkov [64]. Insofar the discussions remain formal with no direct application
to particular physical situations, say in string theory. Possible applications are the
evaluation of super-determinants of Laplace-Dirac operators on super-Riemann
surfaces, a N(E) staircase analysis (WeyΓs law), and a N(l) staircase analysis
(Huber's law), respectively. Whereas in the former case the explicit calculation
seems quite involved with no obvious solution (see however Takhtajan and Zograf
[59] as mentioned above) and deserves further study, an investigation of the latter
problems will be given separately.

In the next section, a short review will be given of the relevant notation
and description of the Poincare super upper half-plane Jf ( 1 | 1 ) =
{Z = (z, θ) G C ( 1 | 1 ) |3(z) > 0}. This includes the definition of the group action of
super Fuchsian groups Γ, properties of D and the definition of the Selberg super
operator L on J ^ ( 1 | 1 ) , respectively, and the statement of the Selberg super-trace
formula for hyperbolic conjugacy classes. These topics were studied and described
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in some length in [27], so that our discussion here is only sketchy. In the third and
fourth sections, respectively, the contributions from the elliptic and parabolic
conjugacy classes will be calculated. In the fifth section I analyse the Selberg
super-zeta functions Rθ9Rί and Z s , respectively (where the last one can be written
as a combination of the former two), with respect to the incorporation of these new
contributions. The sixth section contains a summary and discussion of the results.

II. Super Riemann Surfaces and the Selberg Super-Trace Formula
for Hyperbolic Conjugacy Classes

We sketch some important facts about super Riemann surfaces. For more details
I refer to Batchelor et al. [10,11], DeWitt [14], Moore, Nelson and Polchinski
[45], Ninnemann [47], Rabin and Crane [51], and Rogers [53]. Let us start with
a (1,1) (complex)-dimensional (not necessarily) flat superspace, parameterized by
even coordinates z e Cc and odd (Grassmann) coordinates θ e Cfl, respectively. Let
vloo be the infinite dimensional vector space generated by elements ζa (a = 1,2,. . . )
with basis 1, ζa, ζaζb,. . . (a < b) and the anticommuting relation
ζaζb= — CbCa, Vα,b. Every z e Λ^ can be decomposed as z = zB + zs with zB e

Cc = C, zs = Σn -χ

 c«i..., an C
an . Cαi, with the cβ l flneCfl totally antisym-

metric. zB and zs, respectively, are called the body and soul of the supernumber z,
respectively. In the fermionic string theory one is interested in super conformal
symmetry. The notion of superspace and supermanifolds [11, 14, 51, 53] enables
one to represent these symmetry transformations as pure geometric transforma-
tions in the coordinates Z = (z, θ) e Cc x Cα. Let us consider the operator D = θ
dz + dθ (note D2 — dz). Further we consider a general superanalytic coordinate
transformation z = z(z, θ% θ = 0(z, θ). A superanalytic coordinate transformation
is called superconformal, iff the (0, l)-dimensional subspace of the tangential space
generated by the action of D is invariant under such a coordinate transformation,
i.e. D = (DΘ)D. Due to a theorem of Batchelor [10] every differentiable supermani-
fold is split, and in particular every complex supermanifold of dimension (d\ 1). The
super Riemann surfaces in question can be seen as a complex (1, l)-dimensional
supermanifold, respectively a real (2|2)-dimensional manifold, where the coordi-
nate transformations are super conformal mappings. In the case of non-euclidean
harmonic analysis in the context of super Riemann surfaces we consider the group
OSp(2, C) of super conformal automorphisms on super Riemann surfaces as
a natural generalization of Mόbius transformations. They have the form

b χγ(boc-aβ))

O S p ( 2 , l ; C c

2 x C o ) : = ^ = | c d χy(da - cβ)

β Xy(l ~ α/

a, b,c,de Cc;

α, βe Cα; ad - be = 1 + aβ; sdety = χγ = ± 1 V , (2.1)

together with the complex conjugate rules

f+0=f+§, J
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Its generators are the operators L o, Lu L-UG^ and G_i of the Neveu-Schwarz
sector of the super Virasoro algebra of the fermionic string. Elements
y e OSp(2,1; Cc

2 x Ca) act on elements x = {zl9z2, ( ) e C c

2 x Cα\{0} by matrix
multiplication x' = γx. By means of a local coordinate system (z, θ) = (zly/z2, ζ/z2)
and the requirements of superconformal transformation the super Mόbius trans-
formation has the form [7, 27, 47, 51, 60]

<*+]> θ**±β ^ ^ J j ί . ( 2 . 2 )

(az + d)2 cz + d cz + d κ }

, _ θ ^ ^
cz + d (az + d)2 cz + d cz +

Due to the separability of the super Riemann surfaces in question, i.e. that it is
split, the odd quantities α, β are not necessary and can be omitted. It is sufficient
to consider transformations y e OSp(2,1) with α = β = 0 and the characters χy

which describe a spin structure. Furthermore γ and — y describe the same
transformation. We thus have that the automorphisms on Jf ( 1 | 1 ) are given
by

^ y . (2.3)

and a super Fuchsian group Γ denotes a discrete subgroup of Aut Jf ( 1 | 1 ). Therefore
we obtain for the transformations z-+z' and θ -> θr [47],

^ ^ . (2.4)
cz + d cz + d

Let us introduce the quantities Nγ and χγ9 respectively, by

/
2 c o s h ^ = N* + Ny* = a + d + χy<xβ. (2.5)

Ny is called norm of an hyperbolic y e Γ and Ny will denote the norm of a primitive
parabolic y e Γ and ly = In NyQ the length corresponding to a primitive y0. As can
be shown [41], Huber's law for the number of geodesies is valid, i.e. the number of
geodesies of length / is growing according to Nι = # ( geodesies ^ /) oc eι/l. For
OSp(2, R)/{ ± 1} a hyperbolic transformation is always conjugate to the trans-
formation

y ^ , (2.6)

or in matrix representation

/iVf 0 0

hyperbolic y e Γ conjugate to 0 N~* 0 . (2.7)

\0 0 χyj

The generators of a particular super Fuchsian group of a super Riemann
surface with genus g obey the constraint

1 - ϊig-2 y2gL-i)(yo1yι . yϊg-iyig-i) = I211 (2.8)
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In order toconstruct explicitly a metric on ̂ f(1|1) [27, 60] one starts with the super
Vierbeins EM

Λ in flat superspace and performs a super Weyl transformation [35].
The scalar product has the form

(Φl9 Φ2) = μV{Z)Φ1{Z)Φ2{Z\ dV(Z) = d z d z ^ d θ (2.9)

(Y= y + θθ, y = 3(z)) for super functions Φu Φ2 e L 2 p f ( 1 | 1 ) ) . Two point-pair
invariants are given by [41]

W)JZ-W

γ-^2 (2.10)

2ΘΘ + i{v - iv)(θ + iθ) 2vv + ί(θ- iθ)(v + iv)

4 7 + AV

+ 4 Y V > V'n>

and are even and odd, respectively {W — (u + iv, vx + v2), V= v + vv/2). We
introduce the Dirac-Laplace operators D m and D m , respectively [1, 7]

D w = 2YDD - m(ίθ - 5 ) 5 , D m = 2YDD + y (ίθ - 5)(5 + iD), (2.12)

Λ
 m i ^ ΐϊl

and D m and D m are related by a linear isomorphism Π m = Y^[ D w + —

With the notation — Am— — 4y2dzd; + imydx = — y2{dl + dy) + ίmydx we ob-
tain for an even super function

θθ
Φ(z, z, θ, θ) = A(z, z) + — B(z, z), (2.13)

the following equivalence

DmΦ(z, z- θ, θ) = sΦ(Z, i, θ, Θ)J- A-A{Z' Z] = S ( 1 - S)A{Z> Z } ' (2.14)
S

Therefore an explicit solution of Eq. (2.14) is given by [43]

(2.15)

with s = i + ίp.
For convenience, let us cite the classical Selberg trace formula which we want to

generalize to the super case. We follow Hejhal [34, Vol. II] and Venkov [64]. Let
K be the number of inequivalent cusps z 3 (j = 1, . . . , κ\ For each z7- we co-nsider
the maximal subgroup Γ7 c= Γ which stabilizes it. The subgroup Γj is generated by
a single parabolic element Sj. For each j = 1,. . . , K there exists a transformation
gj G PSL(2, R) such that gj oo = zj9 gj 1Sjgjz = S^z = z + 1 (z e tf). Let Kbe an
/ι-dimensional complex vector space, V=Ch. Let U be an representation of
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Γ which acts in the space V and is unitary with respect to the inner product in V.
For each j = 1,. . . , K we have a subspace Vj c V of the operator U{Sj\ i.e.
Fy = {υ e V\ U(Sj) v = v}. Let fcy = dim F} and τc0 = Σ*= 1 kj. kj denotes the degree
of singularity of the representation U relative to the generator Sj of Γj c Γ and κ0

denotes the degree of singularity of Γ relative to U. For each α (α = 1, . . . , K) one
chooses a basis υx(<ή9 . . . ,vh(a) for V together with the operator

U{SΛ) (lv - P.M*) = v t e u I (a), (2.16)

with P a the projector on the subspace Va9 and where it is supposed that we have the
alternatives

with the numbers 0 < θlΛ < 1. For κ0 ^ 1 the contributions corresponding to the
parabolic conjugacy classes must be regularized, i.e. the continuous spectrum of the
automorphic kernel must be subtracted from the Selberg trace formula. In order to
do this one considers the Eisenstein series

e(z,s,oι9v,Γ,U) = e(z,s,cι,v)= X yβ(g*1γz)u*(y)υ, (2.18)
yer.\r

where α = l , . . . , κ ; , D e K α c K } gae PSL(2, R), and z e Jf. These Eisenstein
series are spanning up the continuous spectrum of the Laplacian on the Riemann
surface. A Fourier expansion of the Eisenstein series (2.18) then yields

φ , 5, α, i>,(α)) = Pβe(z9 5, α, t>,(α)) = £ fl^y, s)β2* ί m 3 C (2.19)
m = — oo

with the coefficients

ao(yy s) = δaβViitήf + y/π S 2 y 1 " 5 ^ ^ )

My, s) = — |m| s-* v ^ - i (2π|fe|y)f/m(5), (m Φ 0)

with (see [64] for proper definitions and more details)

,.(s)= Σ M
yeΓAΓ/Γβ \θ(gΛ

/ \
with c > 0, d mod c, G ^« 1 Γga. The (/c0 x τco)-matrix

\c dj

(2.22)

is called scattering matrix and has the properties

i) e(z, s, α, υ9 Γ, U) = ^(s)e(z, 1 - s, α, υ9 Γ, U),
ii) ^(s) ^ ( 1 — s) = 1 which is evidently true for TC = 1 and is explicitly given in the
matrix notation by

Σ Σ y*,pk(s)Srpktym(l -s) = δaγδlm . (2.23)
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Let us denote A(s) = det(<9^ βk). The function A(s) has the following properties
[64]

i) For any p e R J( i + ip) + 0.
ii) It satisfies the functional equations A(s)A(l — s) = l,Zl*(s*) = A(s), and in

particular \A(j + ip)| = 1.
iii) It is regular in the half-plane 5R(s) > i except for a finite number of poles on the

interval of the real axis s e (i, 1] denoted by σl9 σ2, . . . , σM, which give due to
the functional relation zeros, symmetric with respect to s = \ in the interval
se[0, i ) .

iv) In the half-plane 5R(s) < ^zl(s) has poles at p = /? + iγ (β < i) and the logarith-
mic derivative of Λ (i + ip) can be represented as

for p -» oo , p e R, with the summation over all poles p = β + iγ of A (s) in the
half-plane 9ί(s) < \. Note that p* = β — iγ are poles as well, and due to the
functional relation we have at s = 1 — p and 5 = 1 — p*, respectively, zeros for
A(s).

Now the following theorem holds

Theorem 2.1 [64]. The Selberg trace formula on Riemann surfaces for hyperbolic,
elliptic and parabolic conjugacy classes has the form:

Σ *(i + Pn) = ^ dim F f p tanh πp/z(έ +

cosh[π(l - 2fc/v)p]
dp

- Γ
L

κ 0 In2 + Σ f f In11 — e2l"β'«11 g(0).
α = l Z=l+fcα J

(2.25)

The test function h must satisfy the following properties
i) h(p) = h(i + p2) is an even function in p,

ii) h(p) is analytic in the strip 3(p) < \ + ε for some ε > 0,
iii) and /z(p) vanishes according to h(p) = 0[1/(1 + p 2 ) 2 + ε ] for some ε > 0 for

p-> ±00 .
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Turning to the Selberg super-trace formula, let us introduce the Selberg super
operator L by

Lφ(Z)= j dV(W)km{Z,W)φ(W),

km(Z, W) = JM(Z, W) {ΦίR(Z, W)2 - r(Z, W)Ψ\R(Z,

km(Z, W) is the integral kernel of an operator valued function of the Dirac-Laplace
operator D m (respectively Dw), and Φ and Ψ are sufficiently decreasing functions
at infinity. L is acting on super-automorphic functions /(Z) with the property

f(yZ) = ff(Z)f(Z)9 where ;7(Z) = {Dθ'/Ί)θf)ϊ. Note that also some more general
automorphic transformation property can be chosen such that f(yZ)
— U(y)jy(Z)f(Z) and U(γ) is some unitary representation of y. Note furthermore

the property Jm(yZ, yW) =fi{Z) Jm(Z, W)j;m(W).
Let/be a super-automorphic function with/(yZ) = U(y)j^(Z)f(Z) and g = Lf.

Let #" ( 1 | 1 ) a fundamental domain of T e Γ whose body equals $F (and is construc-
ted in the same sense as the generalization J f(1|1) of J f), and Σ{τ} denotes
summation over distinct conjugacy classes. Then

flf(Z)= f dV(W)km(Z,W)f(W)=Σ ί dV(W)km(Z9W)f(W)

= J dV(W)K(Z,W)f(W), (2.27)
jrdlD

where

K(Z, W)=Σ U(T)km(Z9 TJV)jψ(W) (2.28)

m
is the super-automorphic kernel. Let ZΓ(y) the centralizer of a y e Γ. For str(L) we
obtain on the one hand

str(L) = Σ[Λ(rf)-Λ(rf)], (2-29)

where sf>i? = 2 + φf'F are the even and odd eigenvalues, respectively, of Dm, say.
On the other we have by the usual procedure [34]

str(L)= f dV(W)K{Z9Z)

= Σ fo K(Z, TZ) U(T)mZ)dV(Z)

= y y J kn(z,γ-1τyz)U(T)jγ-1Tγ(Z)dV(Z)
*-^ t—* ^-IΛ I 1\
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= V V J km(yZ9 TyZ) U(T)fl(yZ)dV(Z)

f /cm(Z, yZ)j^(W)dV(Z)

4(y), (2.30)

where #' (1 |1 )(y) denotes the fundamental region of the super Fuchsian group ZΓ(y\
the centralizer of y e Γ. The expansion in hyperbolic, elliptic and parabolic con-
jugacy classes, respectively, yields

str(L) = ^ d i m VΦ(0) + Σ
1 {y}

Λ(R) + Σ str[[/(S)]

(2.31)

where the first term corresponds to the identity transformation (zero-length term)
with A(y) given by (y hyperbolic, elliptic, or parabolic, respectively)

Λ(y) = χ;m j /cm(Z, γZ)j?(W)dV(Z) . (2.32)
^(l|l)(y)

In Refs. [7, 27] the first two terms corresponding to the identity transformation
and hyperbolic conjugacy classes, respectively, were calculated, i.e. (and further-
more U = 1)

+ Σ Σ lyX\, ίβikly) + g(- kly) -
W f c = 1 2sinhψ

(2.33)

Here the test function h is required to have the properties

ϋ) h[ — 1- ip I need not to be an even function in p,
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iii) ip\ oc 1/(1 + ε , ε > 0,

iv) hi — 1- ip } is holomorphic in the strip 3(p) ^ 1 + — + ε, ε > 0, to guaran-

tee absolute convergence in the summation over {y}.

The Fourier transformation g of h is given by

-ίmeu/2Φ(x) (2.34)

where α™ (x, u) = x — 4 sinh2 - — 2i cosh - . Specific trace formulae in par-

ticular for the heat kernel were considered by Aoki [1], Matsumoto, Uehara and
Yasui [42,43] and Uehara and Yasui [60], as well as an explicit evaluation for the
energy dependent resolvent kernel for the operator D 2 , including wave-functions
(Oshima [48]). From the form of g(u) an explicit formula for Φ(x) can be derived
[27] which has the form

'.-.«-

with Qx(w) = coth - [g(u) - gf( - «)], w = 4sinh2 - .

(2.35,

The above Selberg super-trace formula (2.33) is valid for discrete hyperbolic
conjugacy classes and in this case the non-euclidean area of the ("bosonic")
fundamental domain is given by A = 4π(# — 1), with g the genus of the Riemann
surface. In the case that elliptic fixpoints and cusp are present, this non-euclidean
area is changed into (e.g. [34, Vol. II])

= 2π ϊl(g - 1) + j + 7. ( 2 3 6 )

where s denotes the number of inequivalent elliptic fixpoints and K the number of
inequivalent cusps. v, denotes the order of the generators of the elliptic and
parabolic subgroups Γ, c Γ (1 ^j ^ 5), respectively, i.e. for the elliptic Rj a Γ
(1 ύj ύ s); this means that R]j = 1 for (1 ^ 7 ^ s, 1 < v < 00), and for the order of
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the parabolic generators Sj (s + 1 ̂  j ^ K) it is assumed that v7- = oo
(j = 1, . . . , K). The constraint (2.8) is also altered due to the presence of elliptic
fixpoints and cusps according to [34, 64]

(ϊoyl1 .72g-2 72"/-l)(701yi . .72*-2 72*-l)*l ^ 1 $κ = U\l

(2.37)

Our task will be now to incorporate the elliptic and parabolic conjugacy classes
into the Selberg super-trace formula along the lines of the classical Selberg trace
formula. We propose similarly as for the hyperbolic γ e Γ [cf. Eq. (2.7)] elliptic and
parabolic y e Γ , and appropriate super fundamental domains # " ( 1 | 1 ) . In particular,
I propose a decomposition of an appropriate y e ί a s follows

(y e Γ conjugate to)

>s φ — sin φ 0 \ / 1 n 0

x [ sin φ cos (/> 0 I I 0 1 0

0 0

with n e N and 0 < φ < π. In the following an elliptic transformation (third factor)
will be denoted by R, and a parabolic transformation (fourth factor) by S, respec-
tively. The body 3F of such as fundamental domain J^ ( 1 | 1 ) has according to [34]
Ag + 2s + 2κ sides, the boundaries being geodesies, of course. We also maintain the
notion of χγ irrespective, whether γ e Γ is hyperbolic, elliptic or parabolic, respec-
tively, and we choose χy according to the spin structure of the super Riemann
surface in question. For a super Riemann surface of genus g there are obviously
2(#generators) = ^fif + s + ic) possible Spin StΓUCtUΓβS.

Only the m = 0 case will be considered due to the quite involved inversion
formulae for m φ 0 for Ψ(x).

For the incorporation of the elliptic and parabolic conjugacy classes, let us
introduce some definitions, generalizing the notations of the classical to the
"super"-case. Let K be the number of inequivalent cusps Z, (j = 1, . . . , κ)9 Γj a Γ
the maximal subgroup which stabilizes it. Each subgroup Γj is generated by
a single parabolic element Sj. For each j = 1, . . . , K there exists a transforma-
tion gj e OSp(2, R)/{ ± 1} such that gj oo = Zj9 gJxSjgjZ = S^Z = Z + 1
(Z G J f ( 1 | 1 ) ) . Let Fbe an /z-dimensional vector space on A^9 i.e. V = Λ*o, and U is
a representation of Γ which acts in V. For each j = 1, . . . , K we have a subspace
Vj c F o f the operator U(Sj)9 i.e. Vj = {υ e V\U(Sj)v = v}. Let kj = dim Vj and
κ0 = X κ

= 1 fcj. For each α (α = 1, . . . , K:) one chooses a basis t?i(α),. . . , vh(ca) for
F such that

T T ί C \ ί Λ ΊD \ ί \ ( \ ί^) '3O\

with Pa the projector on the subspace Va9 and where it is supposed that we have the
alternatives

with the numbers viα, θl(X e Λ^9 and 0 < [0 ία]Bθdy

 <
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We consider super-automorphic functions f(Z) with the property
f(yZ) = U{y)jy(Z)f{Z) for y e Γ, Γ a super Fuchsian group. For κ0 ̂  1 the
contributions from the parabolic conjugacy classes must be regularized, i.e. the
continuous spectrum of the operator D must be subtracted from the super-
automorphic kernel. That is, the expression

strΛ(D)= J K(Z,Z)dV(Z) (2.41)

does not exist in general and must be regularized.

III. Elliptic Conjugacy Classes

In order to discuss the incorporation of elliptic conjugacy classes elements into the
Selberg super-trace formula we take the form of an elliptic element as proposed in
Eq. (2.38). Therefore the effect of an elliptic transformation on super coordinates
Z = (z, θ) is as follows:

χRθ
w = z = v = θ =

z sin φ + cos φ z sin φ + cos φ
This yields for the even and odd point-pair invariants, respectively

R(Z, W) = sin2 φ Γ ( 1 +

2 * ) + 2(1 + x2) + y2 - 4 | (ί - —

= Roi 1 -
y

(3.2)

r(Z,W) = j(l-χRcosφ).

Restricting to hyperbolic and elliptic conjugacy classes gives for the Selberg
super-trace formula

str(L) = £ A(y) = ̂  dim VΦ(0)

+ Σ strκ[l7(y)] A(γ) + Σ strv[U(R)lA(R), (3.3)
{y} {R}

stτ(γ) + χy>2 str(R) + χR<2

with the first and second term as in Sect. II. Since §^all) = Ĵ αm/v [34] we obtain for
A(R) in the third term of Eq. (3.3),

Λ(R) = - J dxdyfdθ [φ(jt(Z> RZ)) - r(Z, RZ) Ψ(R(Z, RZ))2

= 2 J J dxdy [ R o φ , { R o ) + 1 φ{Ro) + (1 _ χR COS φ) y ( j R o ) " ] (3 4)
v o o / L z J
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Following [34] we perform a variable substitution according to

t = sin2
+ 2(1 + x2) + y2 - 4] , at = ^ ^ Jt + 4sm2φxdx .

A y
(3.5)

Applying Fubini's theorem, the domain of integration is mapped as
(0, 00) x (0, 00) -» (0, 00) x (yu y2), where y1 and y2 are given by

2 sm φ

Note y1 y2 = 1 and x2 = (y — yi)(y2 — y). Therefore we obtain

(3.6)

2 °° °° dxdv Γl

= ~ ί ί — Γ Ί 0
v 0 0 y LZ

(3.7)
ly/yi-y

By means of [21, p. 287]
b

J(x - a)^1 (b - x)v-χ (x - c)-v~μdx
a

= (b- a)"**-1 (b - c)"«(α - cyvB(μ, v), (3.8)

where B(x, y) is the Beta-function, we obtain for the j/-integral the value π. By
a further partial integration we obtain

MR) = π ? X

 2 -- (i - XR COS φ) ψ(t) s i n . \ Φ(t) .

(3.9)

From Sect. II we know the inversion formula for the function Φ. It yields for m = 0,

ϊι * . (HO)
π o (w + 4 ) λ / w - ί

and <2i as indicated. For an inversion for !F we consider the quantity β2(w) defined
by

^-UI2^[-^UI2 (3.11)
cosh-

w = 4 sinh2 - I. We obtain therefore an inversion formula for Ψ(t)

- t
(3.12)
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Let us split the contributions for A(R) in Eq. (3.9) into two parts, Ax and A2,
according to the terms with Ψ(ή and Φ(t), respectively. Using an elementary
integration we obtain for Aί(R),

2vsmφ J

o Jt + 4sin2</>

\-χRcosφ™ J dt

2v sin φ 0 0 J -t2

Λ JL ί d w δ2(

κ cos(/> | dw β2(w)

% . w —4sin2(ί)
- + arcsin , , 2\2 + 4 2 φ

osφ Jx coshπp

and in the last step I have used [21, p. 505]

> i ] d ( 3 1 3 )

2 ^ / F v ;

ϊ ,7 ** \ (3-14)
o cosh px + cos yx β . . Λ an

sin γ sinh —
P

Similarly by means of [21, p. 285]

J (x + βY(u - xY'1 dx = ?y- 2F1 (l, - v; 1 + μ; - | Y (3.15)

and the property [39, p. 38] 2Fi(-a,b;b;-z) = (I + zf I obtain

] Φ[t)

 3dt
o (t + 4 sin2^))2

αw — — = z

+ 4

v o (w + 4)(w + 4sin2<^))

,
J

00 coshπp \2

and in the last step use has been made of [19, p. 89]

sinh - sin xy

0 cosh x + cos a 2 . Λ a
sinh - cosh πy

J — - i ^x = ; S m f l J ; . (3.17)
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Therefore we obtain for the elliptic contribution to the Selberg super-trace formula

Σ

s i n h [ ( π - 2 π / v ) P ]

sin(π/v) coshπp coshπp Jj

2 Jo cosh u - cos (2kπv) J cosh u - cos (2fcπ/v) 2

Note that we have lim^ _^ = 2α, and Eq. (3.18) is well-defined for
ψ 2 cos φ

φ -• - as well.

IV. Parabolic Conjugacy Classes

Let us turn to the incorporation of parabolic elements. In the discussion of the
parabolic conjugacy classes I first consider the case K = 1, for vlα Φ 0, in a one-
dimensional representation and vIα = 0, respectively. The generalization to the
general case then will be straightforward.

Let us therefore first assume that there is only one cusp. We have for the
super-trace formula by including all conjugacy classes

str(L) = ^ dim VΦ(0) + £ stiy

str(y) + zy>2

Σ strκ[l/(S)] A(S), (4.1)

and we must investigate the fourth term. Again taking the proposition of Eq. (2.38)
for parabolic elements we get for S acting on super coordinates Z = (z, 0)

w = z> = z + n, v = 0r = χ s0 . (4.2)

For the even and odd point-pair invariants R(Z, W) and r(Z, W\ respectively, this
yields

n2 ( θθ\ 00
R(Z, W) = -2 1 - - , r(Z, ^ ) = - (1 - χ5) . (4.3)

y \ y) y
In order to be on the safe side we choose the fundamental domain for a parabolic
transformation in such a way, that we consider the domain [0, 1] x (0, oo) for the x-
and y-integrations, respectively, truncate it to [0,1] x (0, yM\ and consider finally
the limit yM -* oo . Therefore with A(S) = lim^_, ^ AyM(S)9
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1 yM dθdθ
\ d \ d \ - r Σ k(Z,SnZ)

20 0 2 n Φ O

= Σ " ϊ du \\ Φ(u2) + u2Φ'{u2) + (1 - χs) Ψ(u2)] . (4.4)
n Φ 0 n n/yM L Z J

We see clearly that this expression is divergent for yM -• oo. However, if κ0 = 0,
actually we have to consider by including str[t/(S)]

Σ — ϊ du\\φ{μ2)

« Φ O n n/yM LZ« Φ O n n/yM

(in the notation of Eq. (2.17) for one cusp) and the summation is convergent.
Generally, for κ0 ^ 1, we must apply the procedure of regularization as noted in
Sect. II. The observed feature is due to the fact that generally operators with
a continuous spectrum are not trace class. We must therefore consider a quantity like
str(kernel) — str(continuόus spectrum). We regularize str(/ι D) for each Sj according to

strh(Π)= J \κ(Z9Z)-H(Z9Z)]dV(Z)

(4.6)

H(Z9W)= -- f
71 - o o

(Xs= 1) and E(s, Z) will be defined as a super Eisenstein series in complete analogy
with the classical case, i.e. the continuous spectrum will be represented by an
appropriate Eisenstein series along the lines of [34, 64]. Span[£(φ + i , Z)] will
make up the continuous spectrum contribution of the Hubert space L2(Γ\Jf(1|1)),
i.e. of the Hubert space on the noncompact super Riemann surface.

Rearrangement of integration and summation yields in Eq. (4.4) [34, p. 204; 32,
Theorem 422] (C = 0.577215 66490 . . . - Euler's constant)

1 = 2 Σ - ϊ \\φ{u2) + u2Φ'{u2) + {\-χs)Ψ{u1)\du
n=l " n/yML z J

= 2 JrfwΓi Φ(w2) + M 2Φ'(W 2) + (1 - xs) Ψ(u2{\ Σ ~

= 2 J du \- Φ(u2) + u2Φ'(u2) + (1 - χ s) ^ ( M 2 )

o L 2

Γ / i M
x inu -\-myM + C + 0\ ,

L Vv^/J
= 2(1 - xs) \{\nyM + C)] Ψ(u2)du + J Inn Ψ(u2)du]

L o o J
00 Γ l Ί

+ 2(lny M + C) f - Φ(w2) + u2Φ'{u2) du

o L2 J
+ 2 J lnwΓ^ Φ(w2) + u2Φ'(u2)] du + θ f - ^ = ) . (4.7)

o L 2 J xJyuJ
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We consider the various terms. Firstly we have C Ψ(u2) du = g(0) and use has been
made of [21, p. 287]

b

J(x - ay1 (b - xf'1 dx = (b- a)^^1 B(μ, v) .
a

By a partial integration and using the integral [21, p. 538]

} x'-^l - xj-1 Inxdx = \ B(^, V

(4.8)

(4.9)

and some properties of the Ψ(z) = Γ'(z)/Γ(z) function (i.e. [21, p. 945]
± = _ c - 2 In 2, Ψ(l) = - C) we obtain by collecting the relevant terms

AyJS) = 2(1 - χs) \(lnyM + C - In2)0(0) - J f InwdQ2(w)

Note that for κ0 = 0 we obtain [34, p. 105],

Aa(S)= ~ 2(1 - χ s ) l n | l - e 2 π ί θ \ g ( 0 )

(4.10)

(4.11)

and no regularization is needed. Note furthermore the crucial dependence on χs. If

Xs = i9 A{S) = 0 for κ0 = 0 and

A(S) = A^S) = \] lg(u) -g(- «)] du
z

(4.12)

for χs = 1, κ:0 # 0, and again no regularization is needed. Now consider

e-"/2 + g(-u)eu!2

du
17
7 ί
H- 0

17

cosh-

du
cosh-

du . (4.13)

Using [19, p. 30]

cosh αx , π v
cosh - -

2

(4.14)

we get in the first integral in Eq. (4.13)

^ h(ip
dp . (4.15)
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By a partial integration we get

cosh-

1 00 00

= J dpph{\ + ip) J ln(l - e~") sin up du
71 - o o 0

+ ~ J [<?(«) - flf( - «)] 1 - t a n h - ) d u . (4.16)

Using [21, p. 507]

T sin ax{\ - tanh βx) dx = - , (4.17)
o a _„ . . aπ2βsinh-

we obtain for the second integral

(4.18)

It remains to calculate one further integral, i.e. the first term on the right-hand side
of Eq. (4.16). Using (4.9) again we get

f ln(l - e~u)sinupdu = _ i - [2C + Ψ(ί - ip) + Ψ(l + ip)] . (4.19)
o ^P

Therefore combining all relevant terms we get

AyM(S) = (1 - χs) h(lnyM + C - In2) β(0) + J g{ - u)du
L o

- f ln(l - e-«) ί ^ [^(u) + ^( - M)] Jdu

+ \ 1 ίg(u) -g(- M)] rfw + o ( - 1 = ) . (4.20)
2 o W/

The discussion in Sect. II suggests that we propose for each parabolic conjugacy
class (j = 1, . . . , K) the following continuum regularization for the Selberg super-
trace formula in the presence of cusps and κ0 ^ 1,

str(Z,)|cusp, = J K(Z,SZ)dV(Z)
0(i|i)

^ ? i) J dV(Z)Ej(Z,ip + t)Ej(Z,ip + ti (4.21)
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with some normalization constants c s.. Let us define the super Eisenstein series for
one cusp and κ0 = 1,

E(Z,s):= (4.22)

SeΓ0\Γ

with Γ o in the stabilizer of Γ and with elements of the form of ypara of Eq. (2.38). This
definition is completely analogous as in e.g. [34] or Kubota [36], respectively.
Note that Y(γZ) is understood as

a b 0

c d 0

0 0
\cz + d\2

(4.23)

We proceed similarly as in Ref. [36] and analyse E(Z, s) by a Fourier transforma-
tion, i.e.

E(Z,s)= Σ am{Z,s)e2πimx.
m = — oo

This yields for the coefficients am(Z, s)

1 1

(4.24)

"imx dx

la b 0

= YS+] Y(SZ)se-2πimxdx,S= c d 0 | e Γ0\Γ/Γ0, c Φ 0

\0 0

= y» + •dx

Σ jJ* (Σ *

The decomposition Γ0\Γ/Γ0 guarantees that there are n o y e ί left, containing
parabolic transformations [36]. Using the integrals [21, p. 295, p. 426]

ί
we find for the m — 0 and m φ O term in αm(Z, s), respectively

(4.26)

y — Iπimyt 2πs
(4.27)
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Therefore we obtain for £(Z, s) the expansion

s + Φo(s)y1-s+ Σ φm(s)y/yeMmxK,-i(2π\m\y)\, (4.28)
mΦO J

and φo(s) = φ(s)9 φm(s) respectively, are given by

e2M" 1 ./π Γ ( S ^ '

(4.29)

*/* *\
with c > 0, d mod c, I e S 1ΓS. Equation (4.28) shows nicely the general
structure of even super functions which are eigenfunctions of the Laplace-Dirac
operator D on the Poincare super upper half-plane (see [7,27,43] and
Sect. II) and the super Eisenstein E(z, s) series are therefore spanning up
the continuous spectrum of the Dirac-Laplace operator D on the super
Riemann surface, similarly as the Eisenstein series e(z,s) are spanning up the
continuous spectrum of the Laplacian A on the Riemann surface. We can therefore
write

E(Z,s) = (l+±θff)e(z,s) (4.30)

with the Eisenstein series e(z, s) given by

e(z,s) = f + φo(s)y1-s+ Σ Φm(s)y/ye2πίmxKsi(2π\m\y) (4.31)
mΦ 0

which is the classical Eisenstein series on the Poincare upper half-plane, see
[34, 36] and Sect. II. This means that because e(z, s) is an eigenfunction of the
Laplacian A = —y2(dl + δy) on the Poincare upper half-plane with Eigenvalue
λ = s(l — s), E(Z, s) is an eigenfunction of the Laplace-Dirac operator D on
the Poincare super upper half-plane with eigenvalue λ = s. Let us consider a do-
main £^ (1'1} on the super upper half-plane whose body S> = (β^' 1))Body is bounded.
Then

- 2 J dF(Z)[£(Z,s)D£*(Z, t) - E*{Z,t)ΠE(Z,s)~]

= -2(ί*-s) J dV(Z)E(Z,s)E*(Z,t)

_ s) _ t * ( 1 _ ί*)] J ̂  e ( z , s ) e * ( Z ) ί } . (4.32)
y
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Note that this special result of the function E(Z, s) can be also achieved by
considering two even super functions U = u1 + Θθu2/y and V = vx + Θθv2/y,
respectively, and working out the identity

[[/(Z)DP(Z) - V*(Z)D I/(z)]

x, y) - »f(x,

J
l

(4.33)

Note also that odd super functions according to Refs. [7, 27] cancel out in this
consideration. Equation (4.33) can then be tackled in the usual way by applying
Green's theorem on it, etc. Setting s = \ + ip + ε, Eq. (4.32) now gives [34, 36]

JVM

(4.34,

where JyM is a domain in J f bounded by yM [34]. Therefore we can conclude that
the following identity holds for yM -• oo :

- - ϊ Hip + i)
π -oo ι

Γ J dκ(z) E(Z, i + ip) Ί

dxdy
e z, - + ip dt

= 20(0)InyM - ^ f h(ip
2π ^

ψ ) dp + i
ip) 2

0(1). (4.35)

In Eq. (4.21) we choose cs = — 1 which gives the regularization

s t r ( L ) | c u s p = J K(Z,SZ)dV(Z)

f
(4.36)

The first term of Eq. (4.35) and the corresponding term in Eq. (4.20) exactly cancel
and the parabolic contribution to the Selberg super-trace formula are therefore
given by (κ0 = 1)

JL J

(4.37)

J g(-u)du -

This completes the calculation of the Selberg super-trace formula in the case of the
presence of parabolic elements in the corresponding Fuchsian super group (one
cusp).
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Now consider the general case of the presence of several cusps and some
numbers θloc as in Eq. (2.40). Of course, we must only regularize the super-
automorphic kernel by the incorporation of £(Z, s) whenever χSj = — 1
(je{U . . . , K}). We consider

,α,ι>) = Σ Ys(gϊ1yZ)U*(γ)υ(*) . (4-38)
ysra\r

We assume a Fourier expansion according to

Eβ(gβZ,s,a,vι(a)) = PβE(gβZ,s,a,vι(oc)) = £ am(Y, s)e2πimx (4.39)
m = — oo

with the coefficients am(Y, s) (compare [36, 64])

= Σ PβU^γMa) ϊ Γ(g-1γgβZ)e'2^dx
yεra\r/rβ

+±θff\eβ(gβz, s, α, Vl(α)), (4.40)

with eβ(gβZ,s, oc,Vι(oc)) as in Eq. (2.19) and all the results deduced from the
properties of the classical Eisenstein series can be used appropriately in the Selberg
super-trace formula.

First of all, repeating the calculations above, we have instead of Eq. (4.11) now

AyM(S) = - 2 ( 1 - χ s)ln|sdet(l - U(S))\g{0) . (4.41)

Next we have for κ0 ^ 1 and s = \ + ip + ε,

lim J -^-\eβ(gftz9s9θί9υι(θί))\2

y

[ G ) f ] (442)

Therefore consequently

2 °°
- - ί Mφ + έ) J dV(Z)\E(zA

7 1 -oo jrdlD
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Summarizing, we have shown

Theorem 4.1. The Selberg super-trace formula on super Riemann surfaces for hyper-
bolic, elliptic and parabolic conjugacy classes has the form:

+ iPn) - h(\ + ipζ)~\

A °°
= ΐ d i m F — J h{ip

+ Σ Σ StTiU{y)Jh lg(klγ) + g(-kly)-χk

y(g(kly)e-kl>>2

coshu-cos(2fcπ/v)

o coshw — cos(2/cπ/v) 2

2[fcoln2 + K- ln|sdet(l -

ψ ] Hip + i ) [ y ( l + ip) + Ψ(l - ip)-]dp

^ ] , (4.44)
z o

where Σ { 5 j } ^ (l - Xsj), κ±= ΣiSjΛ1 ± Xsj) and the other terms similarly inter-
preted. In particular the p-integral over i r ( i + Φ)/^(i + φ) is o n l y present if
κ0 Φ 0. Of course, f̂(w) and h(^ + ip) can be replaced by each other through their
corresponding Fourier transforms, cf. Eqs. (2.34, 3.18), respectively. This concludes
the discussion.

V. Selberg Super-Zeta Functions

In order to discuss the Selberg super-zeta functions, let us first introduce the
classical Selberg zeta function Z(s) defined by

Π Π [i - e~<s+<I) ί'] > «(*) > i (5 i)
yeΓ k = 0
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As long as only the elliptic terms are maintained, the principal analytic structure
[i.e. zeros of Z{s)~\ as e.g. in Refs. [34, Vol. 1, 38, 57] is not very much altered.
However, the parabolic terms give rise to additional poles and do in fact matter
a lot, see Ref. [64].

A functional equation can be derived which has the form [34, 57, 64]

Z(l -s) = zl(s)exp| - ,4dim V'f ttanπίΛ j Γ ^ ' i ί T Ψz(s)Z(s), (5.2)

where Ψz(s) is defined as

ffl (kπ

- 2s) \
L

κ0 In2 + Σ *Σ l n l ! - ^ " l l ~ ίarg^(έ)} (5.3)
«=1 I=l+«t. J J

Note the relation

Z(s)Z(-s)
s)Z(l - s)

- . (5.4)

R(s)R{-s):=

Let us consider the two Selberg super-zeta functions Z o and Zl9 respectively,
defined by [7, 27]

zo(s) = Π Π s d e t l > - U(y)e-(s+k)lq , M(s) > 1 , (5.5)

= Π Π sdet[lF - U{y)χye-^k)lq , JR(s) > 1 . (5.6)

( 5 J )

For convenience we will consider the functions

and the analytic properties of the Zo, ̂ functions can be easily derived from the
ROi x-functions. As we shall see, only functional relations for the ROf i-functions can
be derived, but not for the ZOj i-functions.

1. The Selberg super-zeta function Rlm We first discuss the function Zί(s). In order
to do this we choose the test function [27] (9ΐ(s, a) > 1)

) (5.8)

with the Fourier transformed function gx{u) given by

βl(u, s, a) = sign(u)(e-sM - e""1"1). (5.9)
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A regularization term is needed to match the requirements of a valid test function
for the trace formula. The hyperbolic- and zero-length term have already been
evaluated in [27] with result

idim V^~ J hx(ip + ±, s, a)tanhnpdp = dim V-{_Ψ{s + ±) - Ψ{a + £)] , (5.10)
4π - ^ π

00 7

(5.Π)

Next we consider the elliptic terms. By the use of [21, p. 357]

I — dx = - — V : (5.12)
o cosh x — cos t sin t t = λ μ + I

we obtain

I g l («, 5, α)e-»/2 + gi(-u, s, a)e"12

0 cosh2 - — cos2 φ

Let us turn to the parabolic terms. Quite easily we have fifi(O) = 0, and
Jii(i, s, a) = 0. Furthermore

(ip + i, s, α ) [ f (1 + ip) + Ψ(1 - ψ)] = 0 ,

(5.14)

J, l (±M,s,αμu=±(i-i).

Let us consider the contour integral [64]

1 A'(z)[ 2(z-i) 2(z-i) I
^Γ~ 7 ~7ΓT "2 7 Π2 2 7 ΓT2 " Z

2nι r Δiz) \ s — (z — 2) Q ~ (z ~ 2)

1 ,Δ'jz)Y 1 [ 1 1 | 1 Ί
2πi I A(z)\_z -(s + %) z + (s — 2) z — (a + \) z + (a — i )J '

(5.15)

where the contour is running from z = i — iR to z = \ + ZJR on the line 9t(z) = •£,
and closed by the semi-circle going through the points z = % — iR9 z — \ — R,
z = 2 + iR and the points are given in the direction they are tranversed by the
contour. Considering R -• 00 , the integral over the semi-circle vanishes due to the
properties of the logarithmic derivative of Δ(z) [cf. Eq. (2.24)] and the choice of the
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test function. The integral over the line then yields by the Cauchy residue theorem
[64]

1 ? , ,. , x „ ,Λ'(i + ip) Δ'(s + ±) Δ'ja + Ϊ)

1 1 1 , 1 1
- (σ,. - 1) s + (σj-i) a-(σj-i) a + (σ, - i) J

~ P J<ϊ Ls - (P - έ) ~ s + (p - i) " a - (p - i) + a + (β - i)\ ' (5'( 5 ' 1 6 )

Therefore we obtain the Selberg super-trace formula for the test function
hi(ip + \, s, a) as follows:

R'Λs) R'Λa)

Ri(s) RΛa)

»(°)

+.

s α

^ Γ l

Here zln(

0

0) = no — nj denotes the difference between the number of even- and
odd zero-modes of the Dirac-Laplace operator D. According to Ref. [47]
An^ = 1 - 2q with q = dimkerδi and S\ = -y2dz + %py. From Eq. (5.17) we
read off
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Theorem 5.1. The Selberg super-zetafunction Rι(s) is a meromorpίcfunction on Λ^
and has furthermore the following properties:

A) The Selberg super-zeta function Rι(s) has "trivial" zeros at the following points
and nowhere else:

i) s = — i — / (/ = 0,1, 2, . . . ) and the multiplicity of these zeros is given by

π {R}k=l V 1 = 0

Note that for I = 0 there is an additional Δn^ term coming from the super-trace of
hi(ip + 2> s, a) for λ = 0. Note also that if # Nt < 0, we have poles instead of
zeros.

ii) s = 0 with multiplicity K- — κ0. If τc_ — κQ < 0, s = 0 is a pole. Note that the
contributions form the zeros (poles) from Δ (5) and the poles {zeros) from the
summation over j and p, respectively, cancel each other.

B) The Selberg super-zeta function R\{s) has 6ίnon-triviaΓ zeros and poles at the
following points and nowhere else [27]:

i) s — ipn^F): there are zeros {poles) of the same multiplicity as the corresponding
eigenvalue of D.

ii) 5 = —ipn(F): reversed situation for poles and zeros.
iii) 5 = λn{F) — 2 there are zeros (poles), and
iv) s= —(λζ — j) there are poles of the same multiplicity as the corresponding

Eigenvalues of D, respectively. The last two cases describe so-called small
eigenvalues of the operator D. All these unontriviaΓ eigenvalues are supernum-
bers

Of course, Eq. (5.17) can be extended meromorphically to all s e Λ^.
The test functions hι(ip + $9s,a) is symmetric by the interchange s-> — s.

Therefore subtracting the trace formula for hx(ip + \, s, a) and hι(ίp -f j, — s, a)
yields the functional equation for R± in differential form

j - l n [Ri(s)Λi(-s)] = - ,4 dim Ftanπs + 2 ( K " ~ K Q )

' i
(5.19)

(note Ψ(j + s) = Ψ(j — s) 4- πtanπs). The integrated functional equation there-
fore has the form

^^s 2^-"^^^), (5.20)

with the function Ψχ(s) given by

{R}k=l V

oo

X

I-

Γ kπl 1

cosl (2! + 1)-J ln | s 2 - (/ + hf\ j . (5.21)
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We check easily the consistence of the functional equation with respect to the
analytical properties of the Selberg super-zeta function Rx.

2. The Selberg super-zeta function Ro. Let us turn to the discussion of the Selberg
super-zeta function Ro. We consider the testfunction (9ί(s, a) > 1)

(5.22)

with the Fourier transform go(u, s, a) given by

go(u, s, a) = sign(u)eul2(e-slul - e~a^) . (5.23)

Again a regularization term is needed to match the requirements of a valid test
function for the trace formula. Similarly as for Rι we obtain the Selberg super trace
formula for the test function ho(ip + i , s, a) as follows:

R'o(s) R'o(a)

R0(s) R0(a)

00 Γ λn λn λζ λζ Ί
= 2 „ ? , [s2 - \λξf ~ a 2 - \λ»nf ~ s 2 - [λζf + α 2 - "(λζf J

_ y str[[/*(£)]
i'kt'1vsiii(2feπ/v)

( L _ 1
V ) l + l - ί s + l + l

AdimV.

2π

2 \ s - 2

[ f (s) + Ψ(s + 1) - f (a) - Ψ(α + 1)]

1 1

+ —

Γ Γ 1 1 1 1 1
_|_ 1£ \ I I

f, Γ l l i l l
*~;=i Ls + K - 1) s - (σ, - 1) a + (σ, - 1) α - (σ, - 1)J *

(5.24)

From Eq. (5.24) we read off

Theorem 5.2. The Selberg super-zeta function Ro(s) is a meromorphic function on Λ^
and has furthermore the following properties:
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A) The Selberg super-zeta function Ro(s) has "trivial" zeros at the following points
and nowhere else:

i) First note that
1 £ . (2lkπ\( 1 1

sin(2fcπ/v) ,f x \ v J \s + I - ί s + l + l

2kπ\ {2lkπ\
COS I

COS COS

S S

Therefore:

s = 0 with multiplicity

ψ (5,5)
5 = — 1 wϊί/z multiplicity

Σ ^ ^ J ^ ) , ,5.26,

s = — n (n = 2, 3, . . .) wίί/z multiplicity

i v \ v /

ΛΓoίe ί/zαί if # Nn< 0, we /zαi e pofcs instead of zeros.
ii) s = i wiί/i multiplicity ΦN± = κ- t r [ ^ ( i ) ] .

iii) s = — σ7- (j = 1, . . . , Jί with K- times the multiplicity as the poles σ, of Δ(s).
iv) s = p with K- times the multiplicity as the pole p of Δ(s) in the half-plane

B) The Selberg super-zeta function R0(s) has "trivial" poles at the following points
and nowhere else:

i) s = +2 with multiplicity κo/2.
ii) 5 = -\ with multiplicity # N-± = K- t r [ ^ ( i ) ] .

iii) s = 1 — Oj (j = 1, . . . , Jί) with K- times the multiplicity of the pole σ, of the
function A(s).

iv) s = p — 1 with K- times the multiplicity as the pole p of A(s) in the half-plane

The items Aii)-Av) and Biii)-v) are only present if κ0 + 0.

C) The Selberg super-zeta Ro(s) has "non-trivial" zeros and poles at the following
points and nowhere else [27]:

i) s = ίpniF) — i : there are zeros (poles) of the same multiplicity as the corresponding
Eigenvalue of D.

ii) s = —ίpn(F) — i' reversed situation for poles and zeros.
iii) s = λn(F) there are zeros (poles), and
iv) s = —λ^F) there are poles of the same multiplicity as the corresponding eigen-

value of\3, respectively. The last two cases describe so-called small eigenvalues of
the operator D. All these "nontrivial" eigenvalues are supernumbers
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Of course, Eq. (5.24) can be extended meromorphically to all ^
The test function ho(ip + \, s, a) is symmetric with respect to s -* — s. There-

fore subtracting the trace formulae of ho(ip + j,s,a) and ho(ip + i, — s, a)
from each other yields the functional equation for the i?0-function in differential
form

AdimVd ΓzΓ(s) A'(ί + s)lκ

l n ( s m π s } + l i

2lkπ

s + l+ί s - ( / +
(5.28)

In integrated form, this gives the functional equation

( (s _μ n\κ- ( l\
y Ί l n ( s 2 - 4 J ψo(s), (5.29)

with the function Ψ0(s) given by

f ^strCl/^J?)] . (2lkπ\
ΨJs) = exp< — > > > sin In

(s2 -(I- I ) 2 )

(s2 - (I + I)2)
(5.30)

We check easily the consistence of the functional equation with respect to
the analytical properties of the Selberg super-zeta function Ro. Note the
similarity of the corresponding relation (5.4) for the classical Selberg zeta-
function.

3. The Selberg super-zeta function Zs. Following Ref. [42] we can also introduce
the Selberg super-zeta function Zs(s) defined by

ZQ(S)Z0(S + 1)
Zs{s)= z?(* + i) * (5'31)

The appropriate test function is (5R(s) > 1)

hs(P>s) = 72—Ji x=i+ip = JΓi—ΓΓ

The corresponding Fourier transform gs is given by

(5.32)

(5.33)
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The evaluation of the various terms in the Selberg super-trace formula is straight-
forward and we obtain similarly to the previous two cases

1 1
o

An

_ i_ y str[l/*(*)] » . ίllkπ\

K- 1 κ0

2s s + T 4s

κ_ln|sedt(l -

1 1

5 —

+ i s -

- K- Σ x- Σ (5-34)

From Eq. (5.34) we read off

Theorem 5.3. The Selberg super-zeta function Zs is a meromorphic function on Λ^
and has furthermore the following properties:

A) The Selberg super-zeta function Zs(s) has "trivial" zeros at the following points
and nowhere else:

i) s = 0 with multiplicity

s = — 1 with multiplicity

(5.35)

s = — n (n = — 2, 3, 4, . . .) vvzί/i multiplicity

vsin(2/cπ/v)

LS1 {~)~\ XR COS V J J s i n ( 5 3 7 )

ϋ) s = ± i wiίΛ multiplicity ΦN±± = K-
iii) s = p wϊί/z K-times the multiplicity as the pole p of Δ(s) in the half-plane

SR(s) < i
iv) s = p — 1 wiί/z K-times the multiplicity as the pole p of A(s) in the half-plane

i
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B) The Selberg super-zeta function Zs(s) has "trivial" poles at the following points
and nowhere else:

i) s = \ with multiplicity κo/2.
ii) s = —2 with multiplicity 2κ- — κo/2.

iii) s = — \ — I (I = 1, 2, . . . ) with multiplicity # Nt = 2κ0.
iv) s = — Gj (j = 1,. . . , Jί) with K- the multiplicity of the pole σ,- of the function

Δ(s).

The items Aii)-Aiv) and Bii)-Bv) are only present i/κ- + 0 .

C) The Selberg super-zeta function Zs(s) has "non-triviaF zeros and poles at the
following points and nowhere else [27,42]:

i) s = ±(j + ip%) there are zeros (poles) and
ii) s = ±(j + ipζ) there are poles (zeros),

with the same multiplicity as the corresponding eigenvalue of D, respectively.

Of course, Eq. (5.34) can be extended meromorphically to all seΛx.
The test function hs(ip + \, s) is symmetric with respect to s -* —s and therefore

we can deduce the functional relation

= const . κ-ln|sdet(lt/(S))|]

KA(s)A(s+l\

with the function Ψs(s) given by

Γ(i-s)Γ(%-s)
(5.38)

s-l l ) ( s - / - l )

(5-39)

We check easily the consistence of the functional equation with respect to the
analytical properties of the Selberg super-zeta function Z s . In the case, where only
hyperbolic conjugacy classes are present in the super Fuchsian group, Eq. (5.38)
reduces to the simple functional equation [27]

Zs{s) = Zs(-s). (5.40)

Let us note that the relation

US |_ ^ l (

(s)Z0(s + Z0(s + l)Z0(s + 2)

R'o(s) R'Q(S + ί)

R0(s) + R0(s+ί) ( " j
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provides a consistency check for the zeta functions Ro, Ri and Z s , respectively.
This concludes the discussion.

VI. Summary and Discussion

In this paper I have discussed a super extension of the Selberg trace formula, the
Selberg super-trace formula, incorporating elliptic and parabolic conjugacy classes.
Whereas the incorporation of the elliptic conjugacy classes were straightforward,
I had to regularize the case of the incorporation of parabolic conjugacy classes by
appropriate super Eisenstein series representing the continuous spectrum of the
Dirac-Laplace operator D on the super Riemann surface. I obtained a closed
version of all the relevant contributions.

Furthermore, I could discuss Selberg super-zeta functions. In this discussion
similarly as in the classical case, there appeared additional "trivial zeros" and
"trivial poles" in comparison to the "trivial zeros" of the super-zeta function due to
the additional elliptic and parabolic conjugacy classes. In particular, the elliptic
conjugacy classes only altered the multiplicity of the trivial poles already due to the
hyperbolic conjugacy classes, the parabolic terms introduced new structure (zeros
and poles) due to the poles σ,- and p = β + iγ, respectively, of the function A (s). For
the Rλ -function only a zero for s = 0 was added, and remained quite regular. Quite
crucially it turned out that the dependence on the spin structure of the super
Riemann surface, in particular if the corresponding χs for a parabolic element
equals one, the trace formula and analytical structure of the Selberg zeta functions
is far more regular than in the classical case [64]. For the character χs = 1
corresponding to a parabolic conjugacy class all the additional structure is
smoothed out into a quite regular behaviour. The "nontrivial zeros" and "non-
trivial poles" corresponding to the even and odd eigenvalues of the Dirac-Laplace
operator were, of course, the same as in a previous publication [27]. Also func-
tional relations could be derived for the Selberg super-zeta functions.

The question remains how to calculate superdeterminants of the operators
D m in the case of super-Riemann surfaces in the compact, respectively the non-
compact case. A direct evaluation along the lines of Refs. [1, 27] is not obvious
and, more important, it is not clear for general non-cocompact (super) Fuchsian
group whether the operators Am9 respectively D m , have infinitely many eigen-
values (compare [64]). It is however tempting to follow the approach of Ref.
[59] and define them by means of the results of Refs. [1, 7, 27]. That is, one
could propose

sdet(-D m )cx

(m even)

(6.1)

l + m
(m odd),
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and similarly for negative even and odd m, respectively. A closer analysis of this
problem is, however, beyond the scope of this paper and devoted to future
investigations.
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