
commun. Math. Phys. 150,585-591 (1992) Communicat ions in

Mathematical
Physics

© Springer-Verlag 1992

The Newtonian Limit of the Spherically Symmetric
Vlasov-Einstein System

G. Rein1 and A.D. Rendall2

1 Mathematisches Institut der Universitat Mϋnchen, Theresienstr. 39, W-8000 Mϋnchen 2,
Germany
2 Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, W-8046 Garching, Germany

Received March 25, 1992

Abstract. We prove that spherically symmetric solutions of the Vlasov-Einstein
system with a fixed initial value converge to the corresponding solution of the
Vlasov-Poisson system if the speed of light c is taken as a parameter and tends to
infinity. The convergence is uniform on compact time intervals with convergence
rate 1/c2. Thus the classical Vlasov-Poisson system appears as the Newtonian limit
of the general relativistic Vlasov-Einstein system in a spherically symmetric setting.

1. Introduction

Consider an ensemble of particles (stars in a galaxy, galaxies in a galaxy cluster,
etc.) which are all of the same mass and interact only by the gravitational field
which they generate collectively. The ensemble is described by a time dependent
density function/on phase space, and this function satisfies a continuity equation,
the Vlasov or Liouville equation, which is coupled to the field equations with
source terms generated b y / In the classical, Newtonian setting we obtain the
Vlasov-Poisson system (VP)

dtf+vdxf-K(t,x)-dvf=0,

K(t,x):=-\ J lf{t,y,v)άυdy,

where t ^ 0 denotes time, xelR 3 position, and i elR3 momentum, r : = | x | , and we
have assumed that the system is spherically symmetric, i.e. f(t9 Ax, Av) =f(t, x, v),
K(t, Ax) = AK(t, x) for any orthogonal matrix A and t ^ 0, x, ϋeIR3.

If we wish to describe the above situation in the setting of general relativity, we
obtain the Vlasov-Einstein system (VEγ) in the following form:

r y

-2λ(2rλ' - 1) + 1 = Sπγr2p ,

e-2λ{2rμ' + 1) - 1 = 8πy2r2p ,



586 G. Rein and A.D. Rendall

where

p(ί,x):= J f(t9x,υ)y/l +γv2dv,

dvp(t,x):=lf(t,x,v)(jή

Here the meaning and range of the variables f, x, v is as above, γ := 1/c2, where
c denotes the speed of light, and " and ' denote the partial derivative with respect
to t and r = \x\ respectively. If we let x = r(sin #cos φ, sin θ sin φ9 cos θ) then the
space-time metric is given by

ds2 = - e2fldt2 + y(e2λdr2 + r2(dθ2 + sin2θdφ2)) .

We refer to [9] as to how (VEγ) is obtained from the full Vlasov-Einstein system
without symmetry, i.e. on the particular choice of coordinates and the meaning of
spherical symmetry in the setting of general relativity. In the above coordinates,
spherical symmetry can be defined as for the Vlasov-Poisson system and results in
the fact that λ, μ, p, p can be seen as functions of t ^ 0 and r ^ 0 or t ^ 0 and
x e R 3 .

Both systems are supplemented by the initial condition /(0) = / with a non-
negative, spherically symmetric function f, and for (VEγ) we require asymptotic
flatness of space-time and a regular center at r = 0 which leads to the boundary
conditions

lim λ{t, r) = lim μ(t, r) = λ{t, 0) = 0, t ^ 0 .
r->oo r-*ao

The purpose of the present note is to prove that for a fixed initial distribution
/ the solutions of (VEγ) tend to the corresponding solution of (VP) for γ -> 0. In
order for this statement to make sense we also have to show that all solutions in
question exist on an y-independent time interval. The convergence is uniform on
such compact time intervals where all solutions exist, and the rate of convergence is
y. As far as we know, this is the first result (with the exception of certain static and
explicit solutions, cf. [4]) where the Newtonian limit of the general relativistic
equations is not only shown formally in the sense that the equations pass to their
Newtonian equivalent with c -> oo but where the convergence of the corresponding
solutions is established as well. In passing we note that by a solution we always
mean a sufficiently regular function which satisfies the equations classically.

The paper proceeds as follows: In the next section we formulate and briefly
discuss our main results. In the third section we establish the existence of a time
interval where all solutions in question exist and satisfy certain uniform bounds
which are then used in the last section to pass to the limit γ-+0.

We conclude this introduction with some remarks on the literature. The
existence of global, classical solutions to the initial value problem for (VP) without
smallness or symmetry assumptions on the data is shown in [7], cf. also
[2, 5, 6,11]. For (VEγ) we refer to [9] where we established a local existence and
uniqueness result together with a criterion for global existence and proved that
solutions are indeed global for sufficiently small initial data. To our knowledge this
is the first global existence result for Einstein's field equations coupled to any kind
of description of matter. For further references we refer to [9]. The present
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investigation is also related to [10], where the classical limit of the relativistic
Vlasov-Maxwell system is investigated, cf. also [1, 3]. As to the existence theory of
the latter system we refer to [8] and the references therein.

2. Main Results

Let us first fix the set of initial data which we consider:

Q)\— igeC1 ( R 3 x R 3 ) | ^ 0 , supp# compact, g spherically symmetric,

- J J g(x, v)y/ί + v2 dvdx < -,r > 0 > .
r \x\<r R3 ^ 2 J

Using the local existence result and the continuation criterion established in [9] it
will be shown that the solutions of (VEγ) exist on an interval [0, T\_ which is
independent of y; more precisely:

Theorem 1. Letfe@. Then there exists T > 0 and u: [0, Γ [ -> R + continuous such
that for ye]0, 1] the system (VEγ) has a classical solution (fy9 λγ, μγ) on the interval
10, Tl with fy(0)=f and

fy(t9x9v) = 09 \υ\>u(t)9 x e R 3 , ί e [ 0 , Γ [ , y e ] 0 , l ] .

At least on the interval [0, Γ [ it now makes sense to investigate the limit y -* 0. The
following theorem is the main result of the present paper.

Theorem 2. Let fe^ and let 0 < T ̂  oo be such that (fy9 λy9 μy) exists on [0, T\_
for all 7 G ] 0 , 1] and

fy(t9x9v) = O9 \v\ >u(t)9

for a continuous function w: [0, Γ [ - » R + . Let / e C ^ f O , oo [ x R 6 ) denote the
solution of (VP) withf(O) —f Then for any T' e ]0, ϋΓ[ there exists a constant C > 0
such that for all y e]0, 1] the following estimate holds:

IIΛ(0 - / ( O H * + II ^(011 oo + ll MOIloo + II i y ( 0 II oo

-dxμγ(t)-K(t) te[O,r].

Theorem 1 shows that the assumptions in Theorem 2 are indeed satisfied on some
interval [0, T\_. The reason for separating the two results is the following: In the
general situation of Theorem 1 the interval may be quite short. On the other hand
it is possible that for more restricted initial data the assumptions in Theorem 2 are
even satisfied on [0, oo[, cf. the global existence result for small data in [9].

3. Proof of Theorem 1

First note that for ye]0,1] the estimate
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holds so that by the local existence result in [9] we obtain a solution (/y, λγ9 μy) on
a maximal existence interval [0, Γ y [, Ty > 0, with /y(0) = / ; actually, in [9] we
restricted ourselves to the case y = 1. However, if (/, λ9 μ) is a solution of (VE1),
t h e n { y 3 / 2 f { , y ί / 2 , y 1 / 2 \ λ ( - , y 1 / 2 -), μ{ , y 1 / 2 -)) s o l v e s ( V E γ ) . N e x t w e r e c a l l
that integrating the field equations subject to the boundary conditions yields

e-2λy(t,r) = I _2y
 m^ ' r) (1)

r

and

μy(t, r) = - J e^'-'H γ -^f^ + 4πy2

Spr(ί, s) ds , (2)
r \ S /

where

m y ( ί , r) :=4πJ5 2 py(ί ? 5)rfs= j py(t,y)dy; (3)

cf. [9]. If we let Xy( 9t,x, v), Vy{ , ί, x, v) denote the solution of the characteristic
system

t; = —

r

with Xy(t9 ί, x, ϋ) = x, Vy(t91, x, v) = y, then

/ y (ί, x, t>) = / ( X y ( 0 , ί, x, v)9 F y(0, ί, x, ϋ)) .

Among other things this implies that ||/y(ί)lloo = Il/Hoo> t ^ 0. We have the
estimates

g Cminί^<(ί), t/y

5(ί)j ,

where C denotes a constant which does not depend on y or t and may change from
line to line and

w y(ί):=sup{|ι; | |(x,ι;)6supp/ y(ί)} .

The estimate for py implies that
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Using this information we can estimate eμy~λy μy and λy. From

eμy~λyμy(t, r) = eμy + λy ( γ —^ 1- 4πy2rpy(t, r)

we conclude that

l μy_λy

note that along a characteristic we have \x\ = \v\/^/ί + yv2 ^ 1/̂ /y so that r =

M ^ ro + ί/V/ f° r (^J y ) G supp/ y ( ί) . Furthermore, the fact that λy + μy ^ 0 and
the boundary conditions at r = oo imply that λy + μy ^ 0. As is shown in [9] not
only the two Einstein equations given above hold for our solution but all other
Einstein equations hold as well. In particular.

λγ(t9 r) = — 4πyreλy + μyjy(t, r),

where

Jγ(t,r):=]fγ(t9x,v) — dv

so that

which implies

u(t)Y

The second line in the estimate follows from the observation that |x| ^ uy(t) for
characteristics in the support of fy. If we insert the above estimates in the
characteristic system and integrate we obtain the estimate

u7{t) g Mo + C f (1 + s)(l + uy(s))5 ds9 ί6[0, Γ y [ ,
0

where u0 is a bound for |t>| on supp / Let u: [0, Γ [ -» R + be the maximal solution
of the initial value problem

ώ(t) = C(l + t ) ( l + w ( ί ) ) 5 , ιι(0) = tto-

No w uγ(t) ̂  M(ί) on [0, Γ [ n [0, Γ y[, and the continuation criterion established in

[9] implies that Tγ ^ T and uy(ί) ^ u(t) on [0, Γ[, and the proof of Theorem 1 is

complete.

4. Proof of Theorem 2

Let 0 < T' < T. The assumption together with the estimates obtained above imply
that there exists a constant C > 0 such that

uy(t),e2λA' r\ 5 ^ ) 5 ^ 1 ^ c , t e [ 0 , Γ ' ] , r > 0, y e ] 0 , l ] ;
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O, r>0,
r ~ r

and m^O, r) = m^O, r 0 ) for r > r0 which implies that

e2λA°'r)<C, ye ]0,1], r > 0 ,

where r0 is a bound for |x| on supp/ Together with Eq. (4) this yields the estimate
for e

2λy(t'r). Equation (1) implies that

and thus

Equation (4) yields

^Q, ίe[0,r].

^Cy, ίe[0,r].

(5)

(6)

Equation (2) together with the uniform estimate for the support of/y(ί) on [0, Γ r ]
implies that

and thus

Finally,

_ 1 | g C y ) ί e [0,

-dxμy{t9x)-K(t9x)

mγ(t, r) m(t9 r)

(7)

Now

(8)

|/y - / | ( ί , x, ϋ) = \f(Xy(0, U x, υ)9 Vy(0919 x9 v)) -f(X(0919 x9 υ)9 V(0919 x9 υ))\

S Cα y (ί), (9)

where

*y(t):=svφ{\Xy-X\{09t9x9Ό) + \V7-V\(09t9x9Ό)\

(x,ι;)esupp/ γ (ί)usupp/(ί)} .

From the characteristic systems for (VEγ) and (VP) respectively we can now derive
a differential inequality for \Xγ - X\ (0, t, x9v) + \Vy— V\{0, t9 x9 v). Inserting the
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estimates (5), (6), (7), (8), and (9) into this inequality, observing that dxK is bounded

on [0, Γ ] x R 3 , and that

V.y - V ^ \Vy - V\ + \Jl+yV? - 11 ̂  I Vγ - V\ + Cγ

we obtain, after integrating with respect to time, the estimate

\s, ίe[0,r],
0

where C depends on T' but not on y. Thus by GronwalΓs inequality

otγ(t)SCγ, t e [ 0 , r ] , y e ] 0 , l ] ,

and together with the above estimates this completes the proof of Theorem 2.
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