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Abstract. We study e(A) = inf spec ( — 4 + AV) and examine when e(4) < O for all
A % 0. We prove that — cA? < e(d) £ — dA? for suitable V and all small |1].

1. Introduction

In this paper we want to look at the “ground state energy,” e(4) = infspec( — 4 + AV),
of a Schrédinger operator — 4 + AV for Vs which do not decay at infinity — think
of periodic or almost periodic problems. In particular, we want to see when e(4) is
strictly negative for all A + 0. There is a large literature on this problem and the
weaker e < 0 result, most of it in one dimension. These examples typically have
only essential spectrum so e(4) < 0 is equivalent to solutions of — u” + AVu =0
having an infinite number of zeros. The one-dimensional results often are phrased
in these terms (“ — d?/dx?* + AV is oscillatory™).

The earliest results we are aware of are those of Wintner [19], who studied
2

;Tci + AV with V(x + 1) = V(x). He showed that

/1} V(x)dx — cﬁ} V2(x)dx < e()) < /1} V(x)dx (1.1)
0 0 0

holds with C = 1. Kato [8] then improved this to C = 1/16. The question about
the optimal C has been raised in [6,8,12,19]. In Sect. 6 we will show that
C = (2m)~? is best possible, the first inequality in (1.1) being strict for 4 = 0.

In Sect. 5 we will recover Kato’s result.

A series of authors (Moore [11], Blumenson [1], Ungar [18] and Stanék [17])
proved in the one-dimensional periodic case that e(d) <O for all A+0 if
j(l) V(x)dx = 0 (note the strict inequality). By a Bloch wave analysis and eigenvalue
perturbation theory [13], this result is easy, not only in one dimension but also
for v-dimensional periodic potentials (Eastham [4, 5] only proves e(4) < 0) if V
is periodic with | V(x)dx = 0.

unit cell
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For the almost periodic one-dimensional case, various authors (Markus—
Moore [9], Scharf [15] (who only showed e(4) < 0), Coppel [2], Halvorsen—
Mingarelli [7], Dzurnak—Mingarelli [3] — see the review in [10]) proved e(1) < 0
under some circumstances.

Our original goal was to understand how to prove similar results for multi-
dimensional almost periodic models. In fact, we found such general methods that
we feel the problem is rather transparent. Our results do not assume that V is
almost periodic but only that it persists at infinity in some sense. For short range,
V, the results are very different. For example, if /' has compact support then
e(4) =0 for 4 small if v = 3. So our hypotheses will have to be such that they
exclude the short range case.

Our main results in this paper are three theorems, all in IR”. The first theorem
uses an abelian average

Av, (V) = [e™*® V(x)dx/ e = dx ,
where, as usual, (x> = (|x|* + 1)/%
Theorem 1. Let V obey:

@) Vis CH(R") with | V|, and | VV|,, finite.
(i) Av,(¥)— 0 as 0.
(iii) Av,(V?)—>a>0aselO.

Define e(2) = inf spec (— 4 + AV), A€ R\{0}. Then, e(1) < 0 for all 1€ R\ {0}.
Indeed for some b>0and all 0 < || =1,

e() < — bi?.

Remarks. 1. 1t suffices that Av, (V) — 0, Av,, (V*) - a > 0 for some sequence ¢, | 0.
2. Notice how we avoid the short range case where Av,(V?)— 0.
3. Our proof shows one can take

b=a*/[IVVI% +8IVI5]

and in fact | V|2 can be replaced by lim, o Av,(( ﬁV)z) if it exists.

Given Theorem 1, it is natural to ask about a lower bound on e(4) quadratic in
A. The hypotheses of Theorem 1 do not suffice for this, for consider V(x) = tanh(x)
in one dimension. It is easy to see that the hypotheses of Theorem 1 hold but
e(2) = — |A|. The key to eliminating linear terms is to deal with averages centered
at arbitrary points, not just at the origin. Let C,(a) with a € IR* and o € [0, c0) be
the hypercube in R” of side « centered at a. Define

A:()= sup {a'“ { V(x)dx}
inf Cala)
and C.(@); all a; all a > 1

V, =1lim 4, ()

1= o0
Theorem 2. Let V be bounded on R*. Then
lim@= V_, lim@= Ve.

AL0 A10
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Given this result, it is natural to expect that a quadratic lower bound on the
energy will depend not only on A4, (/) >0 but on how fast it goes to zero.
Intuitively, if the ground state is spread uniformly over a distance [, the kinetic
energy is O(I”%). If A, (I) = O(I™ %), then

min (72 — Al7%)
1

is — O(A*>~%). This suggests that the correct condition for a quadratic lower
bound is 4 , (I) = O(I™ ). This is a natural condition in that in the periodic case, if
the average of V' over a fundamental cell is zero, then 4 , is indeed O(I™*). We will
need a somewhat stronger condition:

Theorem 3. Suppose V'is bounded with V = div(W) where W is C1(R”) function and
| Wle < 0. Then

ez — 22| W3 .

Notice that by Gauss' theorem, if V = div(ﬁ/), then jC @ V(x)dx is a surface
term, so || W], < oo implies that 4, (I) = O(I™"). In one dimension, we can show
that A, () = O(I" ") is equivalent to | W|, < 0.

2. Upper Bound: Proof of Theorem 1

Let ¢,(x) be the trial vector
@(x) = e [leTe 2,
Then a simple calculation shows that

1D, I, = O(*)

for any multi-index «. In particular (with H = — 4 + AV on H?*(R")),
{pe, Hp,) = O(e%) + AAV,(V) , 2.1
$pe, H?¢. ) = O(e?) + 22Av,(V?), (2.2)

if V' is bounded. Finally,
{p., H?¢,> = (VHo,, VHo,)> + I{Ho,, VHo,) .
If V' is bounded
(Ho,, VHp,» = 0(e?) + 12Av,(V3).
If VV is bounded
{VHe,, VHp,> = 0(c*) + A>Av,(V(V)?).
Thus
(e H*@p> = 0(e?) + Av, (A V3 + 12(V1)?). (23)
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Proof of Theorem 1. Suppose e(4) = 0. Then H = 0 and so by the Schwarz inequal-
ity,
(Pes H* 9. )* < @, Hpe) (o, H> ) . (24)
Using (2.1-3) and taking ¢ to zero, we see that
2*[lim Av,(V?)]? < A[lim Av,(¥)] [lim Av,(A3 73 + 22(VV)3)]

which is impossible, since by hypothesis the left side is A*a* > 0 and the right side
Zero.

To get a bound on e(4), use the fact that (H — e(4)) = 0, so (2.4) holds if
H is replaced by H — e(4). Since {¢,, Hp,» >0 as ¢—0, in that limit
{p,(H — e)*¢) = <o, H*¢) + €* 2 {p, H?p). Thus

Ma < e AN VYL + AP IV — e(IZ]
Since we consider only [A| £ 1 and |e(1)| = | V|, We see that
Aa® < eMILIVVIL +8IVIL]. U

3. Lower Bound: Proof of Theorem 3

By hypothesis ¥ = VW. Thus, if ue Cg:
Cu, Vuy = [(V W) |ul?dx
= — [WV|u?dx
o
[<u, Vud | S 2 Wl | Vit 2 el -
If |ull, = 1, we have that
(= A+ AV)uy z | Vu 3 = 221 W o, || Vull,
z - 2wl
by completing the square. Since Cg° is a core for H, we have that

ez — 22| WIZ, .

4. Calculation of D*e/D21 at A = 0 (Proof of Theorem 2)

We will only prove lim;;o4™ ! e(4) = V_ since the other limit then follows by
replacing V' by — V. Given « and a, define , , to be the function which is
Va,a(x) = ¢~ 2 min(a!/?, dist(x, R"\C,(a)))

s0 Y, , vanishes outside C,(a), is 1 on C,(a) with a collar of size «'/* removed from
the set and “linear” on the collar. Since V is bounded

Waas Va,ad/Wayas Vo> =77 | V(x)dx + 0@~ 1?).

C.(a)
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Moreover, it is easy to see that
Vasar VWayad/Wayas Y0 = O™ ?) .
It follows from the variational principle that
e(A)SAV_ forallA=0.
To get the lower bound, we introduce a map t, from L?(R") to L*(R") by

)X =a"" [ Y(y)dy if xeCyla),acaZ’.

C.(a)

We claim that
o —t(@)3 £ c? || Vo3 4.1)

for ¢ € Q( — 4) and will prove this below. Since 1, is positivity preserving, self-
adjoint and preserves the L!(IR") norm

(@< lel}.

(This also follows from the Schwarz inequality.)
Without loss of generality, we can suppose e(4) < 0 for 4 = 0, e.g., replace V by
V— V|, — 1. In that case for A < 1/2, find unit vectors ¥, so that

Ya (=4 + AV Se(H(1 = 7). (4.2)
Since e(4) < 0, we have
Yo =AY AVl - (4.3)
Write
Y, (—A+AVW>=a; +a,+asz +ay
with (« to be fixed later)
ay =W — w2), AV(Yz — w(Y2)))
az = 2Re{t,(Y ), AV — 1(¥2))D »
az = {t(Y2) AV (2))
as = Yo — AY3)
as 2 0 and by (4.1) and (4.3)
lay] + |ay] £ cA?a? + cA3a.
Clearly, a3 = AA - («). Thus, by (4.2),
1—-Mite(l) = A_(0) — cha® — cA?q .
Take o« = In A~! and find that
limA~te(l) = V-

completing the proof of Theorem 2 modulo the lemma below. O
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Lemma 4.1.

lo — (@)l < co®|| Vo3 .

Proof. If we prove this for ¢ supported in a single closed cube, C, where ¢ need not
vanish on dC (Neumann form), we obtain it for all ¢ by summing all cubes. By
scaling we can take o = 1. So in a unit cube we need to prove that with P the
projection onto the functioin 1:

Il = Pol3<clVel3 (4.4)

with || V|3 the Neumann form. Since — Ay has 1 as eigenfunction with eigen-
value 0 and first eigenvalue 72, (4.4) holds with ¢ = ™2, O

Remark. The lower bound proof can be pushed to get a power lower bound on e(4)
if, say, A_(x) = O(x~ ') but not a — A% bound.

5. Examples

Let us first remark that using a special case of Theorem 3, Kato [8] obtained
= 1/16 in (1.1).
Next consider the almost periodic case. By an elementary calculation
Av,(V) - u(V), the Bohr mean of V. Here is a typical result that follows directly
from our theorems:

Theorem. Let V(x) = Z c, e2"% on IRY, where a, are arbitrary vectors and:

(i) c, are not all zero,
(i) Y, leal(loml + o] ™) < 0.

Then — al? < e(A) £ — bA? for some a, b > 0 and || small enough.

Proof. Let

(27(1) 1 p2mid, %

W(x) = Z Cn

l n|2
which converges uniformly by (ii) so W is uniformly bounded. Clearly V-w=v
and by hypothesis

I VVIloo<27tZ|c IEARSER

so Theorems 1 and 3 apply. O
As a final example of Theorem 3, consider the Hydrogen atom Hamiltonian
H= —A4+1V, V= —|x|"!.

Then V(x)= V-W where W(x)= —4X/|%| and |W||%Z =% Since V is not
bounded and W is not C?, the theorem as stated does not apply but the proof does!
The net result is

e(A) = — A*/4
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which is exact! It is exact, of course, because the ground state obeys we ﬁgo =co
for the ground states (so the Schwarz inequality is an equality).

6. Two applications of the Riccati Equation

In this section we shall find the optimal constant in the Wintner-Kato estimate
(1.1). Moreover, we shall give an alternate proof of Theorem 1.

Theorem. Consider 0 + V e L*(R/Z) with {V):= f; V(x)dx = 0. Then
e(V)> = C| V|3 (6.1)
for all such V and C = (2r)~2 but for no smaller C.

2

Proof. H = 2 + V has a ground state u >0 in HZ(IR/Z). Its logarithmic
derivative m = u'/u satisfies
{m) =0 (6.2)
and the Riccati equation
m+m*+eV)=V. (6.3)

Taking averages before and after squaring gives
—e(V) = (m?)
and
V2 =Lm +m* — (m?>)*)
= {(m)*) + {m* — {m?>)*>
=4+ B, (6.4)

since the cross term is a perfect derivative and thus averages to zero. Here B > 0.
Indeed, m* = {m?) and m continuous imply that m is a constant and thus zero by
(6.2). But then ¥ =0 by (6.3). Also by (6.2), 4 = |m' |2 = (2n)* | m| % So we get
V%> — (2n)?e(V). Taking m(x) = A cos(2mx) the inequality for A4 is saturated,
—e(V)= A?/2 and B = 0(2*) as A — 0. Thus

2
i V13
a0 —e(V)

Actually, the weak coupling limit of the Mathieu equation is the only regime where
(6.1) with C = (2m)~2 is (asymptotically) saturated, for we have:

= (2m)* . O

Proposition. Let V be as in the theorem. Then
e(V)
Vi3

ifand only if | V|, = 0and | QV |2/ V|, = 0. Here Q: L*(R/Z) — L*(IR/Z) is the
orthogonal projection onto the Fourier modes with |k| = 2.

- —(2m)72
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Lemma. Let 9 = {me H3(R/Z)|<{m) =0, |m|, = 1} and set
O(m) = ([m'[|3 — 2n)*) + (Iml|g — 1) = &, (m) + P, (m)
for me 9. Then
inf @(m) > 0.

me2

Remarks. 1. ®(m) is well-defined since H? = L* (with bounded embedding).
2. infpeo @ym) =0 fori=1,2.

Proof. Let {m}, me 2 be a minimizing sequence. Then 27 ||m||2 |m' ||, is
bounded. Thus, upon passing to a subsequence, m™,m, in H? by the
Banach-Alaoglu theorem (see e.g. [14]). Since the embedding H? = L? is compact,
m—m, in L% Thus, |myll, =1, {m,y =0, ie. my, € 2. Moreover, |my|, <
lim [|m |5, [ my 4 = lim|[m]l,, showmg that inf,,., ®(m) = ®(m,). Now &(m,) =0
is impossible since it implies Om, = 0 and then ||m,||s — 1> 0.

Proof of the Proposition. Note that — e(V) = |m|3 > 0 for ¥ # 0. Thus

VIE L, (Il z> <n it >
— (27?2 = -2 — 6.5
—er) M (nm@ Co )+ gz~ Il (6.5)

= &,() + || ml|3 P, ()

miz
>——=_P(m
2T imp ™

where it = m/||m|,. Then ||V |3/( — e(V))— (2n)* implies |m'[|,/m|,—2n by
(6.5) and ||m|, — O because of the lemma. Therefore,

Im? e _ImlE _ '3
[mly  lmlz~ [m|2
and
I V1l
N
[m]2

because of (6.3). In particular, | V], —>0. Moreover, |(1 —Q)m|,=
2n|(1 — Q)m|l, and |[Qm'[|, = 4n||Qm |, imply

lm' 113 = ) (Ilm 12 — 11 @mlI3) + 1| Qm' |13
1
z (2m)* |m|13 + <1 _4—1> lom'|I3 .

Thus, [ QV2/IIml2 < (1Qm' |2 + [ m?|2)/Imll, > 0, showing | QV |2/ V ]2 —O.

Conversely, let |[[V]|,—-0, | QV||2/I| Vi, - 0. By (6.4), we have
2n|mlly < |m' |2 £ | V2 and [ m? ||, = [[m|% < const. | m' |3 < const|| V3. Using
(6.3) we estimate

Imls I
1= =1—const|V|,,
v =, IV

0ml _1QVls Il

Vi = Vi 1V
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Then
Imli3 = 11 — Q)m|3 = Cm)~2II(1 — @Q)m' |3 = 2m) " 2(Im' |3 — 1 @m'|13)
implies |m|,/|| V>, = (2r) L. Now || V||3/( — e(V)) = (2m)~ 2 follows from (6.5).00
Based on the Riccati equation, we can give the
Alternate Proof of Theorem 1. By the Allegretto—Piepenbrink theorem
—Au=(e—Vu
has a non-negative distributional solution u. It is continuous and satisfies the
Harnack inequality
u(x)

cl<—=<c (xLlylsD.

u(y)

Here ¢ denotes a generic constant depending only on a bound on || V|, or, as
below, on || VV| . as well. See e.g. [16] for the above. Then

ul)= [ Gplx,y)du(y)dy+ [ P(x,pu(yda(y) (xI<1), (6.6)

lyl<1 Iyl=1

where G and P are the Dirichlet-Green’s function respectively the Poisson kernel
for the unit ball. Indeed, both sides share the same boundary values at |x| = 1 and
the equal upon applying 4. As a result Vu(x) is continuous and

|Vulx)| = ¢ |ys.u<p1|u(y)l (Ixl<3).
Letting m = Vu/u, we then find
Imx)| ¢ (xeR)
by translating the origin and using Harnack’s inequality. Again, m satisfies the
Riccati equation
m +Vm=V—e
showing | V- m(x)| < c for x e R".

Let us set { f) = lim,| o Av,(f) for functions fon IR, provided the limit exists.
Then

fe=*® V-m(x)dx

AVS(V'WZ) = j‘e—£<x>dx

=0(g)

after integration by parts, and hence
e= — <m2> )
V2 SV = ef?> = (m? + V-m?) < 21im (Av,(m*) + Av(V-m)?) .
el 0
Here Av,(m*) < c{m?*) because m is bounded, and
Av,(V-m)? = Av,(V-m) (V — e — m?))
S VV e Ave(m®)'? + cAv,(m?) + O(e)
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by integrating by parts, using the Schwarz inequality and the boundedness of m,
V+m. Summing up:

V2 20| VWVl (m? D12 + c(m?)

which shows that (V?) >0 implies — e = {(m?) > 0. Also, replacing V by
AV(]A] < 1) does not affect ¢ and implies e(1) £ — cA? with ¢ > 0. d
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