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Abstract. We use Renormalization Group methods to prove detailed long time
asymptotics for the solutions of the Ginzburg-Landau equations with initial data
approaching, as x —• ±oo, different spiraling stationary solutions. A universal pattern
is formed, depending only on this asymptotics at spatial infinity.

1. Introduction

Parabolic PDE's often exhibit universal scaling behavior in long times: the solution

behaves as u(x, t) ~ t 2 f*(t 2 x) as t —> oo, where the exponents a and β and the
function /* are universal, i.e. independent on the initial data and equation, in given
classes. This fact has an explanation in terms of the Renormalization Group (RG)
[10, 11, 4], very much like the similar phenomenon in statistical mechanics.

In [4] a mathematical theory of this RG was developed and here we would like to
apply these ideas to a concrete situation, namely the Ginzburg-Landau equation

iι = d2u + u — \u\2u, (1)

where ir.R x R —>• C, is complex, d = J^ and the dot denotes the time derivative.
Equation (1) has a two parameter family of stationary solutions

(2)

and a natural question is to inquire about the time development of initial data u(x)
which approach two solutions at ±oo:

χ Hm^ \u(x) - uq±θ±(x)\ =0. (3)
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This problem has been extensively studied for Eq. (1), with u real and u(—oo) = 1,
u(oo) = 0 (i.e. q_ = 0, q+ = 0) [1,3]. Then the solution takes the form of a
propagating front. This occurs because u(x) — 1 is a stable stationary solution, while
u(x) = 0 is an unstable one.

For complex u, the solutions (2) are stable for q2 < ^ (the Eckhaus stable domain).
An interesting problem is to analyze the behavior of a front connecting a stable and an
unstable solution for complex u, since (2) would then describe a non-trivial pattern
emerging in the laboratory frame. A "phase diagram" giving the values of q± for
which fronts exist can be found in [7] as well as an interesting review of related
problems. The linear stability analysis of such fronts has been carried out in [2,9].
Going beyond the linear analysis seems to require new mathematical techniques,
since the study of fronts for real u [1,3] depend crucially on the applicability of the
maximum principle.

We believe that the RG is the right method to study such problems, and illustrate
this in the present paper by considering a related question, suggested in [6], namely
we take q± in (3) small, belonging to the Eckhaus stable domain.

In [6], it was shown that these boundary conditions do not produce phase-slips,
i.e. the amplitude of u does not vanish. However, it was unknown whether u(x,t)
converges for t large. We show that actually, it does not converge but oscillates. We
prove a detailed long time asymptotics for the solution of (1) in this situation. As a
consequence, we shall show that, for any interval /,

sup K M ) " eiViφ*uq*θ*(x)\ < % (4)
xei Vt

where the constants q*, φ*, and θ* depend only on the boundary conditions (3). For
the detailed asymptotics, see theorem in Sect. 3.

2. The Renormalization Group Idea

Following [6], we write
u = (l- s)eiφ. (1)

Equation (1.1) becomes in these variables

s = d2s - 2s + 3s2 - s3 + (dφf - s(dφf = d2s -2s + F(s, dφ),

G ( 5 , ^ Qφ) W
1—5

with the initial data (it will be convenient to take the initial time as t — 1)

lim s(x. 1) = 5 . , lim \φ(x, 1) — φ+x — #+| = 0, (3)
x ^ ± o o x—>±oo

where 2s± = F(s±,φ±). We will specify below the precise space of initial data (3).
We will prove the following asymptotics as t —> oo:

M O (4)
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again in a certain Banach space. The functions 0*, 0*, s*, r* are universal, depending
on the initial data only through the boundary conditions (3). They are smooth and
therefore u will have the asymptotics (1.4), with

0* = 0*(O), q* = Φ*'(O), 0*=0*(O) .

Before going to the proofs, we will explain in a heuristic fashion the RG idea
behind the proof.

There are two mechanisms giving rise to the asymptotics (4), (5): the diffusive
approach of φ to the scaling form (4) and the "slaving" of s to follow whatever φ is
doing, due to the linear —2s term in (2). We will now explain the first mechanism
in the context of an equation for φ only. We will see in the next section that this is
precisely what the slaving mechanism produces: 5 in (2) will be effectively "slaved"
to a function of dφ only.

Thus, we consider the equation

φ = (l+ aφφ, d2φ))d2φ, φ{x, 1) = f(x) (6)

with the boundary conditions (3) for the initial data /. We assume that a is analytic
around the origin.

The RG analysis of (6) proceeds as follows. We fix some (Banach) space of initial
data 9*. Next, we pick a number L > 1 and set

φL(x,t) = Laφ(Lx,L2t), (7)

where a will be chosen later and φ solves (6) with the initial data / e 9*. The RG
map R'.y —> 9* (this has to be proven!) is then

(Rf)(x) = φL(x,l). (8)

Note that φL satisfies

ΦL = (1 + OLOΦLI d2φL))d2φL , (9)

with aL(x, y) = a(L~l-ax, L~2~ay).
We may now iterate R to study the asymptotics of (6). R depends, besides a, on

L and a. Let us denote this by RL a. We have then the "semigroup property"

Each R on the RHS involves a solution of a fixed time problem and the long time
problem on the LHS is reduced to an iteration of these. Letting t = L 2 n , we have

φ(x,t) = t~^(RLnJ)(xt-1/2). (11)

Now one tries to show that there exists an a such that

aLn -> α* , RLnJ -> / * , (12)
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where

RL,a*f = f* (13)

is the fixed point of the RG, corresponding to the scale-invariant equation φ =
(1 + a*)d2φ. Then, rescaling x, the asymptotics of the original problem is given
by

φ(xtι/2,t)^Γ^f*(x) (14)

What are a and /*? To understand this, consider first the trivial case a = 0. This
is just the diffusion equation with initial conditions increasing linearly at infinity. This
problem is of course exactly soluble. We have

[
J

y~x) f(Vty)dy,

— t̂—»oo φ—% H~ (0_i_ ~~ Φ-) (% ~τ~ 2c?)e(cc) = ΦQ (X) ,

x _ i 2 dy
where e(x) — f e 4y In RG terminology, we have the "Gaussian" fixed

-oo λ/4π
point φ% corresponding to this φ± boundary condition problem. It is easy to check

that φ$ is a fixed point for the map (7) with a = — 1.
How about a φ 0? We take again a = — 1 whence the fixed point equation is

(16)

where α*( ) = α( ,0) and the fixed point is the scale invariant solution

(17)

( x
We get I replacing —= by z

2 dz

with α* = α* ( — </>* ) and, for small φ. , we look for a solution

(19)

where ^(±oo) = 0 and φ^ is the Gaussian solution (15), which solves (18) with
α* = 0. This is easy to solve (see Proposition 1 below or the proposition in Sect. 4
of [4]).

Consider then 0*. We set

0 ( M ) = 0 * ( M ) + βCM), (20)
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( x λ
where, with an abuse of notation, φ*(x,t) = Vtφ* ( —^ ) and φ* is given by (19);
0 solves (6). Then, Vv*/

(ad2φ - α*<920*) (21)

with 0(±oo) = θ±. Now we set

θL(x,t) = θ(Lx,L2t) (22)

which, using dιφ*(Lx,I?t) = Lι~ιdιφ*(x,t), satisfies the equation

ΘL = d2θL + L(a(dφ* + L~ιdθL, L~ιd2φ* + L~2d2θL)

x

Thus, reasoning as above, we expect

θLn -+ θ* , (24)

/ X \
where θ*(x, t) = 6>* ( — ) satisfies the L -• oo form of (23):

\vt/

θ* = d2θ* + α*5 2 ^* + (ax(dφ*,0)dθ* + αy(50*,O)a20*)a2(/)* . (25)

This is a linear equation, easy to solve, whose solution is a small perturbation of the
"Gaussian" solution [which solves (25) with a = 0],

(26)

Actually, 0Q (Z) = 0Q (2;), where 0Q is given by (15), and ΘQ (Z) is a fixed point of
the map

L 2 d 2 (27)

i.e. of (7), (8) with a = 0 and a = 0.
Finally, one sets

φ(x, t) = φ*(χ, t) + θ*(x, t) + ψ(x, t) = Vtφ* ί-jλ + θ* ί^Λ + ψ(x, t), (28)

and one studies the asymptotics of ψ in the same manner. The last two steps (θ and
ψ) were carried out in [4] in great detail. We will now combine this RG approach
with the slaving principle to arrive at (4), (5).
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3. The Full Model

We may summarize the previous discussion in a more conventional language: we look
for solutions of (2.2) of the form

φ(x, t) = φ*(x, t) + θ*(x, t) + φ(x, t),

s(x, t) — s*(rr, t) + r*(x, ί) + υ(x, t),

with
f x \ I

ί x \ 1
\X) Z) — S I —j=. I , / \X) i) — —j=. ΐ

(2)

we stick to this abuse of notation in order not to proliferate symbols, but we shall

use — or prime for the derivative with respect to the single argument of 0*,#*,

etc , as opposed to d for the partial derivative with respect to x j . The boundary

conditions are

lim \φ*(x) -φ±x\=0, lim \θ*(x) - θ± \ = 0,

^ ± O ° . * , X ^ ± O ? * (3)
nm s \X) — S\ i — u , nm v \x) — u ,

x—»±oo x^-άzoo

and θ are solved by a fixed point method near the Gaussian solutions

Z + 2 ^

and 5* and r* are "slaved" to them.
Thus, let us set

s* = s*(dφ*), (5)

where s* solves the algebraic equation —2s* + F(s*, dφ*) = 0, which is equivalent

to 1 - s* = Λ/1 - (dφ*)2, so that s* is of order \(dφ*)2 for small ( ^ * ) . Note that,

I ί X \ ( \ I

by (2), dφ*(x,t) = φ* ί —= 1, so s* ί ^ j = s*(0* ). Then 0* is the solution of

φ* = d2φ* + G(s*,ds*,dφ*), i.e., using (2),

Id

1-8*

= _ 2
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We set

0* = Φo + Q

199

(7)

and solve the fixed point equation (6) in the space of CN functions equipped with
the norm

0<m<N
S UP dzr>

Q(Z) (8)

Then we have

Proposition 1. For any N, there exists an ε > 0 such that, for \φ±\ < ε in (3), (6)
has a unique solution with

\\g\\N<Cε\ (9)

and then

Next, we turn to θ* and r*. Set

s*\\N<Cε2.

whereby

and

where

φ = φ* + <9, 5 = s* + r,

θ = d2θ + G(s, ds, dφ) - G(5*, δs*, dφ*)

= d2r - 2r + F(s, dφ) - F(s*,dφ*) + Hλ

(10)

(11)

(12)

(13)

Note that Hx(x, t) = ί""1^ - ^ . r* is now taken [recall (2)] to be the part of (13)

proportional to t~1 / / 2: we solve the linear equation

2r*=DFa*tdφ*(r*,dθ*) (15)

1 / //x \\
for r*(96>*(x, t)) = —= r * [θ* -η= , w h e r e DF is the derivative of F, i.e.

V* V \vtJJ

DFa*tdψ*(r*,dθ*) = 6s* *dθ* 2s*dφ*dθ*a*tdψ*(r,dθ) = 6sr ~ 3^*2r* + 2dφ*dθ* - 2s

Thus, r*(dθ*) is of order εdθ*, and we let 0* solve

θ* = d2θ* + DGa*ida*tΘφ.(r*,dr*,d

where DG is the derivative of G, i.e.

DGs*,d8*tdφ*(r ' δ r ' δ < 9 ) - - ( 1 _ g > κ ) 2 r ~

(16)

1-s*
• a β * -

1 - s *
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and we get

II II II

V ~dz2~2Z~dij = ~ (1- s*)2 ~ 1 - 5 * ~ 1 - 5s*

This is solved by setting
? * = 0 * + τ , (18)

and we have

Proposition 2. For any N, there exists an ε > 0 such that, for \θ±\ < ε in (3), and

s*, φ* as in Proposition 1, (16) has a unique solution with

\\r\\N < Cε3, (19)

and then
\\r*\\N<Cε2. (20)

We can now write the final equations that we will study. In accordance with (1),
we set

θ = θ*+ψ, r = r*+υ, (21)

whence, from (12), (13), (15), and (16), we get the equations

φ = d2ψ + [G(s, ds, dφ) - G(s* + r*, δ(5* + r*), d(φ* + θ*))]

+ [ G ( s * + r * , 9 ( 5 * + r *

A(v, dυ, dψ) + D, (22)

ΰ - d2v - 2v + [F(s,50) - F ( 5 * + r*, 9(0* + (9*))]

= d2v -2υ + B(υ, dφ) + E, (23)

where H = Hγ + H2 and

• 0*)) - F(s , 90*) - DF3*idφ*(r*,dθ*) + fl",

(24)

and we have separated the inhomogeneous terms in (22), (23) for future convenience.
We will now specify the initial data for (2.2) that we will consider. We take a

perturbation of a "Gaussian" data satisfying the boundary conditions,

φ(x) = φ(x, 1) = 0O* (x) + 0*(a;) + φ(x), (25)

s(x) = s(x, 1) = s*(dφ%(x)) + r*(dθ%(x)) + v(x), (26)

and describe now a Banach space of ψ and v.
Due to the fact that Eq. (22), (23) involve second derivatives in the nonlinear terms

(υ is coupled to 0ψ and ψ to dυ), it is useful to use the Fourier transform to control
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smoothness. Due to the fact that they involve functions like </>* that do not decay at
infinity, we need to be careful about the spatial behavior at infinity. We need norms
that combine these two aspects, i.e. the phase space behavior of φ and v.

Thus, let x be a non-negative C°° function on R with compact support on the
interval (—1,1), such that its translates by Z, χn = χ( — n), form a partition of unity
on R. For / G C 2 , we then introduce the norms, for j — 1,2,

= sup (1 + n 4) (1 + k2) | (27)

Roughly, | | / | | ( j ) < oo means that / falls off at least as x~4 at infinity and f(k) as
k~2. Note that r*, the derivatives of θ* and s* and d2φ* have a norm bounded by
ε (actually, by ε2 for s* and r*). To check this, use the explicit form (2.15), (2.26)
of φl, 6$ and the bound | | / | | ω < C\\f\\N for TV > j + 2. The n 4 could be changed

to anything increasing faster than n 7 , for 7 > 1, but not faster than e 8 [coming
from (8)]. These norms for different choices of χ may be shown to be equivalent.
The reason we need different norms for v and ψ has to do with the slaving and will
be explained below.

Our main theorem may now be stated.

Theorem. For any δ > 0 there is an ε > 0 such that for \φ±\, |0 ± | , ||V>||(2), IMI(1) < ε,
Eq. (2.2) have a unique solution satisfying

lim t2(1-δ)\\φ(VtΊt) - Vtφ*(.) -
t-+oo

lim tι~δ

= 0,

8(Vt;t)-3*(φ*'( ))-^=r*(θ*\ y)
(1)

= 0,

(28)

where 0* and θ* are given in Propositions 1 and 2 and s* in (5) and (15).

Remark 1. The convergence in the norm (27) implies convergence in Lι and in L°°,
see Eq. (47) and (48) below, applied to i = 0. Thus, using 1 - 5* = y/l - (dφ*)2,
we have, for any interval /,

sup \u(x,t) —
xei

The "anomalous" term φ*(0) equals π 2(φ+ - φ_) + &(ε3) and q* = (dφ*)(O) -

Remark 2. The theorem does not depend much on the specific form of F and G in
(2.2). For a more general application of the slaving principle, see [5]. One obtains
easily more refined asymptotics, as in [4], namely the error in the first equation in

Proof. Using the propositions (where we always assume that we have TV as large as
needed), we can replace in (25), (26), ΦQ,ΘQ by the true fixed points (/>*,#*, and still
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denote by ψ,υ the remainder. We consider Eq. (22,23) and solve them by the RG
method. Thus, let

ψn(x, t) = ψ(Lnx, L2nt), Ψn(x) = ψn(x, 1),

υn(x, t) = Lnυ(Lnx, L2nt), Vn(x) = υn(x, 1).

We have
Ψn+ι(x) = ψn(Lx, L2) Vn+1(x) = Lvn(Lx, I2), (31)

and ψn, vn are the solutions of the equations

φn = d2φn + An(vn, dvn, dφn) + Dn , (32)

vn = d2vn - L2nvn + Bn(vn, dφn) + En , (33)

obtained from (22,23) upon the scaling (30). Concretely, let sn = 5* + L~ n r* +
L~nvn and 9 0 n = dφ* +L~ na((9* + ^ n ) . Then, using s*(Lnx, L 2 n Q = 5*(x, ί) and
the corresponding scaling properties of r*, 90*, <9#*, we get

A n = L 2 ^[G( S n , L - n β β n , dφj - ( . . . ) | ^ = t l n = 0 ]

(34)

|p|>0

where p 2 , p 3 = 0,1, |p| = px + p 2 + p 3 and

% { } (1 5 * L - n r * ) l + P l ' ( 3 5 )

^ P = 1 - Pi - P 2 - P3

In the same way

(36)

a = α | r * = 6 > * = 0 . Note that in (34) each term has dp < 0, while in (36), we have
<ip < — 1. Bn has a similar expansion

|p|>0

[where in fact |p | < 3 see (2.2)]. Finally,

En = Σ Ln(3-pi-pi\r*pidθ*pi + LnHx + H2 . (38)

Note that here we have 3 - pλ - p2 < 2 in (37) and 3 - px - p2 < 1 in (38). We
will show inductively in n that

ίC\ n

\\φ |K2) \\v IK1) < [ — I e = ε (39)
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Here and below, C denotes a generic constant, which may change from place to place.
Note that (39) implies the theorem, since, for any 6, we can choose L large enough
so that (28) holds, remembering that t = L2n\ ε will be chosen in the course of the
proof, in a L-dependent way.

Thus, let us assume (39) for n and prove it for n -f 1. We need to solve (32,33)
with initial data \Pn(x), Vn(x) up to time L2. This is done by writing (32,33) as
integral equations:

ί-l ί-l

φn(t) = (e ( ί" 1 ) aVn + / dsesd2Dn(t -*))+ J dsesd2An(t - s)

ί - l

υn(t) = (e(t-l)id2-2L2n)Vn + I dses(d2-2L2n)En(t - s)) (40)

o
ί-l

+ ί dses(d2-2L2n^Bn(t - s)

with obvious notations, and where Φn^vn r eβΓ°up the first two terms; as in [8], we
use the contraction mapping with the norms

H ^ = sup I K ^ l p . (41)
ίG[l,L2]

We shall show that T(φ,υ) = (ψo

n,v°n) + (^n(ψ,v),J§>n(ψ,v)) maps the ball

B = {(ψ, v) \\ψ - ΨnW^L + \\v - V^W^L < εn) i n t o i t s e l f a n d i s a contraction there.
We need to estimate the norms of ^ and Jθ. Consider ^ first, and a generic

term in (34):
ί-l

α(x, p) = ί ds ί dyesd\x - y)ap(y)Fp(y), (42)

o

where Fp(y) = (vPιdυP2dψP3)(y1t - s) and αp(y) = ap(y,t — s). We localize the y
variable:

ί-l

a(x, \>)=Σ i ds I dyea*(x - y)χrn(y)αp(y)Fp(y) = ^ αm(χ, p). (43)
meZ Q rnGZ

We want to bound, for i < 2,

βml(p) - sup |(1 + k2)Xιd^m(k, p) |. (44)
k

We distinguish between \l — m\ > 2 and \l — m\ < 2.
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,2,
(A) Let first \m — l\>2. Then χm and χι have disjoint supports and esd (x — y) is
smooth uniformly in s. We write

= S U P

t-\

J dxe~zkx J ds j dy(l - d2

x) (Xι{x)dlesd\x - y))

(45)

and estimate the various factors on the RHS.
First, we use, for j < 4, s < L2 — 1,

where CL denotes a constant depending on L; (46) holds on the support of χm and
χv To bound Fp(y), note first that our norms (27) imply the following L°° and L1

bounds. First, for any function w,

= Σ \Xι(x)dιw(x

f

)\ < Σ ί dklxt

dk(i <C\\w\\ (47)

for i < j , and secondly, by Schwarz

We will see below that

so that, for (ψ, v) in B,

(48)

(49)

Finally, from (35), (2.15), (2.26) and the propositions, we have

(50)

(51)

Now we bound (45): the x integral is controlled by Xι(x) or its derivatives, the
s integral is less than L2 and we use (47) with w = v or ψ for all factors in Fp(y)
except one, for which we use (48):

< CLε(\\υ\\(l}
m 4 ) ' 1 . , (52)

|p|>0
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We get ε from (51) if p2 or p3 = 0, or, otherwise, from (50), because we have then

a nonlinear term in \\v\\L , \\ψ\\^L .
(B) Let now \m — l\ < 2. The difficulty is that we do not have (46) for s close to
zero. We will use Fourier transforms. Let 0 m E CQ°(R) be such that φmχrn = χ m

and denote φmap by fm. Then

^m(k,j>)\ < Jdsdpdqlx^k - p)\ \p\ιe-sp2\fm(p - Fp(q)\ . (53)

Let us consider the various factors on the RHS. Since χ is C°° with compact support,
we have

\χt(k - P)\ = \e~i{k-p)lχ(k - p)\ < C r(l + \k - p\rΓι (54)

for any r.

For / m , note that due to (2.15), (2.26) and the propositions,

J | ( i + (-d2)r)φmap(x)\dx < Cι+^ε3-2pi-^ (55)

TV- 1
for all r < , whence, taking Λ̂  large enough in Proposition 1,2,

\fm(p - q)\ < CCι+piεό-Ipi-pHl + (p - qγrΓι (56)

for any r. Also, f ds\p\ιe~sp < CL2 if i < 2, so, we provided we can show

we can perform the convolutions in (53) to get

Σ L + n Φ ^ / ( P ) < CLε(\\v\\™ + ||^||(L

2))(1 + m V (58)

|p|>0

Equations (52) and (58) yield, combined with (50),

\\^n(φ,υ)\\(2)<CLεεn. (59)

To prove (57), use

| χ ^ i ϋ ( f c ) | < (1 + m 4 ) ~ 1 ( l + fe2)""1!!^!!0^

and
.—. ^ ^ f7ll<mllθ')

<
k2

for w = υ or φ, and perform the convolutions using

[ dpil + ik-pfy^l+p2)-1 <C(l+fc2Γ' (60)
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For JJBn the analysis is similar, but we have to take avantage of the "mass" term,
—2L2n, in (40), in order to control the terms with 3 — px — p2 = 2 in (37) or
3 — P\ — P2 — 1 m (38). It is also here that the difference in the norms (27) enters.

The only change in (A) above is in (46):

(for \l - m\ > 2).
For (B), we integrate by parts dx = —dy in (45) (recall % < 1 here), and we get

dy(χm(y)ap(y)Fp(y)). After going to the Fourier transform, as in (53), we see that we
can use (54), (56) when χm(y) or ap(y) is replaced by its derivative. We also have
(57) for Fp(y) replaced by its derivative, because F does not involve derivatives of
v and contains only the first derivative of ψ. It is here that we use a different norm
on v and ψ. Hence proceedings as before, we end up estmating

t-i

sup(l + k2) [ dse-s{kl+I?n\\ + k2y{ < CL~2n . (62)
k J

We also get L 2n from the integral over s of (61). This cancels the L2n in the leading
term of (37). Therefore,

\\^n(φ,v)f)<CLεεn. (63)

The bounds (49) for the inhomogeneous terms are proved in the same way,
remembering (for Dn,En) that dp < —1 in (36) and 3 — p{ — p2 < 1 in (38).
For Hι,H2, it is easy to see that their norm is bounded by Cε2, because derivatives
of s*, r* are bounded using (10), (20); Ψn, Vn are discussed below.

Thus, we have shown that T maps B into itself (take ε small enough, depending
on L). The contraction is proved in the same way:

(2) - Φ\\(2) (1)

- Φ
2\\ + | K ^ 2 | | ) ,
2\\\(2)

To complete the induction for (39), we need to study the inhomogeneous terms
in (40).

The main task is to show

It is now easier to work in the x representation. We have

Rog= ί G(x,y)g(y)dy (66)

with

G(x,y) = L~\4π(l - L-^y^—^-^Γ^x-L^y)2 _
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We need to bound

\\R0g\\(2) = sup (1 + I4) I / dxeikx [ dy{\ - d2

x) (χ,(αO0* G(z, y))g(y)\
k,l,i<2 J J

<CLZi\\g\\<».

We have

•••'*?/

(68)

~ Φ (Xι(xWxG(χ, y))χm(y)g(y)\

(69)

for L large enough. We used (48) (with dιw replaced by g) and (67). To get the last
inequality, consider separately \m\ < L and \m\ > L. The first sum is controlled by
(1 + m 4 ) " 1 and the second is a Riemann sum which can be evaluated as an integral.
Hence, (68) follows.

The corresponding term for υ in (40) is estimated similarly (it is of course
superexponentially small), and the other contributions to ψ^ and υ^ are &(εεn),
as are those of ^ and 3B, see (59), (63). Equation (39) is proved. D

Proof of the Propositions. Consider first (9). Using (6), (7), and Bφ^ = 0, we have
the equation

, i-(φZ + ρ)

d d2

Put

and solve

h = Bρ

I UJ i Li i I _

ft = $ I — 5 /ι, —Γ- 5 /ι J = /IQ + NQϊ)

in the Banach space defined by (8). h0 is the value of g at ft.= 0, i.e.

* / d ^ Λ d * / d ,.Λ d

(70)

(71)

(72)

d d2

In N(h) we encounter terms like — B~ιh and -—,r B~ιh. We write the latter as
dz dz2

~z^ + l:
2 dz 2

N(h) = Rlh, B~ι

\

= -h+(l- -U4-)B-ιh. Thus,
\2 2 dz)

, 4~ B~lh>z 4~dz dz
(73)
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with R: C 4 —> C analytic near zero. Thus all we now need is

Lemma. The operators B~ι, — B~ι, and z — B~ι are bounded in the norm (8).

dz dz

This lemma was proved in [4] for A = B — | , but the proof holds for B as well.

From the explicit form of G, of φ$ in (2.15), and of s* ί — φ$ ) in (5), we have

IIMΛΓ < Cε while \\N(h)\\N < C(ε2\\h\\N + ε\\h\\2

N + \\h\\3

N). So, we can use the

contraction mapping principle in a ball whose radius is of order ε3 around h0. This

— </>* ) and — φ% is of

Proposition 2 is proven in the same way. It is enough to note that ΘQ solves (17)

with the RHS equal to zero and, setting h = AT, with A as in [4], we get an equation

like (72), with N(h) linear in h and where h0 = the RHS of (17) with θ* replaced

by θ$ we have the bounds ||ft0IU < Cε?> for N = N' - 1, where Nf is the N of

Proposition 1, and \\N(h)\\N < Cε1\\h\\N. D
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