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Abstract. [MGOY] introduced the uncertainty dimension as a quantative
measure for final state sensitivity in a system. In [MGOY] and [P] it was
conjectured that the box-counting dimension equals the uncertainty dimension for
basin boundaries in typical dynamical systems. In this paper our main result is that
the box-counting dimension, the uncertainty dimension and the Hausdorff dimen-
sion are all equal for the basin boundaries of one and two dimensional systems,
which are uniformly hyperbolic on their basin boundary. When the box-counting
dimension of the basin boundary is large, that is, near the dimension of the phase
space, this result implies that even a large decrease in the uncertainty of the position
of the initial condition yields only a relatively small decrease in the uncertainty of
which basin that initial point is in.

1. Introduction

Nonlinear dynamical systems often have more than one attractor, and it is of
fundamental importance to be able to determine which attractor a specified initial
condition goes to. We are interested in the basin boundary, that is, common
boundary between the basins of the attractors. For example, for suitably chosen
parameter values, the Henon map has a fractal basin boundary between the points
whose orbits go to oo (infinity is an attractor) and the points whose trajectories
remain bounded and go to the chaotic attractor. When the basin boundary is
fractal, it follows that there is a non-attracting, compact, chaotic, invariant set in
the basin boundary. Examples with fractal basin boundaries are common and
occur for example in the forced damped pendulum and the forced Duffing equa-
tion.

The fact that a basin boundary is fractal does have important practical conse-
quences. In particular, for the purposes of determining which attractor eventually
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captures a given orbit, the arbitrarily fine-scaled structure of fractal basin bound-
aries implies considerable sensitivity to small errors in initial conditions.

If we assume that in a physical situation initial points cannot be located
more precisely than some ε > 0, then we cannot determine which basin a
point is in if it is within ε of the basin boundary. Such points are called
ε-uncertaίn. It is easy to check that the Lebesgue measure of the set of
ε-uncertain points (in a bounded region of interest) scales like εm~d, where
m is the dimension of the phase space and d is the box-counting dimension
of the basin boundary. Notice that when m — d is near 0, a large decrease
in ε results in a small decrease in εm~d. Cases where m — d < 0.1 are
common. This is discussed in [GMOY] and [MGOY], where it is also
shown that the basin boundary dimension provides a quantitative measure of
sensitivity.

Let M denote either a compact, smooth m-dimensional manifold without
boundary, where m ^ 2, or an interval on the real line. Let F be a C3-diffeomor-
phism from M to itself when m ^ 2, and l e t / b e a C 1 + α-map from M to itself
when m = 1 (that is, there exist constants K > 0 and α > 0 such that |/'(x) —f'(y)\
^ K' |x — y\a for all x, y in M, where/' is the derivative of/). For convenience, in

this paper we assume throughout that for any one-dimensional map/there exists
a compact interval / in the interior of M such that for every x e M there is an
integer n ^ 0 for which the iterate fn(x) of x is in /. Other cases are analyzed
similarly; see [Nul] . For x, y in M we write p(x, y) for the distance between x and y.
From now on, we write g to denote either F o r /

A set S c M is called positively g-invariant if g(S) a S, and is called g-invariant
if g(S) = S. For a closed set S cz M and x e M, write p(x, S) = min {p(x, y): y e S}.
An attractor A is a g-invariant, compact set in M such that (1) there exists an open
neighborhood U of A such that for each x e U the distance p(gn(x\ A) -» 0 when
n -> oo and (2) there is a point x e A such that the closure of the trajectory
{/(x)}^o equals A. For an attractor A we say, the domain of attraction of A
is the set of points x in M for which p(gn(x\ A) -> 0 as n -• oo. In the literature,
for an attractor ,4 the notion "basin of A" is often equivalent with the
notion "domain of attraction of A\ On the other hand, in other studies
of dynamical systems, the notion "basin of A" is defined as the region in M
that is the interior of the closure of the domain of attraction of A. Therefore,
for an attractor A we define basin {A} to be the interior of the closure of
the domain of attraction of A. We would like to emphasize that basin {A}
may include g-invariant sets that are not in the domain of attraction of A;
that is, the trajectories of some points in basin {̂ 4} will not converge to the
attractor A. For an example of this phenomenon, see the Forced Pendulum
Example in [NY1].

The basin boundary is the set of all points x e M for which each open neighbor-
hood has a nonempty intersection with at least two different domains of attraction,
see [GOY]. In other words, the basin boundary is the set of all points x e M for
which there exist two attractors, say Ax and A2, such that x is on the boundary of
both basin {Ax} and basin {A2}.

Throughout this paper, we assume:

(Al) there exist finitely many, but at least two, attractors, say Al9A2, . . . 9 Aq; and
(A2) for each point x e M, there exists an integer /c, 1 ^ k ^ q, such that either

x G basin {Ak} or x is on the boundary of basin {Ak}.
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We may say the basin boundary is fractal if its dimension plus one is not equal
to the dimension of the phase space. The "dimension'Όf this basin boundary can be
any of several concepts.

We define a region to be an open, bounded set in M. The structure of the basin
boundary in a region depends on the long-term behavior of trajectories that start
on the basin boundary in this region. Basin boundaries are invariant sets and
trajectories starting on the basin boundary will asymptote to some set that is
usually not the entire basin boundary. This asymptotic set may depend on the
initial point. A principal idea of the paper [GNOY] is: (a) if trajectories on the
basin boundary in different regions have the same asymptotic behavior, then the
dimension of the basin boundary is the same in these different regions, and (b) if in
two different regions, the trajectories on the basin boundary have different asymp-
totic behavior and the basin boundary is fractal, then the probability is zero that
the dimension of the basin boundary in the two regions is the same.

Let BB denote the basin boundary, and let S be a region that intersects the
basin boundary. We write dim(S n BB) for the dimension (whichever concept of
dimension is under discussion) of the part of the basin boundary which lies in S.
The dimension dim(S n BB) can conceivably take on different values depending on
S. The question of how many such values are possible has been discussed in
[GNOY] and it is proved to be finite for certain one and two dimensional
hyperbolic systems. A natural question which arises is then whether different
concepts of dimension yield the same values for any given region. In [FOY] it is
conjectured that the box-counting dimension equals the Hausdorff dimension for
basin boundaries of typical dynamical systems. Since the box-counting dimension
is often much easier to estimate than the Hausdorff dimension, it is worthwhile to
know to which extent these two notions of dimension are equal.

Consider an initial condition x that is on the basin boundary and evolve it
forward in time, and let L + (x) be the set of limit points of the trajectory {gn(x)}n^o
of the point x. Let L+ (BB) be the union of the limit points of all trajectories that
start on the basin boundary (that is, L+ (BB) = (J{L + (x): x e BB}). For uniformly
hyperbolic systems there exists a finite set S of initial points such that L+ (BB) is the
disjoint union of "basic sets" L+ (x) where x e S. Assume that we have two points,
xa and xb9 on the basin boundary for which L+ (xa) and L+(xb) are contained in the
same basic set. Then, from [GNOY] it is known that if we take a sufficiently small
neighborhood Sa of xa and a sufficiently small neighborhood Sb of xb9 the dimen-
sion of the basin boundary in these two neighborhoods is the same, that is,
dim(Sβ n BB) = dim(<Sb n BB), where dim denotes either the box-counting or
Hausdorff or uncertainty dimension.

In this paper we show that db(S n BB) = du(S n BB) = dH(S n BB), where S is
any region and where db, du, respectively, dH denote the box-counting dimension,
the uncertainty dimension, respectively the Hausdorff dimension (see Sect. 2 for the
definitions).

Our results include the class of one dimensional maps and the "linear" horse-
shoe example presented by Pelikan [P]. In the current literature the notion "fractal
dimension" means in almost all cases "box-counting dimension." However,
Eggleston [E] explicitly distinguished Hausdorff dimension and fractal dimension,
and the commonly used notion "Hausdorff dimension" defined below is "fractal
dimension" in [E]. Takens [T] showed that the Hausdorff dimension and the box-
counting dimension of dynamically defined Cantor sets of hyperbolic diffeomor-
phisms are equal. Some basic sets on the basin boundary are attractors relative to
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the basin boundary, that is, the trajectories of points on the basin boundary near
such a basic set are attracted to it. It is however possible for the basin boundary to
contain basic sets that are not attractors relative to the boundary, and such cases
can be structurally stable. While the Takens' result does not cover such cases, our
results do allow such complications.

The organization of the paper is as follows. In Sect. 2 the definitions concerning
hyperbolicity and dimensions are stated. The results are precisely stated in Sect. 3.
Finally, in Sect. 4 the proofs of the results are presented.

2. Definitions

2 A. Hyperbolicity. Let the manifold M and the map g be as in the introduction.
Recall that g is a C 1 + α map when M is an interval and g is a C 3 diffeomorphism
when m = dim(M) ^ 2.

A point x in M is called a nonwandering point for g, if for each open neighbor-
hood U of x there exists a positive integer n such that gn(U) and U intersect. The set
of all nonwandering poins for g is called the nonwandering set of #, and it is denoted
by Ω(g).

For m ^ 2, a subset A of M is hyperbolic if it is compact, F-invariant, and the
tangent bundle TΛM splits into dF-invariant subbundles Es and Eu on which dF is
uniformly contracting and uniformly expanding respectively. A hyperbolic set A is
called saddle-hyperbolic if d i m £ s ^ 1 and dimEu ^ 1. The map F is called an
Axiom A diffeomorphism if the nonwandering set Ω(F) is hyperbolic and the
periodic points of F are dense in Ω(F). If F is an Axiom A diffeomorphism, then by
Smale's "Spectral Decomposition Theorem", the set Ω(F) can be decomposed
uniquely into a finite collection of disjoint, compact, invariant subsets having the
property that if Γ is any of these subsets, then (1) F has a dense orbit on Γ and (2)
Γ is the maximal invariant set in a neighborhood of Γ; subsets of Ω(F) that satisfy
(1) and (2), are called basic sets (see e.g. [GH] for a discussion of uniformly
hyperbolic systems). If m = 2 and if Ω(F) is saddle-hyperbolic, then by a result due
to Newhouse and Palis [NP] we know that the periodic points of F are dense in
Ω(F). This implies that if Ω(F) is hyperbolic and m = 2, then F is an Axiom
A diffeomorpism.

For m = 1, a subset A of M is hyperbolic iϊA can be decomposed into positively
/-invariant, compact sets Aa and Ae on which / ' is uniformly contracting and
expanding respectively. In [Nu2], the map/ i s called an Axiom A map if Ω(f) is
hyperbolic; the periodic points are automatically dense in Ω(f). A point x in M is
a critical point if/'(x) = 0. We say that the map/is non-critical if for each critical
point c of/ the intersection of the limit set L+(c) and Ωe(f) is empty. Note that
L+(c) is a subset of Ω(f). If / is an Axiom A map, then (1) Ω(f) can uniquely be
decomposed into finitely many isolated, compact, positively/-invariant sets, called
basic sets, and/has a dense orbit on each of these basic sets, and (2) the periodic
points of/are dense in Ω(f); see [Nu2] for details.

We say that g is non-critical when g = / i f / i s a non-critical map, and when
g = F we assume F is automatically non-critical since the Jacobian matrix of F is
non-singular.

2B. Dimension Definitions for Basin Boundaries. We will recall some definitions of
different dimensions and some of their properties. Throughout this paper, we write
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BB for the basin boundary, and we assume S to be a region that intersects the basin
boundary. The pointwise dimensions of the basin boundary BB at x is defined as

dimBB(x) = lim dim(£(x; ε) n BB) ,
ε->0

where B(x; ε) denotes a ball with radius ε centered at x. Since the basin boundary is
assumed to be compact, we say the dimension of the basin boundary dim(BB) is
defined by the maximum value of the pointwise dimensions dim BB(x) for x in the
basin boundary BB, that is, dim(BB) = max{dimBB(x): x e BB}. Throughout this
paper, we assume that the limit limε_0 In N(ε, S)/ln(l/ε) exists. When the limit does
not exist, we say the box-counting dimension does not exist. We prefer to avoid
non-generic situations. The box-counting (or capacity) dimension of BB in S is
defined as

db(S n BB) = lim In ΛΓ(ε, S)/ln(l/ε), (la)
O

where iV(ε, S) denotes the minimum of m-dimensional cubes in a grid of edge length
ε needed to cover that part of the basin boundary which lies in S, and m is the
dimension of the phase space M. It can be shown, see [MGOY], that db(S n BB)
can also be defined as

db{S n BB) = m - lim In φ(ε, S)/ln ε , (lb)
ε->0

where φ(ε, S) is the fraction of the phase space volume lying in S which is within ε of
S n BB. From a certain practical point of view, see [GMOY, MGOY], this latter
definition is more useful.

We now consider another definition of a dimension of the basin boundary. We
assume that S n BB is not empty. Say we randomly pick an initial condition x with
uniform probability in S. Then we pick another initial condition y in S randomly in
the ball |x — y\ ^ ε. Let p(ε, S) be the probability that x and y are in different
basins. (We can think of p(ε, S) as the probability that an error will be made in
determining the basin of an initial condition if the initial condition has uncertainty
of size ε.) We define the uncertainty dimension of BB in S as

du(S n BB) = m - lim In p(ε, S)/ln ε . (2)
ε^O

When BB is a smooth surface, du(S n BB) = m — 1, and p(ε, S) oc ε.
However, for fractal basin boundaries, we can have p(ε, S) oc εα with
α = m — du(S π BB) < 1, indicating enhanced sensitivity to small uncertainty in
initial conditions. For example, one numerically obtains m — du(BB) w 0.275 for an
example involving a periodically forced pendulum in [GNOY]. In this case
a decrease of the initial condition uncertainty ε by a factor of 10 leads to only
a relative small decrease in the final state uncertainty p(ε, S), since p decreases by
a factor of about 10° 2 7 5 « 1.9. Thus, in practical terms, it may be essentially
impossible to significantly reduce the final state uncertainty in some experimental
situations. In [MGOY] and [P] it has been conjectured that db(BB) = du(BB) for
basin boundaries in typical dynamical systems.



6 H.E. Nusse and J.A. Yorke

Now we define the Hausdorff dimensions for a compact set G in the plane. For
each a > 0, we consider

h(a) = lim inf £ [ d i a m ^ ) ] " ,
ε ^° G At<=G

where for each ε > 0 the inf is taken over all possible countable covers of G whose
elements A{ have diameter diam(Aj) less than ε. The Hausdorff dimension dH(G) of
G is defined as

dH(G) = inϊ{a:h(a) = 0}. (3)

In general, one has dH(G) rg db(G).

3. Results

Throughout, we assume that either m = 1 or m = 2. Let the manifold M, the map g,
and the basin boundary BB as above. In [GNOY] we showed that for one
dimensional non-critical Axiom A maps and two dimensional Axiom A diffeomor-
phisms, the number of basic sets in the basin boundary is an upper bound on the
number of different values of the basin boundary for each of the notions of
dimension discussed in this paper. That is, the number of values of dim (S n BB)
considering all open sets S which intersect BB is bounded from above by the
number of basic sets in BB.

The crucial assumptions in obtaining the main result (stated below) are encap-
sulated in the following definitions. We define the map g to be hyperbolic on the
basin boundary iϊg is non-critical and BB n Ω(g) is a non-empty hyperbolic set. We
would like to mention that the uniformly hyperbolic systems studied in [GNOY]
satisfy these conditions.

Theorem. Let g: M -»M satisfy the following conditions:

(Al) there exist finitely many, but at least two, attractors, say Aί9 A2, . . . , Aq;
(AT) for each point x e M, there exists an integer fe, 1 ^ k ^ q, such that either

x e basin {Ak} or x is on the boundary of basin {Ak};
(A3) g is hyperbolic on the basin boundary BB.

Then, for each region S that intersects the basin boundary, the box-counting
dimension db(S n BB), the Hausdorff dimension dH(S n BB) and the uncertainty
dimension du(S n BB) of the intersection of S with the basin boundary BB are all
equal.

Corollary. Let g be as in the theorem. Then taking S = M, the box-counting dimen-
sion <4(BB), the Hausdorff dimension dH(BB\ and the uncertainty dimension du(BB)
of the basin boundary BB are all equal

The basin boundaries of the one dimensional maps considered so far are
boundaries of basins of periodic orbits. Our proofs easily extend to a more general
class of attractors. In the literature, several definitions of "attractor" appear, see e.g.
Milnor [Mi]. We say, a Milnor-attractor A is a positively/-invariant, compact set
in M such that (1) for each open neighborhood U of A there exists a set WΛnU with
positive Lebesgue measure, such that for each x in W^the distance p(gn(x\ A) -> 0
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when n -• oo and (2) there is a point xe A such that the closure of {gn(x)}n^o
equals A. For a Milnor-attractor A we say, the domain of attraction oϊA is the set of
all points x in M for which ρ(gn(x), A) -• 0 as n -> oo. Note that the domain of
attraction of a Milnor-attractor is not necessarily open. Similarly as for an attrac-
tor, we define for a Milnor-attractor A basin {A} to be the interior of the closure of
the domain of attraction of A. For the quadratic map/(x) = ax(l — x), note that
basin {,4} of a Milnor-attractor A equals the open interval (0, 1), where 0 < a < 4.
In order to formulate a more general result, we consider finitely many, disjoint,
positively/-invariant, open sets each having its own Milnor-attractor. Notice that
A may be a one-sided or two-sided attractive periodic orbit (simple attractor),
homeomorphic to a Cantor set (strange attractor), or consist of finitely many
nontrivial compact intervals (chaotic attractor).

Proposition. Assume that for some integer n ^ 2, there exist n Milnor-attractors
Ak, 1 ^ fe ^ n, in M such that (writing Ok = basin{Ak})9

(1) the union of these open sets (J£ = 1 Ok is dense in M;
(2) the Ofc's are disjoint open sets',
(3) the map f is hyperbolic on the basin boundary.

Then, for each open interval S,

db(S n BB) = dH(S n BB) = du(S n BB) .

Remark 1. I f / i s as in the proposition, then the box-counting dimension, the
Hausdorff dimension, and the uncertainty dimension of the basin boundary are all
equal.

Remark 2. Let/be as in the proposition. We have not excluded the possibility that
/may have a one-sided stable periodic orbit P, but in such cases P cannot be on the
basin boundary (because of assumption (3)).

Remark 3. If/: M ^ M satisfies the conditions: (1) /has a nonpositive Schwarzian
derivative; (2) every bounded attractor is a periodic orbit; (3) /has finitely many
critical points and for each critical point c there exists an attractor A such that
p(fn(c), A)^0 as n-> oo then / is a non-critical Axiom A map (see [Nu2]).
Therefore, the results above hold for these maps too.

Example. The purpose of this example is to show that the condition that g is
hyperbolic on the basic boundary is essential. The objective in [LY] is to show that
piece wise C 1 expanding maps on the unit interval have absolutely continuous
invariant measures. In [LY] it is shown that the map γ defined by y(x) = x/(l — x)
for 0 ^ x ^ 0.5 and y(x) = 2 — 2x for 0.5 ^ x ^ 1, which violates the assumption
|/(x) | > 1 only at x = 0, does not have an absolutely continuous invariant
measure.

Motivated by this example, we consider a map/(as shown in Fig. 1) from the
open interval ( — 3,1) to itself such that (writing J for the open interval (^0, §)),
(1) f(y) = y/(l — y) ϊor — % < y < 20; (2) / has 3 fixed point attractors in J ;
(3) the intersection of the basin boundary of/with J consists of 3 points, namely
the repelling fixed points 0.5 and 1, and the point ξ that is mapped into the fixed
point 0.5, that is,/({) = 0.5; (4) the Schwarzian derivative of / is nonpositive.

The basin boundary of/consists of the points 0, ξ9 and all the points 1/n where
n is any positive integer. Notice f(l/n + 1) = 1 /n for n ^ 2. It is easily verified that
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1.5 -
f(y)

1.5

Fig. 1.

the Hausdorίf dimension and the box-counting dimension of the basin boundary of
/differ. In particular, one can verify that the box-counting dimension of {l/n}n^ 2 is
0.5. Hence, the box-counting dimension of the basin boundary is at least 0.5, while
the Hausdorff dimension of the basin boundary is 0. •

We would like to mention that the idea of looking for a map whose basin
boundary is the set 1/2,1/3,1/4, . . . , ί/n, . . . and 0, was suggested by Brian Hunt.

4. Proofs of the Results

Let the manifold M, the distance p on M, and the map g be as in the introduction,
and assume that the dimension of M is either one or two. Assume that (1) g has
finitely many attractors (defined as in the introduction), say Au . . . , Λq, where
q ^ 2; (2)for each xeM there exists an integer k such that either x e basin{Λk} or
x is on the boundary of basin {Λk}9 1 ^ k ^ q; and (3) g is hyperbolic on the basin
boundary. We write BB for the basin boundary, and we assume that 5 is a region
that intersects BB.

4-1. Preliminaries. Recall that for z e Ω(g) the stable set Ws(z) of z is the set of
points x for which p(gn(z\ gn(x)) -» 0 as n -> oo the local stable set W\oc(z) of z (of
size β) is the set of points x in Ws(z) such that p(Fn{z\Fn(x)) ^ β for all integers
n ^ 0, where β > 0. If g = F, then the (local) stable set is also called a (local) stable
manifold. Notice that when g = / , and/ i s expanding at such a point z, then the
stable set of z is the set of points that will be mapped into z after a finite number of
iterates (i.e., Ws(z) = {x:fn(x) = z for some integer n ^ 0}). When g = F, the
unstable manifold fP(z) of z is the set of points x for which ρ{F~n(z\ F~n{x)) -• 0
as n -> oo and the local unstable manifold Wιoc(z) of z is the set of points x in Wu(z)
such that ρ{F~n{z\ F~n(x)) ^ β for all n ^ 0, where β > 0. If the stable or unstable
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manifold of z e Ω(F) is a curve, we write W^ (z) and W°~c (z) for the two compon-
ents of Wχoc(z)\{z}, where σ is either s or u. We will see below that the structure of
the basin boundary is essentially controlled by finite sets of periodic points.

Recall that the intersection of the nonwandering set Ω(g) with the basin
boundary BB can uniquely be decomposed into a finite collection of basic sets.
From now on, let Γ denote a basic set of g that is contained in the basin boundary.
We call Γ a trivial basic set if Γ consists of one periodic orbit, and we call
Γ a nontrivial basic set if Γ includes more than one periodic orbit. If Γ is nontrivial,
then we call Γ periodic if there exists a positive integer m such that gm has no dense
orbit on Γ, and otherwise we call Γ nonperiodic.

We will often write dim instead of the notations db, dH and du, and we often refer
to "dimension" rather than to "box-counting dimension", "uncertainty dimension"
or "Hausdorff dimension". In such cases the corresponding statement is meant to
apply for all three db, dH and du. Recall that for each point x we write B(x; ε) for
a ball with radius ε centered at x, and that the pointwise dimensions dim BB(x) of
the basin boundary at x is defined by

dim BB(x) = lim dim(B(x; ε) n BB) .

Let v be the number of basic sets in the basin boundary BB, and call these basic sets

Proposition 4-1. (i) Every point on the basin boundary BB is contained in the stable
set of some nonwandering point in BB. In other words, the basin boundary is the union
of the stable sets Ws{Γk), 1 ^ k ^ v.

(ii) For every nonwandering point z on the basin boundary, for each point x in the
stable set ofz, the pointwise dimension of the basin boundary at x and z are equal, that
is, dimBB(x) = dimBB(z).

(iii) For each basic set Γk(\ ^ k S v), all the points in Γk have the same pointwise
dimension, that is, dimBBίzJ = dimBB(z2)/or all zl9 z2 e Fk.

(iv) The dimension of the basin boundary in a sufficiently small neighborhood of
Γk and the pointwise dimension at points of Γk are equal.

Proof For a proof of (i), (ii), and (iii), see [GNOY]. The proof of (iv) is left to the
reader. •

We write dk for the value of the pointwise dimension of the basin boundary at
points in Γk. Note that the value dk in principle depends on which dimension we are
using. We will prove that they are all equal, that is, dbBB(z) = duBB(z) =
dHBB(z) = dk, where z e Γk, 1 ^ k ^ v.

We say that x in the basin boundary is accessible from an open set V if there is
a curve y ending at x such that all of y except for x lies in V. We call y an access
curve. For basin boundaries that are fractal, many points are not accessible from
any of the basins. Note that for a Cantor set C in R 1 , only countably many points
of C are accessible from the complement R ^ C .

If x e Ω(F) is accessible from either M\ WS(Ω(F)) or M\ WU(Ω(F)), then a re-
sult due to Newhouse and Palis [NP] yields that x is periodic. If we choose V to be
basin {A} (for some attractor A), and if x is on the basin boundary and is
a nonwandering point, that is, x e Ω(g) n BB, and if x is accessible from basin {A}
and if g = F, then it is always possible to choose this curve 7 to be a piece of the
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unstable manifold Wu(x\ that is, either W"*c(x) or Wχ~c(x) is an acceptable choice
for the access curve y. Notice if x is accessible from basin {A} and the access curve
y is WIQQ(X\ then y intersects Ω(F) only at x, so x is not a limit point of
W\oc (χ) n ^(i7). Applying a result due to Newhouse and Palis [NP], we obtain the
following. The periodic points on the basin boundary that are accessible from
M\WS(Ω(F)) is a finite set, which we denote by P", and each point in BB that is
accessible from M\WS(Ω(F)) is in Ws(p) fo some p in P". Similarly, the periodic
points on the basin boundary that are accessible from M\ WU(Ω(F)) is a finite set,
say Ps, and each point in BB that is accessible from M\WU{Ω(F)) is in Wu(p) for
some p in P s.

We say R is a block for Γ, where Γ is a nontrivial basic set, if (1) R is
a diffeomorphic image of the square B = [ — 1,1] x [ — 1,1], and (2) the four
pieces of dR are connected subsets of the stable manifolds of periodic points in
P" n Γ and of the unstable manifolds of periodic points in Ps n Γ. Write dsR for
the two segments of dR that are segments of stable manifolds and duR for the other
two segments that are segments of unstable manifolds.

Palis and Takens [PT] have shown that for each nontrivial basic set Γ there
exists a finite collection of blocks for Γ such that the blocks intersected with Γ form
a Markov partition. See Bowen [B] for the notion of Markov partition.

We say, a block partition for a nontrivial basic set Γ is a finite collection {#Jf= i
of blocks for Γ with Γ c (Jf=i#r

Proposition 4-2. Assume that Γ is a nontrivial nonperiodic {saddle-hyperbolic) basic
set, and let z e Γ be fixed. There exist a block partition {Ri}^=ifor Γ and a connected
subset Iu of Wu{z) such that for each i
(1) Iu n Ri consists of exactly one component, and
(2) b o t h p o i n t s o f d ( I u n R t ) a r e i n ( J * = 1 d s R j , l^i^N.

Proof For a proof, see Palis and Takens [PT]. •

Let Γ be a nontrivial nonperiodic basic set. There exist a C1 + α stable foliation
J* s on a neighborhood VΓ of Γ and a C 1 + α unstable foliation J^M on a neighbor-
hood Vr of Γ, for some α > 0. From now on, let the point z e Γ, the blocks Rh

1 ^ ί ^ JV, and the segment /" c W"(z) be as in Proposition 4-2. We can assume
without loss of generality that the blocks are chosen small enough that all lie in FΓ,
see[PT].

Let τ:R-> Wu(z) be a C3 parametrization, and define a projection
π: (Jf = 1 1^ -• (Jf=1 JRJ n /" by collapsing each Rf onto Rtn /", projection along
the local stable manifolds of the stable foliation #Λ The following result says that
for some iterate K, the map F can be viewed as expansive along unstable segments.

Proposition 4-3. There exist a block partition {Ri}?= i, an integer K > 0, and aC1+ct

map φ: (J f = 1 τ ~ 1 (πRi) -> R defined by φ(x) = τ"1 °π°Fκ°τ(x) such that \φ'{x)\
> I, for some α > 0.

Proof For a proof, see Palis' and Takens [PT]. •

4-2. Proofs of the One-Dimensional Results. In this subsection, we prove the
theorem for one dimensional maps; along the way we present in Sect. 4-2A several
auxiliary results that we use in the proof. The proofs of these results ,are either
rather technical or similar to existing proofs in the literature; in the latter case we
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refer the reader to the literature. The reader is advised to skip the proofs of the
intermediate results (which are given in Sect. 4-2B) with the first reading, and
continue with the proof of the theorem that is presented in Sect. 4-2C.

4-2A. Statement of the One-Dimensional Auxiliary Results. The first result says
that there exists a set J, which is a finite union of intervals, such that/is expanding
on J and J includes all the nonwandering points that are in the basin boundary.

Proposition 4-4. There exist a set J and an integer L ^ 1 such that the following
properties hold:

(1) J is a finite union of open intervals',
(2) B B n ί 2 ( / ) c J;
(3) each component of J intersects BB n Ω(f);
(4) f(J) =3 J;
(5) J contains no critical points and no images of critical points;
(6)inf,|(/L)'(x)|>l;
(7) there exists a C > 0 such that ifx, y e J and bothfι(x) andfι(y) are in the same

component of J for each ί (0 ̂  i ^ n), then C " 1 ^ |(/7MI/|(/") '(y) | ύ C.

Remark. If a set J * satisfies (1), (2), (3) and (4) of Proposition 4-4 (when J * replaces
J), and J* c J, then (5), (6) and (7) hold trivially.

Let Γ x , . . . , Γ s be the basic sets of/in the basin boundary, and let J be as in
Proposition 4-4. For each fc(lgfc^s), we write J(Γk) for the union of components
of J that intersect Γk.

Lemma 4-5. The set J in Proposition 4-4 can be chosen such that for all i Φ /c, the
closures of J(Γι) and J(Γk) are disjoint.

Let from now on, the sets J(Γfc), 1 ̂  k ^ s, are disjoint as in Lemma 4-5, and we
call any such a set J(Γk) an isolating neighborhood of Γk. For 1 ̂  k ̂  s, the stable
set Ws(Γk) of Γk is the union of the stable sets of points in Γfe, that is,
Ws(Γk)=UzeΓ^Ws(z). We say Γt ^ Γ} if the union of the forward images
[jn>of

n(J(Γj)) intersects J(Λ). Equivalently, we say Γ̂  ̂  Γj if for each open
neighborhood VoϊΓj the stable set W\Γi) intersects V (which implies that W\Γi)
intersects the unstable set Wu(Γj)).

Lemma 4-6. (Transitivity) The basic sets in the basin boundary can be indexed such
that for all i, j , k (1 ̂  i, j , k S s) if both Γ< ̂  Γj and Γj ^ Γk then Γ{ ^ Γk.

The next result says that the dimension of the basin boundary in the isolating
neighborhood J(Γk) of any basic set Γk in the basin boundary equals the maximum
value of the dimension of the basin boundary in the isolating neighborhoods J(Γj)
of Γj for all j {k^j ^ s) such that the union of the forward images J(Γ, ) while
iterating /, does intersect J(Γk). Here, "dimension" refers to any of the three
concepts of dimension in this paper.

Proposition 4-7. For each integer fe (1 ̂  k ̂  s), we have

dim(J(Γfc) n BB) = max dim(J(Γ, ) n BB) .
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The next two results say that the Hausdorff dimension, the box-counting
dimension, and the uncertainty dimension of the basin boundary in the isolating
neighborhood J{Γk) of any basic set Γk in the basin boundary are all three equal.
To obtain our desired results for one dimensional maps, we must show the equality
when arbitrary open intervals replace J(Γk) below.

Proposition 4-8. For each integer k (1 ^ k ^ s), we have

dH(J(Γk) n BB) = db(J(Γk) n BB).

Proposition 4-9. For each integer k (1 ^ k ^ s), we have

dH(J(Γk) n BB) = du(J(Γk) n BB).

4-2B. Proofs of the One-Dimensional Auxiliary Results. Let U be the union of the
basins, that is, U = (J£= 1 basin {Ak}, so its components are open intervals. Let
/1, . . . , Iw be those (finitely many) components that intersect the attractors
(Jk= 1 Ak. For example, if/is an Axiom A map, then J l 5 . . . , Iw are open intervals
such that (1) \Jk=1Ik contains Ωa(f) in its interior and (2) each Ik includes a stable
periodic point in its interior, 1 ^ H w.

From now on, we write Do for [jk = x /fc, and B± for the complement of Do in M,
that is, Bi = M\D0. Notice that the definitions above imply f(D0) c Do and
/(i?i) 3 Bx. For every integer n ^ 0 and each subset S of M, we define the set
/-"(S) = {xeM :/"(x)eS}.

For each integer /c ̂  1, we define

Bk+1=M\rk(D0\ and Dfc = Bfc\B* + i .

Since/(Do) <= Do, the sets Bfe are (decreasing) nested sets. The sets Bk+1 and Dk

arise naturally as follows. First, we define the sets of points that are mapped into Do

and stay outside Do respectively, after iterating the map/exactly k times. The set
Bk +! is the set of points that will stay outside Do when/is iterated k times, and Dk is
the set of points that stay outside Do when/is iterated less than k times and are
mapped into Do when/is iterated k times. This implies Dk= {xe Bk:f

k(x) e Do}
= Bk\Bk + l9 and Bk+1 = {xe Bk:f(x)e B±} {Jk

Furthermore, we define

If an open interval / includes points of the basin boundary but no nonwander-
ing points, then after finitely many iterates, say n, the interval/"(/) will intersect the
nonwandering set. For a proof of such a fact, see for example [Nul, Nu2]. To prove
that the dimensions are equal on an interval S, it is sufficient to prove it for /(S),
provided no critical points of / are in f(S). Continue iterating / (assuming no
critical points of /are encountered) until fk(S) contains a point of Ώ(/).We will
show that it is sufficient to consider those components of the Bks that intersect
Ω(f). Therefore, for every k e N, we define the set

B°k = {x e U: U is a component of Bk and U n Ω(f) Φ 0} .
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By Lemma 3-5 in [Nu2] we know that there exist positive integers L and Q such
that inf \(fL)'(x)\ > 1, where the infimum is taken over all x sB°Q. We fix L and
Q for future reference.

Let Dg cz D o be a closed set in M with the following properties: (1) Dg
intersects each component D of D o ; (2) the interior Int(D^) of Dg includes the
attractors \Jq

kss x Ak; (3) fψ%) a Int(Dg); (4) if a critical point c of/satisfies/"(c) e
D o , for some nonnegative integer n9 then /"(c) e Int(Dξ); (5) the number of the
components of Dg is equal to the number of components of D o .

We define for each integer k ^ 0, the sets Df = f~k(D$\ and Jk is the union of
those components of M\D$ which intersect both Ω(f) and BB.

Lemma 4-10. The number Ro = min {n e M u {0} : Jn includes no critical point of
/} is well defined, and Ro ^ Q. For every integer n^.R0, the set Jn has the following
properties:

(i) Jn is open in I
(ii) the restriction offto Jn is a homeomorphism on each interval in Jn;

(iii) Jn has finitely many components.

Proof The proof is similar to the proof of Lemma 3-7 in [Nu2]. •

We will assume that D% is chosen such that inf \(fL)'(x)\ > 1, where the infimum
is taken over all x in the closure of JQ (note that this assumption is no restriction).
We obtain that Jk (the closure of Jk) are nested (decreasing) compact intervals, and
/(Λ) ^ Λ

Lemma 4-11. There exists C > 0 such that for each w e N u {0},/or each component
U in JQ+H one has

C"1 ^ |(/7MI/l(/7ωi S C, for all x, y in 17.

Proof We write G =fL. There exists K > 0 such that the distortion inequality
K'1 S \(Gτ)'{x)\/\(Gτ)'(y)\ SK holds, for all Γ ^ O , and all x,y in the same
component of JTL+Q> s i n c e I(/L)'MI > 1 f° r e^ch xe JQ (see e.g. [Ma]). Now we
define E = max{max{|/'(x)|: x e J Q }, mm{\f'(x)\~1:xEJQ}}, where JQ is the
closure of JQ.

Selecting C = K EL we obtain for every nonnegative integer n, C~x ^
\(fnϊ(x)\/\(fnϊ(y)\ ^ ^ f° r all ^ y i n U, where C7 is an arbitrary component in

Proof of Proposition 4-4. Let the integers β and L be as above. We select the set
J to be JQ.

(1) Lemma 4-10 yields JQ consists of finitely many open intervals, hence J is
a finite union of open intervals.

(2) By definition we have that JQ includes BB n Ω(f), and so J includes
BB n Ω(f).

(3) By definition each component of JQ intersects BB n Ω(f). Therefore, each
component of J intersects BB n Ω(f).

(4) Since f(JQ) => JQ we have/(J) => J.
(5) The property inf |(/Ly(x)| > 1 (where the infimum is taken over all x in the

closure of JQ) implies J contains no critical points and no images of critical-points.
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(6) The property inf \{fL)'{x)\ > 1 (where the infimum is taken over all x in the
closure of JQ) yields infj \{fL)'{x)\ > 1.

(7) Let C > 0 be a constant as in Lemma 4-11. Let integer n ̂  0 be fixed. Let
x,yeJ and assume that both/ ι(x) and/^);) are in the same component of J for
each i, 0 ̂  i ^ n. This assumption implies that x and y are in the same component
of JQ+n. Now we apply Lemma 4-11 and obtain C " 1 ̂  \(fn)'(x)\/\(fn)'(y)\

emma 4-5. Recall that / is hyperbolic on the basin boundary and that
Γl9 . . . , Γs are the basic sets in BB n Ω(f). Let Vk (1 ̂  k ̂  s) be an open
neighborhood of Γfc such that for all i φ fc the neighborhoods Vt and Ffc are disjoint.
Such neighborhoods exist, because the basic sets Γk are disjoint, compact sets. In
a similar way as Lemma 5-6 in [Nu2] has been proved, one shows that the total
length of Jk goes to zero as k -> oo. Select integer n ̂  Ro in Lemma 4-10 such that
the closure of Jn is contained in the open neighborhood (Jfe Vk of BB n Ω(f). The
conclusion now is that for all i Φ k, the closures oϊJ(Γi) and J(Γk) are disjoint. •

Let N denote the number of disjoint components JQ of JQ, that is,
JQ = Uf= i J Q W e d e f i n e the iV x iV matrix X by

(3a)
0 otherwise

We will assume that the J ^ ' s a r e numbered in such a way that the matrix A is
written in the form, see [BP]

A =

0 v o η

21

. o

where each block ^4fcfc (1 ^ /c ̂  5) is an irreducible JVfc x Λ̂ ^ matrix (that is, for each
pair (i,j) there exists an integer n ̂  1 such that the (ίj)th entry (where 1 ̂  f,y ̂  ΛΓfc)
of the matrix (Akk)

n is positive), and Σl=ίNk = N for some s,l^s^N.ln fact,
with the techniques in [ N u l , N u 2 ] one can show that 1 ̂  s ^ q + 1.

For each /c, 1 ̂  /c ̂  s, we write

7 = 1
i^ Σ

i=l

(we define £ ° = x iVj = 0), and for every integer n ^ O w e define

/Ί2ik\

or equivalently,

and finally,

= n *ϊ
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For every (irreducible) matrix Akk and for each n, the set 3&\ has finitely many
components, say N(βk^ and we write £8\ as the disjoint union of the components

k k

Proof of Lemma 4-6. Lemma 4-5 and the definition of the sets Stk

n imply that each
set <k\ includes one basic set of BB n Ω(f). Hence, after possibly relabeling the
basic sets, we have Γk^Mk

n for all positive integers n. Let integers ij9k
(1 ^ ij, k ^ s) be given, and assume that both Γt ^ Γj and Γj ^ Γk.

Let G(A) be the directed graph associated with the matrix A, that is, the graph
G(A) consists of the vertices labeled Jρ, 1 ^i ^ N and a number of directed edges,
namely there is a directed edge from vertex Jl

Q to vertex JJ

Q if and only if A(ίJ) = 1.
Let /j, Ij9 and Ik be any interval in &ι

0,&
J

0, and J ^ respectively. The assumption
that both Γt ^ Γj and Γ, ^ Γfe and the fact that there is a path from Ir to any other
interval in J*o (where r = ij9 k) imply that there is both a path from Γj to Γ f, and
a path from Γfc to Γj. Hence ΓtSΓk. •

Proof of Proposition 4-7. Proposition 4-1, Proposition 4-4, and Lemma 4-6 yield
the desired result. •

P r o p o s i t i o n 4 - 1 2 . άu{^) = άh{βk^\for all l ^ k ^ s .

Proof From the fact that/ L is expanding, and by using the result due to Takens
[T] we obtain immediately that dH{^ n Ω(fL)) = db(^ n Ω(fL)). This result
together with the fact J ^ n Ω(fL) = J ^ n Ω(f) and Proposition 4-1 yields the
result. •

Corollary 4-13. Fix anyKl^k^ s. If ά > άH(β\) then l i m ^ Xfjf" } \@k

n;i\
d = 0,

and ίfd < dH(@kJ then £ f j f } |Λ* ,1^ -• oo when n^oo.

Proof. The definition of Hausdorff dimension together with Proposition 4-12
yields the result. •

Proof of Proposition 4-8. Apply Proposition 4-1, Proposition 4-7 and Proposition
4-12 and obtain the desired result. •

For each k (1 ^ k ^ s) and for each integer n ^ 0, we write εk for the minimum
of the minimum of the distance between two different components of M\ and the
distance between the boundary of 3i\ and J*^, that is,

εk

n = min \ min

Proposition 4-14. Lei integer fc, 1 ^ A: ̂  5, foe ^/ί eπ. TTzerc dB{βk^ n BB)
= 4(^koo n BB).

Proof. Let 1 ^ /c ̂  5 be given. It is left to the reader to prove
dH(^koo ^ BB) = άu(β\> n BB) when (β\, n BB) is trivial, that is, {β\ n BB) is
a single periodic orbit. From now on, we assume (βk^ n BB) is nontrivial.

Let δ > dR($\\ and let Lk

m and Lk

M denote the minimum and maximum length
of thekcomponents of St\ respectively. By Corollary 4-13, select / t e N such that
Σf=T"] \^n;i\δ < (C/Lkm)~δ for every n ^ Jfk, where C is the constant in Proposi-
i * { ί k ^tion 4-4. Fix n^Jίk\ recall that e* = min{min ί Φ 7 dist(^ί; ; ί, &k

n;j), (
} F ° r 0 < ε < εk, denote the probability that two points x, y (chosen at
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random from 3SQ according to the uniform distribution and subject to the condi-
tion | x - > > | < ε ) tend to different attractors by pk(ε). That is, let
4(β) = [x — ε, x + ε], let μx denote the one dimensional Lebesgue measure, set

p*(β) = μi{{ysIx{B) n Λ%; L+(x) * L+{y)})/μi{Ix{ε) π ®\) ,

and then

pk(ε) = J pk(ε)dx.

In order to finish the proof it is sufficient to show that lim — = 1 — dH(3Sk

ao).

° εFor every ε, 0 < ε < e£, define the sets

W\έ) = {(x, j;) e # J x # S : I x ~ y I

Ffe(ε) = {(x, y) E PFfc(ε): L + (x) Φ L

ε"° ε

and denote by μ2 the two dimensional Lebesgue measure. Then we have
Pk(s)π μ2{Vk{ε))lμ2(Wk{ε)) for ε sufficiently small. Since μ2(^ f c(ε)) =

μi(Λo) * {2ε - ε2}, we are done if we show that lim — ^ — — = 2- dH(3ίk

ao).
ε->o In ε

For 0 < ε < ε*, let (£ε = {Cy}7 e / denote a cover of #£, by Jfk(έ) sets with
diameter ε; assume that ΛKfc(ε) is minimal. For every ε, 0 < ε < ε£, the assumption
on Kε that yΓfc(ε) is minimal yields each element of CEε is contained in £fik

n. For
a moment fix ε, 0 < ε < εk, and some integer /, 1 ^ / ̂  N(&k); then, since
/ n (^5 ; i ) = *o;m f° r s o m e m> the collection {/"(C7 n ^k

;i)}jE/ is a cover of
^ o m ^ ^ o , where 1 ^ m ^ iV(J'o). Applying Lemma 4-11 shows C~1'ε-
l ^ n fl — ^ I W Π yβn\i\l\yβn\i\ ^ 1/ m n ^ « ; i J I / l J \^n\i)\ ^ \J l ϋ j Π ^n\i)\ί

\<%k

0.m\ ^C \CjΓλ @k.i\/\@k

;i\ = C ε | « ; ; f Γ
1 ; therefore each element of

{/w(C7 n ^k i)}jef has diameter in the interval [L^ C " 1 ε | J * ^ ! " 1 ,
LM * C ε 138% i Γ 1 ] , where L^ and Lk

M are the minimum and maximum length of
the components of @k

0 respectively.
Define the map G\ 3S%x3i%^WL2 by G(x, y) = {f{x)J{y)\ Obviously, if

(x, y) e@k

n;ix @k. i and (w, z) e * J. f x 3ίk

n. f for some 1 ^ i ^ iV(^J), then C ~ 2 ^
|det DGM(x, y)/det DG"(w, z)| ^ C2, where C > 0 is the constant in Lemma 4-11.

For every integer i, 1 ^ i ^ N(0$k

n\ and for all ε, 0 < ε < ε* we have

v \Lm ^ ε \y&n;i\ ) ^ v (v (£) Γϊ(y0n;iχy0n;i))

(K (εj n (^M.jxt®n.i)) c v (LM c ε \y&n;i\ ) ,

where Lj^, respectively Lk

M, is the minimum, respectively maximum, length of the
components of 08%.

Let ε, 0 < ε < sk

+Nk-15 be given. Note that (x, y) e Ffc(ε) implies that one of x, y
lies in a component J ^ ; i , for some 1 ^i ^ N(3#k). For each integer
7 , 1 ^ 7 ^ N(&k\ we write FS;</ (ε) for the component of Kk(ε) that has a nonempty
intersection with 3i%jX3S%j, and we set @k

;j(ε)= Vk

n;j(ε)\{^k

;jx^k

;j). It now
follows that u ^k

;j(ε) = ( Q 7 @*.j(ε))-n Vk(ε) is contained in the image under Gm

of a subset of Vk(ε) n ({Jj(&n tjX3#n j))9 where m = Nk— 1. Hence, there exists
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a constant A > 1 such that μ2(Vk(ε)) ύ A-μ2({Jj{Vk(ε) n ( ^ ; j x J ^ )}). Now
we apply (la, lb), and summing over i yields

μ2(^(ε) )^C- 2 Σ |Λ* ϊ i |
2 K*(LiSlC-16 | Λ ; ; ί r

1 ) , (2a)
i

μ 2 ( ^ ( β ) ) ^ i C 2 Σ | Λ * . ί |
2 K»(LSfC-1β |Λ*. t |-

1) (2b)

For d ^ O define ^fe(ε) by μ2(Vk(ε)) = εd-φk(ε). Assume first that
d < 2 - dgiB1^).^ By Corollary 4-13, select n so large such that
Σi\&n;i\2~d < (A'C2)"1. Substituting in (2b), for ε sufficiently small, we obtain

m C-1^^,!-1), where

This expression gives a convex combination of values of φk at larger arguments
(recall that LM'C'1 %\M\.Λ\~ι > 1) as an upper bound for φk{ε\ so φk(ε) is
bounded. Hence, limε^0 In μ2(Vk(ε))/ln ε = limε_>0 {d + In ^fe(ε)/ln ε} ̂  d.

Now assume that d > 2 — dH(Bk^). By Corollary 4-13, select n such that
2 d > C2- Applying (2a), for ε sufficiently small, we getn;i\2~d > C2

This expression is a convex combination of values of φk at larger arguments (recall
Lk

n C~1\&k

]i\~1 > 1) as a lower bound for φk(ε\ so φk(ε) is bounded away from
zero. Hence,

lim sup In μ2(Vk{ε))/ln ε = d + lim sup In ι/^(ε)/ln ε ̂  d .
ε^O O

The conclusion is lim ^ 2 d ( ^ ^ B

ε-o l n ε

Proof of Proposition 4-9. Apply Proposition 4-1, Proposition 4-7 and Proposition
4-14 yielding the desired result. •

4-2C. Poof of the (One-Dimensional) Theorem. Assume that f.M^M has the
following properties: (1) there exists finitely many, attractors, say Al9 A2, . . . , Aq

where q^2, (2) for each point x e M, there exists an integer k,l^k^q, such that
either x e basin {Ak} or x is on the boundary of basin {A}, a n d (3) /is hyperbolic
on the basin boundary BB. Let S be an arbitrarily given region that intersects the
basin boundary.

Let the integer s ^ 1, and the sets £8k

n and ^ ^ , where 1 ̂  k ̂  s and n ̂  0 are
integers, be as in Sect. 4-2B.

For every fe, 1 ̂  /c ̂  s, we define 36^ (S) = (%k

m if <S intersects
(Un°°=o/"n(J>feoo))πBB, and J ^ ( S ) = 0 otherwise. Recall that both the
Hausdorff dimension and the box-counting dimension of an empty set are defined
to be zero. From elementary properties of Hausdorff dimension and the box-
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counting dimension it follows that

db( (j ^(S)) = max db(^(S)\ and

dj U Λ*.(S)) = max dB(Λ%,(S)).
\k=l / l^k^s

This together with the combinatorial results in [Nul, Nu2] and Propositions 4-1,
4-7 and 4-8 imply db(S n BB) = dH(S n BB).

For every integer /c, 1 ̂  /c rg s, for each integer n ̂  0 let the number ε* > 0 and
the integer Jίk ^ 1 be defined as in the proof of Proposition 4-14. Fix any
n ^ maxi ^k^s ^k> and define εn(S) = mini ^ k ^ s ε k

n .
For 0 < ε < εn(S), denote the probability that two points x, y (chosen at

random from S according to the uniform distribution and subject to the condition
\x — y\ < ε) tend to different attractors by p(ε, S). That is, let Ix(ε) = [x — ε, x + ε],
let μx denote the one dimensional Lebesgue measure, set

Px(ε, S) = μΛ{y e Ix(e) nS:L+(x) + L+(y)})/μi(Ix(s) n S),

and then

For every integer k, 1 ̂  k ̂  s, for each ε > 0, for each xe S, define
p*(ε, S) = pk

x(ε) and pfc(ε, 5) = pk(ε) if the intersection 5 n ((JΓ=o/""(*»)) n B B

is nonempty, and p*(ε, S) = pk(ε, S) = 0 otherwise. Finally, we define
p*(e,S) (/i1(/ :c(ε)πΛS(S))//ι1(/ je(ε)nS)) = O if S n ( U w ° ° = o / " " « ) ) π BB is
empty. From the definitions above, it follows that

Pjc(ε, S) = μ i ( { j , 6/,(8) n 5: L+(x) Φ L^j;)})/^^/^) n S)

fc=l

/,(ε) n JJ(S): I+(x) Φ I^^jVftf/^) n S)
k=l

and furthermore, for each xeS we have either px(ε, S) = 0 or px(ε,S) =
p*(ε, S) (μi(/χ(ε) n Jt^(S))/μ1(/JC(ε) n 5)) > 0, for some unique integer fc, 1 <; fc ̂  s.
This implies that

S fc=l

ίpϊ(ε,S) (μ 1 (/ x (ε)n^(S))//i 1 (/»(e)nS))dx
fc=l S

= Σ (/ίiΛ(ε) π Λ*(S))/AII(/»(β) n S ) ) J pk

x{ε, S)dx
Λ= 1 S n « ! ( S )
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This together with the combinatorial results in [Nul, Nu2] are the main ingredi-

ents for adapting the proof of Proposition 4-14 and yielding lim ε^0 — \ — ' —

In ε
= 1 - maxi ύ k ύ s dH{^{S)). Hence, du(S n BB) = dH(S n BB).

The conclusion is that for m = 1, the box-counting dimension db(S n BB), the
Hausdorίf dimension dH(S n BB) and the uncertainty dimension du(S n BB) of the
intersection of S with the basin boundary BB are all equal. •

4-3. Proofs of the Two-Dimensional Results. In this subsection, we prove the
theorem for the two dimensional diffeomorphisms. We present in 4-3A some
auxiliary results that we use in the proof. The proofs of these results and the proof
of the theorem are given in Sect. 4-3B.

4-3A. Two-Dimensional Intermediate Results. In this subsection, we present
several auxiliary results that we will use in the proof of the theorem.

Let Γk (1 ^ /c ̂  v) be as in Sect. 4-1, that is, each Γk is a basic set in the basin
boundary. For each /c, write 0l\ for a block partition of Γk. The basic sets in the
basin boundary can be partially ordered. We say Γf <̂  Γ, if the stable set FP(Γf)
intersects the unstable set Wu(Γj).

Lemma 4-15. The basic sets in the basin boundary can be indexed such that for all Ϊ,
k(l^i,k^ v)

Γi <Γk if ί g fc .

The next result says that the dimension of the basin boundary in the block
partition M\ of any basic set Γk in the basin boundary equals the maximum value
of the dimension of the basin boundary in the block partitions 0t\> of Γj for all
j (k^j ^ v) such that the stable set Ws(Γk) intersects the unstable set Wu{Γj). Here
again, "dimension" refers to any of the three concepts of dimension in this paper.

Lemma 4-16. For each integer k (1 ^ k ^ v), we have dim(^o n BB)
= max; d im(^ί n BB)), where the maximum is taken over those integers j for which
Ws{Γk) intersects Wu(Γj).

The next two results say that the Hausdorff dimension, the box-counting
dimension, and the uncertainty dimension of the basin boundary in a block
partition of any basic set in the basin boundary are all three equal.

Proposition 4-17. For each integer k (1 rg k ^ s), we have

dH{St% n BB) = άh{β% n BB) .

Proposition 4-18. For each integer k{\ ^ k ^ s), we have

dH(@k

0 n BB) = du(0l\ n BB) .

4-3B. Proofs of the Two-Dimensional (Intermediate) Results. The proof of the
Lemmas 4-15 and 4-16 are left to the reader. For every xe M and for each ε > 0, we
write Dx(ε) for the open disk in M with radius ε that is centered at x, that is,
Dx(ε) = {y e 1R2: || x — y || < ε}, which we call ε-disk of x. Similarly as in the one
dimensional case, we want to introduce a quantity that indicates the relative



20 H.E. Nusse and J.A. Yorke

Lebesgue measure of the set of points in any ε-disk Dx(ε). Let μ2 denote the two
dimensional Lebesgue measure. For each integer k (1 ^ k ^ v), for every ε > 0, and
each point x e M, we first define

Dx(ε) π »%: L+(x) * L+(y)})/μ2(Dx(s) n Λ%),

and then

Pk(ε)= J P*(β)dx.

The following result compares 1 and 2 dimensional integrals of Px(ε).

Lemma 4-19. For each integer k9 1 ^ k ^ v, ί/iere exisί ε > 0 and constants Ck

m > 0
> 0 swc/ί ί/iaί

C* J pk(ε)dx^Pk(ε)^Ck

M f p*(β)dx

where Mk = {$k}n = \ and It are as in Proposition 4-2.

Proof. Let integer k, 1 ^ fc ^ v, be given. Let ^ = {&k}n=l and /J be as in the
Proposition. From Sect. 4-1 we know that 0lk is contained in an open neighbor-
hood of Γk on which both a stable foliation 3F\ and an unstable foliation ^\ exist.
We will refer to a component of 3F\ n 0lk (or 3F\ n 0lk) as a stable segment
(unstable segment) of the block partition 0lk. Let R be any block in Mk, and let IR

denote the unstable segment II n R. Let US be any unstable segment in R. The
map hm: US -• IR defined by projecting along the leaves of the stable foliation
3F\ is a diffeomorphism, and in fact Proposition 4-3 implies that hυs is a C 1 + α -
diffeomorphism, for some α > 0. Since US may be any unstable segment in R and
R is an arbitrarily chosen block of ^ k , we conclude (by using the fact that 0lk is
compact) that there exist ε > 0 and constants Ck

m > 0, Ck

M > 0 such that
Ck

m f(1. π *> PU(ε) dx ^ P*(β) g C*M J ( /. n Λ l ) p*(β) rfx. •

Remark. One can obtain a somewhat better result than Lemma 4-19. Choosing the
coordinates to be the natural coordinates of the block, Pk(ε) is equal to some
one-dimensional integral, namely

Pk(ε) = Ck

m- J pk(ε)dx = Ck

M f pk

x(ε)dx .

Lemma 4-20. For each integer fc, 1 ^ fc ^ v, we have

In Pk(ε)
lim 1

 w = 1 - dH(/J n f k n B B ) = 2 - dH{@k n BB) .
o In ε1In ε

Proof. Apply Proposition 4-14 and Lemma 4-19. •

Proof of Proposition 4-17. Apply Propositions 4-2, 4-3, and 4-8. •

Proof of Proposition 4-18. Apply Propositions 4-2, 4-3, and Lemma 4-20. •

Proof of the Two Dimensional Theorem. This proof follows immediately from the
proof of the one-dimensional theorem, Lemma 4-20, and Propositions 4-17 and
4-18. •
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