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Abstract. The regularity of the solutions to the Yamabe Problem is considered in the
case of conformally compact manifolds and negative scalar curvature. The existence
of smooth hyperboloidal initial data for Einstein's field equations is demonstrated.

1. Introduction

In this paper we shall show the existence of smooth hyperboloidal initial data
for Einstein's field equations. Such data occur under the following circumstances.
Suppose one is given a solution to Einstein's source free field equations (of signature
(—,+,+,+)) with cosmological constant Λ < 0 which is "asymptotically flat"

respectively "asymptotically simple" in the sense of Penrose [15]. Let M be a space-
like hypersurface in this space-time which extends up to the conformal boundary fff.
The latter is a null hypersurface if Λ = 0 and time-like if Λ < 0. If one assumes that

M can be extended across & as a smooth space-like hypersurface in some smooth
conformal extension of the given space-time and denotes by dM the intersection of

this extension with <7, then M — M Π dM will be a smooth compact manifold with
boundary.

We call the triple (M, g, χ), where g is the Riemannian metric and χ the second

fundamental form induced on M by the space-time metric, a "hyperboloidal initial
data set." Since this initial data set has been obtained from a solution to the Einstein
equations the fields g and χ satisfy the constraint equations. Because of the specific
geometric situation which is represented by this data set and because it has been
derived from a space-time admitting a smooth conformal boundary & at infinity the
fields g and χ satisfy certain special smoothness respectively fall-off conditions at
dM.

* Supported in part by NFR, the Swedish Academy of Sciences and the Gustavsson Foundation
** On leave from the Institute of Mathematics of the Polish Academy of Sciences, Warsaw
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The first and most fundamental of these is an immediate consequence of the
definition of the conformal boundary &. There exist on M a smooth Riemannian
metric h and a smooth defining function Ω of dM such that

g = Ω~2h on M. (1.1)

The second condition is more complicated to analyse and to explain. For this reason
we study in this paper the class of data satisfying the condition

X=ϊ*-g(χ)g. (1.2)

This is similar to the condition of time-symmetry for standard Cauchy data which
are asymptotically flat at space-like infinity. The existence of hyperboloidal initial
data which do not necessarily satisfy (1.2) will be discussed by two of us (L. A. and
P. T. C.) in a subsequent paper [2].

The momentum constraint equations and our geometric assumptions now imply that
tr~(χ) = const (^ 0 in the case A — 0) and the Hamiltonian constraint equation takes,
possibly after rescaling of § by a constant conformal factor, the form R(g) — —6. We
consider now the tensor fields

Ω,t=\DlD
iΩ, (1.3)

3 . . = -Ω~l (DtDjΩ - i hi:ίDkD
kΩ) , (1.4)

dτj = Ω~l (Ri3(h) - ft^(ft) -si3), (1.5)

which are derived on M by using Ω, h as well as the covariant derivative operator
D and the Ricci tensor defined by h. A discussion of the origin and meaning of these
expressions and their generalizations to the case where (1.2) is not imposed may be
found in the paper [6] and in the references given therein. Let us note here that the

tensor field Ci3 — Ωd- is the electric part of the conformal Weyl tensor on M of the
corresponding 4-dimensional metric and that it contains all the information about the

conformal Weyl tensor on M because the magnetic part of the Weyl tensor vanishes
under our hypothesis (1.2). It has been shown by Penrose in [15] that the Weyl tensor
vanishes on S? where the latter is smooth and admits spherical sections. Therefore

we say that the solution (M, g,χ) of the constraint equations for which the relations
(1.1), (1.2) are satisfied, is a "smooth hyperboloidal initial data set" if the tensor fields
(1.3), (1.4), (1.5) extend to smooth tensor fields on all of M. It may be emphasized
here that we do not impose the condition that dM be homeomorphic to a union of
2- spheres.

It is our aim to construct general smooth hyperboloidal initial data satisfying (1.2)
from suitable chosen "free data." The discussion above suggests constructing the
hyperboloidal initial data as follows. Give as free data an arbitrary 3 -dimensional,
oriented, compact, smooth Riemannian space (M, ft) with boundary dM. On M
choose a defining function ρ of dM, i.e. a smooth function ρ which is positive

on M and satisfies on dM the conditions ρ = 0, dρ ̂  0. Find a smooth function u
on M such that

R(u4ρ~2h) — -6 and u > u0 = const > 0 on M . (1.6)



Regularity of Solutions to the Yamabe Equation 589

Then (M,<? = u4ρ~2h, χ = ^tr§(χ)g), with suitable defined constant tr~(χ), is a

solution of the constraint equations which satisfies (1.1) with Ω = u~2ρ. It qualifies
as a smooth hyperboloidal initial data set only if we can show the smooth extensibility
of the tensor fields (1.3), (1.4), (1.5).

As will be discussed in detail below the first equation of (1.6), if expressed with
respect to the metric ft, is an elliptic partial differential equation which degenerates
on dM. Thus we have to show the existence of a solution of this equation which
is smooth and positive up to the boundary on M and on top of this we have to
demonstrate the smooth extensibility of the tensor fields (1.3), (1.4), (1.5). This is
a highly overdetermined problem which suggests that our data are not so free as
assumed. It is not clear a priori which conditions have to be imposed on the data
(M, ft) such that they lead to smooth hyperboloidal data. The requirements turn out
to be surprisingly simple and geometrical.

Theorem 1.1. Suppose (M, ft) is a 3-dimensional, orientable, compact, smooth Rie-
mannίan space with boundary dM. Then there exists a unique solution u of (1.6) and
the following conditions are equivalent.

1. The function u as well as the tensor fields (1.3), (1.4), (1.5), determined on M from
ft and Ω = u~2ρ extend smoothly to all of M.
2. The conformal Weyl tensor C- = Ωd- goes to zero at dM.
3. The conformal class of ft is such that the condition

λ * = 0 on dM (1.7)

is satisfied, where λ* denotes the trace-free part of the second fundamental form
implied by the metric ft on dM.

Theorem 1.1 will be proved in Sect. 5 as a consequence of Theorems 1.2 and 1.3
discussed below.

The discussion of condition 2 of Theorem 1.1 in Sect. 5 shows how the smoothness
of the conformal initial data set at dM is related under our assumptions to the fall-
off behaviour of the conformal Weyl tensor at dM. Condition 3 tells us how we
have to choose the "free data" (M, ft) to construct smooth hyperboloidal data. Apart

from our simplifying assumption on the second fundamental form χ on M (which
is relaxed in [2]) these data are as general as we can expect. It is a remarkable fact
that the analysis of the constraint equation on the hypersurface M together with the
smoothness requirements do not yield more stringent conditions than already known
from the analysis of the full Einstein equations in a neighbourhood of the conformal
boundary 17: In the case Λ = 0 condition (1.7) is equivalent to the well known
property that & is shear-free on dM.

In the case of a cosmological constant Λ < 0 our result opens the possibility
to investigate the existence of asymptotically simple solutions to Einstein's field
equations by analysing initial boundary value problems for the regular conformal
Einstein equations (cf. [7]) where initial data are prescribed on a hyperboloidal
hypersurface and boundary data are given on the time-like conformal boundary &.
For an application in the case Λ = 0 the reader is referred also to the article [7].

From the point of view of these applications it is of interest that the result on the
smoothness of the tensor fields (1.3), (1.4), (1.5) is obtained by imposing conditions
on the "free data" only on dM. Moreover, the proof of the smoothness requires the
discussion of u only in an arbitrary small neighbourhood of dM. This suggests that
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the analysis will generalize in particular to the case where massive sources are present
which have spatially compact support in the physical space-time. It is also remarkable
that besides the orientability of M, which we assumed, no further conditions on the
topology of M enter the discussion.

To avoid misunderstanding it may be remarked that the result of Theorem 1.1
leaves, of course, open the question under which circumstances in the case A = 0
smooth hyperboloidal data can arise by Einstein evolution from asymptotically
euclidean standard Cauchy data for Einstein's equations. We hope, however, that
our analysis and its subsequent generalization will contribute to the understanding of
this question.

We turn now to a discussion of the technical results underlying the proof of
Theorem 1.1. The problem of constructing solutions to the constraint equations implied
by Einstein's fields equations on space-like hypersurfaces is closely related to the
Yamabe problem. In fact, finding a solution u to (1.6) is a Yamabe problem and the
first of conditions (1.6), if written as a partial differential equation for the unknown u,
is the special case of the Lichnerowicz equation which is known now as the Yamabe
equation. In various contexts the investigation of this special case has been observed to
be crucial for the understanding of the properties of the solutions to the Lichnerowicz
equation in general.

The Yamabe problem in the category of compact Riemannian manifolds has
received its solution in the paper [16] by Schoen. The Yamabe problem in the case
of an open manifold has been studied under various assumptions on the structure of
the manifold and on the sign of the Ricci scalar. The following result outlines the
situation which we shall analyse in Sect. 3 and 4 of this article.

Theorem 1.2. Let (M, Jτ) be a smooth, orientable Riemannian manifold of dimension
n > 3 with metric h and compact manifold M with boundary dM. Suppose that R is
a negative real number. Then there exists a unique smooth function w such that w is

positive on the interior M of M, satisfies w(p) —> oo as p ^ dM, and the metric g

obtained on M from h by the conformal reseating g — u>4/(n~2)/ι has Ricci scalar R.
Moreover, if ρ is a smooth defining function for the boundary of M, such that

ρ is positive on M while ρ = 0 and \dρ\h = 1 on dM, the function w satisfies

WQ(n-2}/2 _^ (-n(n- 1)/^)^-2)/4 as p -> dM and thus the space (M, g) is complete.

A similar result has been obtained by Loewner and Nirenberg [9] under simplifying
assumptions on (M, h) and the existence part has been shown in general by Aviles
and McOwen [3,4]. These authors also studied situations which in various respects
were more general than the one described above. The uniqueness part of the theorem
will be discussed in this paper and the solution will be studied in detail.

It is clear that the rescaled metric would not have the completeness property if
the function w would remain bounded along a sufficiently smooth curve which ends
on the boundary. We leave it as an open question whether the requirement of the
completeness of g and the condition on its Ricci scalar implies that in fact w goes to
infinity at the boundary; such a result has been announced without proof in [12]. The
answer to this question is, however, not important for the application we shall study
later on.

One of the main results of this paper is a careful analysis of the behaviour of the
solution w near dM. It is easy to see that by a rescaling of g with a suitable constant
conformal factor we can achieve R = —n(n — 1). This value of R will be assumed
in the following. For our analysis it will be convenient to consider instead of w the



Regularity of Solutions to the Yamabe Equation 591

function u = wρ(n~2^2 and to introduce the metric g = ρ~2h on M. The function
u is then the unique solution, positive and continuous on M, to the boundary value
problem

Lgu + n(n - i)u(n+2}(n~2} = 0 , (1.8)

where Lg denotes the conformally invariant Laplacian

with Δg = —irVd the Laplace-Beltrami operator and R(g) the Ricci scalar defined
by g.

As mentioned before, the Laplacian Lg considered as an operator on the compact
space (M, h) is degenerate at the boundary. Therefore the classical regularity
theory for boundary value problems does not apply. In fact, Δg is an operator
of the kind considered in e.g. [11,13 or 1]. In the papers [11] and [13] the
regularity of parametrices of elliptic ^-operators was considered, using a technique
of microlocalizing "near the boundary," which as a byproduct gives statements about
invertibility of Δg in a setting of weighted Sobolev spaces. In [1] the Fredholm and
isomorphism property of certain elliptic systems was considered in a similar setting. In
this case, the main tool was the use of the McKean inequality, rather than microlocal
techniques. In the present paper we show how to get statements about the regularity of
solutions to problems like (1.8) starting form the isomorphism property of the operator
rather than from statements about the regularity of the parametrix. The main technical
step is to get tangential regularity by commuting ̂  operators through the equation,
see Sect. 4. This approach is quite elementary and it appears easier to apply in the
case of systems, where the analysis of the parametrix can be rather cumbersome, see
[10] for an example.

Recently, the techniques developed by Melrose and Mazzeo have been indepen-
dently applied to the type of problem considered in the present paper by Mazzeo,
see [12]. The theme of that paper is the polyhomogeneity of solutions to the general
singular Yamabe problem, i.e. with lower dimensional boundary.

The most important technical results of the present paper are stated in the following
theorem. Here the equality in (1.10) is to be understood in terms of polyhomogeneous
expansions (cf. Definition 2.5 below, where the notion of tangential smoothness is
also discussed). To avoid any ambiguities, let us stress that in our convention_M is
a compact manifold with its boundary included. Thus, e.g., C°°(M) = C°°(M) is a
space of functions which are C°° up to the boundary.

Theorem 1.3. On the manifold (M, g), let u e (7°(M)nC°°(M) be the unique positive
solution to the boundary value problem (1.8) and (1.9), which exists by Theorem 12.
Then:
1 . u has an asymptotic expansion

(L10)
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at dM with functions u- G C°°(dM) and nonnegaΐive integers A^ such that 7V^ — 0
for ί < n = dim M. Furthermore u is tangentially smooth.

IfNn = 0, then in fact TV- = Ofor all i and u G C°°(M).
2. For α g/v^/7 metric h there always exist smooth defining functions ρ as considered
above such that R(g) = -n(n-l) + ρnRn near dM with Rn G C°°(M). The solution
u£C°°(M)ίfandonlyίf

Rn = 0 on dM. (1.11)

This condition describes the property of the (smooth) conformal class of the metric h
which decides on the smoothness of the function u at dM.
3. In the case of dimension n = 3 we define on dM the function

C(ft, dM, M) = δ δ λ* -h λ* β* - |tr(λ)λ* λ*, (1.12)

where λ* denotes the trace free of the second fundamental form λ induced by h on
dM, R* the orthogonal projection 6>/Ric(ft) on dM, and the first term on the right-
hand side of (1.12) is the double divergence 0/λ* with respect to the inner covariant
derivative on dM (cf. Sect. 5). This function is a conformal density of weight —3 and

u e C°°(M) if and only if C = 0 on dM. (1.13)

The first two parts of Theorem 1.3 will be proved in Sect. 4 and the third part
in Sect. 5 where we also give an example of a smooth Riemannian manifold (M, h)
with boundary for which the quantity C(ft, <9M, M) does not vanish everywhere on
dM.

2. Preliminaries

2.1. Differential Geometric Considerations

We shall mainly be concerned with Riemannian manifolds of the following type:

Definition 2.1. Let (M, ft) denote an oriented, compact C°° Riemannian manifold

of dimension n > 3 with nonempty boundary dM and interior M. Assume that

ρ G C°°(M) denotes a defining function for dM, i.e. ρ > 0 on M while ρ = 0 but

dρ φ. 0 everywhere on dM. Then the manifold (M,g), where g = ρ~2h, is said to
be conformally compact.

Since M is compact with boundary the statement / G (7°°(M) means that / as

well as all its derivatives on M extend continuously to all of M.
It is easy to see that the Riemannian space (M,g) is complete.
The following formulae which express the curvature of g in terms of fields derived

from ρ and ft will be useful for us.

Riem(#) = £~2(Riem(ft) - ft x ( - ρ~l Hess^ ρ + \ ρ~2\dρ\\h}} , (2.1)

where Riem denotes the (4,0) form of the Riemann tensor and x demotes the
Kulkarni-Nomizu product, see [5, 1.110]. It follows from this formula that g has
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asymptotically negative sectional curvature: Kg(p) —> — \dρ\h(q) as p — > q G dM.
Taking contractions, we get

- Ric(ft) + ρ~l[(n - 2)Hessh ρ - (Δhρ)h\ - (n - l)ρ~2\dρ\2

hh , (2.2)

R(g) = -n(n - l)\dρ\2

h - (In - 2)ρ(Δhρ) + ρ2R(h) , (2.3)

Ric(0) = Ric(ft) + ^— — ( Hess^ ρ + — — ft ) , (2.4)
£ V n J

where for any metric /c the symbol Ric(fc) denotes the trace-free part of its Ricci
tensor.

Let ft be a metric, θ a positive function, and set ft = θ4/(n~2)ft. The conformally
covariant Laplacian of ft, Lh = κΔh + R(h) with K = 4(n — l)/(n — 2), is related to

the Ricci scalar of ft by

Lhθ = θ(n+2)/(n-2)#(ft) . (2.5)

The conformal covariance of the operator Lh is expressed by the identity

Lhu = θ(n+2}/(n-2}L~h(θ-lu) (2.6)

which holds for all sufficiently smooth functions u.

Suppose that (M, g) is a conformally compact Riemannian manifold with g = ρ~2h

as described in Definition 2.1. Furthermore, assume that u G C°(M) Π C°°(M) is
a positive solution to the boundary value problem (1.8), (1.9). Thus the Ricci scalar
of the metric g = u4/(n~2}g takes the value R(g) = -n(n - 1). By (2.6) these
conditions will remain preserved under transformations ft — * Θ4^n"2^h (respectively
ρ — > θ~2/(n~2)£>) and u — > θ~lu, where θ is a positive smooth function on M with
θ = 1 on dM. In what follows we shall exploit this freedom at various occasions
without mentioning it each time.

The analysis of the behaviour of the solution u near the boundary is done most
conveniently in terms of functions, frame fields, and a choice of conformal scaling
which are well adapted to the boundary. Let (M, ft, ρ, g) be given as in Definition
2.1. Denote by x the smooth function, defined in an open neighbourhood U of dM,
which satisfies x = 0 on <9M, \dx^ = 1 on Z7, and for which grad^x is inward
pointing on dM.

Let XQ be a positive number. We denote by Φ the map which sends a point
(p, x') G dM x [0,z0[ onto the point q on the integral curve of grad^x through
p at which the function x takes the value x1 ' . For x0 chosen sufficiently small this
map is well defined and in fact a diffeomorphism of dM x [0,#0[ onto an open
neighbourhood of dM. We assume U to coincide with such a neighbourhood. We write
Φ~l(q) = (x',p), consider (x,p) with 0 < x < x0, p G dM as "Gauss coordinates"
on U, and call U a "Gauss domain." For s G [0, XQ[ we set Ms = {p G t/ | #(p) = s}.

Let {eα}α^1 denote a smooth orthonormal frame with respect to ft, defined
near a given point of dM, parallely propagated along the integral curves of grad^ x,
and such that el = gradhx. Such a frame will be called a "Gauss frame" in the
following. We denote by Γ%c the connection coefficients with respect to this frame
and assume in the following, that tensor indices refer to this frame.
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The vector fields eA, A — 2 , . . . , n define a frame on each hypersurface Ms. With
respect to this frame the coefficients of the second fundamental form λ induced by h
on the hypersurface Ms are given by \AB = Γ\B. The components in the frame {ea}
of the covariant derivative of a tensor field T in the direction of el are obtained by
taking the ordinary derivatives of the components of T with respect to the parameter
x along the integral curves of grad^ x. Thus tensors can be conveniently analysed
in terms of power series in x near dM. We denote covariant differentiation in the
direction of el by Dx.

The Laplace-Beltrami operator defined by h takes on U the form

Δhu = -D2

xu + Δku + tr(λ)Dxu, (2.7)

where Δk denotes the Laplace-Beltrami operator defined by the interior metric k
induced by h on the slice Ms if Δh is considered at a point with x = s.

Lemma 2.1. Let (M, h) be given as in Definition 2.1. Then
1. A defining function ρfor dM can be chosen such that the Ricci scalar of the metric
g = ρ~2h satisfies

R(g) = -n(n - 1) + Rnρ
n (2.8)

with Rn e C°°(M).
2. In addition to this we can assume, possibly after rescalings of ρ and h by smooth
positive factors (ρ —> Θρ, h —> Θ2h), that

\dρ\h = 1 whence ρ = x near dM . (2.9)

3. With this choice of ρ and scaling ofh

R(g) = x2R(h) - 2(n - l)x trλ - n(n - 1) near dM (2.10)

from which follows in particular that

tr(λ)|a M=0. (2.11)

Proof. By choosing ρ with \dρ\h = 1 on dM it follows from (2.3) that R(g) =
—n(n — 1) on dM. Taking formal derivatives of the same equation and restricting to
dM gives for k > 1 relations

Dk

xR(9)\dM = 2(n - D(ρDk

x

+2ρ - (n - k)DxρDk

x

+lρ) + Fk ,

where Fk depends on the functions DJ

xρ with j < k and interior derivatives of
these on dM. Thus we can determine a defining function ρ with derivatives Dxρ for
1 < k < n on dM such that R(g) vanishes there up to order n — 1. For given metric
h these derivatives are fixed uniquely and then also DxR(g)\dM is determined.

Let θ be a smooth positive function on M. The metric g remains unchanged if h
and ρ are replaced by h = Θ2h and ρ = Θρ respectively. By our choice of ρ we can
write 1 — \dρ\h = ρf with a smooth function /. The condition \dρ\^ = 1 takes thus
the form

2Θ (ff*dhρ, dθ) + ρ\dθ\2

h = Θ2f .



Regularity of Solutions to the Yamabe Equation 595

By the general theory of first order scalar PDE's there exists near dM a unique smooth
solution θ to this equation such that θ coincides on dM with a given smooth positive
function <90. This gives the first part of (2.9). From now on we omit hats on h, etc.,
thus \dρ\h = 1. Define a vector field X by dρ = Λ^JfW; from (h^X*)^ = 0
it follows

jrx*;ί = o,

which shows that the integral curves of X are affinely parametrized geodesies (of the
metric K) orthogonal to dM, and h^Xτχi = 1 implies that for x small enough ρ is
the affine parameter along those geodesies, hence ρ = x.

Equation (2.10) follows with this scaling of h and with ρ = x from Eq. (2.3) and
Eq. (2.7). Equation (2.11) follows by applying Dx to Eq. (2.10) and evaluating on
dM. D

Remark 2.1. The proof also shows that under the above rescaling of ρ and h with θ
the function Rn\dM scales with the factor ΘQ™ = (θ\dM)~n, whence the property
that Rn\QM φ 0 is a property of the (smooth) conformal structure of h.

For later use we note the expression of the Laplace-Beltrami operator of g in terms
of h and ρ

Au = ρ2Δhu + (n - 2)ρ (gτaάh ρ, du). (2.12)

2.2. Function Spaces and Operators

Define the set ̂  to be the set of smooth vector fields on M which are tangent to dM
and define 9ζ to be the subset of smooth vector fields on M which vanish on dM.
Let (y1, ϊ / 2 , . . . , yn) be a coordinate system defined in a neighbourhood of a point of
dM such that yl — 0 on dM and denote yl also by x. Then the ̂ and the ^"vector
fields have local expressions

respectively

Y = Yl(xdyι) + Y2dy2 + + Yndyn ,

Y = Y\xdy,) + Y2(xdy2) + + Yn(xdyn)

with F* G C°°. Following Melrose and Mazzeo we introduce the space of operators
@&b (considered in [14]) and its subspace &SP§ (considered in [11] and [13])
generated by vector fields in % and % respectively. These spaces of operators can
of course be extended to include corresponding pseudo-differential operators, but we
will not need this in the present context.

For given integers m > 1 and β > 0 we denote by &0>™^ the subset of operators
of order m in &ίfib, which in the coordinates considered above have local expression

A = aax
a^dS , aa e
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where we have used standard multiindex notation such that e.g. 9? = daf dffi.y y y

We will write &&^ for ̂ ^m'°. Furthermore we denote by (9'S^1 the subspace of
operators of order m in ^^Q, which have local expressions

A = Σ aaχW(dy)
a , aa € C°°.

\θί\<.m

Let us recall some definitions of function spaces over M. Because of the

completeness of the space (M, g) and the behaviour of its sectional curvature near

<9M, it is easily seen that there exists a £ M, α > 0 such that for any x £ M the set

is a convex normal neighbourhood of x. For tensor fields u, g on M and given points

x G M, y G Ba(x) we denote by u(x), ϋ(y), and g the corresponding tensors as x
respectively y given by their components with respect to a normal frame associated
with a normal neighbourhood centered at x. Set a(x) = α, and define a space
Cs

δ'
a(M,g) as follows:

Definition 2.2. For non-negative integers s and real numbers α,<5 with 0 < a < 1,

let the weighted Holder space C|'a(M, </) be the space of tensors on M which are
locally of Cs'α differentiability class, for which the norm

HIc°'e(M,0) (2.13)

is finite, where

and where V f cw denotes the covariant differential of order k of u with respect to the
covariant derivative V defined by g and . g denotes the pointwise tensor norm with
respect to g.

Remark 2. 2. 1. Note that these spaces are the same as the spaces used in [1] but with
opposite sign on 6.

2. We denote by Cj(M,g) the spaces defined by norms similar to those given in
(2.13), where, however, the second term on the right of (2.14) is dropped now.

oo

3. In the following we set C%° = p| C| and use analogous conventions for other
weighted spaces. s=°

We can characterize the Holder spaces above also by norms which are given in
terms of the metric h. For a section u of T^(M) the tensor norm with respect to g is
also given by \u\g — Qrn~r u\h. To avoid the factors ρrn~r we shall in the following
only consider the case m = r = 0. To emphasize the distinction of the, covariant
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derivatives involved we shall denote by D the covariant derivative defined by h. The
following weighted Holder norms are equivalent to the norms (2.13)

IHIc|'<*(M,Λ) = max \\Dku\\c^k(M^ , (2.15)

where the norms IHIco,α(M/ι) are defined as in (2.14) with g replaced by h and

a(x) = min(rad, dh(x, <9M))/2, where rad is the injectivity radius of h. In an obvious
way we get equivalent norms for the spaces Cj(M,g). For a review of various
properties of the weighted spaces, cf. e.g. [8].

Definition 2.3. We denote by Cj b the space

Cjιb = {ue Cj \DYι DYku e Cs

δ~
k, 0 < k < s, Yi e %} .

Definition 2.4. Let (M, h,ρ) be as above. For given real numbers α, a with α < a

we denote by W% (respectively W£b) the set of functions / G C°°(M) which have
the following property: there exist non-negative integers N,N19 ί = 1 , . . . , 7 V and
real numbers s0 = α < sl < s2 < - - < SN with SN < a and there exists a smooth
defining function ρ of dM as well as functions /f - G C°°(M) for i = 0, 1, . . . , N
and j = 0, 1 , . . . , Ni satisfying

(dfij,&adhρ)=0 near dM (2.16)

such that
N N,

/ = ΣΣ-Mlog^β*+0 (2 17)

i=0 j=0

with some function g G C£° (respectively g G C£°6). For given c, α < c < SN, we

denote by W^b the set of functions / G W^b for which TV- = 0 for ^ < c.

Condition (2.16) makes precise the sense in which /^ G C°°(dM) is to be
understood in Theorem 1.3. The size of the neighbourhood of dM in which the
representation (2.17) holds is unimportant. Also, if for a given / there exists such
a representation with a particular defining function, a similar representation can be
obtained with respect to any other defining function. In particular we can choose the
defining function to coincide on some Gauss domain with the function x.

Definition 2.5. Under the assumptions of Definition 2.4 we say that a function / on

M is polyhomogeneous if for some real number α it holds that / G ^pgh = Π W£ b.
α>α

In this case / has an asymptotic expansion at dM in the sense of (2.17) for all TV in
N, which by a common abuse of notation we write as the equality,

flt' (2 18)

i=0 j=0
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with Nτ,sτ,f- as in Definition 2.4 (cf. [13]). We denote by Λ>°^g ^e sPace °f
/ G ^phg sucrι that / has an expansion of the form (2.18) with Λ^ = 0 for all i such
that si < c.

The following result which spells out in particular the tangential regularity of the
polyhomogeneous functions is immediate from the definitions.

Proposition 2.2 (Mapping properties). 1. Let A G ̂ ^m)/ and let s > m. Then A
defines continuous mappings

Λ . ^s^a /~ιs—m,a n^Λ Λ . /^ts,a s^s—m,(y.
A ' Cδ,b -> Cδ+β,b and A Cδ -» Cδ-m+β '

2. Under the same assumptions A defines mappings

A:WSιb^W£ξ>b and A:^hg^^.

3. Let A G ̂ ^̂  and let s > m. Then A defines a continuous mapping

Proposition 2.3 (Commutation Property). Suppose we have operators A G f^
and B G @&ξ with m,p> 1. Then their commutator [A, B] = AB - BA satisfies

where I is a finite set, Cχ G ^)^ξn, and either Dx G ̂ ^p 1 or Dx = 1, the identity
operator (which is always the case if p — I).

Proof. The general case is readily reduced to the case where A — A^... A2Al

with Ai G ^^ and B = Bp... B2Bl with Bj G 00$. The case p - 1 follows
by induction on m: It is obvious geometrically and easily checked analytically that
[A, B] G 00$ if A G ^f^1 and B G ̂ .̂ Since

[Am+lAm ...A^B] = Am+l[Am ...A19B] + [Am+l,B]Am ...A,

the result follows immediately for all m > 1. The case of arbitrary m,p > 1 follows
now by induction on p: having shown it already for p — 1 and using the identity

[A, Bp+l... B,] = [A, Bp+l]Bp ... β, + Bp+l[A, Bp ... B,},

the result follows from the induction hypothesis. D
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3. Existence and Uniqueness of Solutions

The proof of the existence and the uniqueness of the solution to (1.8), (1.9) is given
by a series of lemmas.

Lemma 3.1. Let (M, g, /ι, ρ) be given as in the Definition 2.1 of conformally compact
manifolds, with ρ chosen such that that \dg\h = 1 on dM. Suppose that w is a smooth

positive solution on M of

Lhw + π(π - i)^+2)"-2) = o with w -> oo at dM .

Then

Proof. Because of the conformal covariance of the equation satisfied by w we may
assume without loss of generality that the Ricci scalar R(h) is positive near dM.
In case this condition were not satisfied we could replace h and ρ by Θ2h and θρ
respectively, where the smooth function θ > 0 is chosen as follows. Fix Gauss
coordinates as described in Sect. 2 and set θ = ax2 4- 1 near dM. It follows
from the transformation law (2.3) that we can determine the real number α such
that R(θ2h) > 0 near dM.

Consider now Gauss coordinates defined on a Gauss domain U on which
0 < x < XQ for some positive x0 and R(h) > 0. We may assume that ρ = x
on U. Choose numbers C^ε^εl^xl > 0 with C < 1, xl < x0, ε < εl9
x\ + ει < X0' and consider on the subset W of U where 0 < x < x{ the function
v = C{(x 4- ε)-(™-2)/2 - (Xl + ε)~(n~2}/2}. The calculation shows that we can fix
εl,xl suitable small such that

Lhv 4- n(n - i)υ<»+2><»-2> = Cv(n+2}(n-2\n(n - l)(C4(n~2) - 1) -h O(x + ε)) < 0

on W for all values of C, ε in the range allowed above. Furthermore, we have w > υ
near the boundary of W. It follows now from the maximum principle, see [9] and
[3], that υ < w on W. Multiplying this inequality by ρ(n~2)/2 and considering first
the limit ε — > 0 and then the limit C — > 1 gives the result. D

Lemma 3.2. Under the same assumptions on the function w as in Lemma 3.1 there is
a constant C > 0 such that

Proof. Let again U be a Gauss domain and x the corresponding coordinate and ρ = x

on U. Assume that the sequence of points pk G M Π U is such that

pk-^pedM and (wρ(n~2)/2)(pk) -* lim sup (wρ(n~2}/2)(q) ,
q->dM
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and set Rk = ^ ρ(pk). In the following we assume that k > kQ with kQ chosen large
enough such that the points pk as well as the open balls B3Rk(pk) are contained in a
convex normal neighbourhood of the point p (in some smooth extension of (M, ft))

and that B3Rk(pk) c M. If φk e C^(B3Rk(pk)) with φk = 1 on B2Rk(pk) then, as
has been shown in [4], there is a constant C independent of fc, such that

/ r r \ (n-2)/2n

sup w(q) < CRk

(n-2}/2( \ \Vφk\
n

hdμ(h) + / φn

kdμ(h) , (3.1)
Pyfc) \J J J

where the integration is performed over jB3Λ (p^). We choose φk as follows. Let

ψ e C°°(R) be such that ψ(t) = I for t < 2, ^(ί) = 0 for ί > |. Set

TΓ d(q,pk) ). Then it follows that the second integral on the right of
Rk )

Eq. (3.1) goes to zero as k —> oo while the first integral approach in this limit the
values which one would get if one would replace h by a flat metric. The result follows
now from the fact that in the flat case the first integral is independent of k. D

Lemma 3.3. Suppose the function w satisfies the same condition as in Lemma 3.1.
Assume v is a smooth positive solution on M of Lhv + n(n — i)v(

n+2)/(n-2) — o such

that lim (Vn~2)/2)(p) = l
p—»<9M

If either

lim (Wn~2)/2)(p) = 1
p—>dM

or

ggraά^vρ^'2^2) is bounded on M

then w = υ.

Proof. Set ft ^v4/^-2^. Then by Eqs. (2.5) and (2.6) the positive smooth function
u = v~lw on M satisfies

Lhu = -n(n - i)M("+2>/(n-2) = R(h)u(n+2^n~2\

and by Lemmas 3.1, 3.2 we have

1 < liminfu(p) < limsupw(p) < C (3.2)
p->dM p-+dM

for some constant C > I which can be set equal to 1 under our first hypothesis. It
follows from the equation for u above that the function z = u — 1 satisfies an equation
of the form

Δ~hz + g(u)z = 0

with a function g e C1([0,oo[) such that 0(0) = 0, g(t) > 0 for t > 0. We can
now apply the strong maximum principle and the estimates (3.2) to conclude that
0 < z < C — 1 which gives our result under the first hypothesis. In the second
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case the result follows from Lemma 3.2 and the generalized maximum principle as
described, e.g. in the article [8]. D

Theorem 3.4. Let (M, g, /ι, ρ) be given as in the Definition 2.1 of conformally compact
manifolds with ρ chosen that the condition (2.8) is satisfied. Then there exists a solution
u to the boundary value problem (1.8), (1.9) such that z = u— 1 G C$°(M)for δ < n.

RemarkSJ . Lemma 3.3 implies that this solution to the problem (1.8), (1.9) is unique.
In Sect. 4 will be seen that the solution u is of class Cn~l. This together with Lemma
3.3 and Theorem 3.4 implies Theorem 1.2.

Proof. Assume that h has been scaled such that besides (2.8) also (2.9) is satisfied
on some Gauss domain U. Set w = 1 + aρη with some constants α and 1 < η < n.
Then the calculation shows that

LaW + Π(n - 1)
n — 2

This and the fact that R(h) is bounded on M implies that for a fixed choice of η
satisfying the conditions above we can determine sufficiently large positive constants
α, α, b such that the functions

w = min(l -f aρη,b)

and
w_ — min(l — aρη , 0)

are weak global upper and lower solutions to our problem. It follows from standard
arguments that there exist a solution u with w < u < w to the boundary value

problem (1.8), (1.9) such that u > 0 (cf. [4]) and z = u - I G Cj)(M) Π C°°(M).
Lemma 3.3 implies that the solution is unique and independent of the choice of η.
By elliptic regularity and scaling arguments (cf. e.g. [1]) we conclude from this that
z G C$° for δ < n. D

This last property is the starting point for our investigation of the smoothness
behaviour of the solution near dM.

4. Behaviour of the Solution near the Boundary

Using on a suitable Gauss domain U a defining function ρ and a scaling of the metric
h as considered in Eqs. (2.8), (2.9), such that ρ = x and observing (2.7), (2.12) we
find that the Yamabe equation (1.8), written as equation for the unknown z = u — 1,
takes on U the form

) , (4.1)

where we use the notation

AXίξ = -x2D2

x + (n- 2)xDx +ξ(ξ-n+l) (4.2)

with ξ = n,
B = x2(Δk + tr(λ)L>x) (4.3)
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and

, z) = (-Rnx
n ~ Rnx

nz ~ n(n - l)G(z)) (4.4)
4(71 L)

with G(z) = (1 + z)
(n+2V(n-V - 1 - -̂t| z. In the following we shall study how

n — 2
the properties of the various terms in Eq. (4.1) affect the behaviour of the solution z
near dM.

4.1. Some ODE Results

In Gauss coordinates the operator (4.2) involves only partial derivatives with respect
to x. For fixed ξ > n - 1 consider the equation

AXίξu = f , (4.5)

where now Ax ^ is viewed as an ODE operator on M+, together with the boundary
condition

u(x) -> 0 as x -> 0+ . (4.6)

In the case / = 0 Eq. (4.5) is Euler's equation. Its solution are given by

u = uQχt + u_χ-*+n~l (4.7)

with constants u0,u_. This allows to determine the solution of Eq. (4.5) for the more
general right-hand side by standard methods. Let the kernel H^(x, x) be given by

Hξ(x, x) = Cξ(-χχn--H(x - z) + xn--

with Cξ = (2ξ + 1 — n)"1, where H(s) is the Heavy side step function. Then, for
suitable given /, the function

z(x)= Hξ(x,x)f(x)x~ndx (4.8)

solves Ax^u = f.
Since we are interested only in the behaviour of the solutions near x = 0 we

consider spaces of functions on / = ]0, 1[ which reflect the radial behaviour of
the functions considered in Definitions 2.2 and 2.5. We use obvious analogues to
the norms (2.15) to define the spaces C^(I). We denote by <./&£h (I) the functions
/ G C°°(]0, 1]) which have at x = 0 an asymptotic expansion of the form (2.18) with
Q = x and some constants fijt Finally we set W£(I) = Λ%hg(I) + C™(I).

Lemma 4.1. Let ξ > n— I, a > ξ, suppose that f = O(xa), define

- χ-l-ζf(x)dx + xn-l-2t xζ-nf(x)dx . (4.9)

X

- ί
J
n



Regularity of Solutions to the Yamabe Equation 603

Then Hξ[f] is the unique solution to (4.5), (4.6) which behaves as O(xa) at x = 0.
Moreover the operator H^ given by (4.9) defines a map

and for a > a it restricts to mappings

Proof. For functions / satisfying / = O(xa) with a > β the integral

exists, and the results follow by straightforward estimations and/or integration. D

4.2. The Scalar Laplace-Beltrami Operator

We generalize slightly the right-hand side of Eq. (4.1) and study now on U ~
[0, £0[ x dM, where x0 > 0, the operator

Aξ = Δg + ξ(ξ - n + 1) = AX£ + B , (4.10)

where the operators on the right-hand side are given on U by (4.2) and (4.3)
respectively. The interval / in Lemma 4.1 can obviously be replaced by the interval
[0, xQ[ without changing any of the results in an essential way. Since the operator B

is in &^1 it defines by Proposition 2.2 a continuous mapping B : Cj°b — > C^ b.
This means that with respect to the radial regularity we can treat £? as a lower order
perturbation of Ax ^ Basic for our discussion are the following two lemmas:

Lemma 4.2 (Isomorphism property). Let s > 0; for ξ > n — 1 consider the operator

1. For 0 < a < 1 and for all δ such that

0 < δ < ξ
the map

is an isomorphism.
2. For 0 < a < 1 and for all δ such that

n-l-ξ <δ <ξ
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there exists x*, 0 < x* < x0 (depending only upon n, h^,ξ and δ) such that for every

/* e Ca+2'a(Nx^) the map

where Mx — {p G M : 0 < x(p) < x*}, is an isomorphism.

Proof. Point 1) can be shown be standard techniques (cf. e.g. [8]) using the
weak barriers given by φ± = ±min(l, Cxδ), with a constant C large enough.

Point 2) follows from the fact that the functions φ± — ±Cxδ are barriers for
x < XQ(hτj, n, ξ, <5) (for <5 < 0 one should use the generalized maximum principle, cf.
[8]). D

For our applications the importance of Lemma 4.2 stems from the following:

Lemma 4.3. Let ξ>n— I, s > 0, 0 < α < 1, suppose that

Aζu = f , /eC|'a, n-l-ξ<δ<ξ,

u G C2(M) n C°>Q!, σ > n — 1 — ξ.

Then

it G C|+2'α.

Here C2(M) only indicates local differentiability, no norm is involved.

Proof. By elliptic regularity and scaling arguments (cf. e.g. [1]) we have u G C^+2jQ!.
Let xQ(δ) and xQ(σ) be given by Lemma 4.2, point 2), set x0 = min(x0(<$), x0(σ)),
define ι̂ 0 = ^|Mίc . If σ > <5 there is nothing to prove, suppose thus δ > σ. By Lemma

4.2, point 2) there exists u G C%+2'a(IXQ) (recall that IXQ = {p G M : 0 < x(p) < x0})

satisfying u\Mχ = u0, A^ϋ = /. Since σ < 6 we have -u G C^+2'α, by injectivity

of A^ on {^ G C^+2'a(^X()) '• UQ = u\Mχ } it follows that u\Iχ = u, thus

w G C|+2'α(M). D

Proposition 4.4 (^"regularity). Suppose that for some integer ra > 1, all integers
5 > 0 and for some 0 < a < 1 the operator .A G ^d^1 is an isomoφhism

A : C|+m'α -̂  C|'α for all δ G / = ]c0, Cl[, where q > c0 + 1. Fix a <5, tf7 G / such
that δf > 6 and <57 — c0 > 1. If IA G C™'a satisfies the equation

for some / G C^,a

b, then in fact u G C^;". In particular, if / G C 5̂ then u G C^^.

Proof. From the isomoφhism property ensues that u G C|/+m'α. If 5 G ̂ ^ we get

from Proposition 2.2 that Bu G Cgΐ^~l'0ί. But by Proposition 2.3 and Proposition
2.2, we obtain
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whence, since A is an isomorphism for the scale of spaces, we get in fact Bu G

can now appiy mjs argument inductively to prove that u G Cs

δ~?~™~l'a.
δ

D

The following result provides radial regularity for solutions of equations of the
form

(AXtξ + B)u = f (4.11)

for / and u with 9^ regularity. This result is well known /we include the proof that
follows here because it is much simpler than the usual Mellin transform approach.

Lemma 4.5. 1. Assume that f G C^b(M) for a > ξ > n - 1. Suppose that
u G C|f.εb(M) with 0 < ε < 1 satisfies (4.11) on U. Then u is of the form

c*~α \
Σ uiχl + u* }> where u{ G C°°(dM) and u* G C™_t b, in particular
i=Q J

u G W* 6(M).
2. Assume α > 1, 0 < ε < 1 and let u G C^_ε b satisfy Eq. (4.11) on some

neighbourhood ofdM. If f G W^b with a > ξ > n - 1 then u G W™£(α'°. /Λ
particular, if u satisfies the same conditions as above and f G ̂ >h for some a > 1

Proof. 1. Since 5 G ^^ ' it follows from Proposition 2.2 that

A^u^-BueC^, (4.12)

where a' — min(ξ - ε + 1, α) > ξ. On a fixed integral curve of the vector field
grad^x on U it follows from the ODE (4.12) and from u — o(xn~l~^) that
u = X^UQ + Hξ[f — Bu]. Here u0 is constant on the integral curves but must be
considered as a function on dM. It follows from Lemma 4.1 that H^[f — Bu] G C™.
From the expression for Hξ given in (4.9) it follows that in fact H^[f - Bu] G C^ b.

Using the smoothness assumptions on u we conclude that u0 G C°°(dM). If a' < a
we can repeat the procedure. Assume that u has been shown to have an expansion of
the form

U ~

with vi G C°°(dM), v^ G C^_ξ b, and / < [a — ξ]. Then we may again use Lemma
4.1 to conclude that

and it is easily seen that this pushes the expansion one step further while preserving
all the required smoothness properties.

1 We are grateful to G. Lysik and B. Ziemian for pointing out to us the Mellin transform approach
to this problem
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2. Let

i=0 j=0

It is easily seen by induction that there exist functions vi^ G C°°(dM), i = 1, . . . ,/,

j = 0, . . . , 7V^ -f- 1, for some /, such that

/

\ i=0 j=0
Σ Σ ̂

where {sf} = {s, + fc : fc G N U {0}, si + fc < α + 1}, for some f G ̂ ^ C
C'S-i-ε.z, C C|̂ ε, for any ε > 0. By Lemma 4.2 there exists ϋ e C|̂ ε such that
^ϋ = r — f , by Lemma 4.2 and Proposition 4.4 we have u G C^_ε b. Since both w

and ϋ+ ̂  Σ vi X s* log-7 x are in C^_ε, the uniqueness part of Lemma 4.2, point 1,
i=0 j=Q '

/ Ni + 1

shows that w = ϋ + J] j] vίjχSί ^°&J x> an<^ s^nce r ~~ ^ G Ŝ°6 we ̂ ave ̂  ^ ^α 6
z=0 j=0

by point 1 of this Lemma. D

We next consider the regularity of solutions on a conformally compact manifold
M to equations of the type A^u = /, under various conditions on /:

Theorem 4.6 (Regularity). Let ξ > n — 1 ana assume that u G C|, vwY/z some
δ > n - ξ, is a solution to the equation

Au = f . (4.13)

.
1. /// G C^b(M)for some a > ξ, then u is of the form u = xξ { ^ u^x1 +

V i=o
G C°°(dM) and u* G C^_ 6 .

2. Assume2that a > n - ξ. If f G W£6 w/ίA a > ξ, then u G W™™(M. In

particular, if f G Λ^?, ίA^/i w G ^pT/'α). /// G Λ^1 for some I > ξ + ε,
^ Aα,s A76> log-terms until the order L

3. Assume that ξ is an integer and that f G C°°(M). 77z£/? f/zere

1̂ 2 log x .

If f\dM = 0, ί/z<?ft ^ aM = 0. Further, if in addition f = o(x^\ then u G C°°(M).

jPr<9<9/. By Lemma 4.2 and Proposition 4.4 u in tangentially smooth, and point 1
together with the first part of point 2 follow from Lemma 4.5. The second part of
point 2 follows by comparing the coefficients in an asymptotic expansion of A^u with
those of /. To prove point 3, note that by point 2 u is polyhomogeneous and again

2 The hypotheses α, δ > n — ξ can be relaxed t o α , < 5 > n — ξ— I b y a difference quotient argument
(which is sharp), cf. [2]; this will however not be needed in this paper
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comparing the coefficients in an asymptotic expansion of A^u with those of / one
finds that u has an asymptotic expansion of the form

ΐ=0 i=0

By BoreΓs lemma there exist functions ύl^u2 G C°°(M) with the asymptotic
expansions

00

u\ =
i=0

so that ϋ = w - ϋj - u2 logx is polyhomogeneous, vanishes to arbitrary order at dM
together with all derivatives, and thus u G C^M). It follows that Lu G C°°(M), and
Lϋ vanishes to arbitrary order at dM, so that point 1 implies u G C°°(M). Setting
uλ = u + ύl we have u = u^ -\- u2 logx, and the result follows. D

4.3. Radial Regularity for the Nonlinear Case and Proof of Theorem 1.3

In this section we consider solutions to an equation of the form

Aξw = F(w) = Uw + V + G(w) , (4. 14)

where U, V G ̂ ^ and G G C°°(R), with G(0) = G'(0) = 0. First we prove that a
solution which decays sufficiently rapidly at dM must be tangentially smooth.

Lemma 4.7. Let ξ > n — 1, δ > max(0, n — ξ), assume that w G C$° is a solution of
(4.14). Then for all a < ξ we have in fact w G W^ b, i.e. w is tangentially smooth.

Proof. Suppose that 6 < 1/2, then F(w) G C^}, by Lemma 4.2 it follows that
w G Cgj , and repeating this argument a finite number of times if necessary we get
w G C£°, 6 > 1/2. It then follows

F(w) =

with RηC™, η > mm(2δ, 1 + δ), sk > η, and F^ G C°°(dM). Lemma 4.2 and

Theorem 4.6 show that we can find wη G ̂ >phg, rη G C °̂ if η < ξ or rη G C °̂ for
any a < ξ if η > ξ, such that

^ = Fη , Aζrη = Rη .

Uniqueness implies w = wη + rη, and repeating the above argument a finite number

of times one obtains η > α, thus w = wa + ra, wa G Λl

phg, ra G C °̂. Let now

B = &&£, we have

= [Aζ, B]w - BF(w) G Wl

a ,
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and since Bw — Bwa + Bra, Bwa G <^phg, Bra G C™_{, a — 1 > 0, one

concludes from Lemma 4.2 that Bw G W^ An induction argument shows that for
every Bτ G &SP^, ί = 1 , . . . , AT, we have B{ B^w G W^, thus w G W^ b, which
had to be established. D

This result enables us to prove poly homogeneity.

Theorem 4.8. Under the assumptions of Lemma 4.7, we have w G ̂ phg

Proof. By Lemma 4.7, w G W* b for some η > 1. It follows that

A^w = Uw + V + G(u>) G Wi b with any 77' < η + 1.

Applying Theorem 4.6 inductively now shows that w G W^ b for any a and hence

If the term V satisfies an additional requirement, then we can prove that the
solution is actually smooth.

Corollary 4.9. I f U , V e C°°(M),U = O(x), V = O(^+1), then x~^w G C°°(M).
In particular, ifξ is an integer, then w G C°°(M).

Proof. By Theorem 4.8, w G ̂ phg, and hence after iterating

Aξw = Uw + V + G(w).

Using Theorem 4.6 part (2) we find that w G ̂ phg Iterating this leads to w G Λ>^g
for any I and hence the corollary is proved. D

From the results above we can deduce Theorem 1.3. We know already that the
Yamabe equation can be written in the form (4.1) with (4.2), (4.3), (4.4) for an
unknown z, which by Theorem 3.4 is in C$° for δ < n. Since the function G on the
right-hand side of (4.4) is smooth in a domain strictly larger than the set {z > -1},
where z takes its values, we can assume G to be extended suitable to a function that
satisfies the requirements on the function G considered above. Now parts 1 and 2 of
Theorem 1.3 follow from Lemma 2.1, Theorem 4.8, and Corollary 4.9. Part 3 will
follow from parts 1 and 2 and Lemma 5.2, which will be given in the next section.

5. Smoothness of the Hyperboloidal Initial Data

We shall in the following discuss a number of equivalent conditions under which the
solution u of the boundary value problem (1.8), (1.9) extends smoothly to dM. These
will allow us to prove part 3 of Theorem 1.3 and Theorem 1.1.

We assume that on some Gauss domain U the condition (2.8) and (2.9) are satisfied.
Then we have

Rnx
n = χ2R(h) - 2(n - l)xtr(λ) on U . (5.1)

Taking x-derivatives of (5.1) and evaluating on dM we get

Dk

x tr(λ) = k_ Dk

x~
lR(h) on dM for k = 0 , . . . , n ~ 2 (5.2)
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and the equivalent "regularity conditions"

Rn\dM=0 <* Q = D^-l\x(X)-\D™-2R(h) on dM. (5.3)

One would like to give the regularity condition in terms of well understood
quantities on dM which do no involve non-tangential derivatives. This is more
desirable since the quantities entering the expression above depend very much on
our choice of scaling. As we have seen in the proof of Lemma 2.1 there is still some
freedom in the scaling of h. Changing this scaling will in general also change the
family of hypersurfaces Ms in U and the second fundamental forms obtained for
different scalings will be related to each other in a complicated way.

In the case of dimension n = 3 we can derive a simple condition. First we introduce
a useful function.

Lemma 5.1. Let \*AB be the traceless part of XAB, define on dM the function

C(h, 8M, M) = δAδB\\B + \*ABRAB - \ tr(λ)λ*Λβλ* B .

Then C(/ι, <9M, M) is a conformal density of weight —3, i.e. it satisfies
C(Θ2h, dM, M) = θ~3C(h, dM, M)for all smooth positive functions Θ on M.

Proof. The proof of the transformation behaviour of C under transitions h —> Θ2h
follows by a straightforward calculation from (2.2) and the transformation law
λ —> ΘX + k (n, dθ) for the second fundamental form on dM, where n denotes
the inward pointing unit normal of dM with respect to the metric h. D

This allows us to give the regularity condition in the form

Lemma 5.2. In the case of dimension 3 the solution u to the Yamabe problem (1.8),
(1.9) is smooth on M if and only if the conformal structure defined by the metric h is
such that C(h, dM, M) = 0 on dM.

Proof. Using the same tetrad conventions as in Sect. 2.1, the embedding equations
for the hypersurfaces Ms into M are given by Gauss' equation

RABCD ~ TABCD + ̂ ADXBC — XAC^BD (5-4)

and its contractions

RBD — R\B\D — rBD ~^~ ^CD^B ~~ ^C^BD ' (5.5)

R - 2Rn = r + \CD\CD - (λg)2 , (5.6)

and by Codazzi's equation and its contraction

UC^DB ~~ ^D^CB ? (5.7)

Furthermore we have the equations

(5.9)

(5.10)
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The curvature quantities indicated by a capital R on the left-hand side of these
formulae are the Riemann tensor, the Ricci tensor, respectively the Ricci scalar
defined by the metric ft, while on the right-hand side are denoted by a small r
the corresponding quantities derived from the interior metric k on the hypersurface
Ms in U. Contractions on the right-hand sides are performed with the metric k.

We can replace the expression on the right-hand side of (5.3) by a lower order
expression in the following way. We take derivatives of (5.10) to obtain

\AB^

From the contracted Bianchi identity and (5.8) we derive

\ DXR = DaRal = DxRn - Δk tr(λ) - δAδB\AB - ti(λ)Rn + \ABRAB .

Taking derivatives of this equation and using the previous equation we arrive at

tr(λ) + 6AδBXAB + tr(λ)#π - XABRAB) .

We assume now n = 3, use Eqs. (5.9), (5.5) to obtain DX\AB = RAB — rAB +
tr(λ)λAβ, contract this with λAB, and use the resulting expression to replace the first
term on the right of the previous equation. We obtain

= -2rtr(λ) + 2tr(X)XABX
AB + Δk tr(λ) + δA6BXAB + tr(λ)Λπ - XABRAB .

Observing now the scaling behaviour of C and the fact that in our present scaling
condition (2.11) is satisfied, we get our result from (5.3). D

Proceeding in a similar way in the case of higher dimensions would give
complicated terms, non-linear in the curvature of ft.

The following example shows that the condition given in Lemma 5.2 is not trivial.
Let M be the solid torus embedded in R3 whose boundary is given by the 2-surface

dM = {(x, y, z) G R3 |x = (R + r cos 0) cos φ, y = (R + r cos 0) sin φ,

z = rsin0)},

where 0 < 0, φ < 2π and r, R are given numbers satisfying 0 < r < R. Assume that
ft is the metric induced on M by flat standard metric on R3. Then we find

C(h, dM, M)=\ R{r(R + r cos 0)}~3(Λ2 + 2r2 + 4Rr cos 0)

which vanishes only on sets of measure zero on dM.
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5.7. Proof of Theorem LI

Suppose u is the solution to the boundary value problem (1.8), (1.9), set Ω = ρu~2

and g = Ω~2h. We shall study the behaviour of the tensor fields (1.3), (1.4), and
(1.5) on a Gauss domain U where we assume the conditions (2.8) and (2.9) to be
satisfied. It follows then from Theorem 1.3 that Ω is near dM of the form

Ω = x — 2u3 Ox4 — 2u3;1(logx)x4 + higher order.

Thus Ω E C3(M).
The condition that Ω be smooth is equivalent to the condition that u be smooth

which imposes the condition C — 0 on our "free data" (M, h).
Using the above expression for Ω we can calculate from it the trace free part of

the Hessian of Ω and get

DaDbΩ - l- habDcD
cΩ = -λαb + | hab tr(λ) + O(x2 log x),

where λ is considered as a tensorfield on U which contracts to zero with the gradient
of x. Thus the requirement that the field (1.4) extends smoothly to dM implies in
view of our assumption (2.11) the conformally invariant condition

A * = 0 on dM (5.12)

which implies in turn the smoothness of Ω by Lemma 5.2.
Assuming (5.12) to be satisfied and using Eqs. (5.2), (5.6), (5.9), and (5.10) we

find that the field sab extends smoothly to dM and takes there the following values:

12 ""»

SAB = DX^AB ~ 3 hABDx tr(λ) = RAB - ^ Rh^

Let Cab denote the electric part of the Weyl curvature (note that the magnetic part

of the Weyl tensor vanishes because of our hypothesis X = | tr(χ)g); it is now
straightforward to check that

Cab = Ωdab = Rab(h) - - R(h)hab - sab

goes to zero at dM which implies that dab also extends smoothly to dM. Also note
that from what has been said it follows that Cab goes to zero at dM if and only if
sab is bounded which we have seen to be true if and only if (5.12) is satisfied. From
this follows Theorem 1.1.

We end the article with a few remarks. Comparing (1.5) with (2.4) shows that

Beside the implication of (5.13) for the fall-off behaviour of the physical field we
gather from (5.13) that the data are trivial, i.e. determine a conformally flat solution

of Einstein's equation's, only if (M,g) is a space of negative constant curvature, i.e.
only if (M, h) is conformally flat. It follows that there exist non-trivial solutions to
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Einstein's equations satisfying (5.12). It may be remarked, however, that the conformal
flatness of (M, h) does not necessarily imply triviality of the solution. Consider the
case where M = {x e E3 rl < \x < r2} with real numbers 0 < rl < r2 and
where h is the metric induced on M by the flat standard metric on M3. It is easy
to see that the regularity condition (5.12) is satisfied. The resulting space (M,g)
cannot be of constant negative curvature since it is complete and simply connected
but M is not diffeomorphic to R3. Furthermore, it follows that the hyperboloidal
data and consequently the solution of Einstein's equations (^,7) determined from
(M, h) are spherically symmetric. By Birkhoff's Theorem (,^,7) represent thus a
portion of a Schwarzschild-Kruskal space-time with positive mass. We also see from
this example that in the Schwarzschild-Kruskal space-time there exist smooth space-
like hypersurfaces which extend from one future null infinity to the other future null
infinity and on which the second fundamental form is proportional to the interior
metric.
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