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Abstract. If ¢ is a p™ root of unity there exists a quasi-coassociative truncated quan-
tum group algebra whose indecomposable representations are the physical represen-
tations of Ug(sl,), whose coproduct yields the truncated tensor product of physical
representations of Ug(sl,), and whose R-matrix satisfies quasi-Yang Baxter equations.
These truncated quantum group algebras are examples of weak quasitriangular quasi-
Hopf algebras (“quasi-quantum group algebras™) &*. We describe a space .# T of
“functions on the quasi quantum plane,” i.e. of polynomials in noncommuting com-
plex coordinate functions z,, on which multiplication operators Z, and the elements
of &* can act, so that z, will transform according to some representation 74 of &*.

FT can be made into a quasi-associative graded algebra. #7 = @ .#T™ on which
n>0

elements of &* act as generalized derivations. In the special case of the truncated
U,(sl,) algebra we show that the subspaces .% 7™ of monomials in 2, of n degree
vanish for n > p — 1, and that # 7™ carries the 2J + 1 dimensional irreducible
representation of & if n =2J, J =0, 1, ..., 1(p — 2). Assuming that the repre-
sentation 7/ of the quasi-quantum group algebra gives rise to an R-matrix with two
eigenvalues, we develop a quasi-associative differential calculus on .% 7. This implies
construction of an exterior differentiation, a graded algebra AZT = @ A"F T of
forms and partial derivatives. A quasi-associative generalization of noncommutative
differential geometry is introduced by defining a covariant exterior differentiation of
forms. It is covariant under &*-valued gauge transformations.

0. Introduction

To explain the problem which we address, we recall the theory of the complex quan-
tum plane [1,2,3].

The algebra.# of polynomial functions on the quantum plane is a noncommutative
but associative deformation of the commutative algebra .%; of polynomial functions
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on the complex plane C2. It depends on a complex parameter g. The algebra .# is
generated by elements 2, (a = 1,2). They are subject to relations

ZgRp = zczch%dc,ab 0.1)

with a numerical matrix .72 that is furnished by the canonical R-element for the
quantum group algebra U, (sly), and cg = ¢ /4. Summation over repeated indices is
understood throughout.

¥ is a representation space for Ug(sl), and the action of & € Uy(sly) on . is a
generalized derivation [9]. This means the following.

Let m: ¥ ® % — .% be the multiplication map, m(p; ® p2) = p1p2. Then

Ep1p2) = M(A4(§) (p1 @ p2)), 0.2)

where A, is the coproduct for Uy(sl,). In addition to the elements of Ugy(sl>), multi-
plication operators Z, can act on .% as multiplication with z,.

When ¢ is a root of unity, ¢g? = 1, degeneracies appear. The algebra U,(sl,) is not
semisimple in this case, and the subspaces .# " of homogeneous polynomials carry
representations which are in general neither irreducible nor fully reducible.

However, it was shown in [7] that there exists a “truncated quantum group algebra”
&* associated with Uyq(slp) which is semisimple, and which carries all the structure
which is necessary to interpret it as a symmetry (in quantum mechanics): a coproduct
A, counit &, antipode .’ and R-element R € ¥* ® ¥*. The algebra &™* possesses
a unit element e, but the homomorphism A: &* — &* @ £* is not unit preserving:
A(e) # e ® e. Moreover, the bialgebra &* is not coassociative but only quasi-
coassociative, and R satisfies quasi-Yang Baxter equations in place of Yang Baxter
equations. The indecomposable representations of <* are precisely the “physical”
representations of Ugy(sly) — i.e. its irreducible representations with nonzero quantum
dimension — and the tensor product of representations which is furnished by the
coproduct agrees with the truncated tensor product of physical representations of
Uq(slz).

These truncated quantum group algebras are examples of quasitriangular weak
quasi-Hopf algebras (“quasi-quantum groups”) £* [7].

We will construct an algebra .% T of “functions on the quasi quantum plane” on
which &* can act as a generalized derivation. This construction works for general
quasi-triangular weak quasi-Hopf algebras &*. The algebra .# 7 is generated by
noncommuting coordinate functions z,, as in the nontruncated case. Multiplication
operators Z, act on % by multiplication with z,. These multiplication operators
transform covariantly under <. The multiplication operators satisfy braid relations

242y = Z.ZycrPadc, ab - 0.3)

They substitute for commutativity of coordinates in the classical case. But &*-
covariance of this relation turns out to require that %’dc,ab is not a number but an
element of ¥*. The multiplication operators Z, and elements of ¥* generate an
associative algebra .%.

In the algebra .# T we want relations which involve only generators z, (and num-
bers). We impose relation (0.1) with a numerical matrix .72 which is furnished by the
R-element for ¥*. We show that this is consistent with the braid relation (0.3) for
multiplication operators, provided we do not insist on associativity of the algebra .7 L.
It is still quasi-associative in the sense that homogeneous polynomials with different
positions of brackets are linear combinations of each other.
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In the 'special case of the truncated quantum group algebras associated with Uy (sl»)
further properties will be established.

We show in Sect. 5 that the subspaces .% 7™ of homogeneous polynomials of de-
gree n vanish for n > p— 1. It is easy to verify (and will be explained in Sect. 5) that
the nonzero subspaces .% 7™ carry irreducible representations of <. If ¢ is a p™ root
of unity, the irreducible representations of £ are labelled by J =0, 3,1... 3(p—2).
They have dimension 2J + 1. The spaces .# 7™ for n = 0,1,2, ... carry represen-
tation J = %n The quasi quantum planes associated with the truncated U,(sl,) will
turn out to be associative.

For a general weak quasi-triangular quasi-Hopf algebra we construct a graded
quasi-associative algebra AZ T = @A"F T such that A°#T = #7T. To introduce
an exterior derivative d which is ¥ *-invariant, satisfies d> = 0, and maps A".% T
into A" .#T we have to impose a restriction on &*. If Z, transforms according
to the representation 77 of <*, we require that the R-matrix 7% ® 7/(R) has only
two eigenvalues. Under this assumption, an exterior derivative exists and elements of
A"FT can be called “r-forms.”

Starting from this exterior differential calculus we introduce a generalization of
noncommutative differential geometry [11] to quasi-associative “algebras of func-
tions.” To this end we define covariant exterior derivatives D which act on forms
(Sect. 7). They are covariant under % *-valued gauge transformations.

We describe (Sect. 9) how the algebra of multiplication operators Z, and differen-
tials ©, can be extended to include partial derivatives 0,. They transform according
to the contragredient representation 7. In this construction 7/ @ #/(R) is assumed
to possess only two distinct eigenvalues.

In the quantum group case, one considers often the coaction of the quantum group
[e.g. the dual bialgebra to Uy(sl,)] on FT[3,10],

Za— Y 2 ® Tha. 0.4)
b

This is also possible here. By canonical construction [7] the S*-module #7T is a
comodule for the dual bialgebra & of &* ie. there exists a homomorphism of
algebras

FrT 7T 9. (0.5)

The algebra & is nonassociative because &* is not coassociative, see [7].

1. Quasi-Quantum Group Algebras

Quantum groups & are noncommutative but associative generalizations of the algebra
of functions on a group. To have a conventional picture of a symmetry in quantum
physics, one considers the dual <™. It is a Hopf algebra which is coassociative but
not cocommutative. In Drinfeld’s quasi-triangular quasi-Hopf algebras coassociativity
is weakened to quasi-coassociativity [5]. Quasi-triangularity implies that an element
R € ©* ® ¥* is given which furnishes a representation of the braid group (see
Theorem 1.1 below).

It was shown in [7] that Drinfeld’s axioms can be weakened further without loss
of the'physical interpretation as a symmetry, by giving up invertibility requirements.
Some weak quasi-triangular quasi-Hopf algebras &* of this type are canonically
associated with Ug(sly) when ¢P = 1. All their representations are physical. We call
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them “truncated quantum group algebras.” We proposed to regard them as the true
symmetries of conformal models.

We proceed to a short review of weak quasi-triangular quasi-Hopf algebras &*.
A pedagogical account is found in [7]. We will not be interested in the action of
*_operations on our algebras in this paper, therefore no assumptions which involve
them will be made.

&* is an algebra with unit e, with additional structures as follows. There is a
counit

e:¥* - C, 1.1)
and a coproduct
A:S* - G T*. (1.2)

Both are homomorphisms of algebras, but A need not be unit preserving. The ho-
momorphism property requires that A(n) = A(€)A(n). Given the product A, there
exists another one called A'. If A(€) =Y &, ® £, then A’ is defined by

NG =) ot (1.3)

It is demanded that
(id®e)A = (e ®id)A = id, (1.4)

(id = identity map). Furthermore one demands that an element ¢ € ¥* ® ¥* ® ¥*
is given which implements (weak) quasi-coassociativity of the coproduct, Eq. (1.10)
below. In contrast with Drinfeld, we admit the possibility that A(e) # e ® e, and we
do not demand invertibility of ¢, but only existence of a quasiinverse, still denoted
by ¢!, such that

e = (d®AAE), ¢ o= (A®id)Ae), (1.5)
(id ® id ®¢) () = A(e),
(id ®e ® id) () = A(e), (1.6)

(e®id®id) () = Ae).

The statement that ¢! is a quasiinverse of ¢ means that @@~ lp = .
Finally there should exist R € ¥* ® % such that

AR = RA(n) forall ne ¥*. 1.7

We do not demand that R be invertible, instead it should have a quasiinverse R
such that
RR'=A'te), R 'R=A). (1.8)

In addition we will impose the following requirement which is not mentioned in our
article [7], but which is very natural and is needed in the construction of a differential
calculus

id®e)(R)=e, (®id)(R)=c¢. (1.9

By definition, weak quasi-coassociativity demands that

WA QidAE¢) = (dRA)AE)p forall & ¢ F*. (1.10)
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Followin'g Drinfeld the following relations between A, R, and ¢ are postulated:

(1d®id®A) (p) (A ®id®id) (p) = (e ® ) (d®A®id) () (p ® €), (1.11)

(d®A)(R) = @31 Rispais R ™", (1.12)
(A®id)(R) = p3nnRizgs, Rasp - (1.13)

We used the standard notation. If R =3 7. ® r2, then
Rl3=z7‘}1®6®7‘«2u R12=Zr}l®r§®e, (1.14)

etc.
If s is any permutation of 123 and p = 3" ¢! ® @2 ® 3, then

—1 -1 -1
Ps()s@)s@3) = ZSOZ Vep; Dop; @. (1.15)
o

Equations (1.12), (1.13) imply validity of quasi-Yang Baxter equations,
RipsinRizpis Rosp = 321 R Rispais Rz, (1.16)

and this guarantees that R together with ¢ determines a representation of the braid
group as will be explained below. There should also exist an antipode

LT g (1.17)

which is an antihomomorphism of algebras. Further properties of .”” were required in
[7] in order to define covariant adjoints. We will not asume them here.

We proceed to an explanation of some consequences of the assumptions.

The counit £ provides a 1-dimensional representation which substitutes for the
trivial 1-dimensional representation of groups (and their group algebras).

Given any representation 7 of £*, one defines

(&) =779, (1.18)

where t denotes the transpose. This is a representation, because .% is an antihomomor-
phism, and is called the contragredient representation. Later on we will assume that a
particular representation 7/ has been singled out. We will refer to it as the fundamen-
tal representation. In the construction of the differential calculus it will be assumed
that the tensor product of representations 7/ () 7/ contains the trivial 1-dimensional
representation €.

We use the notation ® for the standard tensor product of matrices, algebras etc.,
which is associative by definition. If 7 and 7’ are representations of & * then 7 ® 7/
is a representation of &* ® <*. This is to be distinguished from the tensor product
&) of representations of &* which is defined by

T (©) =T ) (AEQ). (1.19)

If A(e) # e ® e then this introduces “truncation.” Suppose that 7 is a tensor product
of two or more irreducible representations. It will act on the (standard) tensor product
V of the corresponding representation spaces. If A(e) # e ®e, then 7(e) is in general
not the identity map on V. But

T)1(e) = T(e)T(§) = T(§), (1.20)
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and, in particular, T7(e)T(e) = 7(e). Therefore there exists a representation space, given
by the range of 7(e), which is in general a proper subspace of V, and on which 7(e)
will act as the identity. We call this the “true representation space of 7”.

The property (1.4) tells us that tensoring with the 1-dimensional representation ¢
amounts to doing nothing,

@O =E@nE=T®. (1.21)

The tensor product of representations is not associative unless ¢ is trivial. But weak
quasi-associativity ensures that representations (7 @ 7') @ 7" and 7 Q(7' @ ") are
equivalent. If one of the representation 7,7/, 7" is the 1-dimensional representation &,
then the two representations are identical by (1.21). So they are related by a trivial
similarity transformation. This is encoded in the relations (1.6). From the properties
of ¢ one can also deduce that

v =p(A®id)A(e) = (d®A)A(e)p, (1.22)

(id ® id ®¢) (cp_l) = A(e). (1.23)

The element R € £*®%™*, which satisfies the quasi-Yang Baxter equations, furnishes
a representation of the braid group (Theorem 1.1 below). Let us recall that the braid

group B, on n threads is generated by elements o; and o; ' (i = 1...n — 1) which
obey the Artin relations

oiop =oro; if |k—1i|>2, 004110 = 04410041,
0 3 (1.24)
0,0, =L=¢q bi .
The unit element of B,, is written as . We introduce some notations. Write
e"=e®...0¢e (n factors) (1.25)

and similarly for id”. In addition we abbreviate ¥*®" = $* ®...®@ &* (n factors),
and

A" = (d"'®A)...(dRA)A for n>2, (1.26)
Al=A, A'=id, Al=¢. 1.27)

We introduce the permutator 7 € ¥*® ¥* by (i) 26 ®@n = n@EP for all £, n € T,
(ii) 7 ® 7'(?’) = 0 if 7,7 are inequivalent irreducible representations of <*. Such
P exists if £* is semisimple. In this case we have

Theorem 1.1 (Artin relations). Let R* = PRand R~ = R™'P, andn=r+k+1,
r > 0. Define ap* € $*®" by

O,Z,:t — An—l(e) (id’n—k-H ®Ak—2) (en—k—l ® (P(Ri ® e)@—l) ) (1.28)
Then the a,’c‘i obey Artin relations (1.24) with 1 = A" !(e).

The proof will be presented in Appendix A.

Remark. When % is not semisimple, a representation of the braid group can still
be found. The formulation uses permutation maps PP : £*®" — £*@" defined by

$En® . L ®&k-1... Q&) = ® ... &1 ® &k ... Q&) (1.29)



Action of Truncated Quantum Groups 519
A representation of the braid group by maps g,'c‘i (X8, 8N g given by
T = A PR AR ) e e pas(RT @)™, (130)

where R™ = R and R~ = R~ and ' interchanges factors in $* ® $*. The proof
of this more general result parallels the one given in Appendix A but is slightly more
complicated.

A weak quasi-triangular quasi-Hopf algebra &* is canonically associated with
U,(sly) with ¢ a root of unity. As an algebra &* = Uq(sly)/7, where  is the
ideal which is annihilated by all the physical representations 77, 2I =0...p — 2, of
U,(sly). &* is semisimple, its representations are fully reducible, and the irreducible
ones are precisely the physical representations of Uy(sl,). Let

wl,Jy=min{|I+J|,p—2—1—J} (1.31)

and let Py be the projector on the physical subrepresentations K, |[I — J| < K <
u(l, J) of the tensor product 7 ® 77 of Uyq(sl) representations. There exists P €
&* such that Pry = (71 ® 77/) (P). The coproduct in &* is determined in terms of
the coproduct A, in Uy(sly) as

A6) = PAL&), (1.32)

hence A(e) = P # e®e. This coproduct specifies a tensor product () which is equal
to the truncated tensor product of physical U,(sl,) representations. Thus

TRT= p . (1.33)

[I-J|I<K<u(lJ)

There exists an element p € $* ® ¥* ® * such that ;5 = (T @ 77 @ 75) (¢)
implements the well known unitary equivalence of the truncated tensor products

T Q7 Q7K) and (+T @ 77) @ 7%. A truncated tensor product Q) is defined
also for basis vectors & in the dual representation spaces ¥/ on which &* acts
from the right, viz. &/ ®é}~] = &/ ® & Pr;. The map @k can be specified by
its action on triple truncated products of basis vectors, together with the condition
p = (Id®A)A(e)p, Viz.

Sy ik ol deded

QuquF”Q[J 7 LIS % i deged am
=17 1ol [,

are Clebsch Gordan coefficients for Uy(sl) (and at the same time for & *)
The R-element of ¥* ® & is given in terms of the R-element R, for U,(sly) by

R = R,A(e) = A'(e)R,, (1.35)

with fusion matrices given by 6j-symbols, Fpg [ J

while antipode and counit are the same as in Ug(sly). It is shown in [7] that the
defining properties of a weak quasi-triangular quasi-Hopf algebra are satisfied.
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2. The Associative Algebra .# Generated by Multiplication Operators Z,
and elements of & *

In order not to clutter the presentation, the proofs of the results in this section are
collected in Appendix B, with few exceptions.

We assume that some particular irreducible representation 7/ of ¥* has been
singled out. We will refer to it sometimes as “the fundamental representation.” Let
its dimension be N. In the case of the truncated quantum group algebra &* which
is associated with Ug(sly) when ¢ is a p® root of unity, p > 3, we select the 2-
dimensional representation, so that N = 2 in this case.

Let A, R, p, ¢! be as in the last section. Given

P=> 0, By, @.1)
e

one introduces
Qa3 =Y 0L ® s ). 2.2)
o

To state the relations in .% we introduce the matrix . with entries in ¥,
Pdoas = (T, ® 7, @ id) (213(R®@ €)p™!) € F* . (2.3)

Definition 2.1 (Algebra .%). Choose cg € C such that cr(tf ® 77) (R) possesses an
eigenvalue 1. The associative algebra % is generated by elements Z,, (a =1...N),
and the elements of <. The unit element e of &* acts as a unit element of B so that
1) Zye= 2, =eZ,,
and the following further relations are imposed.
(2) (F*-covariance) £Zy, = Zy(r{, ® id) (A©)) for £ € T,
(3) (braid relations) ZoZy = cRZch%dc,ab.
Summations over repeated indices are understood throughout.

A=Y, {}, ® {f, then relation (2) reads explicitly

€Za = Zyri,(E))EE. 2.4)

This tells us how to shift elements £ of & through factors Z, from left to right. It
follows that we have

Proposition 2.2. Every element of % is a complex linear combination of elements of
the form
Zap - Zan with n>0,ne L.

Relation (1) in Definition 1 takes the form
Zoe = Zy = Z(1{, ® id) (A(e)). 2.5)

This is a nontrivial linear relation between Z,’s with coefficients in &* if A(e) #
e®e.

Definition 2.3 (¥*-covariance). Let 7 = (Tap)a,per be the representation matrix of
a n-dimensional representation of $*. An n-tupel F = (Fy)acr, Fo € B, is said to
transform covariantly according to the representation T of * if

§Fo = Fp(Tpa ®id) (A(E)) (2.6)
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forall ¢ € $* F € % is called &*-invariant if it transforms according to the
1-dimensional representation € of &* or, equivalently, if

¢F = F¢ @.7)
forall € € T*.

Relation (2) in Definition 2.1 says that (Z,),=;.. v transforms covariantly according
to the fundamental representation of %*. We show now how to construct compos-
ite objects which transform covariantly. Because of lack of coassociativity in &*,
products Z,Z; do not transform convariantly. But we have

Theorem 2.4 (Covariant products). Suppose that (Fy)aer and (Fé)ﬁe 1 transform

covariantly according to representations T and 7' of &* with dimensions n and n'.
Define the nn'-tuple F' x F' by

(FXFlapg=Y_ > FyFi(rya® s ®id)(p) € 7 . 2.8)

Yel ser’

Then F x F' transforms covariantly according to the tensor product representation
T@ 7 of .

Moreover, Eq.(2.8) can be inverted to recover ordinary products from covariant
one, viz.

F,F, = ZE (F x F')y5(Tya ® Thg ®id) (7). (2.9)
velI seI’
If G € . is &*-invariant then
(G X F)o =GFy, (FXG)a:FaG- (2.10)

Note that x is in general a product of vectors whose entries are elements of %, and
not a product of individual elements of ..
Using the notation (2.1), the defining Eq. (2.8) takes the form

(F X F'Yag =Y FyFiryalph)Tis(@3 )0} - (2.11)

This exhibits the fact that the (F x F'),3 are complex linear combinations of terms
F,Fjp? with coefficients ¢ € &*.

We will show the proof of covariance, although it is straightforward, in order to
get the reader accustomed to such computations. The rest of the proof of Theorem 2.4
is in Appendix B.

Proof of Theorem 2.4 (Covariance). We adopt the summation convention for all re-
peated indices. The range of summation will be clear from the context.
Let £ =) €L ® €2. The hypotheses of Theorem 2.4 and Definition 2.3 imply

E(F % Fl)ag = F(Tey ®1id) (A(g‘))Fg(TW ® Tgﬂ ® id) (p)
=Y Ferey ()L F§(Tya @ T4 ®id) ()
=Y FLF7ey(6)) (715 ®1d) (AE2)) (Tya © T4 ® id) (1)

= F.F,(Teq ® 7,5 ® id) ((d ®A) A(€)p)
= F.F)(Tea ® 7,5 ®id) (p(A ® id) A(£))
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by the intertwining property (1.10) of ¢. Thus
E(F X F)ag = FeF(Tey @ Tl,5 ® 1d) (9) (Tya @ T @ id) (A ® id) A(€))
= (F x F'),5(7 ®id) (A¢)),

where 7 = 7@ 7' is the tensor product of representations which is defined by

) = (T T)(AM) = (1 ® ™) (). (2.12)
This is the desired result. g.e.d.

With the help of the x-product, the braid relations (3) in Definition2.1 can be
written in another way which involves a braid matrix whose entries are c-numbers.

Theorem 2.5 (Braid relations). (i) The braid relations (3) of Definition2.1 are equiv-
alent to
(Z X Z)ab = CR(Z X Z)cd-%dc,ab (2.13)

with
Racap = (15 @75 (R) € C. 2.14)

(ii) Both sides of Eq.(2.13) transform covariantly according to the representation

f Q1 of T*.

This theorem explains why the braid relations Definition 2.1 (3) are consistent with
&*_covariance.
The x-product is not associative. But it is quasi-associative in the following sense.

Theorem 2.6 (Quasi-associativity of the Xx-product). Suppose that F = (Fy,), F' =
(Fp), and F" = (ny’ ) transform covariantly according to representations T, 7', and 7"

of &*. Then

(i) (F x F) X F)agy = (F x (F' X F"))sexs (Toa ® Tog ® T10) (), (2.15)
(i) (F X (F' X F"))apy = (F X F') X F")ser (Tsa @ Tig @ T1) (97 1). (2.16)

Corollary 2.7 (Complex linear relations). If F' = (Fy) iransforms according to the

representation T of &* then
Fy = Fy7gale). @.17)

If F, = Z, then Eq.(2.17) is trivial because 7/(e) is the identity matrix. Other
covariants are built up as x-products of Z’s. The case of practical interest is therefore
when F' = (F” x F"). This transforms according to 7 = 7/ @ 7" and 7(e) = (7' ®
7")(A(e)) is not in general the identity matrix if A(e) # e ® e. This reflects the
fact that the “true representation space” of a tensor product representation may in
general be a proper subspace of the tensor product of representation spaces. In this
case Eq.(2.17) is a nontrivial complex linear relation among the F,’s. It tells us that
those components which are not in the true representation space are in fact zero.

We are now ready to describe the elements of .% in another way.

Theorem 2.8 (Covariant products span .%). Every element of % is a complex linear
combination of elements of the form

Ex(EZXx...xX(ZXZ)..)an.aN (2.18)

withn > 0andn € &*.
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Theorem 2.8 follows from Proposition2.2 and the inversion formula in Theo-
rem2.4.

Theorem 2.9 (Braid relations for composite operators). Suppose that F' = (Fy),
F' = (F[’,), and F" = (F) transform covariantly according to representations T, 7',

and " of T*.
(i) Suppose that the braid relations

(F X FYap = p(F' x F)u(tya ® T,) (R),
(F X F”)a'g = C/IIQ(F” X F)p,g(Tga ® T,{Llﬁ) (R)
hold true. Then F and F' x F" satisfy braid relations
(F X (F' x F")agy = Cpep((F' X F") X F)up(Toa ® (7' Q) ™" uw8) (R),
(F' X F") X F)gya = cpcp(F x (F' x F")) (7' Q) ™"V v,y ® Toa) (R).

(i) If Fy, Flli are complex linear combinations of x -products of Z,’s (with brackets in
arbitrary positions), and are homogeneous in the Z’s of degree n and m, respectively,
then
(F X F)ap = (F' X F)syeg™(Ta ® Tgﬂ) (R). (2.19)
In particular, if F' € B is $*-invariant then
F,F' = F'Fyf™. (2.20)

The proof of this and other results of this section is in Appendix B.

3. The Coset Space F T =& % *

We will construct a .#-module .# 7T — i.e. a space which is a representation space
for * and on which Z, can act. It is obtained as a coset space # 1 = .5 /S*. Its
elements are equivalence classes of elements of .%. Since & is an algebra and not
a group, we need a homomorphism

e:%* - C

to define the equivalence relation. This homomorphism is given by the counit. Re-
calling Proposition 2.2 we define the equivalence relation by equating

Zay . Dok ~ Zy, ... Zoym

! m=n, a==5b G=1,...n), & =¢e@n). @3.1)
We denote the maps into cosets by
e B -FT =B)/5*. (3.2)
FT becomes a .#-module by setting
Fe(G)=e(FG) for F,Ge.%. (3.3)

We introduce a special notation for the image of the unit element e of .%,

2 =¢ce). (34)
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Theorem 3.1 (£*-invariance of 0" order monomials). 2 is &*-invariant in the sense
that
£ = NRe) forall €€ S*. (3.5)
If (F,,) transforms according to representation T of &, then Fy {2 does so, too. That
is
EF 2 = FﬁQTga(f), (3.6)

Proof. £82 = €(&) = 2e(€) because £ ~ ee(§). The second assertion follows from
the first because (id ®e)A(E) = €. q.e.d.

Theorem 3.2 (Equivalent representations of elements of 7 71).
FT — @ gz Tn)
n>0
with 7™ spanned by elements of the form

zr =Zgp---Zg 82 (n2>0), 3.7

an...ag
20 = 2. These elements can be written in the equivalent form

2" =(ZX(ZX...x(ZXZ)...)an.af?. (3.8)

an...a

Proof of Theorem 3.1. Since £(§) = §2&(£), the first part follows from Proposition 2.2.
The equivalent representation (3.8) follows from the following lemma by induction
on m with F, = Z,.

Lemma 3.3. Suppose that F' = (F,) and F' = (F[’j) transform covariantly according
to some representation T and 7'. Then

(F x F')opf2 = FuFp02. (3.9)
Proof of Lemma3.3.
FoFp2 = (F X F')ys(Tya ® T3 ®id) (¢ )12
= (F X F)582(7ya ® 755) (Ale)).

This follows from Eq. (1.23), i.e. (id ® id ®¢) (¢~!) = A(e). The assertion of Lemma
3.3 follows now from covariance of (F' x F’) and Corollary2.7. q.e.d.

We will use multiindices @ = (an...a1) (@; = 1...N) said to be of length
o] =n. If @ =(ay,...a;) and B = (b, ...b;) we write

aVpB=(@an...a1by...b1).

We introduce a shorthand notation for n-fold tensor products of fundamental N-
dimensional representations

™™ = Q! Q... Q! QR r...)  (n factors). (3.10)
(n)

Top is defined for multiindices o, 3 of length n, and 7 = .

Lemma 3.4. 750, Evﬁ(ﬁ)rgf;) e =177 vy (& for n > m.
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Proof. Lemma 3.4 follows straight from the definitions and the homomorphism prop-
erty of A. For instance

T s ©OT(E€) = (77 & 75 ® T)aya ey (A A AE) (e ® Ae)))
= (' @77 @ TNavaev,(([d @A) AE))
= Tvaevy©
since
AdRA)A() (e ® A(e)) = (IdRA) (A(d)e ® e) = (IdRA)A(E) . (3.11)
This generalizes to arbitrary » > m in an obvious way. q.e.d.

For multiindices a = (ay, ...ay), 8 = (by ... by) of length n > k+ 1 we define the
permutation matrices

Plfﬁ = 6akbk+1 6ak+1 by H 6aib, . (312)
i#k, k+1

Theorem 3.5. Define matrices T(”)(J,f) (n>2,k=1...n—1)with multiindices a, 3
of length n as follows. Set Rt = Rand R~ = R™Y, where ' stands for interchange of

factors in &* @ &*. Define
ToE ) =Pl @/ @ 1™ )R ®@e)p™),  (3.13)

T3 evs () = B vy @©Ty5 (@) for k<n—2. (3.14)

This defines a representation of the braid group B,, with T™ () = 7™ (e).
For n = 2 the expression for T simplifies, because 7 = &,
TR0 = Pay (! @ 70),5(RY). 315

The unit element ¢ is not in general represented by the unit matrix. But this unusual
feature disappears when the action is restricted to the “true representation space” of
&* on which 7™(e) acts as the identity.

Proof of Theorem 3.5.. This is a corollary of Theorem 1.1. Using the notation of
Theorem 1.1 and the equality Pfﬁ =@M E @7 ®eF ))as,

T™(oF) = P/ (. 3.16)

Since the T(”)(o,f) appear as a homomorphic image of aZi, Artin relations for
T™(c¥) follow from those of of*. Even if £ is not semisimple, the assertion
of Theorem 3.5 holds. In this case we can construct T(")(a,f) from maps g,?i defined
in the remark after Theorem 1.1,

T™(0)ap = PE (@777 (PR . (3.17)
This completes the proof of Theorem 3.5. q.e.d.

Theorem 3.6. The .73 -module ¥ T admits an alternative description as follows. # T =
@D FT™W and FT™ js spanned by elements 27, a = (ay, - . . a1), with complex linear
n>0

dependencies among them as follows:
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(W) 2 = 257, ﬁ")(e) truncation,
(i) z5 = zgcr a)(ok), k=1...n—1, braid invariance.
Elements £ € & : act according to

€20 = Z3male) (3.18)

where T is the n-fold tensor product (3.10) of fundamental representations. Gener-
ators Z, € % act according to

Zazg %@Zl
We remark that the truncation identity (i) follows from braid invariance (ii) if the
latter is postulated also for cr,;l.

Proof of Theorem 3.6. The transformation law follows from Theorem 2.4, 3.1,
and 3.2.

£ =EZX(..(ZX2).. a2 =(Z X (...(Z x Z)...)p(T'"™ @ id)sa(A(£))N2
=(Z % (..(Z x 2)... )7\ (d®e)AE)) = 2373016)

since (id ®e)A() = £.

The action of Z, follows from the original definition of Z7, with z° = 2. It only
remains to show validity of the linear relations and that they are in fact the only ones.

Since €(e) = 1 by the homomorphism property, ef2 = {2 follows from Theo-
rem 3.1. Since eZ, = Z, it follows that ez} = z7 for all a,n. This shows that (i)
holds. Acting on this equation with Z,,, ... Z,, ., (m > n) gives no new relation
because of Lemma 3.4 with £ = e. The consequences of Z,e = Z, are implied by
ef2 = (2 and Z,eZy, = Z,Zy, which follows from eZ, = Z,. Therefore this gives
no new relations either. Therefore, the implication of the relation (i) of Definition 2.1
are embodied in (i) of Theorem 3.5.

Now we turn to the consequences of the braid relations (3) of Definition2.1. Let
a=(ap...a;) = (apa,—1¢'). Using covariance property (3.18) we compute

28 = ZgpZa, 2= an_lencR%’bn 1branan_ lz'ﬁ_z

n—1"a/

= 24, Z,, 2y er(T] . @7, @75 D) (pas(R@e)p )
= zgcRT(")(an_l) .
Applying Z,,, ... Z,, ., to both sides we obtain
2" =z cpT Aon-1) for m>n. (3.19)

The factor 7™ (e) in the definition of TU™(a,,_;) is irrelevant because of relation (i)
which was already established. This proves (ii). Conversely it is clear that all the impli-
cations of the braid relations (3) of Definition 2.1 were found, since we examined the
effect of the interchange of an arbitrary pair Z,,Z,, | in Zg,, ... Za, Za,_, - - Za,§2.
q.e.d.

4. The Algebra # T

We define a product - in .# T which makes .# 7T into a not necessarily associative
algebra.
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Definition 4.1 (Product in #7T). Let Z° = e and

Zgay=Zx(Zx...x(ZXZ)..Nap.ay for n>1, 4.1)
so that zly, = Z (2. Define
(zg - 25") = (2" X Z™)ap 02 “4.2)

for n,m > 0. In particular, 2 = 2° is the identity of the algebra 7T .

We show below that Definition 4.1 is meaningful. Before we turn to the proof, we
list some properties of the algebra % .

Theorem 4.2. (i) Generators Z, € % act on ¥ T by multiplication with z, = 2}

Zaf = (24 - f) .
(il) &€ € &* acts on the algebra F T as a generalized derivation
£2% = 2376, 4.3)
S D =m@O 1 ® 2D, 4.4)

where 7™ is the n-fold tensor product ¥ @t ®... Q! @ 77)...)) of funda-

mental representations 75 of * and m: FT @ FT — FT is multiplication in FT.
(ili) The algebra F7 is quasi-associative in the sense that the product Zap - - - Zay
with arbitrary specification of the position of brackets can be written as a complex
linear cgm.binqtion of producfs 2p, - .- 2p, With any other specification of brackets.
Reassociation is performed with the help of the formulae

(fa - f) - f3) = (fo - (fz - ) (Tas ® Th @ T30) (1) (4.5)
(fs- (L fN = (fa- I5) - ) Toa @ TLg @ TH ) (071 (4.6)

They are valid if f, f', f" € F7T transform according to representations T,7',7" of
G*,

(iv) The product - is braid-commutative in the sense that
(7 25 = (2" - 2 E (150 @ TYE) (R).- @7
The generalized derivation property can be written as follows. Let A(§) = 3 ¢l ®
£€2. Then
Ef M=) G -am. (4.8)
o

Remark. We may convert Definition 4.1 into an explicit formula which exhibits z7, - zj

as a sum of terms zl}*m with complex coefficients. Straightforward computation leads
to the result

(2 -2 = 7 "M 4.9)
with
n+m
M = (® Tf) (Prz...:1P), (4.10)
1 wavp
P =€ @ARAY 2* @ A™ N (p)), O<k<n-2) 4.11)

in the notation (1.25)f.
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Proof that Definition 4.1 is meaningful. It must be verified that the definition of the
product is consistent with the linear dependencies among the elements 27. We must
therefore show that

(2 - 2755 (€) = (20 - 25, (4.12)
(2§ - 2Tsd(e) = (22 - 2, (4.13)
and
(za - Z)erTyg (oK) = (2 - 25, 4.14)
(25 - zg‘)cRTéz)(ak) = (2g - 23") 4.15)

for 1 <k<m-—1and for 1 <k <n— 1, respectively.
We wrote the definition of the product - in manifestly covariant form, but
Lemma 3.3 tells us that it can also be written in the equivalent form

(2 - 25") = Zp Zg'12. (4.16)
Validity of Egs. (4.12...4.15) will therefore follow from the identities
Zpria(e) = 27, 4.17)

and from
Proposition 4.3. Z5crTy(0x) = Zf, for 1 <k <n—1.

Equation (4.17) follows from Corollary 2.7, and Proposition4.3 is proven in Ap-
pendix C. This shows that Definition4.1 is meaningful. q.e.d.

Proof of Theorem4.2. (i) follows from Eq. (4.16). (ii) follows from Theorem 3.1, the
covariance of Z™ x Z™ (Theorem2.4), and the definition of the tensor product of
representations. (iii) is a corollary of the reassociation identities, Theorem 2.6. (iv)
follows from the braid relations for composites, Theorem2.9. q.e.d.

5. The Structure of the & *-Module # T

In this section we specialize to the truncated quantum group algebra &* associated
with Uy(sl). The irreducible representations 77 of &* are the “physical” representa-
tions of U,(sly), i.e. the irreducible representations of U,(sly) with nonzero quantum
dimension. They are labelled by

J=O7 %a tre %@_2),
and have dimension 2J + 1, if ¢ is a p™ root of unity. We assume p > 4 for simplicity.

Theorem 5.1 (Structure of .#T). Let &* be the truncated quantum group algebra
associated with Uy(sly), q a primitive ph root of unity, p > 4, and let 7F be its
Sfundamental 2-dimensional representation. Then

() FT™ =0foralln>p—1.

(i) ZT™ carries the n+1-dimensional irreducible representation of &* ifn < p—2.
(i) .#7T is associative.
The main ingredients of the proof are in the following two lemmas.

Lemma 5.2. dim.#T™ =n 4+ 1ifn <p-2.
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Lemma 5.3. Suppose that 7T carries the irreducible representation T and T
carries the irreducible representation T'. Then FT"+9 is either zero or it carries a
subrepresentation of T @ T’

Proof of Lemma 5.2. We recall that the tensor product of representations of &* is
the truncated tensor product of physical representations of Ug(sly), see Sect.1. No
truncation appears in the tensor product 7/ @77/ if I +J < p—2—1—J, ie. if
I+J < %(p—2). Therefore the tensor product 7™ of the n fundamental 2-dimensional
representations 77 is untruncated if n < p—2. It follows that 7™(e) = 1 in this case,
so that the linear relations in Theorem 3.6 come from braid symmetrization only, and
are the same as if we used the invertible U,(sl,) R-element R, in place of R. But in
the nontruncated quantum plane, the braid relations reduce to [1,2,3]

212y = q'l/zzzzl . .1

This can be used to shift all factors z; to the right of all factors z,. There can be
0...n factors z;. It follows that the number of linearly independent vectors in .% 7™
ism+1. ged.

Proof of Lemma 5.3. Because of quasi-associativity of the product in # T, #T(r+s)
is spanned by elements of the form (w - v), with w € # 7™ and v € FTE). By
hypothesis .% 7™ carries representation 7 and .% 7(® carries representation 7. Since
£ € &* act on FT as generalized derivations by Theorem 4.2( (ii), it follows that
FTr+s) carries a subrepresentation of 7@ 7' if it is not zero. q.e.d.

Proof of Theorem 5.1. Validity of Theorem 5.1(ii) for 0 < n < (p—2) follows from the
two lemmas and the tensor product decomposition (1.33, 1.31) applied to 77/ ® 7!/2.

To prove the first part of Theorem 5.1 it suffices to show that #7®~1 = 0 since
all higher order polynomials contain factors of order p— 1. In the following P/ € &*
should denote the minimal central element of <™ that is associated with the irreducible
2J + 1-dimensional representation of &*. To prove .# 7®~D = ( we use that

(Z X D)ap(TL, @ ) (APY) = 0. (5.2)

This expresses the fact that there are no homogeneous polynomials of degree two
which transform according to the trivial representation. A formal proof can be found
in Appendix D. Moreover we know that all polynomials of degree p — 2 transform
according to the p — 1-dimensional representation. In mathematical terms this means
that

(ZP73 X Z)aa = (2P x D)gp(1P V@ Tg’a)(A(P%‘P‘”)). (5.3)

«

We wish to show that
(ZP3 X (Z X Z))aab = 0.

In order to establish this we will show that all the polynomials ((Z?~> x Z) x Z)Bed
are linear combinations of the polynomials

1o
(2P % (Z X D)aarTy @1 @7 (€ ® ACPY)

which vanish due to (5.2). More precisely we show that
(ZP73 x Z) x Z)geaa

1
= (2P X (Z X Daas (75" @TLEL)(€® APNA),  (54)
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where @ # 0 is a real number and A € ¥* @ ¥* ® ¥™* is given by A =
1

P(A(P2P2) ® e). 1t follows from eq. (5.3) by reassociation that the right-hand side

of Eq. (5.4) equals

Lo
(2P~ x Z) x Z)Mb(fgg’ Yol ) (AP M@ e e® AP)A). (5.5)

Using the explicit expression (1.34) for ¢ it is easy to see that

3@-2) -1 0 e
(AP2TP7) @ e)p™ (e® A(P)A = (AP2P ") ®e)a,
where a is some nonzero real number. So we get finally that the right-hand side of
Eq. (5.4) equals

Lo 1
(277 x 2) % Daar(7Zy © 7L, T (APIT )@ e)a

= ((ZP* X Z) X Z)gcaa (5.6)

by (5.3). This completes the proof that all products of the type (ZP~3 x Z) x Z
vanish. But since all other products of p — 1 generators Z can be obtained out of
these by reassociation, we established that .% 7®~1D = (. This concludes the proof of
Theorem 5.1(i).

The associativity of . (Theorem 5.1(iii)) is by now a simple consequence of
some arguments displayed above. In the proof of Lemma 5.2 we have seen that
for polynomials of total degree n < p — 2 there are no relations from truncation.
This means that in such polynomials brackets can be moved (and removed) as in
the untruncated (associative) quantum plane. Theorem 5.1(i) states that nonvanishing
polynomials of degree n > p — 2 do not exist.

6. Quasi-Associative Exterior Differential Calculus

We return to the consideration of general quasi-quantum group algebras as described
in Sect. 1.
In this section we extend the algebra .# T to a quasi-associative algebra

AFT = PargT (6.1)
n>0
by adjoining 6, to F T - A°F#T = 7T, The space A"% T will be spanned by elements
of the form
25 = Gam - (Zayy - Zay - Oy - Oy - Oo) )., (6.2)

with @ = (@, ...a1), B = (b,...b)), m=0,1, .... The quasi-associative product in
AFT is written as - in what follows.

Under restrictive assumptions on the representation 7/ an exterior derivative d
will be defined which acts on A% T and enjoys the standard properties

d:A"FT - A 7T (6.3)
dzq = 0%, 6.4)
=0, (6.5)

dz-y) =z -y)+ (=D"(z - dy)
if e A"FT,ye AFT (Leibniz rule). (6.6)



Action of Truncated Quantum Groups 531

The action of ¥* on .# 7T extends to an action on A# T by generalized derivations.
We will obtain the quasi-associative algebra A% T as a quotient from an associative

algebra
A% =Pars 6.7)

n>0

which is generated by ™* and Z,, ©, subject to the relations (e = unit element
of &%)

Zoe=eZ, = Z,, 6.8)
Qe =eO, =6,, (6.9)
€2, = Zn(rl, ®id) (A€)) and (6.10)

£0, = Oy(r, ®id) (AE) for &€ F*, (6.11)

(Z % D)oy = (Z % D)aecg (1, @ TI) (R), (6.12)
(6 x O)ap = (O x O)aect (7L, @ T (R), (6.13)
(O X D)oy = —(Z X O)aecs (7L, @ TH) (R). (6.14)

The phase factor cp = ¢; Vin our previous notation, and c4 # cp is another phase
factor which remains arbitrary for now. Using these relations, a general element of
A™ % can be exhibited as a c-linear combination of elements of the form

Zap - Za)Oby ... O €. (6.15)

The homomorphism (counit) £: %* + C induces a map ¢ to cosets similarly as

for .%,

AL — AFT = AB|S*. (6.16)
We use again a special notation for the image of the unit element.
2 =ce).
It is &¥*-invariant,
02 = Ne(@)for €€ T*, (6.17)

Theorem 6.1. A"7T = @ AF T and the space A"F T of n-forms is spanned by
elements n20
225 = Zap -+ Zay Opy - -- O, 2 (6.18)

witha = (Qm...a1), B=(np...b)),m=0,1,....

Proof of Theorem 6.1. Theorem 6.1 follows from the observation (6.15). q.e.d.
The elements z7,; can be rewritten in covariant form. Set

ap =(EZX(ZX..(ZXOX...x(Ox0O)...))...))apf?. (6.19)

Then

This follows from familiar arguments, using (id ® id ®¢) (p) = A(e).
Finally we make A% T into a quasi-associative algebra.
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Definition 6.2a (Product in A#T). Using the notation (6.19,6.20), a not necessarily
associative product - can be defined in AFT by

@ 2T) = (X" X X™)ap502, (6.21)
or, equivalently, by (z3,5 - 775) = X33 X7582. (2 acts as unit element in AFT.

Theorem 6.2b. The product (6.21) in AF T is well defined and quasi-associative. It
makes FT into a graded algebra. ¢ € &* acts on AF T as a generalized derivation.

It is obvious that products of elements in A% T and AP.# T are in A"*P.# 7. The
rest of the theorem is proven in the same way as it was proven for % (Theorem 4.2).

If we set
Z2q = E(Za); ea = 5(@(1) 3 (622)

then
Tos = (Zam - Zapm_y "+ (Zay * Oby - O,y - Oy05)...)))...)) . (6.23)

Thus, Z, acts as multiplication by z,, and @, acts as multiplication by 6,. The algebra
has properties very much like the properties of the algebra . T stated in Theorem 4.2,
i.e. it is quasi-associative and (graded) braid commutative. Braid-commuting two
factors 6 gives an extra chzl-factor compared to the braid-commutation of z. This
generalizes the anticommutation of differential forms.

Let us finally investigate under which assumptions an exterior derivative d can be
adjoined to A.%. It is required to be ¥ *-invariant,

dé =¢&d for €€, (6.24)
and subject to the relations
=0,
dZ, = 04 + Z,d (6.25)
df, = —6,d.

These relations are actually not independent. The last relation follows from the first
two relations, as is seen by multiplying the second one with d from left or right.
However, consistency of (6.25) with braid relations (6.12, 6.13, 6.14) does not hold
in general. As an example for the checks to be done, let us multiply (6.12) by d from
the left. After shifting d to the right by application of (6.25) we obtain

(Z X OYap + (O X Z)ap = (Z X O)ge + (O x Dac)g &L, @ TH)(R).  (6.26)

In this expression we already subtracted terms of the type (Z x Z)d. Now we use
(6.14) to deduce

Z x O, @iy e®e—c R, @1i)(e®@e—cxR)=0.  (627)

When applied to an element in A™.# T this would give rise to a new linear relation
in A"t #7T _if the coefficients of the Z x O-terms are nonzero. In conclusion, for an
exterior derivative d with properties (6.25) to exist, we have to assume

(i, ®7])(e®eca — R (rf, @ 7)) (€@ ecs — R)=0. (6.28)

This means that the matrix (7 ® 7/) (R) should have only two distinct eigenvalues.
We will prove in Sect.8 and Appendix D that this is also sufficient.
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Theorem 6.3 (Leibniz rule). Assume that (6.25) are consistent with the braid relations.
Defining df2 = 0 we have

dza =0, (6.29)
dz-y)=dz-y)+ D"z -dy) if zeA"FT, ye AFT.
(6.30)
To prove this we will need
Lemma 6.4. Let X'Zﬁ = dX3 — (=1)"X7sd. Then X'Zﬂ is a linear combination

of elements X ,,, with complex coefficients, and X'y, 5 transforms like X35 under & *.

Proof of Lemma 6.4. Since d is ¥ *-invariant we have dF = (d x F) and (d X Z), =
(Z X d)g + Oy, (d x O), = —(@ x d),. We push d through the factors Z,, O in
X4s- To apply the formulae just mentioned one needs to do various reassociations.
Further reassociations are needed in order to use the covariant © x Z braid relation
to push emerging factors © to the right. But all the reassociations involve only taking

complex linear combinations. This shows that Xg; is a linear combination of elements

X[W with complex coefficients. Covariance follows because d is & *_invariant, and
7 =n + 1 by counting factors @. This proves Lemma6.4. q.e.d.

Proof of Theorem 6.3. By definition
d(CE . y) = d(Xn X Xm)a,g,yéﬂ.

Since d transforms according to the trivial 1-dimensional representation € of <* we
have that

d(X™ x Xm)alg,y(s =(dx (X" x Xm))aﬂ'yﬁ
=({(dx X™) X X™)ap~s

= (—DM(X™ X d) X X™agqs + (X" X X™)apys
because of the definition and covariance property of X', Lemma 6.4. Thus
dX™ x X™) = (=1)"X"™ X (d X X™apys + (X" X Xagns
= (=)™ XT X (X X D)apys + (DX X X )agas
+ (an X Xm)aﬂ,yg .

We will apply both sides to 2. The first term equals
(_1)n+m ((Xn X Xm) X d)aﬂ’yé = (_1)n+m (Xn X Xm)aﬂ’yisd

and vanishes when applied to {2. Since df2 =0, a(Xg;;) = dz,5 = dz, and similarly
for dy. Thus we get

d@-y) = X2 X2 + ()" X2 X7
=(dz - y) + (—1)"(z - dy)

by Lemma 6.4 and Definition 6.2a of the product in A#Z7T. q.e.d.
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7. A Quasi-Associative Generalization of Noncommutative Differential Geometry

The spaces A"#T > #T are #T- bimodules. In the algebraic setting, such modules
substitute for spaces of sections in vectorbundles. Elements of A™.% T substitute for
n'™ rank antisymmetric tensor fields on the plane. We wish to introduce covariant
exterior derivatives

D:A"FT s AL 7T 7.1

They should be covariant under ¥*-valued gauge transformations.

Every element z, in .# 1 = .% /%™ has a preferred representative Z,, in .%, and
% is spanned by elements Z,¢ with £ € £*. Therefore .% can be regarded as an
algebra of functions on the quantum plane with values in <*. The invertible elements
of % will be considered as gauge transformations.

Similarly, the elements of A'.% may be regarded as & *-valued 1-forms.

We introduce covariant exterior derivatives

D=d+A, AcAB. (7.2)

They can act on elements of A% T; Dw = dw + Aw, where the second term involves
the action of elements of A.% on AFT = AB|Z*.
If = is a gauge transformation, = € %, invertible, then

DEw=EDw for we AFT, (7.3)
D=d+ A, (7.4)
A =E1A5+ 5714, 5]. (7.5)

The field strength tensor F' € A2, is defined by
F =D?>={d, A} + AA. (7.6)

A € A% contains a single factor ©. It follows from this and from the relations
(6.25) between d, Z,, and O, that indeed {d, A} € A2F#T.

Consider the special case that ™ is the truncated quantum group associated with
Uqy(sly). Then &* is a finite sum of full matrix algebras. Therefore it has plenty of
invertible elements. The elements of .% are polynomials in Z,’s up to some maximal
degree which is determined by g, by the result of Sect.5. All the monomials except
those of degree O are nilpotent elements of .%. It follows that .% also has plenty of
invertible elements.

8. Partial Derivatives

In this section we wish to extend A% 7T to an algebra which contains also partial
derivatives J; as generators. We will be able to do this under more restrictive as-
sumptions on the symmetry algebra. They are satisfied for the truncated quantum
group algebras &* which are associated with U,(sly) if 7/ is the 2-dimensional
fundamental representation.

We recall that the contragredient representation 7 of a representation 7 of & is
defined with the help of the antipode .

7€) = (7). 8.1)
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We assume that &* is semisimple, that 7/ @ 77 contains the 1-dimensional repre-
sentation ¢ as a subrepresentation, and that the representations 7/ @ 7/ and 7/ @ 7/
decompose into a sum of two representations each. i

Explicitly we have 7/ @ 7/ ~ 74 @78 and #/ @ 7/ ~ 74 @78 with irreducible
representations 74, 78,74 7B, We recall that semisimplicity implies the existence
of the element # € ¥* @ ¥* which was defined before Theorem 1.1 and which
interchanges factors in &* @ &*, 26 @n) = (@ E)P. Let R* = R and R~ =
R~'2 as before. It follows from the intertwining properties of R and 7 that

RTA@©) = A¢R".

As a consequence

@) (BT = (f @) (caAPh) + caAPPY), 8.2)
#H @ #)(R*) = (# @ ) (c;AP?) + c(PP)), 83)
so that these R-matrices have only two eigenvalues each. We assume that
cg=ca, 8.4)
cg #ca, (8.5)
cg #ca. (8.6)

In these formulas, P° € ¥* denotes the minimal central projector which belongs
to the irreducible representation 7¢ and the c. are complex constants. Let us choose
CR = Cg I'as in Definition 1.1. We are going to introduce differential operators 8,
which transform according to the contragredient 7/ of the fundamental representation
7. The differentials O, of the last section transform like Z,. Latin indices a, & etc.
will take values 1... N if 7/ has dimension N.
Because of covariance properties, x-products can be defined as in Sect. 3. For
instance
(O X 8) 4 = O04(rS, ® 7], ®id) (¢9). ®.7)

Definition 8.1 (Metric tensor). We write T and 7 in this section in place of 4 and
#f. The entries gsp of a metric tensor and g®° of a twisted inverse metric tensor are

complex numbers with the following defining properties.
(i) Covariance: For all ¢ € &*

9ea(F Q) T)eaan(€) = gabe(€), (8.8)
Q) Pedatg™ = 9°%(©). 8.9

(i) Normalization .
949(Tha ® T4y ® Tge) (©)9% = B - (8.10)

It will become apparent later on that left-hand side and right-hand side of Eq. (8.10)
are proportional as a consequence of covariance, therefore Eq. (8.10) can be ensured
by suitable normalization, if the left-hand side of Eq. (8.10) is not 0. Suitable tensors
gap and g®® exist then and are provided by Clebsch Gordon coefficients for *. The
normalization convention leaves the freedom

9ab = Mab,  9° bzt ab, rel).
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Definition 8.2 (Algebra of multiplication and differentiation operators and differen-
tials). Given metric tensors with properties as in Definition 8.1, the associative algebra
Y is generated by elements £ € &*, Z,, ©,, and 8, subject to the following relations:
(i) The unit element e € &* is also unit element of 9.
(i) Covariance: For € € %,

24 = Zp(Tha ® id) (A(E)), (8.11)

€60, = Op(Tre ®id) (A(E)), (8.12)

£0a = 0y(Ty, ®1d) (A(D)) - (8.13)

(iii) Braid relations

(Z X Z)ap = (Z X D)acC5 (Tea ® Tap) (R) (8.14)

(O X O)gp = (O X O)geCy (Tea ® Tap) (R), (8.15)

(@ X D)gp = (B X D)gocy (Fea ® Tp) (R), (8.16)

(O X Dap = —(Z % 0)4cCy (Tea @ Tan) (R), (8.17)

(@ x 0)gp = —(0 X O)gca(Tea ® Tj3) (R), (8.18)

(0 X Z)ap = gave — (Z X O)aeca(Tee ® Tap) (R) . (8.19)

Inverse braid relations involving R~! can be derived from those stated here. The
braid relations are here written in & *-covariant form, but they can be transformed
into relations involving ordinary products, as in Definition 2.1.

It follows from the definitions that elements of &/ can be written as a linear
combination of terms

Zay 24,6, ... 64,0 ...8c-p£ (8.20)
with{ € & * One verifies that all braid relations, including (8.19), are & *_covariant.
Theorem 8.3. & D .%.

The proof of this theorem is given in Appendix D. Let us emphasize that this result
is not trivial. The inhomogeneous ones among the relations in Definition 8.2 could
in principle induce new relations among the Z’s. In this case, the subalgebra of &
which is generated by the Z’s would not be .%, but a factor .% /.7 where the ideal .9
is furnished by the new relations. The restrictive assumptions stated at the beginning
of this section are imposed in order to ensure that this does not happen.

Next we show that the exterior derivative d with the properties (6.3)ff. can be
constructed from differentials ©, and partial derivatives. Note that the necessary
condition (6.28) for existence of d is satisfied by the decomposition (8.2) of the
R-matrix.

Theorem 8.4 (exterior derivative). Define d = g“b(Q X 0) - Then d is &*-invariant
and

=0, (8.21)
dZy = Of + Zad. (8.22)

Proof of Theorem 8.4. First we prove & *-invariance, d¢ = £d. By covariance of the
X -product,

€O X 0)g9" = (© x 8)4(T Q) Pudat ® i) (AE))g™
= (O x 8),49°4e ® id) (A®)) = (O x 8),4g°%"
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as claimed. Next we prove d? = 0. Since d transforms according to the 1-dimensional
representation, it follows from Theorem 2.4 and the braid relation for composites,
Theorem 2.9, that

P=dxd=—2dxd)(ERe)(R) =-2dxd=-2. 8.23)

Cp Cp g

Property (1.9) was used to conclude that (¢ ® €) (R) = e. The factor is a consequence
of Theorem 2.9. This proves d?> = 0 since c, # cz was assumed. Finally we show
that dZ, = G4 + Z,d. Since d is ¥*-invariant, dZ, = (d X Z). by Theorem 2.4. If
the first term in the (0 x Z) braid relations were absent, the result would be given by
the braid relation for composites again. Thus

(d x Z)e = 1% term + (Z % d)e(€ @ Tec) (R)
= 1% term + Z.d, (8.24)

because (¢ ® id) (R) = e by Eq.(8.9). To find the first term we write
(d x Z)c = g°°((6 % 9) X D)

= g%(0 X (3 X 2))y},(Tea ® T4, ® Tye) ()

= 900 X Z)ix(The ® F R Thixfy @ id) () (Tea ® T ® Tge) (©)

= 9" 9ikOn(The ® (F Q) ik jg ® id) (9) (Tea ® T4 ® Tye) (1p) + 2™ term.
We can use the covariance property of g;; to write the explicit term as

1* term = gai)gfgeh('rhe ® id) (Id ®e @ id) () (Tea ® T, @ Tgc) ()
= Opap. -

with _
he = §°°(Tha ® Tiap ® Tge) ()95, - (8.25)

Since d is ¥*-invariant, (dx Z). and (Z xd)4 transform like Z,. Since 7 is irreducible,
the same must be true of the term @, ay.. It follows that ap. o 63, as was mentioned
after Definition 8.1. By hypothesis, the metric tensors have the normalization property
of Definition 8.1. Therefore the 1% term equals ©.. This proves that dZ, = O, + Z,d,
and completes the proof of Theorem 8.4. q.e.d.

Next we reconsider the space A% T of forms. We reconstruct this linear space
as a factor space of &J. In this way it becomes a &-module. The elements of &7
can act on it as multiplication and differentiation operators. A product in AZ T was
constructed in Sect.6. A# T is constructed as a coset space &/ 7 with the help
of a homomorphism €: 7 — C. The coset space consists of equivalence classes,

Xt~ Xe(€)ifE € 7.

Definition 8.5 (Z-module AF7T). Let & C & be generated by elements £ € &*
and by 8; (& = 1...N). Extend the counit of &* to a homomorphism ¢ : 7 — C by
setting £(0y) = 0. Define

AFT =9/ 7, (8.26)

where cosets are formed with the help of € as explained above. Writing € : 2 — AFT
for the map to cosets, E € & acts on AF T in the obvious way

Ee(X) =e(EX). (8.27)
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The special element {2 = £(e) is annihilated by differential operators
0,2=0.

Since d is an element of &7, it can act on AF L. We established the relations stated
in Theorem 8.4. It was proven before that Leibniz rule follows.

8.1. Example (Truncated Quantum Group Algebras Uy(sly)). Let g be a primitive
p™ root of unity. For simplicity we restrict attention to p > 5 and representation
7/ = 71/2, The representation 7/ is then equivalent to 7'/2. In tensor products of
up to three of these two-dimensional representations no truncation appears if p > 5.
Therefore

et erw=1 if p>S5, (8.28)

and (7 @7 (R), 7 @77) (R), and (7 @ 7f) (R) are the same as in the nontruncated
case. As a result, the fundamental braid relations are the same as in the ordinary
quantum plane, except that ordinary products must be replaced by covariant ones.
Thus the (Z x Z) and (9 x 0) braid relations reduce to

(Z x Z)a=q VZ x Z)y, (8.29)
(@ x iz = ¢"%(0 x A1, (8.30)

while the (© x @) braid relations give

(@ x Q) = —¢"*(O x O)yy,
©x60) 1 =0=(0O x0O)y.

The (0 x Z) braid relations give
O x 2 =q"Z x O,
@ % Z)1 = ¢ VHZ x Bz,

OxZ=e+q (Zx+@"'—1)(Zxn,
OXDp=e+q (Zxdy.

(8.31)

The (0 x ©) braid relations are of the same form, except that the inhomogeneous
terms e are absent.
The exterior derivative is given by

d=(0 x0)+(© x0)x. (8.32)

One reads off that ‘ .
gab = 6ap, 9" =6, (8.33)

9. Appendix A: Proof of Theorem 1.1

Lemma A.1. A™(€) commutes with o}* forall§é € $*,n, 1 <k <n—1.
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Proof. We will give the proof for n = 3, k = 2. The general case uses essentially the
same argument:

A ©pRT @ e)p™ = p(A@IDAE) (R @ e)p™
= o7 ® ) (A ®IDAE) (R®e)p™!
= pR" ®)(ARIAEY ' = pR" ® g™ A%©).
Lemma A.2. Let B,[B,,] denote the subalgebra generated by o (k =1, ... ,n—1)
and A" (e) [o7 (k=2, ..., n— 1) and A" '(e)]. Then the following maps:
(i) I,:B, — Bp4 defined on generators of By, by
I,(0F) = A™e)(e® o) = g™ forall 1<k<n-1, 9.1)
LA™ (&) = A™e), ©2)
(ii) C*:Bl, — Bpy defined on generators of B., by
Cr(op) = A (e) (d" ' @A™ (0F) = g7
forall 2<k<n-—1, 9.3)
Cr(A™ () = (A" F) (e) ©4)
extend to homomorphisms of algebras.

Proof. The lemma is a simple consequence of LemmaA.1 with the special choice
¢ = e and the relation A7(e)A7(e) = Al(e).

Lemma A.3. 05 03 = A%(e) = 039>~

Proof. Since R~ = R™'P, 60~ = (R~ ® e)p~! is the quasi-inverse of o5 =
©(R* ® e)p~!. This proves the lemma.

Lemma Ad4. o]_,07 =o7o]_, foralln > 5.

Proof. Since o7_, = (id> ®A™ ) (p(RT @ e)p~!) and 0} = A" (e) (* ® g,
the lemma follows directly from Lemma A.1.

Lemma A.5. Let ® be defined by ¢ = (id @ A®id) (0~ ') (e®p ™). Then the following
two relations hold:

(i) Poi = (p(RT ®e)p™! ® e)®,

(ii) P03 = (e® R* ®e)d.

Proof. (i) Using (1.11) and the intertwining properties of &, R, we get
P03 = ([dRA®Iid) (¢ ) (e® ) (dRIdRA) (p(R" ®@e)p™)
= (pRe)(ARId®Id) ()R @) (deided) (e
=(pR* ®e)@e)(p ' ®e)(dRA®id) (v N (Ee® ™)
=(p(R" ®e)p ' ® ).

The proof of (ii) is similar. For detailed proofs of the used reformulations of (1.11)
cp. Appendix B.

Lemma A.6. 050505 = 030303

Proof. Lemma6 follows by recurrent use of Lemma5 and the quasi-Yang Baxter
equation.
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Proof of Theorem 1.1. In LemmaA.3, 4, 6, the Artin relations have been established
for special values of n, k. But under the action of the homomorphisms defined in
Lemma A.2, these relations map to all the Artin relations for arbitrary values of n, k.
Thus the proof of Theorem 1.1 is complete.

10. Appendix B: Proofs for Sect.2

Proof of Theorem 2.4 (Inversion formula). The proof of the inversion formula (2.9)
is not an entirely trivial consequence of the definition of the x-product because ¢!
is not a true inverse of . It will be necessary to use the information that e acts as
the identity in .%.

Using the formula pp~! = (id @ A)A(e), we get from the definition (2.8) of the
x-product

(F X F)ap(Tas ® Thy @ 1d) (™) = FFi(7es ® 7/, ® id) (A ®A)A(e)) . (10.1)
Write A(e) = 5 el ® €2. Because e is the unit element of .% according to Defini-
tion2.1, we ha\:’e

F,Fj=eFyF§ =Y Ferey(e})elFs
=Y FFimeq(ey) (1 ®id) (A(e})).
o
That is
FyFs = FeF(Tey ® 5 ® id) ([ @A) A(e)) - (10.2)

Inserting this into Eq. (10.1) proves the inversion formula (2.9). q.e.d.

Proof of Theorem 2 4 (Invariants). If one of the factors is &*-invariant, the definition
of the x-product simplifies to (2.10) because of Egs. (1.6). g.e.d.

Proof of Theorem 2.5 (Covariance). The left-hand side of Eq.(2.13) transforms ac-
cording to the representation 7+ = 7/ ®7’f by Theorem?2.4. [This representation
is described explicitly in Eq.(2.12).] For the same reason, the. right-hand side of
Eq. (2.13) transforms according to

8Z X Z)eq Rac,ah = (Z X ZL)ef(Tef,cd @ id) (A)) Rdc,ab
= (Z X D)es(rd, ® 7], ®id) (A ® id) A)) Rac,ab

=Y (Z X Des(r]y @ 71, ®1d) (A(E}) ® ) Rde,ab
=) (Z x Z)es(rf, @ T, ®id) (A (€) ®E2) (R®e)).

The principal property (1.7), RA(§) = A'(€)R of R tells us that this equals
8(Z X D)caPRdeap = I (Z X Dhes(r], ® T}, ®id) (R ® €) (AE}) ® £2))

= (Z X 2)ef R fecmh, @ 7h @ id) (A @ id)AE))
= (Z X Z)ef-%fe,dc(%dc,ab ® id) (A(S)) .

This is the desired transformation law. q.e.d.
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Proof of Theorem 2.5 (Equivalence of Braid Relations). (i) The braid relations (3) of
Definition 2.1 imply in view of the definition (2.8) of the x-product

(Z X Z)ef = CRZch-%dc,ab(Tfe ® Tgff ® id) (‘P)
= crZcZa(r], ® 1, ®id) (p23(R® €)™ ). (10.3)

¢~! is not a true inverse of . Therefore ¢!y is not the identity. But ¢~ lp =
(A ® id)A(e) according to Eq. (1.5) of sect. 1. Thus

Pr3(R@e)p v = p3(R® e) (A ®id)A(e) = pa13(A’ ® id)Ae) (R ® €)

by the principal property (1.7) of R. Introduce the permutation operator P}, on &* ®
* Q@ T* by
Ppl@n®@{=n®{®(.

In this notation
L3R ® €)' = Pplp(A®@id)A(e)] (R®€).
Inserting this into Eq. (10.3) yields

(Z X Z)ef

= crZ.Zu(T}y ® 7L, ®id) (Pulp(A ® i) A (), ® T}, ® id) (R® €)
= crZcZa(rlp ® 7], ®id) (P(A @ IDA@) (7], ® 7] ®id) (R®€). (104)
Now we use Eq. (1.22) of Sect. 1 which tells us that p(A ® id)A(e) = .
Inserting this in expression (10.4) and using the definition of the x-product again
yields
(Z X Z)es = cr(Z X Z)po(T), @ T ) (R).

This is the desired result in view of the definition of .72. This shows that the braid
relations (2.13) are implied by Definition 1.

(ii) Now we start from the braid relations (2.13) in Theorem 2.5. We contract them
with (77 @ 7/ ® id) (p~') to get

(Z x Dap(rl; @ 78, ®1d) (07") = ZiZu(r{; @ 7 @ id) (pp™!) = 24 Z,. (105)

The second of these equalities obtains from pp~! = (id ® A)A(e) using the following
special case of Eq. (10.2):

ZoZe = ZoZa(rl, @ T, @ 1d) ((d @A) Ale)). (10.6)
Equation (2.13) of Theorem 2.5 implies therefore that
Z;Zg = (Z % Z)eaCrPacan(Tl; ® T, ®id) (07"
= ZkZlCR(T,{f ® Tl’; ® id) (P13 (R ®@ e)p™!).

This is the desired braid relation of Definition2.1 in view of the Definition Eq. (2.3)
of 7. qe.d.
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Proof of Theorem 2.6 (i). From the definition of the x-product, its covariance property
stated in Theorem 2.4, and the definition of the tensor product ) of representations
one computes

(F x F') x F")ap,
= FoFF(Tea ® 7,5 ® 70, ® 1) ([ ®id @ A] (9) [A ® id ®id] (), (10.7)

and
(FX(F'XF"))opy = FHFLFJ(TK,J@TLB@TZ,Y@id) (e®¢p) [ild ®ARId](p)) . (10.8)
Theorem 2.6 (i) follows now from Drinfelds relation (1.11), viz.
([d®id®A) (p)(ARIdRId) (p) =(e®p)(dRA®ID(p)(pRe).  (10.9)
Similarly, Theorem 2.6 (ii) follows from the following relation:
(1d®id®A) (P) (A®id®id) (¥) (p~ ' ®e) = (e ® ¥) (dR®A®id) (). (10.10)
This proves Theorem 2.6 assuming relation (10.10).

Proof of Relation (10.10). We deduce (10.10) from (10.9). Multiplying (10.9) with
(¢! ® e) from the right we obtain Eq.(10.10) except that the right-hand side is
replaced by

(e® ) (dRA®Iid)(9) (pp ' @e)
= (e® ) (iId®A ® id) () ([ @A) Ae) ® €)
=(e® ) (dRA ®id) (¢) ((dR®A ® id) (Ale) ® €))
=(e®p)(idRA®id) (pAE) ®e).

From (1.22) it follows that
p(Ale)®e)= . (10.11)

Inserting this reproduces the right-hand side of Eq. (10.10). This completes the proof
of Eq.(10.10) and of Theorem2.6. q.e.d.

Proof of Corollary?2.7. Inserting Theorem 2.6 (i) into Theorem 2.6 (ii) we obtain with
! = (Id®A)A(e),

(F 5 (F' X F")agy = (F X (F X F")) (T ® Thy @ 711.) (A @ id) A(e))
= (F x (F' x F")u(m Q)" Q) T Nrcurapy(€) . (10.12)

Now we specialize to singlets F' = e, " = e. They transform according to the trivial
1-dimensional representation 7’ = 7 = ¢ which is given by the counit. 7 @e = 7
according to Eq.(1.21), for any representation 7. Furthermore (e x F), = F, by
Eq. (2.10) of Theorem 2.4. In the special case considered, Eq. (10.12) reduces therefore
to the assertion of Corollary2.7. q.e.d.

Proof of Theorem 2.8. One converts ordinary products into covariant ones by use of
Theorem 2.4, starting to the right. Writing ™! = 3_ ¢l ®¢€2®3, factors &3 will appear

which can be multiplied with the factors n € &* standing to the right of them. After
all ordinary products are converted in this way, one ends up with an expression of
the form (2.18). q.e.d.
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Proof of Theorem 2.9 (Braid Relations for Composites). (i): The result of the exchange
of F' with (F' x F") can be determined from the braid relations in the hypothesis of
the theorem and quasi-associativity (Theorem 2.6) by the sequence of steps shown in
the following diagram.

(F x F'y x F" — F' x (F x F')
! T (10.13)
Fx(FPXFY—FxF'XF)Y—~ (FXFYXF — (F'"XF)xF'.
This leads to the same result as claimed in Theorem 2.9 if
(id®4) (R) = @531 Rizpais Riap ™" . (10.14)

Similarly, the braid relation which effects the inverse exchange follows from the
identity
(A®id)(R) = psnRizpnRasp - (10.15)

These two relations are true by definition in a weak quasitriangular quasi Hopf algebra,
see Egs. (10.12, 10.13) in Sect. 1. This proves Theorem 2.9 (i).

(ii): Theorem 2.9 (ii) follows from part (i) by induction, with the assertion of The-
orem2.5 as the starting point. In the special case when one of the factors is &
invariant, the result can be simplified as indicated with the help of Eq.(1.9). q.e.d.

11. Appendix C: Proof of Proposition 4.3
We wish to prove that
ZgerTy (ox—1) = Z (11.1)

fork=2...n.
To prepare for the proof, two lemmas will be stated and proven. We take it as
a standing hypothesis that vectors F' = (Fy), F' = (F[’a), F' = (FA’Y’) transform

covariantly according to some representations 7, 7/, 7/ of &*.
Lemma C.1. Suppose that
(F x F’)aﬁ = (F' x Fsyc(Tya @ Téﬁ) (R) (11.2)
with some factor ¢ € C. This implies
(F X F') X F")apy = (F' % F) X F")53,6(Tya @ Th) (R),  (11.3)
(F" x (F x F/))p,aﬂ =(F" x (F' x F))pusyc(Tya ® Téﬁ) (R). (11.4)

Proof of Lemma C.1. From the definition of the x-product and its covariance prop-
erty, the definition of the tensor product of representations and hypothesis (11.2) one
computes

Lhs. = ((F x F') X F")op,
=((F' X F) X F")syuC(Tya ® Tgﬂ ® T,/,/“ ® id) (A4),
A=(A®ideid)(p ) (RRe®e)(A®id®id)(p).
By the fundamental property of R

A=A Rideid) (¢ ') (RReRe)
= (A" ®id®id)(AR®id)A()(RRe®e).
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But
(Tya ® T,'gﬂ ® TlI/,u ®id) (A’ ® id®id) (A ® id)A(e))
= (7' QTR ™6y p0u ®id) (). 11.5)
Because of the covariance property of ((F' x F') x F") we get from this
Lhs. = e((F X F') X F")5, 6Ty @ Thg) (R) - (11.6)

This is the desired result (11.3) because e acts as a unit element in .%. Relation (11.4)
is proven in the same way. g.e.d.

Lemma C.2. Validity of the relation
Z3crTy(ok1) = Z0 117
for some given n, k with n > k implies that
(F x Z™),8¢RTS (0k-1) = (F X Z™)per - (11.8)
Proof of Lemma C.2 for k = n. By definition
Tn@n-1) = @ 77 @ " Dpas(R® €)p) (11.9)

where 3 differs from 8 = (b, bn—1, ..., by) by interchange of b, and b,_;.
From the definition of the x-product and Definition (3.10) of the multiple tensor
product 72 of representations we deduce
(F X Z™ya = F, Z3(1,, ® 1 @ id) ()
=F, 25Ty, ® (rf @1 ® 7" D)5, ®id) ([ ®(d ®A)A ® id) () -
Now the hypothesis of the lemma and the definition of T (0,,_;) are inserted, and

the ordinary product F,Z7 is converted back into a covariant product. As a result
one obtains

(F X Z™ua = (F X Z™M,pcr(Ty, @ (1T @ 77 @ 7" )5 ®id) (A),  (11.10)
with
A= P3(d®ERA)ARid) (p™)) (@ pu3(RRe)p™ ®e)
- (Id ®>(id ®A)A ® id) () . (11.11)

P, 5 interchanges ¢2 and ¢° in products ¢! @ 2 @ ®... € T*F R F* ® ¥* ®
... Inserting the decomposition ¢ = >~ ¢! ® ¢ ® ¢’ and using the intertwining

properties of ¢ and R, one verifies that(7
(e®R®e®e) (e ) ®e)(id(dR®A)A @ id) (p)

= (e®R®e®e)(dAAQIDNARi) () (@ Qe)
=(d(A ®id)ARid)(p)(e®RQReRe)(e®p ' ®e).
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Similarly
Py3[(i[d ®G1d ®A)A ® id) (o™ )] (e @ w213 ® €)
= P;3[([d ®3(d®A)A®id) (p ) (e® ¢ ® e)]
= Py3[(e® ¢ ® €) (i[d (A ® id)A ® id) (p1)]
=(e® 3 ®e)(dAA ®i)A®id) (p7h).
Using the formula for ¢~ one finds from this that

A=(e®p3®e) (idNA ®idA®id) (ARid)A()(c®@RVe®e)(e® ¢ ' Qe).
(11.12)
Finally we use the intertwining property of ¢ once again to write this as

A= (d®>(dRANARid) (A®id)A(e) (e®@ 13 ®e) (cQRVeRe) (eQR ¢~ Qe).
(11.13)
By definition,

=r @ @ 7" ? @id) (id ®(1d ®A)A ® id) (A ® id) A(e)) .

The ' on A’ in the expression for A is absorbed by an interchange of matrix indices,
and the factor (7 @ 7™) ® id) (A(e)) is absorbed by using that

(F x 2™ ((r Q) m™) ®id) (A(e)) = e(F x Z™) = (F x Z"). (11.14)
Reinserting the definition of T(™(o,,_;) one obtains the desired result
Lhs. = (F x Z™)upcrTiXon-1). qed. (11.15)

Proof of Lemma C 2 for general k. Let n = r + k. The factor 7(™(e) in the definition
of T™(oy_1) is irrelevant because of Corollary 2.7. Therefore we may drop it so that

Ti (k1) = (&) @ 7% D), (" ® pa3(R® )9 ™), (11.16)

where 3 differs from 8 = (bn,bn_1, ... , by) by interchange of by and by_;. Here and
below we write again e” for e ® ... ® e, and similarly for id". By its definition

7™ = (&) @ 7*2((d™! ®A)...(dRA)A®)). (11.17)

Using these formulas, the calculation proceeds as in the case kK = n and one is led to
evaluating

A= P43 [(dQGEdT @4)...(dRA)A ®id) (¢ )]
€ @ pni(R®e)p ! ®@e)(id@Gd™! ®A)...([d®A)A ®id) ().
Using the intertwining properties of ¢~! and of R one deduces that
(e"@R®e)(e” ®p H[Id™! ®A4)...(dRA)A() (11.18)

= (" @ R®e) (([d" ®A ®id) (id" ®A4)... A) (p2)(e" @ ¢™")  (11.19)
= ((d" @A’ ®id) (id" ®A)... A)(¥2) (" @ R e)(e" @ '). (11.20)
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The factor to the left of ™! ® R ® e ® e is similarly transformed. The calculation
proceeds further in the same manner as in the case £ = n and leads finally to the
desired result. This completes the proof of Lemma C.2.

We turn to the proof of Proposition4.3. It proceeds in two steps.

Proof of Eq.(11.1) for n = k. Write v = (c1c2), etc. By its definition
Zt = (Zx(Zx Z™ D))y = (Zx Z)x ZPD)s(rf @ 7T @ T D)o (7Y . (11.21)

Now we use the braid relations of Theorem 2.5 for (Z x Z) and Lemma C.1 to rewrite
this as

=((Zx Z)x Z™ ) eryer( @ T @ T D) 0 (R® )7 (11.22)
Reassociate to get
R Z5 = (Z X (Z X Z" Ny, (7,0, ® 74,0 @ T2 ()
x(rf e’ ® ™2 (R e)p™")
=((Z X (Z X 2" Napa,e (7T @ 77 @ T )sa(p213(R@ )™ ")
= Z},-‘J;g)(an_l). g.e.d.
Proof of Eq.(11.1) for n > k. Having established Eq.(11.1) for n = k we proceed

by induction in n. The factor 7 (e) in the definition of T(™(a;) is again irrelevant
because of Corollary 2.7. Therefore we may suppose that

TE () = 5ba:r,§,’3,(ak_1) (11.23)

with 8 = (bB') etc. By definition Z"+*D = Z x Z™. LemmaC.2 with F = Z
provides therefore the induction step from n to n + 1. This completes the proof of
Proposition 4.3.

12. Appendix D: Proof that # C &

Due to the appearance of the ggp-term in the § X Z-braid relations (12.19), 8 C &
is not obvious. Indeed for different choices of the phases in Definition 8.2 this term
would lead in general to new relations among the generators Z, € &7 which do not
hold in .%. Our aim here is to show that our choice of phases in Definition 8.2 does
not lead to such new relations.

Under the assumptions on the tensor product decomposition spelled out at the
beginning of Sect. 8 (namely that tensor products 7/ @ 7/ and 7f ® 7/ decompose
into a direct sum of exactly two irreducible representations) we can reformulate the
Z x Z- and 0 x O-braid relations in a way which is more convenient for the proof.

Lemma D.1. With the notations and assumptions described in Sect.6 we have:
(1) The relations (12.14) are equivalent to

(Z X ZYap(td, @ TL) (APA) = 0. (12.1)
(ii) The relations (12.16) are equivalent to

@ x 837, ® G (APA) = 0. (12.2)
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Proof. Using CR=(Cg and the formula (8.2) for (7 @ 7/)(R*) we easily calculate
cr(Z x Z)cd(Tda b) (R) = cr(Z x Z)cd( ® Tdb) (R+)
=(Z x D)ea(tl, ® W((c— - 1) AP +e® e>
B

= (Z x D)ear], ® Tdb)(< 1) A(PA)> +er(Z X D)ea(], @ T} (R).
cB

This proves (i). The proof of (ii) is the same.

Lemma D.2. From the 6 X Z- bratd relation (8.19) it follows that
Q) (O X (Z x 2)) 447 f( ® Te,, ® ch) (e ® A(PA) =
(i) (0 x 8) x Z)ge; (7], @ 7], @ Tf ) (APH) @ €) =

Proof. Again we will prove only (i). The proof of (ii) uses exactly the same ideas.

O X (Z x D))oy (7, @ 74, @ TL.) (e ® APA))
= g4 217, @ T, @ 1) (07! (e ® A(PH))
- gder< L ® Tﬂ, ® 1) (p213(R)p ' (e ® APM))ca
= 94217, @ ), @ 1) (07 (e @ A(PH)
gder( @ 7L ® L) (e312(Ri3)p (e @ A(P))ca
= 94217 @ th @1l ) (07 (e ® APH))
— 9427, @ L @ T]) (07 (Ry) (e @ A'(P*))ca
= g4 217, @ 7], @ T1) (07 e ® (APA) — ca(PHR7) =0

We used the 0 x Z-braid relations (8.19), exchanged the third and second component
of the tensor product, rewrote the expression with help of (8.12) and dropped the
factor (id ® A) (R) by (8.8). Finally we used the definition and expansion (8.3) of R
to get the result. Terms of the type (Z x Z) x O are eliminated by application of
LemmaD.1. This completes the proof of the lemma.

Proof that %8 C &. Let us first discuss how the presence of the gg,-term could lead
to new relations among coordinates Z, € 2. By definition all relations in .% are
&™*_linear combinations of the following fundamental relations:

(Z™ X (Z X ) X Z™)aabp(Th, @ TL, @ T, @ T (e @ AP") ® €) = 0. (12.3)

After multiplication with 0; from the left we bring the product into the standard form
(8.20). This is done by recurrent use of (8.19). Each time we interchange the order of
0 and Z we create an additional term which is purely generated by Z and £ € ¥*.
The sum of all these terms has to vanish since the whole product was zero. We have
to show that this sum is again a linear combination of products (12.3). The simplest
case of this calculation was done in the proof of LemmaD.2. The general case is a
simple consequence of the lemma. This follows by suitable reassociation.
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