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Abstract. We consider the solution uε(t) of the saturated nonlinear Schrodinger
equation

4/N + ε\u\q-ιu and u(0,.) = ψ{.), ( l) e

where N > 2, ε > 0, 1+4/iV < q < (N+2)/(N-2), u : R x l ^ -> C, φ is a radially

symmetric function in Hι(SlN). We assume that the solution of the limit equation is
not globally defined in time. There is a T > 0 such that lim ||^C0||#i = +00, where

t—>τ
u(t) is the solution of

i du/dt = -Δu - \u\4/Nu and u(0,.) = φ{.). (1)

For ε > 0 fixed, uε(t) is defined for all time. We are interested in the limit behavior
as ε —> 0 of uε(t) for t > T. In the case where there is no loss of mass in uε at
infinity in a sense to be made precise, we describe the behavior of uε as ε goes to
zero and we derive an existence result for a solution of (1) after the blow-up time T
in a certain sense. Nonlinear Schrodinger equation with supercritical exponents are
also considered.

I. Introduction

In the present paper, we consider the saturated nonlinear Schrodinger equation:

idu/θt = -Δu- \u\A/Nu + ε\u\q~λu and u(0,.) = <p(.), ( l) ε

where Δ is the Laplace operator on RN, u : [0,Γ) x l ^ ^ C , and φ e Hι(RN).
We assume that TV > 2, ε > 0 and 1 + 4/7V < q < (N + 2)/(N - 2).
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We say that u(.) is a solution of an equation of the type

idu/dt = -Δu - f(u) and uφ,.) = φ(.),

for ί G [0, T), where /(x) is a nonlinear term, if Vt G [0, T),

S(t)φ + i I S(t- s){f(u(s))} ds ,

where s(.) is the group with the infinitesimal generator iΔ (the free Schrodinger
group) and for each t, u(t) denotes the function x —> u(t1 x).

For a fixed ε > 0, under these assumptions on N and q, it is well known that
equation ( l) ε has a unique solution uε(t) in Hx defined globally in time: that is
\ft e R, uε(t) G Hx = Hι(RN) (see Ginibre and Velo [5,6], Kato [8]). The problem
is to understand for a fixed t > 0, the limit behavior ofuε(t) as ε goes to zero.

Indeed, for both numerical and theoretical reasons, we want to relate this limit
behavior to the limit equation:

idu/dt = -Δu - \u\A/Nu and τz(O,.) = φ{.). (1)

It is well known that Eq. (1) has a unique solution u(t) in Hι and there exists

Γ > 0 such that Vί G [0,Γ), u(t) G Hι and either T = +oo or lim \\u(t)\\Hι =

lim ||w(t)||L4/iv+2 = +oo (see Ginibre and Velo [5,6], Kato [8]). In [15], it is shown

that as ε —• 0, tίε(t) converge in Hι to w(t) uniformly in time in Hι(RN) on compact
sets of [0, T). Let us consider initial data φ such that T < +oo. Moreover, for a fixed
ε > 0, itε(£) is globally defined in time. In order to simplify calculations (numerical
computations) as well as for physical reasons, the problem is, for fixed t, to relate the
behavior of uε(t) as ε —> 0 to the nonlinear Schrodinger equation (1). For example,
if we can define lim uε(t) for t > T, in what sense does it satisfy the nonlinear

Schrodinger equation with the nonlinear term — \u\A/NuΊ
The other way to see this problem is to see it as a problem of physical continuation

of blow-up solutions of the nonlinear Schrodinger equation. Equation (1) appears
as a model in a lot of different fields: in nonrelativistic quantum mechanics, in
superconductivity, in plasmas, in laser beam propagation (N — 2)... In particular, for
N = 2 Eq. (1) can be considered to first approximation as a model of a planar laser
beam which is propagating along a single direction t in R3. In a way, the solution
u(t, xγ, x2) measures the intensity of the laser at a point (£, xv x2) and blow-up of the
solution is related to the self-focusing of the laser beam. This model does not quite
meet the physicist's requirements when a blowing-up in finite time occurs. In fact, the
nonlinear term —\u\2u is the first term of the expansion of the nonlinearity, and this
model is valid when the solution is not too large. Since we have lim ||^(0||^4 = +oo,

the approximation is no longer valid at the blow-up time. For this reason, physicists
add a corrective term which gives the saturated model of Eq. ( l) ε with

f(u) = -\u\2u + ε^l^"1^

as nonlinear term where 0 < ε < 1 and q > 3.
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In the1 present paper, we focus on the problem of understanding the behavior of
uε(t) as ε —• 0 for a fixed t, in the special case of initial data radially symmetric and
in space dimension TV greater or equal to 2. All the results are set in that context.
The uniqueness of the Cauchy problem for Eqs. (1), (l)ε implies then that for a fixed
t the functions u(t), uε(t) are radially symmetric and we do not have to control the
space evolution of the singular point in time. Nevertheless in [19], we consider the
case of initial data with no special symmetry in dimension one (N — 1) and give in
that case a complete description of the phenomenon at the blow-up time.

Let us recall some well known results on nonlinear Schrodinger equations. We
consider for 1 < p < (N + 2)/(N — 2), the following equation

idu/dt = -Δu-\u\p-ιu and u(0,.) = φ(.). (1*)

For 1 < p < (N + 2)/(N-2), it is well known that Eq. (1*) has a unique solution

u(t) in Hι and there exists Γ > 0 such that Vt G [0,T), u(t) e Hι and either
T = +oo or lim | k £ ) | | # i = lim | |^(ί) | |L P+i = +oo (see Ginibre and Velo [5,6],

Kato [8]). We have the following conservation laws in time for t G [0, Γ),

\Ht)\\L2 = |M|L2 , (2)

E{u{t)) = \ ( I Vu(ί, x)\2 dz—j— / K*, x)\p+l dx = E(φ), (3)

d/dt / \x\2\u(t,x)\2 dx = 4Im / ru(t,x)ΰr(t,x)dx ,

d2/dt2 ί \x\2\u(t, x)\2 dx = \6E(φ) + C(p, N) ί \u(t, x)\p+ι dx , (4)

where C(p, N) < 0 is p > 1 + 4/iV, C(p, N) = 0 if p = 1 + 4/N, C(p, N) > 0 if
p < 1 + 4/iV, r = \x\ and wr = du/dr.

For 1 < p < 1 + 4/7V, the conservation of mass (2) and energy (3) imply that
blowing-up in finite time never occurs (Ginibre and Velo [5]). On the other hand, it is
well known that for p > 1 + 4/7V, there are singular solutions of Eq. (1) for suitable
initial data (see Zakharov, Sobolev, and Synach [27], Glassey [7] in the case of initial
data with negative energy). That is, there exist solutions u(t) of Eq. (1) such that

u(.) e ^([0,T),Hl) and lim \\u(t)\\Hi = lim \\u(t)\\LP+ι = +oo.

In [13], Merle shows that uε(t) converges in Hι to u(t) as ε —* 0, uniformly in time
t on compact sets of [0, T), where uε(t) is the solution of equation

idu/dt = -Δu - u\p~ιu + ε\u\q~ιu and u(0,.) = φ(.).

Therefore, we assume that we are not in the situation where T = -f oo: that is
1 + 4/N <p<(N + 2)/(N - 2) and the solution of Eq. (1) with initial data φ blows
up in finite time (for example the energy of φ, E(φ)9 is negative). We are interested
in particular in the critical case p — \ -\- A/N and we assume now that

p = 1 + A/N.
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Similar techniques used for Eq. ( l ) ε can be applied for supercritical nonlinear
Schrodinger equations. In the last section of the paper, we consider solutions of
equation

idu/dt = -Δu - \u\p~ιu + ε\u\q~ιu and u(0,.) = φ{.),

with 1 + 4/N < p < q < (N + 2)/(N - 2). For physical reasons, a fixed ε > 0, we
want to be uε{.) globally defined in time for all initial data, which yields

ε > 0 and 1 + 4/ΛΓ < q < (N + 2)/(AΓ - 2).

Little is known about the behavior of uε(t) as ε —> 0, for t = T and t > T.
Even in the case of the nonlinear Schrδdinger equation (1) little is known about the
behavior of u(t) at the blow-up time.

In particular, from the conservation of the L2 norm in time of the solution and physical

reasons, it is important to understand the behavior in L2 of u(t) and uε(t) as ε —> 0.

We give in this paper a description of different types of behavior in L2.
The blow-up problem of the solution of Eq. (1) is related in some sense to the

following elliptic problem. Let us consider the set of solutions of the equation for
ω > 0 ,

-Δu +ωu- \u\4/Nu = 0 in R*. (5)ω

Existence of solutions of such equations have been proved by Berestycki, Lions,
Peletier in [1,2] (see also Strauss in [22]).

We first remark that if w(x) is a solution of Eq. (5)w, then u(t,x) = eιωtw(x)
is a solution of Eq. (1). For this special nonlinearity — \u\4/Nu, we recall that the
nonlinear Schrodinger equation (1) has one more time invariant. Equation (1) has a
pseudoconformal invariance law, which is the following: if u(x, t) is a solution of
Eq. (1), then

is again a solution of (1). From the conformal invariance for T > 0,

is a blow-up solution of Eq. (1).
Moreover for this special exponent, the set of nonzero solutions of Eq. (5)ω for

ω > 0 has a minimal element in the L2 sense which is called the ground state. Let
us consider the unique radial solution Q(x) of the problem

-Δu + u- \u\4/Nu = 0 and u > 0 in DAT

(see Kwong [9] and the other references in [9] for the uniqueness). We have the
following property: If w is a solution of (5)ω for ω > 0, then

We remark that ωN/4Q(ωι/2x) which is the unique solution of

-Δu + ωu- \u\4/Nu = 0 and u > 0 in I

has the following property: \\ωN/4Q(ωι/2x)\\Li = \\Q\\L2.
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The number ||Q||^2 plays an important role in the blow-up problem of Eq. (1).
Weinstein first showed in [25] that, if

then the solution u(t) of Eq. (1) is globally defined in time and there is no blow-up.
We remark that this bound is optimal. Indeed, for ω > 0 and θ G R, we have that

is a solution of Eq. (1) which blows up at T such that | |^| |L2 = | | Q | | L 2 I n fact>
in [17] Merle shows a uniqueness result for blow-up solutions with minimal mass
which gives a characterization of the functions Sωθ, for ω > 0 and θ G R. That is, if
the initial data φ is radially symmetric, \\φ\\L2 = \\Q\\L2> a n c * the solution of Eq. (1)
blows up at time T, there exists then a ω > 0 and 0 G R such that φ = Sωθ(0) and
u(ί) = Sωtθ(ί).

In the nonradial case, Merle shows in [18], using a compactness lemma, that if
the initial data φ is such that | |^| |L2 = | | Q | | L 2 , and the solution of Eq. (1) blows up
at time T, then there exists a ω > 0 , x 1 , x 2 G RN and θ eR such that

and

where

mN'2 exp \i -\X-Xtf/[A(T-

f ίnr — T . V. J \{x-xx)ω

T-t ~

More generally, Merle and Tsutsumi [20] show that a blow-up solution u(t) of Eq. (1)
can not have a strong limit in 1? at the blow-up time (see also Weinstein [24]).
In addition, if the initial data φ has spherical symmetry, then an L2-concentration
phenomenon occurs at the origin at the blow-up time [20,24]. More precisely, for all
R > 0, we have

iminf \\u(t)\\L2iB(0iR)) > \\Q\\L2,

where T is the blow-up time, and ||^||L2(JB(OΛ)) represents the L2 norm of the
restriction of u to the ball of radius R > 0 centered at the origin. In [16], Merle
shows that for any arbitrarily chosen k points, we can find a solution of (1) which
blows up simultaneously at these points. In addition, for that solution, there is a
concentration phenomenon at the blow-up time in the L2-space.

These results show us that L2 plays an important role in the phenomena which

arise at the blow-up time in the critical case. In fact a local L2 theory can be

set up for the Cauchy problem of Eq. (1). That is, for initial data in L2, there



382 F. Merle

exists a unique solution of Eq. (1) in ^([0, T],L 2) such that either T = +oo or
T

/ / \u(t, x)\4/N+2 dx dt = +oo (see Cazenave and Weissler [3]).
o

We know that uε(t) —• u(t) as ε —> 0 uniformly on compact sets of [0, T) (regular
case, see [15]). In this paper, we are interested in the behavior of uε(t) foτt = T and
t > T as ε —> 0. In [15], it is shown a stability of the phenomenon of saturation, that
is

limll^CDHtfi = + o o ,

and
lim / lim / Inf 11̂ (̂ )11 H-IW = +oo.
α->0 \ ε-+0 \ te[T-a,T+a) " £ "H jj

Different types of questions can now be asked on the behavior of uε(t) as ε —> 0.

Question 1 (Compactness). Does the sequence uε(t) as ε —> 0 have a compact
behavior for t > T or equivalently, is there a compact set or finite dimensional
manifold K such that d(uε(t), K) —» 0 as ε —> 0 for a suitable topology? In addition,
can we describe and relate the different elements of KΊ

Question 2 (Uniqueness). Is there some case where the set K defined before is a
singleton, that is, there is a function u*(t) such that u*(t) — liirmε(t) for t > T in
some sense to- be made precise? ε~̂ °

Question 3 (Regularity). Is the blow-up phenomenon unstable in time; that is, does
the regularizing sequence have a regular behavior for t > T:

\ims\xp\\uε(t)\\Hι < c(t),
ε->0

where c(t) < +oo for t > TΊ

Question 4 (Stability). Is the object we obtain after going through the limit as ε goes
to zero continuous with respect to the initial data and in what sense?

In [17], Merle answers these questions for a different type of approximation for
some special initial data and proves a surprising result about chaotic behavior of
uε(t) with respect to ε. In particular, there is no hope of finding a unique limit for
the sequence uε(t) for t > T in the case considered. In [17], we consider the case
where φ is a radially symmetric blow-up solution of Eq. (1) with minimal L2-mass
among blow-up solutions, that is, there are ω_ > 0 and θ_ G R, such that

The approximation of the solution of the conformal nonlinear Schrodinger equation
is taken in a slightly different context. We consider the solution wε of the following
equation:

idu/dt = -Δu - \u\4/Nu and u(0,.) = φε(.),

such that wε is globally defined in time (||<pe||L2 < \\φ\\L2 = \\Q\\L2 and φε —> φ)
and φε satisfies a variational condition (see [17]), for example φε = (1 —έ)φ. Similar
techniques may be applied to uε, the solution of Eq. ( l) ε .



Limit Behavior of Saturated Approximations of NLS Equation 383

We frqt have that for all a > 0 and A > 0 there is a θε such that

^ ^ ( ) - ^ ( . ) ^ 0 in W([T + a,T + AlHι) a s ε - > 0 .

In particular, we obtain a compactness result and a regularity result. The main point
is the following: we have a loss of information on the phase θε for the sequence wε(t)
which yields a nonuniqueness phenomenon for the problem (1). For all θ, there is
sequence εn -* 0 (depending on θ) such that (see [17])

w£n(t) —• Sω_ θ_(t) in Hι uniformly on compact sets of [0,Γ) as n —• +oo ,

w£n(t) —> Sω_ θ(t) uniformly on compact sets of (T, +oc) as n -* +oo .

In this paper, our target is to answer Question 1 and to give compactness results
on the sequence uε(t) in the case of spherical initial data φ. This yields some results
on the existence of a weak solution u(t) of Eq. (1) after the blow-up time. In the
last section of the paper, we give similar results with nonlinear Schrodinger equations
involving a supercritical exponent.

The main result is the following

Theorem 1 (N > 2). Let us consider initial data φ G Σ = Hι Π {φ\ \x\φ G L2} such
that φ is radially symmetric and the solution u(t) of Eq. (1) blows up infinite time T.
For ε > 0 and 1 + 4/N < q < (N + 2)/(N - 2), let us consider uε, the solution of
Eq. ( l) ε , where

idu/dt = -Δu-\u\4/Nu + ε\u\q~{u and u(0,.) = φ(.). ( l) e

For To > T, we then have the following alternative (eventually extracting a
subsequence).

A) J \x\2\uε(To,x)\2 dx —> +oc as ε -* 0

B) There is a constant C > 0 such that / \x\2\uε(T0, x)\2 dx < C.
In this case we have the following properties.

i) Compactness Outside the Origin in I? for t < To. There is an application t —> u*(t)
defined for t < Γo, such that for all iϊ > 0,

and
we(ί) -> ix*(ί) in r([0,Γ o ),L 2 ( |x | > R)) as ε ^ O .

ii) Concentration at the Origin. For t < To, there is m(t) > 0 such that

\uε(t, x)\2 —> m(t)δx==0 + |^*(ί, x) | 2 as ε —> 0 in the distribution sense

- if m(ί) 4= 0 then \\uε(t)\\Hι -> +oc as ε -> 0 and m(t) > | |Q| |^ 2 ,

- if m(t) = 0 there is a constant c > 0 such that for all ε, 11 (̂̂ )11^1 < c, and

uε(t) -> iz*(t) in L2.

iίi) Conservation of Mass. For all £ < To, m(t) + J |ti*(ί, x) | 2 <ix
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The following corollary follows from Theorem 1

Corollary 1.1. Let us consider initial data φ and solutions u£(t) of Eq. (l)ε as in
Theorem 1. In addition, assume that there is a constant c > 0 such that for ε G (0,1)
we have

To

/ _ ,tt£tHni dt<c.

o

Extracting a subsequence, we are then in case B.

Remark. In practice, to prove that we are in case B, we use Corollary 1.1.

Similar results (Theorem 1 and Corollary 1.1) hold for solutions of the following
equation:

idu/dt = — Δu — \u\4^Nu + ε\u\q~ιu and u(0,.) = φε(.), ( l ) ε

with φε radially symmetric and φε —•» φ in Σ as ε —» 0. The same conclusion holds
under weaker assumptions: there are R and Rf such that for t < To, there is a c such
that for all ε e (0,1),

t

/ / \Vuε(s,x)\2 dxds < c.

0 R<\χ\<R'

We show that if there is no loss of mass in infinity in an L2-space with a weight
at infinity for t = To, then the sequence {uε(t)}εe^0l) is compact in ^([0, To),

L2(\x\ > R)) for all R > 0. An interesting point will be to show the alternatives A

and B in Theorem 1 with alternative in L2 (with no weight at infinity). That is,

Case A: There is a £0 > 0 such that liminf ί J \uε(TQ, x)\2 dx\ > δ0.
ε^° \\χ\>R J

Case B: For all R > 0, lim sup ί J \uε(TQ, x)\2 dx\ —> 0. There is then u*(t) such

that for all R > 0, Tx < To,

and
- uε(t) -> n*(ί) in r([0,Γ 0 ),L 2 ( |x | > R)) as ε -> 0.

The fact that in case B of Theorem 1, information at time t = T0 (that is there is
a constant c > 0 such that f \x\2\uε(T0, x)\2 dx < c) gives a result for t <T0 follows
from the fact that the Schrodinger equation has a regularizing effect involving integrals
in time. In fact (see proof of Theorem 1 in Sects. II and III), we have the following
estimates: for all 0 < A and 0 < t < To there is a constant c > 0 such that

t

Vεe(0,1), / / \Vuε(s,x)\2dxds

0 A<\x\
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One main problem left is to know if Theorem 1 is an optimal result or not.
The result in [17] shows in the case of initial data φ — Sω θ(0), for ω > 0 and θ e R
the full sequence {uε(t)}ε is compact for t > T and satisfies case B in Theorem 1,
where uε(t) is the solution of the following equation:

idu/dt = -Δu - \u\4/Nu + ε\u\q~ιu and u(0,.) = φε(.),

with φε a suitable sequence such that φε —> φ as ε —> 0. Moreover, some formal
calculations under some stability assumptions by V.M. Malkin in [12] (also see
Fedoruk, Khudik, Malkin [13]) show in fact that for generic initial data we have for all

t

t > T the existence of a constant c(t) > 0 such that for all ε, / ε||we(s)|| ™+i ds < c(t)
o

and from Corollary 1.1, we are in case B. Therefore we expect that case B is the
generic case.
The question is to find an example of initial data φ such that we are in case A. We
conjecture that this behavior can occur in some cases but is very instable. For the
physical case (N = 2), we think that the sequence satisfying case A has no physical
meaning and the nonlinear Schrodinger equation has to be replaced by a Sakharov
type equation: consider initial data φ such that uε satisfies case A, we then conjecture
that there is no loss of mass at infinity (case B) as ε —» 0 for vε, where υε is the
solution of the following equation:

idu/dt = — Δu + nu + εn2w,

δ-ι[d2n/dt2] = Δn + Δ\u\2,

u(0,.) = φ(.) and n(0,.) = |φ(.)|2, where δ > 0.

Many questions are still open on the stability of the singular behavior in time.
The result in [17] shows, in some special case of approximations and initial data
(φ = Sω 5,(0) for a ω > 0 and ^ 6 R ) that the singularity is unstable in time. That is,
for t Φ T we have

limsup / |Vuε(ί, x)\2 dx < +oo .
ε->0 J

and the singularity appears only for t — T.
In [12], formal methods suggest that for generic initial data φ and for ί > T w e have

liminf / \Vuε{t,x)\2 dx = +oo .

In that case, the singular behavior is stable in time. A mathematical proof of this fact
is an open problem. In addition, we do not know in addition if there are other types
of behavior for uε as ε —» 0.

One question left is also to consider nonradial functions as initial data.
Let us give an application of Theorem 1 related to the existence of a weak solution

of the nonlinear Schrodinger equation for t > T. We can show in case B that w* is
a solution in a certain sense of Eq. (1).
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Theorem 2 (N > 2). Let us consider initial data φ G Σ = Hι Π {φ\ \x\φ G L2} such
that φ is a radially symmetric and the solution of Eq. (1) u(t) blows up infinite time
T. We assume that there are To > T and sequences ψn —» φ and εn —> 0 as n —• -foo
with a constant c > 0 such that

where un is the solution of the equation

idu/dt = — Δu - \u\4/Nu + εn\u\q~ιu and ix(O,.) = φn(.) -

There then exists a function u*(t) such that for all R > 0,

- / / \Vu*(t,x)\2dxdt < +00,
0 R<\x\

- it* (£) /s α solution in the distribution sense of the equation

idu/dt = -Δu - \u\4/Nu and iz(0,.) = φ{.),

o/i [0, To) x l j v \ {0} /or JV < 4, and [0, Γo) x RN for N > 4.

Remark. In [17], we show that there is no hope of uniqueness of the continuation
after the blow-up time. Indeed, let us consider initial data φ = Sω_ θ_(0), we then
have, for all ^ G l , the existence of a sequence εn —> 0 such that

for t > T, u e n ( t ) -> Sω_iθ(f),

where ue(t) is the solution of the following equation:

idu/dt = -Δu - \u\4/Nu + ε\u\q~γu and tx(O,.) = φε(.),

with φε a suitable sequence such that φε -> ̂  as ε —> 0.

Remark. The solution tί*(ί) in Theorem 2, obtained by a compactness procedure, has
a physical meaning as a limit of saturated solutions.

The plan of the paper is the following: Sect. II is devoted to local estimates on
uε{t) which yield a local control outside the origin on the term \S/uε(t, x)\2 and
ε\uε(t, x)\q+ι for x φ 0. Using a compactness procedure, we conclude the proof of
Theorems 1 and 2 in Sect. III. In Sect. IV, we briefly give some extensions of the
methods used to prove similar results in the supercritical case.
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II. Estimates on the Saturated Solutions

We consider φ G Σ = Σ(RN) radially symmetric such that the solution u(t) of Eq. (1)
blows up in finite time T. For ε G (0,1), let uε{t) be the solution of the equation

where 4/JV + 1 < q < (N + 2)/(JV - 2), and consider To > T.
We assume in this section that there is a constant c > 0 such that

for all ε G (0,1), / \x\2\uε(To,x)\2 dx < c. (2.1)

Since we are interested in the limit as ε —> 0, we assume that

ε G ( 0 , l ) . (2.2)

Assuming (2.1)-(2.2) (that is a uniform control in ε of the decay of the solution
uε{t,x) as \x\ —• +oc), we show that uε{t,x) has a "singular behavior" as ε —•> 0
only for x = 0. We produce in fact some uniform estimates in ε, on Vuε(t,x) for
x ^ 0 which turn out to be the key estimates in the proof of Theorem 1. We prove
under assumption (2.1) that for all R > 0, there is a constant c > 0 such that for all
ε G (0,1),

ί(T0-t) ί \Vuε(t,x)\2dxdt<c, (2.3)

0 \χ\>R

and

To

(T0-t) / ε\uε(t,x)\q+ιdxdt < c. (2.4)

o M>i?

In the proof of Theorem 1, (2.3) gives a compactness property of the sequence uε(t) in
Lfoc(R7V\{0}). Starting from (2.3) and using energy estimates, in Sect. Ill we derived
a property stronger than (2.4); that is in Sect. Ill, using some energy estimates we
derived from (2.3)

To

forallΛ>0, lim /\τo - t) ί ε\u(t,x)\q+x dxdt = 0.

0 \χ\>R

To obtain (2.3)-(2.4), we use a local version of a conservation law of Eq. ( l) e .
We consider the variation in time of quantities of the form

ψ(x)\uε(t,x)\2 dx,

where ψ = 0 near the origin and ψ(x) « \x\2 as |x| —• +oc. This kind of techniques
was used in [17] (see also [21]). A control in time of the variations of these types of
quantities (from the fact that the term with the "bad" sign — \u\4/Nu has subcritical
behavior for x ψ 0) shows that assumption (2.1) is equivalent to assumptions
(2.3)-(2.4) for all R > 0.

Part II. 1 is devoted to some basic lemmas. In Part II.2, we prove the main result
of this section.
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ILL Basic Lemmas

We first remark that from the uniqueness of the Cauchy problem of Eq. ( l) ε , the
function uε(t, x) is a radial function of x for fixed ε and t:

Vε,Vί,Vx, uε(t, x) = wε(ί,r), where r = |x | .

Let us recall some classical lemmas. uε(t, x) satisfies the following conservation
laws.

Lemma 2.1. Vε G (0,1), Vί G R

(2.5)

tze(t)) = i / IVue(t, x)|2 dx - -^— ί \uε(t, x)\A/N+2 dx

+ 2

q+ι dx+ ^ γ J \uε{t,x)\

= Eε(φ), (2.6)

/ |x|2/uε(ί,x)|2dx = 4Im / ruε(t,x)ΰεr(t1x)dx,

/ |x| 2 |u εα, x)|2 dx - 16E(y>) + εC(g, AT) / \uε(t, x)\q+ι dx , (2.7)

, iV) > 0, r = |x| and ur = du/dr.

Let us give the following inequalities

Lemma 2.2. Let w(x) be a radial function in Hι. We have the following estimates for
all R > 0:
i) There is a constant c > 0 which depends only on R > 0 such that

\\W\\2Loo(\χ\>R) < C\\W\\L2QX\>R)\\VW\\L2{\X\>R).

ii) For all ε > 0, there is a constant depending only on the L2 norm of w(x) and R
such that

I min{(|x| - R)2,1} \w(x)\4/N+2 dx

\x\>R

< ε 0 / min{(|x| - R)2,1} \Vw(x)\2 dx + c.

\x\>R

Proof, i) is a classical result.
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ii) From 'i), we have Vα e(R,R+ 1),

/ \w(x)\4'N+2 dx

\>a

< {Ihlli-(|^|>Λ)}2/7V J \w(x)\2dx

\x\>a

( f λ l / N f

<cJ J \Vw(x)\2dχ[ <ε0 J
[\x\>a J |x|>α

where the constant c depends on / |iϋ(x)|2 dx.
Therefore, Vα e(R,R+ 1),

2(a-R) / \w(x)\"+2dx < 2(a - R)ε0 / |V7w(x)\2dx + c,

|x|>α I a; I > ex

where the constant c depends only on J \w(x)\2 dx. Integrating this inequality with
respect to a £ (R, R+ 1), we obtain ii) of Lemma 2.2 (for a more detailed proof see
[17]).

We may now announce main result of the section.

II.2. Estimates on uε(t, x) for x ^ 0

Proposition 2.3. Let R > 0 fixed. The following properties are equivalent.
i) There is a constant c > 0 such that for all ε G (0,1), J \x\2\uε(T0, x)\2 dx < c.

ii) There is a constant c > 0 such that for all ε G (0,1),

ί(T0-t) J \Vuε{t,x)\2dxdt<c,

0 \χ\>R

and

o-t) I ε\u£(t,x)\q+ιdxdt<c.

0 |a;|>Λ

The proof of this result is based on the control of the variation in time of quantities
of the form

ίφ(x)\uε(t,x)\7
dx,
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where ψ is such that ψ = 0 near the origin, ψ(x) ~ \x\2 as |x| —> +00, and ψ has
convexity and regularity properties. In this case for a fixed R > 0, the quantities

0

and

J o

ί(T0-t) I \Vuε(t,x)\2dxdt<c,

ί(T0-t) ί ε\uε(t,x)\q+ιdxdt

are the terms which control f ψ(x)\uε(T0,x)\2 dx.

We first estimate / ^ ( x ) ! ^ ^ , x)| 2 dx where ψ is suitably chosen, then conclude
the proof of Proposition 2.3.

Lemma 2.4. Let ψ : R^ —> R Z?̂  .ywc/z ίΛαί ^ ^ radially symmetric and there is a
constant c > 0 swc/z

|x|), \Δψ(x)\

We have Vί,

i) d/dt f ψ(x)\uε(t,x)\2 dx = 2Im/ Vψ(x)uε(t, x)ΰεr(t,x)dx ,

ii) d 2 / d £ 2 / ^ ) | w e ( ί , x ) | 2 dx = 2 { - 2/(N + 2) / ^ ( a θ | u e ( t , a

1 dx + 2

Proof (see [17] for precise calculations). We carry out the calculations with a regular
solution. Using standard approximation arguments, we extend these equalities to a
solution in the integral sense of Eq. ( l) ε . By direct calculation,

d/dt / ψ(x)\uε(t,x)\2dx = 2Re / ψΰεduε/dt

= 2Re / ψΰJiΔUr + i\uΛA^NuP - εi\uΛq~ιuΛJ ε ε ε ε ε

= -2Im / ψΰεΔuε = 2Im / VψΰεVuε ,

and part i) of the lemma is established
We have from i),

d2/dt2 fψ(x)\uε(t, x)\2 dx = 2jlm ίvφΰεVduε/dt + Im / Vψdΰε/dtVuε \

= 2{ - Im / ΔψΰFduJdt + 2Im / VψdΰF/dtVuF \.
{ J J J
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On the one hand,

-Im ίΔφΰεduε/dt = -Re ί Δφΰε[Δuε + \uε\
4/Nuε -

= - ίΔφ\uε\^N+2 + ε IΔψ\uε

+ [ Δψ\Vuε\
2 - 1/2 ί Δ2ψ\Ui

391

(2.8)

On the other hand,

= - 2 R e

+ 2εRe

2Im / Vφdΰε/dtVuε = -Im / Vψduε/dt\7ΰε

ϊ jVψΔuεΰε -2Re / Vψ\uε\
4/NuεVΰε

f ?-i

J ε ε ε

/

r
Δψ\uε\

4/N+2-2ε/(q+ 1) / Λ0|w | 9 + 1

7

- Re ί dψ/drd/dr(rN-ιduε/dr)dΰε/drrN-1 dr

= 7V/(2 + TV) / Δψ\uε\*/N+2 - 2ε/(q + 1) / Z\^|iλε |
9+1

+ / [d2φ/dr2 - (N - \)(dφ/dr)/r] \Vuε\
2. (2.9)

Part ii) of the lemma follows from (2.8) and (2.9)

Lemma 2.5. Let a > 0. There is a function φa(x) satisfying the following properties:
there are constants cλ > 0., c2 > 0 and ra > 0 such that

i) φae K4 and ψa(x) = ψa(\x\).
ii) ψa = Ofor \x\ < a.

iii) Vr > 0, 0 < φa(r) < c{r
2 and Vr > ra, ψa(r) > c2r

2.
iv) \/x, | V ^ α ( x ) | < Cj|ίc|.

vi) Vr, d2ψa/dr2(r) > c2Δφa(r).

vii) Vr > a, c2min{(r — α)2,1} < d2ψa/dr2(r) < c1 min{(r — α)2,1}.

Proof (see [17] for a detailed proof). In [17], it is shown that for A large, ψA(x)
satisfies the conclusion of the lemma for a — A, where ψA(x) is defined as the
solution of
- ψA = 0 for \x\ < A,

- ΔψA(x) = (\x\ ~ A)2, for |a;| G (A, A + 1),

- ΔψA(x) = (\x\ - A)2[\ - (\x\ -A- I ) 3 ] , for \x\e(A+l,A + 2),
- ΔψA(x) = 1, for \x\ G (A + 2, +oo).
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For a > 0, we check by direct calculation that ψa(x) = ψA(xA/a) satisfies properties
i)-vii) and Lemma 2.5 is proved.

For a > 0, we have the following estimate for f ψa(x)\uε(To,x)\2 dx.

Lemma 2.6. Let a > 0. There are constants cι > 0 and c2 > 0 such that Me G (0,1),
i) fψa(x)\uε(To,x)\2dx

0 \χ

ii) fψa(x)\uε(To,x)\2dx

-t) J min[(\x\-a)2,l][\Vuε(t,x)\2+ε\uε(t,x)\q+ι]dxdt\.

Proof.

Jφa(x)\uε(To,x)\2dx

= / i/;α(a;)|^(x)|2ίix + 2T0Im / W α 5

+ / V o - *){ - 2/(JV + 2) f Δψa\uε\
4/N+2

2Jψ2ψa/dr2)\Vuε\
2 - l/2JΔ2φa\uε\ή .

From Lemma 2.5, identity (2.3), and the fact that ψ G Hι, we have for constants
cx > 0 and c2 > 0, Vε G (0,1),

Jφa(x)\uε(To,x)\2dx

To

>-c2 + cx ί(T0-t)ί-c2 ί mintdxl-α)2

0 I \x\>a

+ / min[(|^| -a)2,\]\Vuε(t,x)\2dx

\x\>a

+ / εmin[(|a;| - a)2,l]\uε(t,x)\q+ι dxldt.

ί\x\>a
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Applying'Lemma 2.2 ii) with ε0 = (2cx)~\ we obtain

Jψa(x)\u£(To,x)\2dx

^

To \

f f 9 9 4.1 Ί
(T0-t) / min[(|x| - a)2,l][\Vuε{t,x)\2 + ε\uε{t,x)\q+ι]dxdt\.This concludes the proof of the lemma.

We are now able to prove Proposition 2.3.

Proof of Proposition 2.3. We fix R > 0.

i) => ϋ). We know that for some constant c > 0, for all ε G (0,1),

/ \x\2\uε(To,x)\2 dx < c.

Let a = R/2. From Lemmas 2.5-2.6, there is a c > 0 such that

for all ε G (0,1), /ψR/2(x)\uε(T0,x)\2dx<c,

and

ί(T0 -t) I min[(|x| - R/2)2, \}[\Vuε(t,x)\2 + ε\uε(t,x)\q+ι]dxdt < c.
j J
0 \x\>R/2

Therefore for all ε G (0,1),

fa-» I
o ||

and ii) is proved.
ii) => i). Assume that for all ε G (0,1),

To

/ 2 + 1 dxdt<c./ Ĉ o - *) /

o | |

Fix a = R; Lemma 2.6 gives the existence of a constant c > 0 such that

for all ε G (0,1), / ^ ( z ) K ( T 0 , x)\2 dx<c.

From Lemma 2.5, we have for Ro > 0,

for all ε G (0,1), / \x\2\uε(To,x)\2 dx < c.

\χ\>R0

From the conservation of mass of uε(t) (2.3), there is a constant c > 0 such that

for all ε G (0,1), / \x\2\uε(T0)x)\2 dx < c.

This concludes the proof of Proposition 2.3.
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III. Proof of the Main Results

In this section we prove the main results of the paper: Theorem 1 and 2.

III.l Proof of Theorem 1

Consider initial data φ G Σ = HιΠ{φ; \x\φ G L2} such that ψ is radially symmetric
and the solution u(t) of Eq. (1) blows up in finite time T. Let To > T and consider
uε (denoted for convenience un) where εn —> 0 as n —> +oo, the solution of Eq.

idu/dt = -Δu- \u\4/Nu + εn\u\q~ιu and u(0,.) = φ(.),

Extracting a subsequence εn (such that εn —* 0 as n —> +oo) we can as-

sume that J \x\2\un(To,x)\2 dx has a limit as n —> +oo (eventually infinite). If

J |x|2 |^n(To,x)|2o?x —> +oo as n —•> +oo, we are in case A of Theorem 1. We

next assume that there is a constant c > 0 such that

Vn

and

, J\x\2\un(To,x)\2dx^c (3.1)

Vn, ε n £ ( O , l ) . (3.2)

Under these assumptions, Proposition 2.3 yields, for all R > 0, a constant c > 0 such
that

Vn, ί(TQ-t) ί \Vun(t,x)\2dxdt<,c, (3.3)

0 \χ\^R

To

Vn, ί(T0-t) ί εn\un{t,x)\q+λdxdt^c. (3.4)

0 \χ\^R

We want to prove, eventually extracting a subsequence, that there is a map u*{t)
such that VR > 0,
- u*(t) e ^([0,T 0), L2(RN \ BR(0))) such that

- un(t) -> w*(ί) in ^([0,Γ 0), L 2 ^ ^ \ 5Λ(0))).

We then prove various properties of u*(t).
We proceed in three steps.
In step one, we prove using various estimates and Property (3.3) a stronger version

of Property (3.4):

To

lim ί(T0-t) ί εn\un(t,x)\q+[dxdt = 0. (3.5)
7 W + OO J J

In step two, Properties (3.3) and (3.5) yield that for all R > 0, the sequence un(t) is

compact in L2(RN \ BR(0)). The proof is an application of an abstract compactness
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lemma arid some properties of Eq. ( l ) e n This step, together with Sect. II, is the

crucial part of the proof of Theorem 1.
In step three, using different time-invariants of un(t) (mass, energy and momentum,

(2.5)-(2.7)), we conclude the proof of Theorem 1.

Step 1. Let us show that property (3.4) can be derived from (3.3). We claim that (3.3)
and the conservation laws imply for all R > 0,

lim (T0-t) / εn\un(t,x)\q+ιdxdt = 0.
n^+ooj J

0 \x\>R

Property (3.5) says in a sense that the effect of the perturbation term

εn\un(t, x)\q~ιun(t, x) for x =j= 0 is negligible as n —• +oo.

Proposition 3.1. We have \/R > 0,

To

lim ί(T0-t) I εn\un(t,x)\q+ιdxdt = 0.
n->+oo J J

0 \χ\>R

Proof. Using Sobolev imbeddings (Lemma 2.2i)), we have Vε, Vt,

J εn |Hn(ί,a;)|«+1ώ<εn{|«n(ί)|Loo(N>β)}
9-1 J \un(t,x)\2dx

\x\>R \x\>R

\φ(x)\2dx

( r >| (9-D/4

<cεnJ / \Vun(t,x)\2dxV . (3.6)

l|x|>Λ J

Consider two cases corresponding to different values of q.

Case 1. q < 5 (We remark that the assumption q < (TV + 2)/(N - 2) implies q < 5
for TV > 3.)
From (3.6) we have, for a constant c > 0, Vn, Vt,

J εn\un{t,x)\q+xdx<cεj J \Vun{t,x)

\x\>R \\x\>R

'dx •
I IL N ' ' I

r\>R {\x\>R

Therefore, from property (3.3) we have

ί(T0-t) j εJuJ^xψ+'dxdtKcεJ ί(T0-t) ί \Vun(t,x)\2 dxdt+Λ
0 \χ\>R 0 \χ\>R\χ\>R 0 \χ\>R

and
τ0

(T0-t) / εn\un(t,x)\q+ι dxdt-^0 as n -> +oo ,

o |χ|>Λ

which concludes the proof in the case q < 5.
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Case 2. q > 5 (The assumption q < (N + 2)/(N - 2) implies N = 2.)

In this case Proposition 3.1 follows from a global estimate of / | Vun(t, x)\2 dx with
respect to ε.

Lemma 3.2. Assume that N = 2 αrcd g > 5. 77zere emto α constant c > 0 swc/z

, (9-3)/2

Vε, Vt, εn^nj\Vun(tn,x)\2dx\ < c.

Proof. Let us argue by contradiction. Assume that there is a subsequence of εn (also
denoted εn) such that for some tn G M,

N (g-3)/2

IVii^ίί, x) | 2 dx I - ^ + 0 0 as n —> +00 .

A contradiction follows using scaling and energy arguments. Consider

vn(x) = \-ιun(tn,x/λn)i where λn = I \Vun(tn,x)\2 dx \ .

We have that

Vn, ί \Vυn(x)\2 dx = 1

and

Vn,, / | v n (x) | 2 ( i^= / |

Therefore, from the facts that t>n is a radial function and q < +oo, classical
compactness lemmas yield (eventually extracting a subsequence υn) the existence
of v e H1 such that

vn —^ v in H , vn -* v in L , υ n -^ v in L 9 + as n goes to infinity.

On the one hand, the conservation of energy and Sobolev imbeddings imply that for
a constant c > 0 for all n,

- 1/2 J |V«n(ίn, x)\q+ι dx + 1/4 J \un{tn,x)\4 dx

Moreover 1/4/ \υn(x)\4 dx > 1/2 J \Vvn(x)\2 dx + \-2Eε(φ) -> 1/2 as μ -> +oo

and lim J |υ n(x) | 4 dx = J \υn(x)\Λ dx > 2. In particular υ =)= 0.
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On the" other hand, by direct computation,

397

(

Thus there is a constant c > 0 such that Vn,

d x

(ς-3)/2

which is a contradiction and the lemma is proved.

To conclude the proof of Proposition 3.1, we remark that Vε, Vί,

/

<

<

< n

un(t,x)

( ί

/1 **

\\x\>R

{/,v

| 9 + 1 dx

|v«n(ί, ^)|2

/

>| (9-D/4

J
1 (9-5)/4 j-

J I
|Vun(t,a;)

l\x\>R

In (t x)\ dx *

\x\>R

<</2ί J \Vun(t,x)\2dA.
l|a;|>β J

Therefore, from property (3.3) we have

1o

J(T0-t) J εn\un(t,xψ+ιdxdt
0 \χ\>R

<cεxAj(T0-t) J \Vun(t,x)\2
2dxd

0 \x\>R

as n -^ +oo .

This concludes the proof of Proposition 3.1.
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Step 2. Equation (l)εn, (3.3) and Proposition 3.1 yield the sequence un(t) has compact

behavior outside the origin in L2. In a certain sense, we show that the singular behavior
of un(t) a s n ^ +oo can appear only for x = 0.

Proposition 3.2. Eventually extracting a subsequence un(t), there is a function u*(t)
such that for all R > 0,

- u*(f) G gf([O,Γo), L2(RN \ BR(0))),

- un(t) -> u*(t) in ^([0,T 0), L2(RN \ BR(0))) as n -> +oo.

We deduce Proposition 3.2 from the following result.

Proposition 3.3. Let t0 < To and Ro > 0. Eventually extracting a subsequence un(t),

there is a function u*(t) such that for all R > 0,

- u*(t) G g?([0, t 0 ] , L 2 (R N \ 5^(0))),

- wn(ί) -> u*(t) in if ([0, * 0 ] , L 2 ^ \ BRQ(0))) as n ^ +oo.

Let us assume that Proposition 3.3 is proved and show Proposition 3.2. The
proof follows from a diagonal subsequence argument. Applying Proposition 3.3 with
Ro = 1/fe and t0 = Γo - 1/ra, for A; G N* and m G N*, there is a function u^k(t)
such that, up to subsequence,

- < > f c ( ί ) e r ( [0 ,T 0 - I/TO], L V \ B1/fc(0))),

- unit) - . < > f e ( ί ) in r ( [0 ,T 0 - I/TO], L 2 ( R W \ B1/fc(0))) as n - . +00.

Let us now fix m and allow A: to go to infinity; by a diagonal subsequence argument,

there is a function u^(t) such that, up to subsequence for all R > 0,

- < ( ί ) G g?([0,Γ0 - I/ml L2(RN \ BR(0))),

- un(t) -> < ( Q in ^([0,T 0 - 1/m], L ^ R ^ \ BΛ(0))) as n -^ +00.
Letting m go to infinity and again using a diagonal subsequence argument, we obtain
for a subsequence of un(t) also denoted un(t) the existence of a function w*(£) such
that for all R > 0,
- τx*(ί) G ^([0,Γ 0), L 2 ^ \ BRφ))),
- un(t) -> w*(ί) in ^([0, Γo), L2(MN \ BR(0))) as n ^ +00.

Let us now prove Proposition 3.3.

Proof of Proposition 3.3. Fix t0 < To and Ro > 0. We claim it as a consequence of
an abstract compactness lemma and some properties of the free Schrodinger group.

We have the following abstract compactness lemma.

Lemma 3.4 (see [23] for example). Consider a sequence wn(r) such that for a a > 1,

- wn(r) is uniformly bounded in L2(0, Γ, H&((0,1))),

- dwn(r)/dt is uniformly bounded in Lα(0, Γ, H~ι((0,1))).

We then have that wn(r) is compact in L2(0, T, L2((0,1))). Extracting a subse-

quence wn, there is a w G L2(0, Γ, ^((0,1))) such that

- wn^w in L2(0, T, #o((0,1))) flίn-^ +00,

- wn -> w m L2(0, Γ, L2((0,1))) as n -> +00.
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Proof. See [23] p. 271.

As an application of this lemma, we have

Corollary 3.5. There is a map u*(t,x) such that
i) for R > Ro,

- un(t) -- u*(t) in L2([0,ί0], H\R > \x\ > R0/2)) as n -> +oo,

- un(t) -> u*(t) in L2([0,ί0], L2(R > \x\ > RJ2)) as n -> +oo,

ii) for all 0 < t < t0, u*(t, x) is a radial function of x,
to

iii) / / \Vu*(s,x)\2dxdt < +oo.

/. We claim it as a consequence of Lemma 3.4 and properties (3.3)-(3.5).
Fix R > Ro. We consider a ^T1 function ^ ( x ) such that there is a constant c > 0
(independent of i?) such that

= 0, for \x\ < R0/4 and \x\ > R -f 1,

= 1, for # >

(3.8)

(3.9)

Vx, \\7ρR(x)\ + I£#0*01 < c (3.10)

Let be wn(r) = ρR(r)un(r). By direct calculation, for a constant c > 0;

(3.11)

Moreover, for all φ e H\RJ2, R + 1),

\(dwn(r)/dt,ψ)\

= \(ρR(r)dun(r)/dt,ψ)\

J -Δun(t,x)φ(x)\x\-(N-l)ρR(x)

- f \un(t,
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and

| | ^ n ( r )/a ί | | H _i ( j R o / 4 > Λ + 1 ) < [1 + H V u J l ^ ι ^ / 4 ) + llWnlll/4/Γ^2(|a.|>Λo/4)

From (3.3), (3.5), (3.11)—(3.12) and Lemma 3.4 (α = (q+l)/q), we have the existence

of a map w^(t) such that extracting a sequence wn

- wn(t) — w%(t) in L2([0, ί 0], # * ( # + 1 > \x\ > # 0/4)) as n -> +oo,

- wn(t) -• w^(t) in L2([0, ί 0], L 2 ( β + 1 > \x\ > RJ4)) as n -+ +oo,

or the existence of a map u^(£) such that extracting a sequence un,

- un(t) -^ uR(t) in L2([0, to],Hι(R > \x\ > R0/2)) as n —• +oo,

- un(t) -> u*R(0 in L2([0, ί 0], L2(i? > |x| > RJ2)) as n ^ +oo.

By an argument of diagonal subsequence, there is a map u*(t) such that extracting a
sequence wn, for all R > 0,

- ΐ/n(£) -- u*(£) in L2([0,t0],Hl(R > \x\ > R0/2)) as n ^ +oc,

- un(t) -> w*(Q in L2([0, ί0], L2(i? > \x\ > RJ2)) as n -> +oc.

We then remark that for all iϊ > 0,

/ / |Vti*(ί,x)|2dxdt <liminf / / \Vun(t,x)\2 dxdt < cR .

0 Λ^I^I^Λo/2

This conclude the proof of the lemma.

Let us show that in fact

Lemma 3.6.
i) We have that for all R> Ro,

- u*(t) G ^([0, ί 0 ] , L2(R > \x\ >

- un(t) -+ u*(t) in gP([O, tol L2(R > \x\ > Ro)) as n -> -f oo.

ii) Ŵ  have that

- u*(t) e r ( [ 0 , ί 0 ] , L2(RN \ BRQ(0))),

- un(t) -> w*(ί) ΪΛ ^([0, ί 0], L2(RN \ BRQ(0))) asn-+ +00.

Proof.

i) Fix R > Ro. We show that the fact that un is solution of Eq. (l)ε and that

u n(ί) -> w*(0 in L2([0, ί 0], L2(i? + 1 > |rr| > R0/2)) as n -> +00, yield

in ^([0, ί 0 ] , L2(i? > |2;| > i?o)) as n -> +00.
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We consider a Wx function ρ(x) such that

^ Ξ O , for \x\ < R0/2 and \x\ > R + 1,

ρ= 1, for R> \x\ > Ro .

401

(3.13)

(3.14)

Let us show that the sequence un satisfies the Cauchy criterion in

0,t0], L2(R>\x\>RQ)).

By direct calculation, we have for all t e [0, t0], n G N*, m e N*,

f
UJI UJL I £J\JbJ\ (Jjγ^yL) JUJ U/n\ϋ)JLJ\ (JjJb

-Δ[um(t, x) — un(t, x)][um(t, x) — un{t, x)]ρ(x)

- / ρ(x)[\um(t, x)\A/Num{t, x) - \un{t, x)\4/Nun(t, x)][ΰm(t, x) - ΰn(t, x)

+ εn ί ρ(x)[\un(t + δ, x)\q-ιun(t + 5, x)

t, x) - ΰ n(t, x)] \ ,

and there is a constant c > 0 such that

d/dt

< Im / V[um(t,x) - un(t,x)][ΰm(t,x) - ΰn(t,x)]Vρ(x)

+ c J ρ(x)[\um(t, x)\A'N + \un(t, x)A'N]\um{t, x) - un(t, x)\2 dx

+ cεn ί ρ(x)[\um(t,x)\q+ι + \un(t, x)

d/dt j ρ(x)\um(t, x) - un(t, x)\2 dx

< ί V[u ί, x) - un(t, ί, x) - ΰn(ί,

ρ(x)\um(t,x)-un(t,x)\2dx

\x\>Ro/2
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From Lemma 2.2, interpolation estimates and properties of ρ, we have for all ε*
fixed

d/dt J ρ(x)\um(t, x) - un(t, x)\2 dx

< (ε*)"1 j \um(t, x) - un(t, x)\\Vρ{x)f

and

r i
J \Vum{t,x)\2dx\

J

1/2

J

+
r i1 / 2i r
I \Vun{t, x)\2 dx J ρ(x)\um(t, x) - un(jb, x)\2 dx

J J
n̂ J \um(t,x)\«+l + \un(t,x)\«+l dx

\x\>R0/2

* / |V^m(ί,x)|2 + \Vun(t,x)\2dx

\X\>RQ/2

d/dt / ρ(x)|wm(ί, x) - un{t, x)\2 dx

+ ί /

J \um(t, x)\q+ι + \un(t, x)\q+ι dx

In fact this formula is proved for regular solutions. We extend to integral solutions
by a classical limit procedure.
Since for a c > 0,

Vrz,m, / ρ(x)\um(t,x) -un(t,x)\2dx <c \φ(x)\2 dx < c, (3.15)
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we have by integration

403

*G[0,*0]

Γ ί 1
Sup < / ρ(x)\um(t, x) - un(t, x)\2 dx \
£[0,*0] I J i

/ / \um{t,x)-un(t,x)\2dxdt

0 R+l>\x\>R0/2

\εn J \um(t,x)\q+ι + \un(t,x)\«+ιdx
L \x\>R0/2

* /

0 L \x\>R0/2

Corollary 3.5, (3.3), (3.5) yield for a c > 0;

Sup I / ρ(x)\um(t, x) - un(t, x)\2 dx \ < cε* 4- εε* (n) + εε* (m),
E[O,to] I */ JtG[0,t0]

for all ε*, where εε*(A:) —> 0 as fc —> +oo.

Therefore SupΦ o | { β > / > Λ
+oo,

and the sequence i^n is a Cauchy sequence in ^([0, ί 0], L2(i? > |x| > it!0)). There

is then a map u**(t) in ^([0, ί 0 ] , L2(,R > |x| > i?0)) such that

un(t) -> n**(t) in ^([0, t 0 ] , as n -^ +oc .

The uniqueness of the limit in L2([0,£0], L2(R > \x\ > Ro)) yields it** = w* and
the proof of part i) is concluded.

ii) follows directly from part i). Indeed, from (2.7)-(3.1) the quantity

J(T0-t)Jεn\un(t,x)\q+ιdxdt
o

is uniformly bounded and there is a constant c > 0 such that

Vn, Vί G [0,t0], I \x\2\un{t,x)\2 dx < c.

In particular, for a c > 0, VΛ, Vn, Vί G [0, ί 0], / |wn(ί, x) | 2 dx < c/R2, and by
\x\>R

a limit procedure VΛ, Vί G [0, t 0 ] , / |ιt*(t, x) | 2 dx < c/i^2.
\x\>R
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We conclude the proof of ii) by standard arguments.

This conclude the proof of Proposition 3.3 and 3.2.

We assume now that up to a subsequence there is u*(t) such that for all R > 0,

- u*e f r ( [0 ,T 0 ) , L 2 ( R " \ BΛ(0))),

- un(t) -> u*(t) in ίT([0,T0), L 2 (R N \ BRφ))) as n -> +oo

Step 3. Assuming the convergence of the sequence for un(t, x) for x φ 0, we consider
the behavior of un(t0, x)for a fixed t0 and for # = 0. Using the conservation laws, we
relate the singular behavior in H1 for un(t0, x) to a concentration phenomenon in L2

at the origin of un(t0) x) (see [20, 24, 26] for this type of property of the solution u(t)
of Eq. (1)). Fix tQ G [0, To). We first have the following lemma as direct consequence
of step 2.

Lemma 3.7. W<? /zαv^ the following properties:

i) u*(ί0) G L2 αwd / |u*(ί0, x) | 2 da: < / |^(x) | 2 dx.

ii) Γ/ẑ re w a constant m(t0) = J \φ(x)\2 dx — f \u*(to,x)\2 dx > 0 such that

\un(tQ, x)\2 6 —> |i^*(t0, x)\2 + m ^ o ) ^ ^ as n -^ +oo m ^ distribution sense.

i) Fix R > 0. From the fact that un(t0) —> u (t0) in L (|x| > R) as n —>

+00, and the fact that for all n, J |^ n ( t 0 ,x) | 2 dx < J |<^(a:)|2ίix, we have that

J \u*(to,x)\2 dx < J \φ(x)\2 dx. Letting R —> 0, the dominated convergence
|a|>Λ

theorem yields u*(t0) G L 2 (R^) and / \u*(tθ1 x)\2 dx < f \φ(x)\2 dx.

ii) Since u*(t0) G L2, we derive that there is a constant m(t0) > 0 such that

\un(t0,x)\2 -^ |w*(to,x)|2 + m(to)δx=:O as n —> +cχo in the distribution sense.

Let us fix R > 0. We have in particular

J \un(t0,x)\2dx -+
\χ\<R \x\<R

From the property (3.1), we have the existence of a constant c > 0 such that for all
n, we have

\un(t0,x)\2dx<c/R2,1
and the conservation of mass (2.3) gives

/ \u*(t0, x)\2 dx + m(tQ) - / \φ(x)\2 dx < c/R2.

\x\<R

Now letting R go to infinity, we conclude the proof of the lemma.
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We claim now that the singular behavior of un(t0) is characterized by the value
of m(t0).
- If m(t0) = 0 then un(t0) has a regular behavior: there is a constant c > 0 such that

f\Vun(t0,x)\2dx<c,

- If m(t0) =f 0 then un(t0) has a singular behavior: / \Vun(t0,x)\2 dx —» +oo as
n —• +oo.

Proposition 3.8.

i) Ifm(t0) 4= 0 fΛe/ϊ / | Vnn(t 0, x)\2 dx —> +oo as n -^ -f-oo.

/« addition, we have m(t0) > J \Q(x)\2 dx.

ii) Ifm(t0) = 0 ί/ιer£ /s ί/ze/i ύf constant c > 0 swc/i ί/zαί J |Vwn(t0, x) | 2 ώ < c.

Proof. Proposition 3.8 is a direct consequence of Lemma 2.4 and the conservation
laws which the function un(t) satisfies.

i) Assume that m(t0) =(= 0. We first have that / |Vu n(t 0, x)\2 dx —> +oo as n —» +oo.
By way of contradiction, assume that for a subsequence also denoted un(t0) there is
a constant c > 0 such that Vn, / |Vί/n(ί0, x) | 2 dx < c. By Sobolev and interpolation
estimates, we have that

for all pe(2,2N/(N-2)), Vn, f \un(t0,x)\pdx < c.

and there are a > 0 and c > 0 such that Vn, / \un(t0, x)\2 dx < cRa. Letting n go
to infinity, we obtain from Lemma 3.7 that

\/R > 0, m(t0) < cRa, and m(t0) = 0 which is a contradiction.

Therefore

|Vϋ n ( t 0 ,^) | 2 dx —> +oo as n —>+oc .

We now claim that

to)>J\Q(χ)\2
m(to)> I \Q(x)\2dx.

Let us argue again by contradiction: assume that 0 < m(t0) < J \Q(x)\2 dx. There
are then a <50 > 0 and Ro > 0 such that for n large

ί \un(t0,x)\2dx< ί\Q(x)\2dx-δ0. (3.15)

We obtain a contradiction using scaling and energy properties of un(t0). As for the
nonlinear Schrodinger equation with a critical power, we consider

«n (to, ̂ ) With \ , = ( I I V«n(ίo, X)\2
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By direct calculations, we have

J\Vvn(x)\2 dx = 1 (3.16)

/ \vn(x)\2 dx = j \φ(x)\2 dx (3.17)

E(υn) = 1/2 J \Vvn(x)\2 dx ~ l/(4/N + 2) J \vn(x)\4/N+2 dx

= X-211/2 J \Vun(t0, x)\2 dx - l/(4/N + 2)J \un(t0, x)\4/N+2 dx}

< X-2^Eεn(φ) - εj(q + 1) J \un(fi0,x)\«+ι dx}

< X~2Eεn(φ) -> 0 as n -> +oo . (3.18)

As a consequence of (3.16)—(3.18) we have

liminf / \vn(x)\A/N+2 dx > liminf(4/A^ + 2) 1/2 / \Vvn(x)\2 dx - E(υn)
n-^+oo J n->+oo [ J J

>2/N + 2. (3.19)

Moreover, from property (3.15) and the fact that λ n —> +CXD, for all R > 0,

limsup / | f n (x) | 2 dx < limsup / |wn(i0,x)|2cix
n—> +oo J n—> +oo J

\x\<R \x\<R/Xn

< limsup / \un(t0,x)\2dx< [ \Q(x)\2 dx - δ0 . (3.20)
n—>+oo J J

\x\<R0

Using now a classical compactness procedure (since vn is a radial function; see

for example [26]), we can assume that there is a υ G i ί 1 such that

υ n — v in i J 1 , and υn -> i; in L 4 / i V + 2 .

From (3.16)-(3.20), we have

/ \Vv(x)\2dx < 1, J57(v) < 0 ,

J \v(x)\2 dx < J \Q(x)\2 dx - δ0,

[ \v{
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In particular, the function v φ 0 (3.19) is such that E(υ) < 0 and f \vn(x)\2 dx <

J \Q(x)\2 dx, which contradicts the definition of Q (see for example Weinstein [25])

and so m(t0) > j \Q(x)\2 dx.
ii) Assume that m(t0) = 0. We claim that there is a constant c > 0 such that for
all n,

[\Vun(t0,x)\2dx<c.

Assume by way of contradiction that for a subsequence also denoted un(t0), we have

/ I Vtin(t0, x)\2 dx —» +oo as n —• +oo .

In part i), we derived that m(t0) > J \Q(x)\2 dx > 0, which is a contradiction. This
concludes the proof of Proposition 3.8.

Theorem 1 follows from Proposition 3.1, 3.2, 3.8 and Lemma 3.7.
Corollary 1.1 follows directly from the conservation laws and Theorem 1. Assume

that there is a constant c > 0 such that for all ε e (0,1),

To

0

We have from (2.7), for all ε e (0,1),

/(Γo - t) / φ e ( t , x ) \ q + ι dxdt<c.

/ \x\2\uε(To,x)\2dx < / \x\2\φ(x)\2dx + 2T0 Im / xφ(x)Vφ(x)dx

+ c (T0-t) / ε\uε(t,x)\q+ι dxdt< c.

o

Therefore, we are in case B) of Theorem 1 and the proof of the lemma is concluded.

III.2 Proof of Theorem 2

Let us consider initial date φ £ Σ = Hι Π {φ; \x\φ £ L2} such that φ is radially
symmetric and the solution of Eq. (1) u(t) blows up in finite time T. Let us assume
that there are To > T and sequences φn —• φ and εn —> 0 as n -^ +oc with a
constant c > 0 such that

J\x\\un(T0,x)\2dx<c, (3.21)

where wn is the solution of the equation

idu/dt = -Δu - \u\4/Nu + εn\u\q~ιu and u(0,.) - φn(.). (l)n
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We remark that Theorem 1 is still true if we consider solutions un(t) of the equation

idu/dt = -Δu- \u\4/Nu + εn\u\q-ιu and u(0,.) = φn(.).

and the proof is the same.
From assumption (3.21), we derive that we are in case B of Theorem 1. Extracting
a subsequence also denoted un(t), we can assume there is a function u*(t) such that
for all R > 0,
- u*{t) in g?([0,Γ0), L2(RN \ BRφ))\

- un(t) -> u*(t) in grX[0,T0), L2(RN \ BR(0))) as n -> +oo.
In addition, from Sect. III. 1, we have for all R > 0 the existence of a constant

c > 0 such that

Vn, ί(T0-t) I \Vun(t,x)\2dxdt<c, (3.22)

0 |sc|>-R

and
To

/

r
(T0-t) / εn|'un(t,x)|9+1ί/x(/ί ^ 0 a s n - ^ + o o . (3.23)

0 |ic|>β

From the fact that un(t) — u*(t) in L2([0,Γ0), Hι(RN \ BR(0)) as n -> +oo (Step
2), we have

Vn, ί(T0-t) ( \Vu*(t,x)\2dxdt<c. (3.24)

0 \x\>R

We now claim that u*(f) is a solution in the distribution sense on [0, T 0)xR i V\{0},
of equation

idu/dt = -Au - \u\4/Nu and τz(O,.) = φ(.).

Proposition 3.6. For all functions ψ e W°° with compact support m[0,T0)xR i V\{0},
αwJ/or α//1 e [0, Γo), we -

/ / — idψ(s,x)/dtu*(s,x)dxds

o

= —i ψ(t,x)u*(t,x)dx + i / ψ(0,x)φ(x)dx

t

+ / / -Z\^(5,x)l6*(5,x)-^(5,x)|l/*(5,x)|4/i

0

We claim that the proposition is a consequence of the facts that the functions un(t) are

solutions in the distribution sense on [0,T 0)xR i V\{0}, of Eq. ( l ) n and un(t) —> w*(ί)

in ^([0, Γo), L2(MN \ ̂ Λ (0))) for all Ή > 0 as n -• +oo, (3.22)-(3.23). The case

iV > 4 follows from the fact the term \u\4/Nu can be controlled at the origin with

the L2-norm.
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Proof of Proposition 3.9. Consider φ G W00 with compact support in [0,T0) x R^ \
{0}, and t G [0, To), we want to prove

t

— —idφ{s,x)/dtu*(s,x)dxds

o

= —i φ(t,x)u*(t)x)dx+ i / φφ,x)φ(x)dx

t

+ / / -Aφ(s,x)u*(s,x)-φ(s,x)\u*(s,x)\A/Nu*(s,x)dxds.

o

The proof in the case N > 4 is similar and follows from the fact that for a > 0 and
C > 0, we have from the conservation of mass Vn,

/ |u*(β, x)\Λ/N+l + K ( s , x)\4/N+ι dx < cRa -> 0 as Λ -> 0.

\x\<R

Since ^ has compact support in [0,Γ0) x RN \ {0}, there are t0 e [0, Γo) and
R{ > Ro > 0 such that Supp0/>) is contained in [0,t0] x {.Ro < |ίc| < R{}. We have
to prove that for all t G [0,t0],

t

— / idφ(SiX)/dtu*(s,x)dxds

= —i / φ(t,x)u*(t,x)dx + i j φ(O,x)φ(x)dx

R0<\χ\<Rι Ro<\χ\<R\

t

+ / / -Δφ{s,x)u*(s,x)-φ(s,x)\u*(s,x)\A/Nu*(s,x)dxds. (3.25)

0 R0<\x\<Rx

Since un(t) is a classical solution of Eq. ( l ) n , we have

t

— I I idφ(s,x)/dtun(s,x)dxds

o

= — i / ψ(t, x)un(t, x)dx + i / ^(0, x)φ(x) dx

+ / / ~Δφ(s, x)un(s, x) - φ(s, x)\un(s, x)\A/Nun(s, x)

0 Rv<\x\<Rx

+ εnφ(s, x)\un(s, x)\q~ιun(s, x) dx ds . (3.26)
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We claim that letting n going to infinity in (3.26) we obtain (3.25).
As a direct consequence of the fact that

un(t) -> u*(t) g?([0, Γo], L\RN \ B

we have as n —>• + o o

F. Merle

t

I I dψ(s,x)/dtun(s,x)dxds

0 Λo<kl<Λi
t

—> / / dψ(s,x)/dtu*(s,x)dxds,

t

/ / —Δψ(s,x)un(s,x)dxds

0 i? 0<kl<^i
t
/ / *

I 7/Jl "/" T* 17/ I ̂  T" I /7'Ύ*

J

/ ψ(t,x)u*(t,x)dx,

/

/ , x)φ(x) dx .

In addition from (3.23)

t

/ / εnψ(s,x)\un(s,x)\q-~ιdxds

o Ho<l^l<^i

< c / /

0 i?o<|^|

<c (T0-t) /

(3.27)

(3.28)

(3.29)

(3.30)

as n -> +oo. (3.31)

0 \χ\>R
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Let us'prove that

t

ί J ψ(s,x)\un(s,x)\^Nun(s,x)

— ψ{s,x)\u*(s,x)\A'N u*{s,x)dxds —> 0 as n —> +oo . (3.31)

By direct calculation

/ / ψ(s, x)\un(s, x)\A/Nun(s, x) — -0(5, x)\u*(s, x)\4/Nu*(s, x) dx ds

0 RQ<\X\<RX

to

j {\un(s,x)\4/N + \u* (s, x)\4/N}(\un(s, x) — u*(s,x)\)dxds

0 R0<\x\<Rι

to

\un(8, X)\*'N

un(s,x) — u (s,x)\ dx

1/2

1/2

We have, using Lemma 2.2 and various interpolation estimates,

to

J 1/2

0 \RQ<\X\<RI

/ *0

ds

0 KRQ<\X\<RI

( A 9
< c 1 + / {\un(s,x)\Lo

V ^
}

<c 1 +

to

<c ί Vu sx2+Vu*sx 2dx\ds)

J \Vun(s,x)\ +\Vu (s,x)\ dx(dsj.
RQ s\χ\ '

o U0<|x|

Therefore from Properties (3.22) and (3.25), we obtain that there is a constant c > 0

such that for all n, / / / \un(s,x)\^N + \u*(s,x)\VN dx\ l/2 ds < c.
o \βo<M<#i J
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We have

t

ί ί ψ(s, x)\un{s, x)\4/Nun(s, x) - ψ(s, x)\u*(s, x)\4/Nu*(s, x) dx ds

0 RQ<\X\<RI

if 1 1/2

<c Sup I / \un(s,x) — u*(s,x)\2dx > —> 0 as n —> +oo ,
0<s<ί0 [ J I

since un(t) -> u*(t) in L^IR^ \ 5^(0)) as n -> +oo. Thus (3.31) is proved.

From (3.27)-(3.32), letting n going to infinity in (3.26) we obtain (3.25). This
concludes the proofs of Proposition 3.9 and Theorem 2.

IV. The Supercritical Case

In this section, we consider the saturated nonlinear Schrodinger equation with
supercritical exponent

idu/dt = -Δu-\u\p-ιu-ε\u\q-ιu and u(0,.) = φ(.), ( l*) e

where JV > 2, ε > 0 and 1 + 4/JV < p < q < (N + 2)/(iV - 2), and <p radially

symmetric in Hι(RN).

For ε > 0, we have an unique solution υε(t) of Eq. ( l * ) ε which is globally defined

in time. We assume that the solution υ(t) of Eq. ( l*) e blows up at t = T, where

idu/dt = -Δu - \u\p~ιu and u(0,.) = y>(.), (1*)

We are again interested in the behavior as ε —> 0 of υε(t) for t>T.
The techniques used previously in the critical case can be applied and we obtain

the following theorem:

Theorem 3. (N > 2). For To > T, we then have the following alternative (eventually
extracting a subsequence)

A) f \x\2\υε(To,x)\2 dx -* +oc as ε ^ 0.

B) There is a constant C > 0 such that J \x\2\vε(T0, x)\2 dx < C.

In this case we have the following properties.

i) Compactness outside the Origin in L2

There is a map υ*(t) defined for t < To, such that for all R > 0,

and
uε(t) -> u*(t) in g^([0,Γ0), L2(|x| > Λ)) a s ε ^ O .
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ii) For 0 < t < To, there is m(t) > 0 such that

\vε(t, x)\2 -> m(t)δx=0 + / \υ*(t, x)\ dx as ε -» 0,

and

/ |υ*(£,x) | 2 ώ = / \φ(x)\2dx.

This result is less interesting than the one's for the critical case. Indeed, we conjecture

that for all t < To we have m(t) = 0. That is

υ(t)^υ*(t) in TO,T0), L2)

(see also Merle [14] for this type of results and conjectures).
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