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Abstract. A family of Riemannian metrics on the moduli space of irreducible self-
dual connections of instanton number k = 1 over CP? is considered. We find explicit
formulas for these metrics and deduce conclusions concerning the geometry of the
instanton space.

1. Introduction

Let .4 be the space of gauge equivalence classes of irreducible self-dual connec-
tions on a principal SU(2)-bundle P over a Riemannian 4-manifold M. Define a
Riemannian metric g° on ./t for s > 0 by

(gs)[z](up uz) =1+ SAz)Ul a+ SAz)Uz) y

where [Z] € ./"* and (,) denotes the L?-product. Then ¢° is the usual L?-metric,
whereas ¢° is induced by a strong Riemannian metric on the orbit space of all
irreducible connections on P for s > 0.

Results concerning the L?-metric g° when M is the standard 4-sphere S* and
the instanton number k(P) is 1 were obtained by several authors (see [5, 8, 10]). In
particular, it was shown that
(i) (*,g% is incomplete and has finite diameter and volume.

(i) The completion of (#"*, g°) differs from .#"* by a set diffeomorphic to S*.

Groisser and Parker generalized these results and established some other general
properties of g° under certain topological assumptions on M and P (cf. [9]).

In [2] we examined the family {g°},>, in the S* example. We showed that
(W, g%) is complete and has infinite diameter and volume for s > 0.

In the present paper we will be concerned with the case that M is CP? and
k(P) = 1. Then the moduli space ./ of self-dual connections is topologically a cone
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on CP?, where /" is the complement of the vertex of this cone (cf. [4]). In [7]
Groisser gave a non-twistorial derivation of the formulas for the CP? instantons to
express the L2-metric ¢° explicitly. We use this to obtain formulas for the metrics g°.
Among others we deduce for s > O that

(i) The completion of (/"*, g%) is 4.

(ii) The diameter and the volume of (/" g%) are infinite.

2. Preliminaries and Notations

Fix a principal G-bundle P — M over a closed, oriented Riemannian 4-manifold M,
where G is a compact, connected, semisimple Lie group with Lie algebra g. Denote
by #* the space of irreducible L3-connections on P. The tangent space to Z* at a
connection Z is the space L%(Ql(Ad P)) of 1-forms on M with values in the bundle
AdP = P x,4 8. Thus, a family {¢°},-, of Riemannian metrics on & is defined
by

(gs)z(uuuz) =1+ SAz)'Uq, (1+sAz)u,)

for Z € & and u;,u, € L3(£2'(Ad P)), where (,) denotes the usual L?-product and
A, = d%d, + d,d} the Laplacian associated with Z (cf. [1]). Recall that ¢ is the
(weak) L?-metric, whereas g° is a strong Riemannian metric for s > 0.

Now the group & of gauge transformations of P which lie in L3 acts on &+ such
that £+ = &*/% is a Hilbert manifold (cf. [6]). Identifying the tangent space to
A6 at the equivalence class [Z] of a connection Z with the kernel of the operator

dy: L2(2Y(Ad P)) — L*(2°(Ad P)),

the restrictions of (¢°), to kerd}, yield Riemannian metrics on .Z* which we will
also denote by g¢°.
Another metric tensor on .Z" which was suggested to be considered is described
by
Gz(uy,uy) = (dyu,,dyuy) for uj,u, € kerdy,

(cf. [11]). We remark that the notation metric is not quite correct here since in general
g may be degenerate.

With respect to each of these metrics a connected group K of isometries on M

acts by
(Z2),k)e #F x K — [k*Z) e #T,
where the automorphism £ of P projects down to k, isometrically on .Z ™.

Let .7~ be the space of gauge equivalence classes of self-dual connections on
P, and let ./t C ./ denote the subspace of classes of irreducible connections.
Suppose that the Riemannian metric on M is such that ./ is a (finite dimensional)
submanifold of .Z*. We will identify the tangent space to ./ at a point [Z] with
the kernel of the Laplacian

Ay =dydy +2dyp_d,:L3(02'(Ad P)) — L*(2'(Ad P)),

where p_ is the orthogonal projection onto the space of anti-self-dual 2-forms. Then
the metrics ¢° and § restricted to ./t are given by restrictions of (¢°), and §, to
ker A7, for irreducible self-dual connections Z. Note that, using

Ajyu = Ayu+ +[FZ u]
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for every '1-form u and self-dual connection Z with curvature form F'Z (cf. [2]), we
obtain
(9°) 7y, uy) = () — s % [FZ,u], uy — s % [F7,u,])

and
gz(upuz) = (Up Azuz) = _('Uqa *[Fz,uzl)

for u;,u, € kerAj.

3. The Calculation of the Riemannian Metrics

In this section we describe the metrics g° and § on the moduli space .4 for the
case that M is the complex projective space CP? with the Fubini-Study metric go and
P the principal SU(2)-bundle with instanton number 1. For this reason we fix local
coordinates z, = T /Ty, 2z, = T,/ Ty on Uy = {[Ty: T, :T,] € CP*|T, + 0}. In these
coordinates the metric on CP? becomes

90 = @D*) (D6, — Z;2)dz;d7
with
D=1+|5*+ 2.

On the Lie algebra su(2) of SU(2) we consider the Ad-invariant inner product

determined by
(A,B) = —Tr(AB).

. e . a a, \ . .
For the sake of convenience we will identify a matrix ( ! 2) in su(2) with
G —0

the vector (a;, a,). Then the inner product on su(2) becomes
((ay,ay), (by,by)) = —2Re(a;b, — a,b,).
Let Q be the Hopf bundle, i.e. the U(1)-principal bundle S° C C3 with U(1)-action
(T, T,, Ty), M) € S° x U(1) = (TyA\, TN, To\) € S°

and projection
(T, T}, T,) € 85+ [T:T,:T,] € CP>.

Then the bundle P under consideration is the associated SU(2)-bundle @ x, SU(2)
by means of the representation

X0
0:U(1) = SU?2) g(,\)=<0 A').

In the sequel we will identify forms on P with their local expressions relative to the
local section

1
s:Uy — P, 8(z;,2,) = I:ﬁ(l,zl,zz), 1].
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We now recall the parametrization of the space ./ constructed in [7]. Denote by
Z9 the reducible self-dual connection on P induced by the connection

| __
Z = 5(T;dT; — T;dT})
on Q. Let the 1-form n € £2'(Ad P) be determined by

1
n= '5 (Oa ¢) )
where
¢ = zdzy, — 2,dz, .

Note that 7 lies in the formal tangent space ker AEO to /" at [Z°]. For t € [0, 1) let
f; be the automorphism of P induced by

1= 2T, T,,T))
V1 =T, Ty, Tl

(TOaTlvTZ)EQ'_’ EQ

and set
Zt = fXZ° +tn).

Applying so h, = f, o s for

1
ht:UO — Uo, ht(zl,z2) = ﬁ (21,22),

one verifies that : :
t —_— —— — 3 —_—
7' = g (2(8D 8D),t¢>

and
t 1-t 12
Fr=2 m (—ZD w, tdzl A de) ,
where w is the Kihler form on CP? and F* denotes the curvature form of Z*. Now
consider the SU(3)-action on .4 corresponding to the usual action of SU(3) on CP2.

Then it holds

Proposition 3.1. (i) %" is the disjoint union of the orbits [Z*]- SU(3) with t € [0, 1).
(i) /" differs from A"* by the orbit [Z°]- SU(3) = {[Z°]}.

(iii) Each orbit [Zt] - SU(3) with t € (0,1) is the homogeneous space CP? =

SUB)/SUM) xUER). O

In particular, Proposition 3.1 yields a foliation ./ = (0, 1) x CP”. Further, setting

Xt = —(i [Z}] and Y!= i [Z] - exp(sY,

dt ds k

1oa)

where

0w m
={ - 0 0 | esu@) forany (pl,uz)eS3CC2,
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we have |
| ——¢T0-] § 2
X' = 5=y #OD = 8D), (D+t)9)
and A
Yi=Y"—d, W'
with .
22 Re(B))¢ — (D — t1)dB,),
2
t _ v 21 :
= Gopmmop " TOImE,2AE)
and

By =z + 2, By =—hz + Iz
(cf. [7]). Using these facts, we are able to compute the metrics on ./,

Proposition 3.2. In terms of the parametrization /" = (0, 1) x CP? the Riemannian
metric g°, s > 0, is given by

g° = fE@)dt* + h*(t)g,

with
P =g°(X, XY and h°@) =g’ (Y, Y").
Proof. We regard (CPZ,go) as the Riemannian symmetric space SU(3)/S(U(1) x
U(2)) together with the inner product
(Y},Y,) = =3 Tr(Y}Yy)

on the Lie algebra su(3). Since the vector Y, | 1 lies in the orthogonal complement
to s(u(1) x u(2)) in su(3) and has unit lengtﬁ, the metric g° restricted to the orbit
(Zt]- SUB) = CP? is g5(Yt,Y?)- go- On the other hand, observing that YVt and W?
are odd with respect to (z,, 2,), whereas the forms Z*, F*, and X* are even, we get

FXtLyHh=0. O
Proposition 3.3. It holds
FA@) = 4 £,(8) + s£,(t) + 8 f(1)}

and
he(t) = 4m*{h,(t) + shy(t) + s*h; (1)},

where ) )
4 — 3t 4—t 2
=2 log(1 —t
i) {t4(1_t2)+ o log( )},

8 S5+t
= — ———
1@ 15 (1—12)2
8 70 — 70t* + 91t* — 56t° + 13¢8
f3(t) = : N3 3
105 (1—#2)
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and

6 —9t> +t*  6(1 —t2)? )
hi(t) = — log(1 —
1@ { PG-0) | ra_p el -t )}’
12 £2(10 — 5> + 5t* — 3t8 4 %)

=7 a-&GE-p
Bty = L. £2(1260 — 1260¢” + 2128t — 2037¢° 4 1230¢° — 425¢'7 4 64¢'%)
108 (1 —12)2(3 — t2)2 :
Proof. Set

an fi() = | X7,
2m2 f,(t) = —(X*, «[F!, X*)),
an? fi(t) = || * [F*, X*]|]?

and, analogously,

Ar’hy @) = [[YH? = [V4)? =20, dge W*) + ||d e WH 2,

2 hy(t) = —(YE #[F YY) = (V8 «[F8, V) + 2V +[FE d e W)
— (dy e W A[F, d e W),

Am’hy(t) = || * [FE, Y|P = || = [F%, V)2
= 2:[F, V1, #[F dge WD) + || % [F*, d e W12

Here || || denotes the L?-norm. The functions f, and h, were computed in [7]. The
expressions for the other functions are obtained in a similar way after checking that

t iy, (=)D T 2
*[F', X' = —4 —(D_t2)4)(t(D+t)(6D dD), D(D + 3t*)¢),
d, Wt = 2
z (3 —12)(D — 22

x (Im{(1 + t*) [2ilm(B,)dD — (D — t)dB,] — 4t*B,¢},
—2t{2B,0D — (1 + t*)ilm(B,)¢ — (D — t)dB,}),

— 42 _
*[Ft, V] = % (2tilm{2t* Re(B,)dD + (D — t*) (B¢ — dB))},
— 4t?Re(B))D¢ + t*(D — t) B, + (D + t*) (D — t*)dB,)

and

AP dye W' = —4 - fg);lf)_l)t =
x (4tilm{(1 + ¢*)ilm(B,)0D — (D + t*)B,¢ — (D — t)dB, },
— 4D + t1)B,0D + (1 + t*) [4Dilm(B,) + (D — t*)B,1¢
+(D - t*)2D + 1 +t»dB,),
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applying -
[¢, %] = 2(—=ilm(py A 1h,), oy Ay — 0y Aty)

for o = (¢, p,) € N*(AdP) and ¥ = (¢,,,) € PY(AdP). O
Clearly, our setting implies

Proposition 3.4. For the Riemannian metric § on /" it holds that

§ =22 (fL(t)dt* + hy(t)gy). O

4. Conclusions

By a result of Groisser and Parker in a more general setting (cf. [9]) we know
that (/"*,¢%) as a metric space is incomplete, where its completion /A * is the
disjoint union of ./ and a set diffeomorphic to CP?. Furthermore, (/"*, g°) has
finite diameter and volume. Here we prove

Proposition 4.1. Let s > 0. Then
(i) The completion Nt of 4* with respect to g° is V.
(ii) The diameter and the volume of (V"", g%) are infinite.

Proof. The assertions are immediate consequences of
Lemma 4.2. (i) Let [°(r) be the length of the curve
teO,r)—[Z2es T
with respect to g° for 0 < r < 1 and s > 0. Then 1°(r) is finite for r < 1 and infinite
forr=1.
(ii) For s > 0 it holds

s
}gl})h t)=00.

Proof. (i) For 0 < r < 1 the functions f,, f,, and f; are bounded on the interval
(0, 7). Thus, I°(r) < co. On the other hand,

1

1
s [2s [ V2 +5
l(l)ZZﬂ'/ sz(t)dt=47l‘ I—S’/T_?-dt
0 0

1
2s dt
Z47r\/?/1—t2=°°‘
0

(ii) This is obvious. O

Remark. Clearly, a result similar to Proposition 4.1 holds for the Riemannian manifold
. O

Computing Taylor series and using formulas relating the sectional curvature k° of
the warped product (/"*,¢%) to f°, h® and the sectional curvature k, of (CP?, 90)
(see e.g. [3]), one finds
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Proposition 4.3. Let s > 0 andt — 0. Then
— 24 2
ks<X 6)_ 1 3(1 4+ 24s + 96s%)

— —_— . 2
%) T T aarast o)

and

472(1 + 4s)?

B 5ky — 2 + (56ky + 16)s + (160k, + 128)s?
87m2(1 + 49)*

X, Y) =

+0(t%),

where X and Y are tangent vectors to CP* and ky=ko(X,Y). O

Our last statement concerns the asymptotic behaviour of the metrics g° near the
equivalence class [Z°].

Proposition 4.4. Fix s > 0 and let | denote the length parameter of the curve
te (0, [ZNes™
with respect to g°. Then

1 14 24s+ 965>

ST eMeo T IYS 4 6
82 Taras L TOD)|%

g =di* + |+

forl — 0.
Proof. The result is obtained by a straightforward computation. O

References

1. Asorey, M., Mitter, P.K.: Regularized, continuum Yang-Mills process and Feynman-Kac func-
tional integral. Commun. Math. Phys. 80, 43-58 (1981)
2. Babadshanjan, F., Habermann, L.: A family of metrics on the moduli space of BPST-instantons.
Ann. Global Anal. Geom. 9, 245-252 (1991)
3. Bérard, Bergery, L.: Sur de nouvelles variétés riemannienes d’Einstein. Publications de I’Institut
Elie Cartan, Nancy, 4, 1-60 (1982)
4 Buchdal, N.P.: Instantons on CP2. J. Diff. Geom. 24, 19-52 (1986)
5. Doi, H., Matsumoto, Y., Matumoto, T.: An explicit formula of the metric on the moduli space
of BPST-instantons over S*, A Féte of Topology. New York: Academic Press 1987
6. Freed, D.S., Uhlenbeck, K.K.: Instantons and four-manifolds. Berlin Heidelberg New York:
Springer 1984
7. Groisser, D.: The geometry of the moduli space of CP? instantons. Invent. Math. 99, 393-409
(1990)
8. Groisser, D., Parker, T.H.: The Riemannian geometry of the Yang Mills moduli space. Commun.
Math. Phys. 112, 663-689 (1987)
9. Groisser, D., Parker, T.H.: The geometry of the Yang-Mills moduli space for definite manifolds.
J. Diff. Geom. 29, 499-544 (1989)
10. Habermann, L.: On the geometry of the space of Sp(1)-instantons with Pontrjagin index 1 on
the 4-sphere. Ann. Global Anal. Geom. 6, 3-29 (1988)
11. Matumoto, T.: Three Riemannian metrics on the moduli space of BPST-instantons over S*.
Hiroshima Math. J. 19, 221-224 (1989)

Communicated by N. Yu. Reshetikhin





