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Abstract. The classical analogue is developed here for part of the construction in
which knot and link invariants are produced from representations of quantum
groups. Whereas previous work begins with a quantum group obtained by deform-
ing the multiplication of functions on a Poisson Lie group, we work directly with
a Poisson Lie group G and its associated symplectic groupoid. The classical analog
of the quantum i^-matrix is a lagrangian submanifold M in the cartesian square of
the symplectic groupoid. For any symplectic leaf S in G, & induces a symplectic
automorphism σ of S x S which satisfies the set-theoretic Yang-Baxter equation.
When combined with the "flip" map exchanging components and suitably im-
planted in each cartesian power Sn, σ generates a symplectic action of the braid
group Bn on Sn. Application of a symplectic trace formula to the fixed point set of
the action of braids should lead to link invariants, but work on this last step is still
in progress.

1. Introduction

A quasitriangular Hopf algebra [Dr l ] is a Hopf algebra si together with an
invertible element R of si ® stf (the quantum R-matrix) satisfying the "exchange"
condition

R-\ aeA , (1)

and the compatibility condition

(id® A)(R) = R13R12. (2)
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These conditions imply that R satisfies the quantum Yang-Baxter equation,

^13^23^12 = ^12^23^13 (3)

In the equations above, A: si -» si ® si is the coproduct, A' is its composition with
the automorphism of si ® si which exchanges the factors, and R^ is the image of
R (x) id under the automorphism of si ® si (x) si induced by the permutation of
{1, 2, 3} which maps 1 to i and 2 to j .

The "classical analogue" of a quasitriangular Hopf algebra has heretofore been
considered in the context of Lie algebras. A Lie bialgebra is a dual pair (g, g*) of Lie
algebras for which the dual of multiplication on g*, c: g —• g Λ g, is a cocycle with
respect to the adjoint representation. The Lie bialgebra is called quasitriangular if
it is equipped with an element r of g ® g (the classical r-matrix) satisfying condi-
tions which are "infinitesimal versions" of those for R, the most important of them
being the classical Yang-Baxter equation

I>i2, r 2 3 ] + [ r 1 3 , r 2 3 ] + [ r 1 2 , r 1 3 ] = 0 . (4)

The subscripts in (4) can be interpreted as in the quantum case once we consider
g as embedded in U(Q).

Hopf algebras known as quantum groups appear as deformations with
respect to a parameter h of algebras of functions on ordinary Lie groups.
Passage to a Lie bialgebra (g, g*) represents a first-order localization not only
at h = 0, but also at the identity element of the group. Globally, one should
consider a Poisson structure on the corresponding Lie group G which represents
the first derivative with respect to h of the Hopf algebra multiplication, and whose
linearization at the identity of G is the Lie algebra structure on g*. This structure
makes G into a Poisson Lie group; i.e. the multiplication map GxG -> G is
a Poisson map.

The aim of this paper is to answer an obvious question arising from the
viewpoint expressed in the previous paragraphs. Since the classical r-matrix lives
only on the Lie bialgebra, what is the corresponding object M at the level of the
Poisson Lie group G? Our answer to this question is based on the following
heuristic line of argument:

• M should be a geometric object which, when quantized, becomes the quantum
^-matrix.

• The Hopf algebra si should be obtained by geometric quantization of the
symplectic groupoid ΓG of the Poisson Lie group G.

• When a symplectic manifold S is quantized to give a linear space, elements of the
linear space are represented geometrically by lagrangian submanifolds of S,
perhaps carrying some extra structure like a density.

• The quantization of the product S x T of two symplectic manifolds is the tensor
product of their quantizations.

The conclusion we draw from the points above is that the object 01 should be
a lagrangian submanifold of ΓGxΓG, the symplectic groupoid of G x G. It should
satisfy algebraic conditions closely resembling those of the quantum .R-matrix. We
will call our object the (global) classical ^-matrix. (

Our program may be described further by reference to the following table.
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Classical Quantum

quasitriangular Lie bialgebras

1
quasitriangular Poisson Lie groups -• quasitriangular Hopf algebras

I 1
quasitensor categories of symplectίc realizations -• quasitensor categories of representations

I I
symplectic actions of braid groups -> representations of braid groups

I I
link invariants link invariants

The horizontal arrows represent processes generally known as "quantization."
Previous work on the construction of link invariants has proceeded down the
right-hand side of the table, using the methods of linear representation theory. Our
aim is to delay the quantization process as far as possible, ultimately carrying out
the entire process in the left-hand column of the table.

The present paper is devoted to describing the first three downward arrows in
the left-hand column. Research is still in progress for the last step, in which we hope
to use symplectic trace formulas to construct link invariants from symplectic
actions of the braid group.

To conclude this introduction, we will give a brief description of the construc-
tion of quasitensor categories of realizations, since this approach gives another
rationale for defining ^ the way we do.

A symplectic realization1 S = (S, J) of a Poisson manifold P is defined as
a symplectic manifold S together with a Poisson map J: S -• P which is com-
plete in the sense that the pullback to S of every compactly supported function
on P has a complete hamiltonian vector field. For instance, a symplectic
realization of a dual Lie algebra g* (which with the operation of addition is
dual as a Poisson group to G with the zero Poisson structure) is the momentum
map for a hamiltonian action of (simply connected) G on a symplectic manifold.
It is well known that such an action is the classical analogue of a representation
of the group G or, what is nearly equivalent, of the universal enveloping
algebra U(§). Since U(q) may be thought of as a quantum deformation of
the Poisson algebra of (polynomial) functions on g*, it is a natural generalization
of this situation to consider realizations of a general Poisson manifold P as
the classical analogues of representations of a quantum deformation of the func-
tions on P. In this paper, we will not deal with the difficult problem of constructing
representations from realizations; rather, we will simply carry out in the context
of realizations the "categorical" constructions usually applied in representation
theory.

An isomorphism between realizations is, of course, a symplectic diίϊeomor-
phism φ: Sλ -> Sμ for which Jμ o φ = Jλ. With the isomorphisms as morphisms, the
realizations form a category. It is also useful to consider more general morphisms,
namely lagrangian submanifolds of Sλ x Sμ (the bar denotes reversing the sign of the
symplectic structure) contained in the coisotropic submanifold (JχxJμ)'1 (diag-
onal in P x P), though these do not form a category because of the usual clean
intersection requirements for good compositions [XI, X2].

The term derives from Lie [Li]
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Corresponding to the tensor product of representation spaces, we can take
symplectic realizations J λ\ Sλ^> P and Jμ:Sμ-> P and form the product S = SλxSμ

of symplectic manifolds. (S, J χxJμ) is then a realization of P x P but not of P. The
most natural way to produce a realization of P itself is to use some Poisson map
m from P x P to P. Given such a map, we obtain a "tensor product" operation on
realizations, writing Sλ ® Sμ for (S, mo(Jλ9 Jμ)).

If m is the multiplication of a Poisson Lie group, then this tensor product is
naturally associative, but it is not commutative. By analogy with the quantum case,
we may seek to restore commutativity by choosing for each pair of realizations Sλ

and Sμ a symplectic automorphism Mλμ of Sλ x Sμ whose composition with the
exchange diffeomorphism Sλx Sμ-^> Sμx Sλ is an isomorphism from Sλ ® Sμ to
Sμ ® Sλ. The operators 01λμ for various realizations should then satisfy compatibil-
ity conditions of "Yang-Baxter" type.

Still following the pattern of the quantum case, we seek to generate the Mλμ for
all realizations by applying a certain universal object associated with P itself. The
geometric nature of this universal object may be inferred from the fact that it
should induce a symplectic diffeomorphism on the product of any two "realization
spaces." In general, the objects which produce diffeomorphisms of the realization
spaces of a Poisson manifold Q are the lagrangian submanifolds of the symplectic
groupoid ΓQ which are sections of both the source and target maps. These objects
are called lagrangian bisections. Since (Sλ xSμ,JλxJμ)is a realization of P x P, we
conclude that our universal object should be a lagrangian bisection of ΓP x ΓP. This
object, the global classical $ matrix, should then satisfy conditions which are
formally identical to those in the quantum case but which must be interpreted in
the calculus of bisections on groupoids. (This solves the problem posed by DrinfeΓd
in [Dr2] of rinding set theoretical solutions to the quantum Yang-Baxter equa-
tion.)

Given the global classical 01 matrix and a particular realization S of the Poisson
Lie group P, one obtains just as in the quantum case a symplectic action of the
k-stranded braid group on Sk.

The last step in constructing invariants of links is to extract invariant quantities
from actions of the braid group. When the action is a linear representation,
the usual procedure is to take traces (and then to normalize in certain ways
[RT, Tu]). When the action is symplectic, one might try to quantize it and
then take the trace of the resulting representation, but there is also a more
geometric approach. It is well known that the traces of the quantizations of
certain symplectic automorphisms can be calculated by "trace formulas" of
Atiyah-Bott type which involve only the fixed points of the automorphisms.
For our purposes, it may be unnecessary to know that these geometric calcu-
lations produce the traces of representations; rather it may be sufficient to know
that the "symplectic traces" satisfy enough of the formal properties of linear traces.
Our work on this last step is still in progress, and we cannot tell yet how successful
it will be.

2. Quasitriangular Lie Bialgebras and Poisson Lie Groups

This section is devoted to a general study of quasitriangular Lie bialgebras and
Poisson Lie groups. We refer the reader to [Drl, LW2, STS] for background
material.
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The following conventions will be used throughout this paper. For any X e g,
a d x : g -• g denotes the usual adjoint representation, and adf: g* -• g* denotes the
map defined by

for any X e g and £eg*. Adg stands for the usual adjoint action of G on the Lie
algebra g (i.e., the derivative of lg°rg-1 at the identity), and Ad*: g* -> g* for its
dual map. Hence, we have the following identities: exp(adX) = Ade x p Λ : and
exp(ad*Z) = Adfe x p X )-i.

Recall that a Lie group G is called a Poisson Lie group if it is also a Poisson
manifold such that the multiplication m: G x G -> G is a Poisson map, where GxG
is equipped with the product Poisson structure. The infinitesimal object associated
to a Poisson Lie group is a so-called Lie bialgebra (g, g*) [Drl, LW2, STS]. An
interesting class of Lie bialgebras, the quasitriangular Lie bialgebras, plays a funda-
mental rule in the theory of Poisson Lie groups. In what follows, we briefly recall
some basic notions regarding Poisson Lie groups and quasitriangular Lie bi-
algebras (see [Drl, Dr3, KoMa, RS] for more details).

An element r e g (x) g is said to be a solution of the classical Yang-Baxter
equation if

0 i2, ^23] + I>i3, r 2 3 ] + [r 1 2 , r 1 3 ] = 0 .

Here, as usual, rί2 is the image of reg(χ)g under the mapping
g ® g -+ UQ (x) t/g (x) UQ which sends a ® b into a ® b (x) 1, and similarly for r 1 3 ,

r23
Any r e g (x) g can be identified with a bilinear form on g*. It then determines

a mapping r+: g* -> g by the rule f(r+ (w)) = r(w, t;) for w and t; in g*. The dual of r+,
which we denote by — r_, is then (iV)+, where P is the "flip" operator which
interchanges factors in g ® g.

Assume now that r e g ® g satisfies the classical Yang-Baxter equation and the
symmetrized tensor / = r + P(r) is ad-invariant in the sense that ad*/ = 0 for all
X e g, where ad x is the endomorphism of g ® g induced naturally from the adjoint
map on the Lie algebra g by ad x(α (x) b) = (adxα) (x) 6 + a (x) ad z b. Then (g, g*)
becomes a Lie bialgebra, with the Lie bracket on g* being defined by

[ξ, η] - ad*. i ξ )η - ad*_iη)ξ, Vξ9ηe$* .

Such a Lie bialgebra is called quasitriangular [Drl] . It is called triangular if r is
antisymmetric. (Some authors [KoMa] reserve the term quasitriangular for the
case in which / is nondegenerate; we prefer to include triangularity as a special case
of quasitriangularity.)

Lemma 2.1. Suppose that a, is a quasitriangular Lie bialgebra. Then we have the
following identities for any XSQ and ξeg*:

and

where the bracket means the Lie bracket of g.
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Proof. For any η e g*.

= <X,lξ9η-]>-<ξ,lX,r*+η-]>

= <X, adr*+ ( Oη + ad*. w O - <& [X, r*

This proves the first identity. The proof of the second one is similar. D

The following lemma is easily checked. It is stated for the case where / is
nondegenerate in [RS].

Lemma 2.2. For any quasίtrίangular Lie bίalgebra, the linear maps r+ and r_ defined
above are both Lie algebra homomorphisms.

An immediate consequence of Lemma 2.1 is the following result of DrinfeΓd
[Dr3], in which the Lie algebra b = 9 © g* is the double associated to a given Lie
bialgebra (g, g*) [Drl, LW2, STS].

Proposition 2.3. The Lie algebra homomorphisms r+ naturally extend to Lie algebra
homomorphisms f+ from fc> onto g defined by:f± (X + ξ) = X + r± ξ.

Lemma 2.4. For any ξ, η e g*,

and

r_(ad rV) =

Proof For any μeg*,

<r+(ad*_ l fαμ>

= -<ξ,lr-η,r*+μ]>

The other identity is proved similarly. D

The following proposition gives the Lie bracket relation between the images of
r+ and r_.

Propos i t ion 2.5. For any ξ,ηε g*,

Ir+ξ.r.η'] = - ad*(r+Q + ad*(r_*j) .

Proo/ For any μ e g*, we have

<ad*(r+£)-ad*(r->/),μ> = <ad*(r + a^> + <r_ιy,K,μ]>

- ad*_(μ)O

This completes the proof. Π
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Let κ+ = f±ί(0) c b be the kernels of the Lie algebra homomorphisms/+, which
are clearly ideals in b. As an immediate consequence of the proposition above, we
have the following important

Theorem 2.6.

Proof. Suppose that /+ and /_ are any elements in κ+ and /c_, respectively. We
may assume that /+ = - r+ ξ + ξ, and /_ = - r-η + η for certain ξ9ηeg*. Then,

ad*(r+f) - ad?(r_ι

= 0. •

Remark 2.7. In the case where (g, g*) is a triangular Lie bialgebra, it is easy to see
that r+ = r_ a n d / + = /_ therefore κ+ = κ_. So, κ± is an abelian ideal. This is
false in general, since [ξ, η] φ zd?+iξ)η - ad*+iη)ξ.

We now turn our attention to groups.

Definition 2.8. A Poίsson Lie group G is called quasitrίangular if its corresponding
Lie bialgebra (g, g*) is quasίtriangular and if the Lie algebra homomorphisms r+ and
Ύ- from g* to g lift to Lie group homomorphisms R+ and R- from G* to G.

If G is quasitriangular, we define maps φ and ψ from G* to G by
φ(x) = R+(χ-1), φ(χ) = R-ix'1), for any xeG*.

Proposition 2.9. Both φ and φ are Poisson morphisms.

In fact, we have the following general result.

Proposition 2.10. Suppose that G and H are Poisson Lie groups, and p: G -• H is
a group homomorphism (or anti-homomorphism). Let dp: §->ΐ) be the corresponding
Lie algebra homomorphism (or anti-homomorphism). p is a Poisson map if and only if
(dp)*: I)* -» g* is a Lie algebra homomorphism.

One can prove this proposition directly by using coisotropic calculus, i.e., by
showing that the graph of the map is a coisotropic submanifold in GxH~. The
following proof, using a cocycle argument, was pointed out to us by J.-H. Lu.

Proof Let πG and πH be the Poisson tensors on G and H respectively, and let
KG(g) = rg-iπG(g) and KH(h) = rh-iπH(h) be the corresponding group 1-cocycles
on G and H. Consider the two maps Kx and K2 from G to f) Λ ί), given respectively

by the compositions G —-> g Λ g —»I) Λ ί) and G-^H — ^ ί) Λ I).

It is easy to see that both Kx and K2 are group 1-cocycles on G with values in
ί) Λ ί). The corresponding Lie algebra 1-cocycles are given, respectively, by the

compositions of the following maps: g —> g Λ g ^ ^ Λ ί ) and g —»ϊ) —• ί) Λ \),
where δQ and δ^ are, respectively, the Lie algebra 1-cocycles defining the cocommu-
tator on g and ί). It is obvious that dp oδQ = δ^odp, since (dp)*: ϊ)* -> g* is a Lie
algebra homomorphism. Hence Kx(g) = K2(g)» That is, (Tp)πG = π f l . D
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Applying the exponential map and using the definitions of φ and ψ, we have the
following immediate corollary.

Corollary 2.11. For any ξ, ηea*,

and

Suppose that G is a complete quasitriangular Poisson Lie group with the Lie
bialgebra (g, g*). Let G* be its dual Poisson Lie group, and D = G x G* the simply
connected double group corresponding to the Poisson group pair (G, G*)
[LW2, STS]. By F±, we denote the Lie group homomorphisms from D to G
corresponding to the Lie algebra homomorphisms/+, and K+ their kernels. For
any d = gu = UgeD with g, geG and w, weG*, F± are given, respectively, by

and

An immediate consequence of Theorem 2.6 is the following:

Theorem 2.12. K+ and K- commute with each other with respect to the group
structure of the double group D. In particular, for any u, veG*,

uφ(u)'il/(ύ)v = ψ(v)v uφ(u),

and

uι//(u) φ(υ)v = φ(v)v'uφ(u),

where the dot means the multiplication in the double group D.

3. Symplectic Groupoids of Quasitriangular Poisson Lie Groups

In this section, we will study some basic properties of the symplectic groupoids of
quasitriangular Poisson Lie groups. Besides their important role in the discussions
of the next section, these properties may be quite interesting themselves. First of all,
we need to recall some basic notions.

Suppose that G is a complete quasitriangular Poisson Lie group and D its
corresponding double group. There is a natural symplectic structure π+ on D,
which makes D into a symplectic double groupoid. That is, D with the symplectic
structure π+ becomes a symplectic groupoid over G, and D with — π+ is a sym-
plectic groupoid over G*. These two groupoid structures are compatible with each
other to make D into a double groupoid. We refer the reader to [LW1] for more
details. Note that in the rest of this paper, we always use αx and βί to denote the
source and target maps of the first groupoid structure on D, that is, the one over G,
and use α2 and β2 to denote the source and target maps of the second
groupoid structure of D. We also use the notations (D l£ G, α,i,βi) and
(D~ Ẑ  G*, α2,j82) to denote these two groupoid structures on D. In order to
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distinguish the multiplications of these two groupoid structures on D, we shall use
x * y to denote the product of x and y e D in the first groupoid structure, and simply
xy in the second. Also, we shall use the following conventions for dressing
transformations: the left and right dressing transformations of G on G* are given,
respectively, by λgu = oc2 (gu) and pg(u) = β2 (ug), for any g e G and ueG*; similarly,
by left and right dressing transformations of G* on G, we mean the actions of G* on
G given respectively by λug = oί^ug) and ρug = β^gu).

The following lemma from [LW1] gives explicit formulas for π+, which are
essential to our computations in the sequel.

Lemma 3.1. IfdeD can be factored as d = gufor some geG and weG*, then π+ is
given explicitly by

+ Xl9 ξ2 + X2) = (Xu ξ2}-(X2, ξx) + (lg-ιπG(g))(ξl9 ξ2)

and ξuξ2e§* ,

where πG and πG* are the Poisson structures on G and G*, respectively.
Similarly, ifd = ugfor some u e G * and geG, then

+ ξl9X2 + ξ2) = <Xl9 ξ2>-<X2, ξ,} + (rg-.πG{g)){ξu ξ2)

and ξuξ2G$* .

It is standard in Poisson geometry that, associated to any 1-form θ on a Poisson
manifold P, there is a vector field Xθ on P, the contraction of θ with the Poisson
tensor of P.

The following proposition describes such vector fields on (D, π+) associated to
certain special 1-forms.

Proposition 3.2. (1) Ifd = gueD = Gx G*, then for any θeΩι{G),

Xa*θ(d) = (Xθ(g)9 - ru(l^θ))GTdD * TgG® TUG* .

Here, l*θ is considered as an element in g*, the Lie algebra ofG*, and ru(l*θ) is the
right invariant vector field on G* corresponding to l*θe$*.

(2) Similarly, if d = ugeD = G* x G, then for any ηeΩ1(G*)9

Xa*η (d) = ( - Xη(u), rg(lϊη))ETdD s ΓMG* 0 TgG .

Proof Let us assume that (lg-ιru-i )Xa*θ = X + η, for some Xe g and η eg*. Then,
for any ξ2 e g* and X2 e g, we have

0, ξ2 + X2) = {X + η9 ξ2 + X2} .

Lemma 3.1 implies that

- (X2,1*0> + (lg-ιπG(g))(l*θ9 ξ2) = (X + η9 ξ2 + X 2 > .

By letting ξ2 = 0> one gets immediately that η = — I * θ. On the other hand, since
(TzJXto = X,, we have X = lg-,Xθ{g}

The second part can be proved similarly. D
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We can express the vector field Xa*η explicitly under the factorization
D = G x G* as well.

Proposition 3.3. If d = gueD = GxG*, then for any ηeΩ1(G*)9

X*η(d) = {rβ(rUη)),O)eTβG®TuG*9 VηeΩ\G*) , (5)

where ΰ = a2{d), and r$(η) is considered as an element in the Lie algebra g, as usual.

Proof It suffices to prove this proposition for any right invariant one-form η = Zr

on G*, where Z e g . According to Corollary 3.6 in [Lu2], the morphism g -• 2£(D)
given by Z -• Xa*Zr, for any Z e g, defines an infinitesimal left g-action on D (note
that α2 is an anti-Poisson map from (D,π+) to G*). On the other hand, let φt

denote the family of automorphisms of D defined by φt(d) = [(expίZ)g]w, for any
d = gueD. Obviously, φt is a flow on D. In order to prove Eq. (5) for η = Z r, it is
sufficient to show that φt is the flow generated by Xa*Zr. For this purpose, below we
will compute explicitly the derivative of φt at t = 0 under the decomposition
D = G^G, since we already know the expression of Xα*Z' under such a decomposi-
tion of D by Proposition 3.2. Assume that d — gu — ΰg. Then, under the decompo-
sition D = G*G, we can write φt(d) = (exptZ)ύg = \_λQXVtZu] [r^pM-(expίZ)]. Now

clearly, —
dt

dt

ί = 0

d
= - XZr(μ\ and —

dt ί = 0

[r,-pu-(expίZ)] = r§AdfZ. So

φt(d) = ( - XZr(ύ\ rgAdfZ)eTdD ^ ΓM-G* 0 TgG, which exactly equals
r = 0

Xa*Zr according to Proposition 3.2 (2). This completes the proof. D

The following theorem is an immediate consequence of the proposition above.

Theorem 3.4. For any ξ e g*, let θ = I*-1 ξ e Ω1 (G) be the corresponding left invariant
1-form on G. If d = gueGxG*, the vector fields Xa*φ*θ and Xa*ψ*θ on D can be
explicitly expressed by:

X*Φ*eid) = (rg(r-ξ\ 0)eTdD * TgG® ΓMG* ,

and

X«*2rθ(d) = (rg(r+ξ\0)eTdD * TgG®TuG* .

We end this section with an interesting by-product of Proposition 3.3, which
reveals the relation between two expressions for certain 1-forms on D using the two
decompositions D = G*G and D = GG*.

Corollary 3.5. Assume that d = ΰg = gueDfor some g,geG and ύ,ueG*. For any
given cotangent vector ηeT*G*, we assume, under the decomposition D = GxG*
that, /*r*[(αff/)(d)] = ξ + XJor some Xeqand ξeg*. Then,

or, equivalently,

Ad,(X - r±(ξ)) + r±(Ad*-i£) = rffa) ,

where (lg-iπG(g))#ξ denotes the element in g obtained by contracting lg-iπG(g)e
g (x) g with ξ e g*.
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Proof. For any ξ2 e g* and X2 e g,

</ 9 - 1 r u -Z α , ,(d), ξ2 + X2) = <X«tη(d), ί*-,r*-.(ξ2 + X2)}

(by Lemma 3.1)

= {X, ξ2) - {X2, ξ} + (l.-MeigMξ, ξ2)

+ (r B -,π G («))(*, X 2 ) .

By letting X2 = 0 and using Proposition 3.3, we have

<Ad,-,(r?(η)), ξ2} = <X, ξ2) + (lβ-iπβ(g))(ξ, ξ2).

Hence,

which implies the desired identities. D

4. The Global ^-Matrix

In this section, which is the main part of this paper, we will demonstrate how to lift
the Poisson morphism φ (or φ) induced from a classical quasitriangular r-matrix to
the groupoid level to obtain a lagrangian bisection called the global ^-matrix
which retains, in a formal way, many important properties of the quantum
^-matrix.

In order to explain the meaning of this global ^-matrix, we start with the
simplest case where both φ and φ are assumed to be diffeomorphisms. Also, as in
the last two sections, both Poisson groups G and G* are assumed to be simply
connected and complete. It is known [CDW] that the α-simply connected symplec-
tic groupoid for a given Poisson manifold is unique if it exists. Since, by assump-
tion, φ: G* -• G is a Poisson diffeomorphism, it is lifted to a symplectic groupoid
isomorphism <F from the groupoid (D~ Z^ G*, α 2 , β2) to (D ZX G, α l 5 /?i):

D

G*

Furthermore, we know that D is a double groupoid, with the second groupoid
structure being induced from the group structure of the base space [LW1]. Since
φ is a group anti-homomorphism, J^ is a symplectic groupoid anti-homomor-
phism with respect to the second groupoid structures. The restriction of 3F to the
identity space of the second groupoid structure is an anti-Poisson diffeomorphism
from G to G*, which is given by φ ~1 ° i. Here i: G -> G is the inversion of G. In other
words, we have the following diagram of symplectic groupoid anti-homomor-
phisms:
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D — — • D'

βi *

G ^-> G*

We denote by 01 the graph of J*\ i.e., M = {(d, &{d))\dsD). For any deD,we
assume that β2(d) = u and β2(^(d)) = v. It follows from the above discussion that

(6)

and

βiifid)) = o r 1 °OM<0) = φ-1l(*Λd)Γ1']. (7)

Equation (7) implies that 0Lx(d) = Φiv'1). Hence d = ^ ( i ; " 1 ) ^ and ^(d) = φ(u)v,
where ύ = oc2{d) = λψiv-ι}u. Hence, we have the following.

Proposition 4.1. $ consists of all elements of the form (ψ(v~ι)u, φ(ύ)v)eD, with
u and v being any elements of G*, and ύ equal to λφ^-^u.

A Poisson morphism which is not a diffeomorphism may not be liftable to
a symplectic groupoid homomorphism. However, by the method of characteristics
a general Poisson morphism may be lifted to a canonical relation between symplec-
tic groupoids. First, we let D = G x G*; then D x D = G x G* x G x G*. We denote
by pi the projection from D onto its ith factor, and we denote by p the natural
projection of D onto G* x G*. Let E be the graph of φ, sitting in DxD, i.e.,
E = {(e9 u, φ(u)9 e)|weG*}, and let

K« = {(dud2)\dud2eD satisfy

Kβ = {(dud2)\dud2eD satisfy φ(β2(di)) = £1(^2)}

According to Theorem 1.3 of Chapter 3 in [CDW], there exists a unique maximal
lagrangian immersion S£, containing E and contained in Ka.

Theorem 4.2. Suppose that G is a simply connected complete quasitriangular Poisson
Lie group, G* its simply connected dual Then !£ is a lagrangian submanifold. In fact,
it is a graph over G* x G* with respect to the projection p, and has the following
explicit form & = {(^(iΓ 1 ),^ φ{u),v)eDxD\Vu, veG*}.

Proof It is known that X α c ( D ~ ) ~ x D = Z)xZ)isa coisotropic submanifold. Its
characteristic flow is given by (Xΐ*φ*θ9 Xa\θ) fc>r all 1-forms θ e ί21(G), where X~*φ*θ is
the vector field on D obtained by contracting the 1-form α* Φ*θ with the opposite
symplectic structure - π+ on D, i.e., X~*φ*θ = - Xa*φ*θ.

By \(d) and λt(d\ we denote the flow oϊ Xa*φ*θ and Xa*θ respectively. For any
weG*, consider the map p 4 : P2* 1 (M)->G*. Since p2: i f -• G* is a projection,
d imp^ 1 ^) = dimG* by dimension counting. We shall prove that p4 has the path
lifting property. To show this, it is sufficient to consider a path in G* of the form
ζt(e), which starts from the identity eeG* and is a product of flows generated by
right invariant vector fields ξt e g*. For this purpose, we l e t ^ = - /*-1 ξt e Ω1(G) be
the corresponding left invariant 1-forms on G, and let lt(u) and λt(φ(u)) be the
corresponding products of flows on D generated respectively by Xa*φ*θi and Xχ*θi. It
is clear that (λt(u\ λ^φ
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Since for d = gv, Xa*θί(d) = (Xθi (g\ rv ξt) according to Proposition 3.2, it is clear
that (lf(w), λt(φ(u)) is a lift of ζt(e).

It follows immediately from the path lifting property that p 4 : p2

1 (u) -• G* is
a submersion. Furthermore, since dim p2

 1 (u) = dim G*, p± is a local diffeomor-
phism; therefore a covering map. However G* is simply connected, so /?4 is
a diffeomorphism. Hence i f is a graph over G* x G*.

In order to express i f explicitly, we first note that according to Theorem 3.4,

XwθXd) = ( - rg(r.ξt)9 0)eTgG ® ΓU*G*

for any d = gu; and therefore its flow at d = gu is given by:

λ\{gu) = (R-(exptξi)g9 u) = (<A(exp - tξjg, u)eGxG* = D .

Thus, it is not hard to see that p1 op~ x : G* -» G is a group homomorphism, which
is in fact ^ ° Ϊ, the composition of ̂  with the inversion map i of the group G*. Thus,
for any i eG*, if {dud2)ep21{u) such that p 4 ( d i , d 2 ) - ^ then ί̂  =φ(v~1)u.
Furthermore, according to the construction of Ka, oc1(d2) = φ{θL2{d)) = φ(ύ)9 with
ύ being equal to λψ^-^u. Hence, (dί, d2) = (ψiv'1), u, φ(ύ\ v). D

If the Poisson groups G and G* are complete but are not assumed to be simply
connected, the submanifold 0ί of D x D consisting of all elements of the form
(ψiv'1), u, φ(u% v) is still contained in if, hence it is still a lagrangian submanifold
of D x D (β may not be equal to if). It is such a lagrangian submanifold 01 that will
become the major object of our study in this paper.

Definition 4.3. For a complete quasitriangular Poisson group G, the lagrangian
submanifold 01 = {(^(z;"1), u, φ(ύ), v)\ύ = λψ^-^u, VM, veG*} ofDxD is called its
global ^-matrix.

Similarly, the submanifold {(φiv"1), w, φ(ύ), v)\ύ = λφ(V-i)U9 VM, veG*} is also
a lagrangian submanifold of D x D, which we will denote by ^ _ .

We end this section with the following very useful formulas about dressing
transformations, as a consequence of the discussion above.

Corollary 4.4. For any u, veG*,

and

φ(λφ{v)u) = pvψ(u) .
Similarly,

and

Φ(pφ(v)U} = λvφ(u) .

Proof. According to Theorem 1.3 of Chap. 3 in [CDW], JSf is automatically
contained in Kβ9 so is ^ c if. Hence, for any (dί9d2)ε$,

β1(d2) = φ(β2(d1)). (8)

Therefore,
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That is, φ(ύ)v = uίφ(u) for some e^eG*. Hence, uϊιφ(ύ) = φ(u)v~ι. So,
φ(ύ) = pv-ιφ(u). This proves the first identity. The second one is proved similarly.

As for the third identity, we assume that wί = pψ(V)u and u\jj(υ) = h1w1 for
certain/ίiGG. Hence, φ^wΐ1 = u~1hί. In other words, w"1 = λψ^wϊ1. It follows
from the first identity that φ{u~x) = pvφ{wl1). That is, there is some h2eG such
that φ{wϊx)v = h2φ(u~x). Therefore, vφ(u) = φ(w1)h2. The third identity thus
follows immediately. The last one can be proved in the same way. D

5. Properties of the global ^-matrix

As a continuation of the last section, we shall study here some important properties
of the global ^-matrix. Readers familiar with quantum group theory will find many
similarities between the properties listed here and those of a quasitriangular
quantum ^-matrix.

The following theorem shows that the action of 01 on G* x G* intertwines the
group multiplication and its opposite.

Theorem 5.1. For any (dl9 d2)e&, we have

*2(dί)0L2(d2) = β2(d2)β2(d1).

Or equivalently, we have the following identity for any u, v e G*,

where, again, u denotes λ^^-^u.

Proof Assume that dγ — \\ι(v~ι)u and d2 = φ(ύ)v for some w, ι>eG*. Hence,

φ(v~1)u = ύg1 for some ^ e G . (9)

Assume further that φ(ύ)v = u2g2, for some u2eG* and g2eG. It follows from
Corollary 4.4 that g2 = pυφ(u) = pv(ρv-iφ(u)) = φ(u). Hence

U2 = Φ(fi)vg;1 (10)

= φ(u)vφ(u-1). (11)

From Eq. (9), it follows, by applying the morphism F+, that φ(v~1)φ(u~1)
— Φiu'^gi. Hence,

= giφ(u)φ(v). (12)

Therefore,

uu2 = ύφ{ύ)vφ{u-1) (by Eq. (12))

^ύg.φ^φ^vφiu-1) (byEq.(9))

= ψ(v~1)uφ(u)φ{v)vφ(u~x) (by using Theorem 2.12)

= vu. D

Before we go into more detailed properties of the ^-matrix, we need to recall
some conventions related to symplectic groupoids.
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Let ( Γ 1 ^ P, α, β) be a symplectic groupoid. A lagrangian submanifold of Γ for
which the restrictions of α and β are diffeomorphisms onto P is called a lagrangian
bisection. The lagrangian bisections form a Lie group U(Γ) under the multiplica-
tion of subsets induced from the product on Γ. In fact, the Lie algebra of U(Γ) can
be identified in a natural way with the space Z1(P) of closed 1-forms on P, with the
bracket induced from the Poisson bracket on C^iP). Any lagrangian bisection
J?EU(Γ) induces an automorphism Ad^ of the symplectic groupoid Γ, by sending
each γ e Γ to 5£y^~γ. Its restriction to P is a Poisson diffeomorphism which sends
each peP to a(β~1{p)\ where ά and β are the restrictions of α and /? to if.

When Γ = D~, regarded as the symplectic groupoid of the Poisson Lie group
G*, the global ^-matrix 01 belongs to U(D~ xD~)= U(D x D\ where D~ xD~ is
considered as the symplectic groupoid product. Now, let A c DxDxD~ be the
graph of multiplication of the groupoid ( D ^ G , ^ , ^ ) , and let A' = P12(A)
a DxD xD~, where Pi2 is the permutation which exchanges the first and second

coordinates. It is clear that A' is still a lagrangian submanifold i n D x D x D " .
The following theorem is the global classical analogue of the exchange condi-

tion (1).

Theorem 5.2.

A' = Ad^A ,

where &12 = &xG*^DxDxDίs considered as an element ofU(DxDxD).

Proof. For any given x,yeD such that βι(y) = oc1(x% we let (x\yf) =
Ad^(x, y)eDxD.It suffices to show that x' * y' = y * x. In this proof, by γ ~1 for any
yeD, we mean the inverse of y with respect to the groupoid (D~ Ẑ  G*> α2, β2)-
Assume that β1(y) = αx(x) = g,

x = gu = u1g1 (13)

and

y = υg = h1v1 , (14)

for some w, v, uliv1eG* and gι,h1eG. By definition,

(*', / ) = Ad^(x, y) = (du d2)(x9

for some (dud2)e^ and (dί9d2)effl9 which are composable with (x, y). Then,
we have β2(d2) = oc2(y) = v and jS2(^i) = oc2(x) = ux. Therefore, (dlyd2) =
(φ(v~1)u1, φίϋ^v), where u1 = λxi/{v-ι)u1. Hence there is h2eG such that

il/iv'1)^ =ύ1h2 . (15)

On the other hand, we know that

β2(d1) = oc2(d^1) = β2(x) = u (16)

and

β 2 ( d 2 ) = x 2 ( d 2 - ί ) = β 2 ( y ) = v1. (17)

Therefore, (dί9 d2) = (φivϊ1)^ 0(w)t>i) with u = λψ(vΓι)ui i.e.,

Ψ(vϊ1)u = ϋh, for some heG . (18)

We shall divide the rest of the proof into two steps.
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Step 1. First of all, we need to show that βχ(x') = M / ) -

It is noted that β^x') = βΛdixd^) = βddi)βiMjSi&Γ1 = hg.h'1, and
α i ( / ) = oc1(d2yd2 *) = ^1(^2)^1(^)^1(^2) 1 = Φiu^hiφίu *). It follows from Eq.
(15) that

u1h2g1 = φ(υ~1)u1g1 = ψiv-^x = φiυ'^gu . (19)

From Eq. (14), it follows, by applying the map F-, that

^ " 1 ) ^ = Λ i ^ Γ 1 ) . (20)

Hence,

u^Q^iΦiv-^u (byEq. (20))

= h1φ{vϊ1)u (byEq. (18))

= hίuh .

Therefore, h2gχh~1 = uΐ1h1u, from which by applying F+, we have h2g1h~1

= φiu^hiφiu-1). Hence, β^x') = α i (/) .

Step 2. A direct computation yields that

= a1(d1)oc1(x)cc1(dί)~1

1 1 Γ 1 (byEq. (20))

= a1(y*x) .

Moreover, since

= β2(d1χdϊ1)β2(d2yd2

1)

and

β2(y*x) = β2(y)β2(x) (by Eqs. (16) and (17))

= β2(d2)β2(dί),

we have β2{x'*yr) = β2{y*x) according to Theorem 5.1. Therefore, χ'*y' = y*χ.
This completes our proof. D

For any lagrangian bisection S£ eU(DxD\ we define (Λ (x) id) if cz D x D x D
to be the composition i?°zl' of if aDxD with z I ' c D x D x D " . Here, A' is
considered as a canonical relation from D x D to D, j£? as a canonical relation from
D to D~. Therefore, the resulting composition is a canonical relation (under the
assumption of clean intersection) from DxD to D~. That is, (A (χ)id)if is the
subset oϊDxDxD consisting of all elements (du d2, d3) such that (d2 * dγ, d3) e if.
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Similarly,1 by (id® J)JS?, we denote the composition J"°JS? of Δ" = P13(Δ) a
D~ xDxD with J£ a D x D, where P13 is the permutation of the first and third
coordinates. Namely, (id® zl)i? consists of all elements (dί9 d2, d3)e D x D x D
such that (d1,d3*d2)eJ£.

Proposition 5.3. Both (Δ ®id)JS? and (id® Δ)& for any &eU(DxD) are well-
defined lagrangian bisections in U(DxDxD).

Proof. In order to show that they are well-defined bisections, we assume that

JS? = {(φi(w, v), u, φ2(u, υ), v)\Mu, υeG*} ,

with φ1 and φ2 being some smooth maps from G* x G* to G x G. Suppose that
(d1,d2,d3) is any element in (zl®id)J^. Assume that dx = QχU,d2 = g2v and
d3 = θsw for gί9g2, Qz^G and wl9 u2, u3eG*. Then, a^*^) = od(d2) = g2 and
β2(d2*di) = ^2(^2)^2(^1) = vu. From the definition of jέ7, it follows that
^2 = Φ i N , w) and ^ 3 = φ2(vu9 w). Finally, ^± = α^rfj = j8i(d2) = PviΦΛvu, w)).

Conversely, for any u9 v9 weG*, the element (dl9d29d3)eDxDxD with
#i>02>03 being given by the above formulas belong to ( j ® id)JSf. Hence,
(J®id)«5f is a well-defined bisection, so is (id® J)JSf. Finally, by lagrangian
calculus, it is simple to see that both of them are lagrangian submanifolds. D

For the global ^-matrix <%eU(DxD)9 we have the following analogue of the
compatibility condition (2).

Theorem 5.4. Suppose that G is a complete quasitriangular Poisson Lie group, and
3$eU(DxD) is its global ^-matrix. Then,

and
(id(g)Δ)@ = mί3m12 , (22)

where, as usual, &ί2 = MxG* a DxDxD, with G* being identified with the base
space of the symplectic groupoid (D~ ZX G*, α2, β2), &23 = G * x ^ c = D x D x D , and
^13=^23(^12).

Before we prove this theorem, we need the following

Lemma 5.5. lf(d1,d2)e0l, then

and

Proof The last two identities follow directly from the construction of 3t9 and the
first one is quite obvious.

For the second identity, we assume that (dl9 d2) = (^(i;"1)^, φ(u)v) for some
u,ve G*, and

ψ(v-1)u = uh1, (23)

φ(u)υ = u2h2, (24)

for certain hί,h2eG.
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Equation (23) implies that φiυ'^φiu'1) = φ{u~1)h1. Hence,

β1(d1) = h1 = ψ(u)φ(v-1)φ(u-ί)

= ψdυu)-^) (by Theorem 5.1)

= φ({uu2)~1u)

= Ψ(oc2(d2)Γ1 . D

Proof of Theorem 5.4. Since both (Δ ® ϊά)£% and ^13^23 a r e bisections of
D x D x D, it suffices to show that ^13^23 <= (^ ® id) $2. Assume that (x, 3;, z) is any
element in ^13^23? then by definition, x = df

uy = d'[, and z = df

2d'2
r for some

(df

ud'2) and (d'[, d'2')e0l. So it is necessary that β2(d2) = α 2(d 2). Therefore, accord-
ing to Lemma 5.5,

βi(y) = βΛd'l) = ΨixiidΏΓ1 = Ψiβiid'i))-1 = «i(dΊ) = «i(x) (25)

Below, we shall show that (y*x,
Assume that (d'u d'2) = {ψ{s~ι)u, φ(u)s) and (d'l, d2) = {\jj(w~ι)v, φ(ϋ)w).

Then,

βi(y*x) = β2(y)β2(x) = β2(dfί)β2(df

1) = vu ,

and

On the other hand, we know that

and

αi(z) = ̂ (d'2d
fί) = ̂ (d^a^d'i) = φ(u)φ(ΰ) = φ(vu).

It remains to show that vu = λ^(w-i)(ι?u).
Now by definition, there are hλ and h2eG, such that φ(s~ί)u = uhγ and

φ(yj-γ)v = vh2. In fact, here h2 = βi(d'ί) = α^dΊ) = φis"1), according to Eq. (25).
Therefore, φ(w~1)vu = vh2u = vφ(s~1)u = vuhί, i.e., ϋu = λψ^-^vu. This com-
pletes our proof of the first identity.

The second identity can be proved along the same lines. D

Remark 5.6. In the case where φ is an isomorphism, and hence M is the graph of
the symplectic groupoid automorphism #", it is easy to see that ^13^23 consists of
all elements of the form (x, y9 ^(x)^(y)) for any x,yeD such that βι(y) = α^x),
and

^13^12 = {(xy, F(y), ^ M ) | V x , y s.t. β2(x) = a2(y)} .

Therefore, (A ® id)31 = ^13^23 is exactly equivalent to saying that <F is
a groupoid antihomomorphism between (D ZX G, α l 9 jβj and (Z)~ IJG*, α 2, j82),
and (id ® Zl)^ = ^13^12 amounts to say that #" is a groupoid homomorphism
between (D" i t G*, α 2, j82) and (D l£ G, α l 9 jβx).

We conclude this section with the following analogue of (3).
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Theorem '5.7. M satisfies the "quantum Yang-Baxter equation", i.e.,

^13^23^12=^12^23^13 ,

where the multiplication is understood as the multiplication in the group U(DxDxD).

Proof. It is not hard to see, as in the above, that ^23^13 = ^ ° ^> the composition
of the lagrangian A a DxDxD~ with 01 c DxD. According to Theorem 5.2,

which implies the Yang-Baxter equation. D

6. Quasitensor "Categories" of Symplectic Realizations

Symplectic realizations play the role for Poisson manifolds which representations
do for noncommutative algebras. A symplectic realization of a Poisson manifold
P is defined to be a symplectic manifold S together with a Poisson map J: S -> P.
The realization is said to be complete if J is a complete Poisson morphism in the
sense that the hamiltonian vector field of the pullback to S of every compactly
supported function on P is complete. For a given Poisson manifold P, complete
symplectic realizations of P become a "category" ζ(P)9 in which the objects are
complete symplectic realizations of P, the morphisms from a symplectic realization

Sλ —λ-+ P to a symplectic realization Sμ —μ—> P are lagrangian submanifolds con-
tained in the inverse image of the diagonal of P x P under the map J λ x Jμ (the bar
denotes reversing the sign of the symplectic structure), and the composition of
morphisms is set-theoretic composition of relations [XI, X2]. As is pointed out in
[XI], ζ(P) is not a true category, since a transversality assumption is required for
the composition of morphisms to be a morphism.

Suppose that P is an integrable Poisson manifold in the sense that P admits a
symplectic groupoid (Γ I j P, α, β). By a symplectic left Γ-module we mean a sym-
plectic realization J: S -> P with a symplectic left Γ-action. A theorem in [XI] asserts
that if Γ is α-simply connected, then any complete symplectic realization of P be-
comes a left Γ-module in a natural way. In other words, the "category" of complete
symplectic realizations of P is exactly isomorphic to the "category" of left Γ-modules.

Recall that U(Γ) denotes the set of all lagrangian bisections of Γ. U(Γ) becomes
an infinite dimensional Lie group with the multiplication being naturally induced
from that on Γ.2 If S is a symplectic left Γ-module, then the group U(Γ) acts
symplectically on S. We therefore have the following:

2 The "Lie algebra" of U{Γ) is isomorphic to the closed 1-forms on P. To form a group whose Lie
algebra is C°°(P), we must extend Γ by prequantizatΐon [WX]
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Proposition 6.1. Let Γ be an oc-simply connected symplectic groupoid over the
Poisson manifold P. Given a complete symplectic realization J: S —• P there is
a canonical group homomorphism, denoted by ps,from U(Γ) to S){S), the group of all
symplectic automorphisms of S.

Remark 6.2. One can give the following quantum interpretation of the preceding
proposition. If the Poisson manifold P is a geometric model for some noncom-
mutative algebra, then the group U(Γ) models the unitary elements of that algebra.

When P = G*, the dual of a simply connected complete Poisson Lie group G, its
symplectic groupoid ΓG* is diffeomorphic to the double group D = G x G*. In this
case, symplectic left ΓG*- modules (hence complete symplectic realizations of G*)
can be described in terms of some familiar objects: the so-called Poisson G-spaces.
Recall that a Poisson manifold S with a left G-action is called a Poisson G-space if
the action map G x S -• S is a Poisson map. A Poisson morphism J: S -> G* is said
to be a momentum mapping for the Poisson G-space, if

Xegh-> -πi{J*{Xr))s%:{S) (26)

is the infinitesimal generator of the G-action, where Xr denotes the right-invariant
one form on G* with value X e q at the identity.3 The following proposition reveals
the relation between symplectic left ΓG*-modules and Poisson G-spaces.

Proposition 6.3. If J\ S^»G* is a symplectic left ΓG*-module, then S is a Poisson
G-space with the action being defined by

gx = (g,J(x)) x9 (27)

for any geG and xeS, where (g, J(x)) is considered as an element in ΓG* ^ G xG*
and the dot in the right-hand side refers to the groupoid ΓG*-action on S. Moreover,
J is the momentum mapping of the induced Poisson G-action, in the sense described
above. Conversely, if a symplectic manifold S is a Poisson G-space with a momentum
mapping J: S -• G*, Eq. (27) defines a symplectic left ΓG*-action on G.

Proof According to Theorem 3.1 in [XI], the Poisson morphism J.S^G*,
considered as a symplectic realization, induces a unique symplectic left ΓG*-action
on S. On the other hand, J induces a Poisson group G-action on S, with the
infinitesimal generators being given by Eq. (26) according to Corollary 3.6 in
[Lu2]. All we need to show is that these two actions are related by Eq. (27). For this
purpose, in the following, let us recall the explicit expression for the symplectic left
ΓG*-action on S. For any XGQ and any xeS, let φΐ2(u), with u = J(x), be the flow
on ΓG* generated by the Poisson vector field corresponding to the one-form a%(Xr)9

and let φJ

t (x) be the flow on S generated by the Poisson vector field corresponding
to the one-form J*(X r) According to Theorem 3.1 in [XI], φ*t

2{u)-χ = φJ

t(x),
where the dot on the left-hand side denotes the symplectic groupoid ΓG*-action on
S. Clearly, the right-hand side equals exp(— tX) x, by the definition of momentum
mappings. Therefore, it suffices to show that φΐ2(u) = (exρ(— tX), u)eD = G x G*,
which is indeed true according to Proposition 3.3 (note that the Poisson structure
on ΓG* is — π+). D

3 Our sign conventions for Poisson G-spaces and momentum mappings are different from the
usual ones in the literature [STS, Lu2]. We use them because they match those for groupoids.
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Remark 6Ϊ4. Returning to the quantum analogies in Remark 6.2, we see that when
S is a Poisson G-space, there is an induced action of U(ΓG*) on S. A partially
quantized version of this statement goes as follows. When G has the zero Poisson
structure, then U(ΓG*) is a model for the group 0 of unitary elements in the
universal enveloping algebra of cj (or in a completion of this enveloping algebra
which is a convolution algebra of distributional densities on G). A linear repres-
entation of G induces in a natural way a linear representation of the group ^. In
fact, G can be identified with the subgroup of ̂  consisting of delta distributions at
the elements of G. In symplectic terms, ΓG* in this case is just Γ*G, and G is
embedded in U(ΓG*) as the set of fibres of the cotangent bundle.

Now if G has a nonzero Poisson structure, the only fibres of the projection from
GxG* to G which are lagrangian are those which lie over the subgroup Go of
G where the Poisson structure vanishes. As a result, there is no embedding of G in
V(ΓG*\ and hence no action of G on S by symplectic transformations. The only
"points" in G are the elements of Go, and so the natural group of automorphisms of
S is not G but rather the "universal enveloping group" Ό(ΓG*).

Analogously, when the quantization of a group G acts on a vector space, one
has a representation, not of the underlying classical group G, but rather of an
algebra which includes only part of G among its unitary elements.

Corresponding to the tensor product of representations of a Hopf algebra, we
can define a "tensor product" of symplectic realizations of a Poisson group.
Suppose that Jλ: Sλ^> G* and Ju: Sμ -• G* are symplectic realizations of G*, then
JλxJμ: SλxSu^> G* x G* is a symplectic realization of G* x G*. Since the group

mo(jλχjμ)

multiplication m: G*xG*-+G* is a Poisson map, SλxSμ • G* is thus
a symplectic realization of G*. We write this realization as Sλ(g)Sμ, and the
realization map mo(jλχjμ) as Jλ®Jμ. Hence, we obtain a "tensor product"
operation on the set of all realizations of G*. The following proposition shows that
this "tensor product" operation is closed among complete realizations when the
Poisson group G itself is complete.

Proposition 6.5. Let G be a complete Poisson group. If both symplectic realizations
Jλ: Sλ-+ G* and Jμ\ Sμ-> G* are complete, then their tensor product Sλ (x) Sμ is also
complete.

This proposition is a direct consequence of the following:

Lemma 6.6. // G is a complete Poisson group, then the multiplication
m: G* x G* —• G* is a complete Poisson map.

Proof. It suffices to show that the Poisson map m: G* x G* ^> G* induces a well-
defined Poisson G-action on G* x G*. In fact, we claim that m is the momentum
mapping of the following G-action:

g-(u, v) = (λgu, λPugv) .

It is simple to check directly that the above formula indeed defines a group action
on G* x G^. Its infinitesimal generator is given by:

(n#(X')(u), π*({TPuXY)(υ))e TUG* φ TVG* .
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Below, we shall compute the infinitesimal g-action on G* xG* induced from
the multiplication map m: G* xG* ^> G* as a Poisson morphism. It is easy to see
that for any cotangent vector θeT*ΌG*9 m*0 = r*0 + l%θeT%G* ® Γ*G*. In
particular, if θ is equal to X\ the right invariant one form with value X e g at the
identity, m*θ\(UtΌ) = r t t*-il + r*-i(Ad*X)eT*G* Θ 7?G*. It thus remains to
show that TpuX = Ad fX

In order to show this identity, we assume that in the double group D,
(exptX)u = utht, for some uteG* and htsG. It thus follows that

u~1(exptX)u = (u~ιut)ht. Hence TpuX = — ht= 7Tr2(AdM-iX), where Pr 2 is
dt f = 0

the natural projection from D to G under the decomposition D = G*xι G. Hence,
the conclusion follows immediately as a direct consequence of Proposition 2.34 (3)
in [Lul]. D

In the rest of the paper, we will confine ourselves to complete symplectic
realizations of G*.

In general, the tensor product ® : Sλ x Sμ \-> Sλ <g) Sμ is not commutative except
when G* is commutative, i.e. when the Poisson structure on G is zero and G* is the
usual Lie-Poisson space g* with multiplication being the usual addition as a vector
space. However, as is the case for quantum groups, if G is quasitriangular, an
isomorphism of realizations between Sλ (x) Sμ and Sμ ® Sλ can be restored via the
global classical ^-matrix.

J. I

G* are complete symplecticTheorem 6.7. Suppose
realizations', then

Jλ®

that Sλ —

sλ®sμ

I
Γr*

—» G* and Sμ —

id

is an isomorphism of symplectic realizations. Here Rλμ = pSμXS.(R)oσ, where
σ: SλxSμ-> SμxSλ is the exchange of components, and Psttxsλ' U(ΓG*x ΓG*)
h-• @{Sμ x Sλ) is the group homomorphism of Proposition 6.1.

Proof $λμ is obviously a symplectic diffeomorphism from SλxSμ to SμxSλ. It
suffices to check the commutativity of the above diagram. For any (x, y) e Sλ (x) Sμ,
&λμ(x> y) = (dί, d2)'(y, x) for some compatible (dί9 d2)e0t, where the dot stands
for the action of the groupoid ΓG* xΓG* on SμxSλ. Hence (Jμ ® Jλ)&λμ(x, y) =
a2(d1)a2(d2). On the other hand, (Jλ(g}Jμ)(x9y) = Jλ(x)Jμ(y) = β2(d2)β2(di)9

where the second equality follows from the compatibility between (d1,d2) and
(y, x). Thus, the conclusion follows immediately from Theorem 5.1. •

Remark 6.8. It is simple to see that 01 λμ o &μλ = pSμXSλ{$i2$2i\ which will be seen
in the next section not to be the identity in general.

It is also worth noting that the quantum Yang-Baxter equation for our classical
global ^-matrix implies that the "category" of symplectic realizations of G*,
becomes a quasitensor "category," exactly as in the case of a quasitriangular
quantum group [Drl] . We will end this section with some further remarks.
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Remark 6§. When G is a zero Poisson Lie group, its dual is just the Lie Poisson
manifold g*. The tensor product of two realizations Jλ: Sλ-+ g* and Jμ: Sμ -• g* is
formed by (Jλ (x) Jμ)(x, y) = Jχ{x) + Jμ(y)> If both realizations are complete and
thus induce G-actions on Sμ and Sλ respectively, then the G-action on Sλ x Sμ

induced from the tensor product of realizations Sλ ® Sμ is exactly the diagonal
action. For a general Poisson group G, such an action is given by a twisted
diagonal action of the following form:

9'(x> y) = (9' x,(Pj(x)9)m y) >

where pJ{x)g is the right dressing action of J(x) on g. (It would be interesting to
know the quantum analogue of this twisted diagonal action.)

In the context of Poisson G-spaces, i.e., when both Sλ ® Sμ and Sμ ® Sλ are
considered as Poisson G-spaces induced from the realization morphisms, Theorem
6.7 can be interpreted as saying that 0tλμ defines an isomorphism of Poisson
G-spaces Sλ ® Sμ and Sμ®Sλ.

Remark 6.10. When G is SU(n) with the standard Bruhat-Poisson structure
[LW2], its dual G* is SB(n, C), which has recently been shown to be Poisson
diffeomorphic to su*(n) [GW]. Hence, the "category" of symplectic realizations of
SB(n, C) is exactly isomorphic to the "category" of realizations of su*(τi). It is
well-known that the latter consists of all hamiltonian SL/(n)-spaces. In other words,
in the context of G-spaces, any Poisson S(7(n)-space having a momentum mapping
arises from an ordinary hamiltonian Sί/(rc)-space with the action being twisted in
a certain way. However, one should note that the tensor products of realizations
are quite different in these two situations.

7. Set-Theoretic Quantum Yang-Baxter Equation and Symplectic
Braid Group Actions

Finding solutions to the set-theoretic quantum Yang-Baxter equation is an open
problem in quantum group theory recently posed by DrinfeΓd [Dr2]. By such
a solution, we mean a map R: SxS -• SxS, where S is any set, satisfying the
quantum Yang-Baxter equation:

where RfJ : S x S x S -• S x S x S is the "implantation" of R on the ith and j t h factors
of the cartesian product. Clearly, one can adapt this equation to various contexts.
In particular, when S is a symplectic manifold, R: S x S -> S x S should be a sym-
plectic diffeomorphism. The following theorem indicates that the relation between
the global ^-matrix and solutions to the set-theoretic Yang-Baxter equation is
similar to that between a universal .R-matrix of a quantum group and solutions to
the quantum Yang-Baxter equation induced from particular representations.

Theorem 7.1. Let G be a complete quasίtrίangular Poisson Lie group and J: S -> G*
any complete symplectic realization ofG*. Then pSχs(&)' SxS^SxSisa solution
to the set-theoretic quantum Yang-Baxter equation.

Proof. According to Theorem 5.7, ^ satisfies the quantum Yang-Baxter equation
in the group of bisections of groupoids. The desired result then follows immediately
from the fact (Proposition 6.1) that the p's are group homomorphisms. D
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An easy consequence is the following:

Corollary 7.2. // G is a complete quasίtriangular group, then the map
MG*G*\ G* xG* -> G* xG*, (w, u)->(Λ^(1,-i)M, pφ(U-i)V) is a solution to the set-
theoretic Yang-Baxter equation. Moreover, &G*G* preserves the Poisson structure
and leaves ΘxΘ invariant for any symplectic leaf Θ c G*.

Proof Let ύ = λψ{Ό-ι)u. Then Corollary 4.4 implies that φ(u) =
= pυ-ιφ(u). Therefore, there is some weG* such that φiujv'1 = wφ(u), or
φ(u)υ = w~1φ(u). This implies that λφ{a)v = w" 1 = ( A ^ t ) ' 1 ) " 1 = Pφ(U-ι)V Π

As in the case of quantum groups, solutions to the set-theoretic Yang-Baxter
equation are closely related to braid group actions. More precisely, suppose that
JR: SxS -> SxS is a solution to the set-theoretic Yang-Baxter equation. Let
R = Roσ with σ: SxS ^SxS being the exchange of components, ancΠet Rx and
R2 be the maps from SxSxS to itself defined by Rx = R xid and R2 = id x R,
respectively.

Proposition Ί3.JfR: SxS ^ SxS satisfies the set-theoretic quantum Yang-Baxter
equation, then R satisfies the braid relation:

R1R2R1 — R2R1R2

Proof It can be checked directly that

and

where σι£?^ denotes the transformation of SxSxS which maps (xh,xi2, xh) to
{xh,xh,xh\ Hence,

Similarly, we have i£ 2 ^i^2 = ^23^i3^i2σ32i Thus the conclusion follows im-
mediately from the Yang-Baxter equation. D

Let Ri(n) be the endomorphism of the cartesian power Sn defined by:

Ri(n)(xl> 9 xn) = (xl> J xi-l 5 R(Xi> xi+l\ x i + 2? J xn)

Proposition 7.3 implies that the assignment of K, (n) to the ith generator ^ of the
braid group Bn defines an action of Bn on Sn for each n. In particular, we have the
following

Theorem 7.4. //G is a complete quasitriangular Poisson Lie group and J S^G*
any complete symplectic realization ofG*, then the action of the classical & matrix on
SxS induces a symplectic action of the braid group Bn on Sn.

In particular, if S is a symplectic leaf Θ of G* (i.e., an orbit of the dressing action),
one has the following:

Theorem 7.5. IfG is a complete quasitriangular Poisson Lie group, then (G*)" admits
an action of Bn which preserves the Poisson structure and which leaves Θn invariant
for any symplectic leaf Θ cz G*.
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Remark l\6. Given a quasitriangular Lie bialgebra (g, g*) with classical r-matrix r,
one can deform r in an obvious way to obtain a one parameter family of quasitrian-
gular r-matrices: rt = tr. The corresponding one parameter family of Lie bialgebras
is (g, gf), where gf is the ordinary dual Lie algebra g* with a deformed Lie bracket:
K> *7]ί = ί K> *?]• Let g, denote the deformed Lie algebra of g with the bracket given

by [X, Y]t = t[X, F ] , and j t : g -* g the map given by j(X) = -X for all Xeq.

Then, j t is a Lie algebra isomorphism from g to g,. The dual of j t 9 given by

7 *(£) = ~ζ> is easily seen to be a Lie algebra isomorphism from g* to g*, so (g, gf) is

isomorphic to (g,, g*) as a Lie bialgebra. Globally, Gf is isomorphic as a Poisson
group to G* with the deformed Poisson structure tπ. In the cases, such as those in
[GW], where G* is linearizable, all the Gf for t φ 0 are Poisson diffeomorphic to
(G*, π); therefore they still have ΓG* as symplectic groupoid. The general construc-
tions in the previous sections thus give rise to a family of lagrangian bisections
&teU(ΓG* x ΓG*\ which satisfy all the properties of M in Sect. 5 and approach the
identity bisection as t goes to zero. Hence, all the constructions in the section above
can be carried out for this one-parameter family of ^-matrices. In particular, as in
Theorem 7.4 (or Theorem 7.5), one obtains a one-parameter family of braid group
actions on 5" (or (G*)n) and the actions reduce to the trivial symmetric group action
as t approaches zero. Perhaps some useful information can be extracted from the
derivative of this action with respect to t at t = 0.

8. Properties of the Braid Group Actions

This section is devoted to a further study of properties of the global classical
^-matrix and its induced braid group actions as described in the last section. One
may find the prototypes from quantum group theory for these properties in various
references [Dr3, RT]. Since our braid group actions are closely related to the
classical ^-matrix, many properties of such actions are deduced from the corres-
ponding properties of the classical ^-matrix. The first question we are going to
investigate is how far away such a braid group action induced from a ^-matrix is
from the trivial action of the symmetric group. In order to answer this question, it
suffices to compute the square of ^ μ μ , which is clearly equal to pSμxSμ(& 12^21 )•

Proposition 8.1. The lagrangian bisection ^12^n <= ΓG*xΓG* consists of all ele-
ments of the form (\jj{ύ~1)φ(ύ)υ, φφ^ψ(v~ 1)u) for all u.veG*, where ύ and wx are
given by u = λψ^-^u and ύγ = λψ{a-im)v.

Proof Let (r l 9 r2) be the element in ^ 1 2 ^ 2 i such that j82(
ri) = ^ and jS2(

r2) = w
We assume that

(ri9r2) = (Φ(vϊ1)uί9φ(uί)vί)*(φ(u)v9\l/(v~1)u) ,

for some compatible ul9 VIEG*. Here, as usual, ύ = λψiv-i)U and u1 = λψ(vΓι)u1.
Hence

"i = <*2(Φ(u)v) = λφmv , (28)
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and

SoαJ
that

which

r1) = ψ(υ1

yields the

1)φ(u) = φ(

u1 = X^υ

conclusion.

(X2(φ(v

,-)«! = ^

ι)u) =

), and

-• ΰ = λφ(v-ψ .

a1(r2) = φ{ΰ\)

mv = W')m

ψiv'1). It

v,

thus

(29)

follows

•
The following corollary gives an explicit description of the action of a generator

of the braid group on G* x G*, and hence on the cartesian square of any of its
symplectic leaves.

Corollary 8.2. Let τ denote the generating transformation of the B2 action on G* x G*
induced from the ^-matrix of a complete quasitriangular Poisson group G. Then τ2 is
given explicitly by:

where u1 = λφ{a-ί)φ{a)v, and ύ = λ^-ψ.

Proof Proposition 8.1 implies that τ2(v,u) = p(&12&2i)(v>u) = (λψ{a)φ{a)v,
λφφjφiv-^u). So it remains to check that λφφιm-i)U = ύ^vu.

To prove this, we let w = λφ(&imΌ-^u = Λ^u^i Since (ψivϊ1)^, φ(wi)^i)
belongs to ^ , we have ϋiW = t̂ Ux according to Theorem 5.1. Similarly,
({//(v'1)^ φ(u)v)e^ implies that uλφ{a)v = vu, or vγuγ = vu by Eqs. (29) and (28). It
thus follows immediately that w = ύϊ * vu. D

Remark 8.3. If G is a triangular Poisson Lie group, we know that φ = φ. Proposi-
tion 8.1 thus implies that ^12^21 is the identity lagrangian bisection, or equiva-
lently, St12 = 9t2\. This is an analogue of the ordinary unitary condition on
a quantum i^-matrix. Moreover, in this case, St1^ is the identity map for any
realization Sμ, so the braid group action on Sn

μ introduced in the last section
reduces to the trivial action of symmetric group.

The following proposition describes a construction of a "central" lagrangian
section out of the classical ^-matrix.

Let A c ΓG* x ΓQ* x ΓQ* be the graph of the groupoid multiplication of
(ΓG* Ẑ  G*, α 2, β2)- Consider A formally as a morphism from ΓG* to ΓG* x ΓG* and
& as a morphism from ΓG* x ΓG* to a point. We thus can form their composition
JS? = ffloΔ, a morphism from ΓG* to a point, i.e. a lagrangian submanifold of ΓG*.
Below, we shall show that ££ is a "central" bisection (see [Dr3] [RT] for a similar
construction for quasitriangular quantum groups).

Proposition 8.4. (1) j£? is a well-defined lagrangian bisection of' ΓG* contained in the
ίsotropy groupoid of ΓG*. Moreover, <£ can be written explicitly as
££ = {\l/(v~1)φ(v)v\veG*}. (2) «̂ f commutes with any bisection of ΓG*.

The following lemma is crucial to the proof of this proposition.

Lemma 8.5. For any weG*, we have λψ{u-ι)φ{u)u = u.

Proof Assume that

ψ(u-1)φ(u)u = v1h1> (30)

for some v^eG* and h% e G. It suffices to show that Vi = u.
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It follows from Eq. (30) by applying the morphism #+ that φiu'1) = φ(vϊ1)h1,
that is, hi = φiv^ψiu'1). Thus Eq. (30) becomes

Multiplying both sides of the above equation by u'1 from the left and using
Theorem 2.12, we have φ(u)φ(u~1) = u~1vγφ{v1)φ{u~1\ which implies that
uφ{u) = ViφiVi). It thus follows that u = v1. D

Proof of Proposition 8.4.
(1) Let deJ£ be the element in $£ satisfying β2(d) = v. Assume that d = φ(υ~ι)u*
φ(ύ)v for some ueG*, where ύ = λψ^-^u as usual. It suffices to show that such
u exists uniquely for any given veG*, and that the resulting d is equal to
φ(v~1)φ(v)v. According to Corollary 4.4, we have

ρvφ(u) = φ(λψ(v)u) = Φiλψ^λψ^-^u) = φ(u).

On the other hand, it follows from the compatibility between φ(v~1)u and
φ(u)v that

u = cc2(φ(u)v) = λφ{ύ)v . (31)

Thus, we have φ(ύ)v = uφ(u\ which implies that φ{ύ) = φ(v\ by applying the
morphism # + . Hence,

u = Λ / Φ Γ 1 ) ^ = λψ(V-i)λφφ)V = λφty-i-jφiiήV = v ,

where the last step follows from Lemma 8.5. So there exists some heG such that
\jj{v~1)u = vh, which simply implies that h = φ(u~1). Therefore, we have
φ(v)v = uφ(u\ i.e., u = λψ(v)v. Conversely, it is easy to check that the element
u defined by such an equation will satisfy our requirement. Moreover,
0Li(d) = φ(v~1)φ(ύ) = φ(υ~x)φ(υ). This completes the proof of Part 1.

(2) Suppose that Jf c ΓG* is an arbitrary bisection. Assume that X has the form
{/c(t;)ι;|Vι;εG*}, where k(v) is some smooth map from G* to G. In order to prove
that JS? JT = Jf if, it suffices to show that J(t>i)fc(ι>) = k(v2)l(v) in G, for any
v e G*, where

vi = a2{k{v)v) = λk{v)v , (32)

and

v2 = (χ2(l(v)v) = χmΌ . (33)

According to Lemma 8.5, we have v2 = v. We write g = k(v). It follows from Eq.
(32) that gv = vxh for some heG. Applying the morphisms # + and ^ _ to both
sides of this equation, one gets

and

By eliminating h from the two equations above, we obtain the following identity:

ψ{vI1)Φ(v1)g = gψ{v-1)φ(Ό)9

that is, l(vι)g = gl(v\ which is exactly the identity we desired. D
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The proposition above will be applied to the study of fixed point sets in Sect. 10.
The last property we will prove in this section is the commutativity of the

classical ^-matrix with certain diagonal constant lagrangian bisections. The cor-
responding commutativity of their induced actions on a particular symplectic
realization is obtained as a consequence.

Let a G G be any element of G, and let Laa ΓG* ^ G x G* be the constant
bisection corresponding to the element a, i.e., La = {(a, w)|VweG*}. A simple
computation leads to the following:

Proposition 8.6. La is a lagrangian bisection if and only if AdaΛ = A, where, as usual,
A denotes the anti-symmetric part of the classical r-matrix 2(P(r) — r)eg Λ g.

We will denote by # the set of all elements in G satisfying the condition:
Adflτl = A. It is quite clear that ^ is a subgroup of G with its Lie algebra
characterized by the following condition: X is in the Lie algebra of ^ if and only if
3,dxA = 0. An equivalent condition characterizing such a Lie subalgebra is that the
image of X under the cocommutator g -• g Λ g is zero. The dressing action of any
element in Ή has a very simple form. In fact, it coincides with the conjugation in the
double group D.

Proposition 8.7. IfaeΉ, then λau — aua~γ, for all weG*, where the multiplication
in the right side should be taken inside the double group D.

Proof Assume that u1 = λau. Thus, au = u1h1 for some h1 e G. So hγ is in fact equal
to pua. Since AdaA = A, it follows that πG(a) = 0, which simply implies that the
dressing vector field vanishes at the point a. Thus, hi = a. So λau = uγ = aua~ι.Ώ

Theorem 8.8. Suppose that G is a complete quasitriangular Poisson Lie group, and let
&E U(ΓG* x ΓG*) be its global classical ^-matrix. Then & commutes with La x La in
U(ΓG* x ΓG*) for any

Proof It is trivial to see that the bisection (L f l xL a ) f has the form {ψ
aφ(u)v)\Vu9 veG*, u = λ^-^u}. Let(r l 9 r2)be the element in 0t%{La xLa) such that
β2(r1) = u and β2{r2) = v. Then, rx = (φ(υϊ1)u1)*(au) and r2 = (φ(ui)ι>i)*(αt;),
where uγ — a2(au) = αwα"1, and υx = a2(av) = ava~ι. It thus follows that
Ψ(vι) = aψ^a'1. Hence, φ(vΐ1)u1 = aψ(v~1)ua~1. Therefore, u1 = λψ^-^Ux

= λaλψiΌ-i)U = aua'1. F i n a l l y , u s i n g t h e i d e n t i t i e s a b o v e , w e h a v e α ^ r j = φ(vϊ λ)a

= a\jj{v~x\ and <x.i{r2) = φ(ύi)a = aφ(u). This completes the proof. D

An immediate consequence of this theorem is the following:

Corollary 8.9. Under the same assumption as in Theorem 7.4, the induced braid group

action on S^ commutes with the diagonal action of vLa x x Laj for any

Remark 8.10. According to DrinfeΓd [Dr3], the classical r-matrix of a quasi-
triangular Lie bialgebra naturally gives rise to a one-parameter subgroup of
# as follows. If r = Yjai®bie§® Q is a quasitriangular r-matrix, then
H = Yjβi, b{]e g belongs to the Lie algebra of ζ€. H thus defines a one parameter
subgroup of (€. In fact, this one parameter subgroup induces an interesting
hamiltonian action on the symplectic double groupoid. Let φt(r) = AdLexptHr. Then
φt defines a one parameter family of symplectic groupoid automorphisms of ΓG*,
with its action on the identity space being the dressing action λexvth. However, it is
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not hard to check that φt is also a groupoid automorphism with respect to the
second groupoid structures ΓG, and the action on the identity space G of the second
groupoid is exactly AdexpίH In fact, the one-parameter family of dressing trans-
formations λexptH is a hamiltonian action with momentum mapping μ: G* -• R
being the character of G* corresponding to the Lie algebra homomorphism 9* -• R
defined by the linear function lH. Thus φt is also a hamiltonian action, whose
momentum mapping is μ{θL2(x)) — μ(β2(x)).

9. Factorizable Poisson Groups and Doubles

The doubles of Poisson Lie groups are examples of quasitriangular Poisson Lie
groups. In this section, we discuss doubles as examples of the smaller class of
factorizable Lie algebras and groups [Drl, RS].

Let r e 9 (x) 9 be the r-matrix of a quasitriangular Lie bialgebra 9. If the
symmetrization / = r + P(r) is nondegenerate, the bialgebra is called factorizable

def

[RS]. In this case, the corresponding linear mapping j =r+ — r_: §* -•§ is

bijective.
Now let G be a Poisson Lie group corresponding to the bialgebra above, and let

G* be its simply connected dual. The Lie algebra homomorphisms r + : 9* -• 9 lift to
group homomorphisms R±: G* -> G, and we may therefore define the map J: G*
-» G by J(u) = R+ ( M ) R - ( U ) " 1 , whose derivative at the identity element of G* is j .

(Neither j nor J is a homomorphism.) When J is a global diffeomorphism, we say
that the group G is factorizable, since we have for each element x in G the
factorization x = x+xZ1, where x± = R±(J~1(x)).

Proposition 9.1. Any simply connected factorizable Poisson Lie group is complete.

Proof Suppose that G is a simply connected factorizable Poisson Lie group.
According to Proposition 1.5 [RS], the simply connected double group D of G is
isomorphic to G x G, where the embeddings φi'.G* -• GxG and φ2: G -• G x G of
G* and G into D are given by w ι-> (R+ w, JR_ w) and x h-> (x, x), respectively.
According to Proposition 2.43 [Lul], in order to prove that G is complete, it
suffices to show that the map φιxφ2'- G* xG -• G x G is a global diffeomorphism,
where φ± x φ2 is given explicitly by (φ± x φ2)(w, x) = </>i(w)φ2(x) = ({R+ w)x,
(#_ w)x). This is indeed true because G is factorizable. In fact, the map from GxG
to G*xG sending each (j/,z)eGxG to (J'^yz'1), (yz~1)+1y)eG* xG will be
such an inverse of φ1 xφ2. This completes our proof. D

Factorizability enables us to describe the classical ^-matrix quite explicitly.

Theorem 9.2. (1) If G is a factorizable Poisson Lie group, under the identification of
G* with G via J, the classical ^-matrix 0t c Gx GxGx G takes the form

(2) The map GxG-*GxG given by:

(x, y) i—• (y-xyZ1, (y-xy-)+1 y(y_xyZ1) +) (34)

is a Poisson diffeomorphism when G is equipped with the Poisson structure ofG*, and
it satisfies the set-theoretic quantum Yang-Baxter equation.



338 A. Weinstein and P. Xu

Now let (I), ϊ)*) be an arbitrary Lie bialgebra, and let b = ί) © ί)* be its double. It
is well-known that both f) and ί)* are Lie subalgebras of b and the natural pairing
<(X, ξ)9 (Y9η)) = <£, Γ> -I- (η,Z> is b-invariant. Let D be the simply connected Lie
group with Lie algebra b. Then D is in fact a quasitriangular Poisson Lie group,
where the r-matrix r eb ® b is described as follows (see [RS]). Suppose that P is the
canonical projection from b onto ί) in the decomposition b = ί) © I)*; then P can be
considered as an element in b (x) b which we will denote by r. It is simple to check
directly that r satisfies the classical Yang-Baxter equation and indeed gives rise to
the canonical Poisson structure on the double group D. Note that b* is isomorphic
to f) © (ί)*)° as a Lie algebra, where (ί)*)° means the Lie algebra with the opposite
Lie bracket.

It is trivial to see that the Lie algebra homomorphisms r± from b* ( ^ f) © ft*)0)
to b( £ ί) © I)*) are given by r+{X9 ξ) = (X, 0) and r_ (X, £) = (0, - ξ), respectively
for any ξeI)* and Xel). So J = r+ — r_ is a linear isomorphism, which yields that
b is a factorizable Lie algebra.

Let H and H* be the simply connected Lie groups corresponding to ί) and ί)*.
Suppose that // is complete. Then H* is also complete according to [Lul, Ma].
Then D — HxH*. According to the observation above, D*, the simply connected
dual of D, is isomorphic to the direct product H x (H*)° as a Lie group (the Poisson
structures are in general different).

Clearly, the lifts R+,R-: D* -• D of r+ and r_ on the group level are given
respectively by R+ (g, u) = g and R-(g,u) = u'1. The map J: D* -> D is given by
J(x) = R+ (x)R- (x)'1. Then J is given by J(g, u) = gu, under the decomposition
D = HxH*. So J is a global diffeomorphism. In other words, D is factorizable.

An immediate consequence of this proposition is the following:

Corollary 9,3. The double group of a complete Poisson Lie group is still complete.

It is well-known that the left dressing action of G on G*, for a factorizable Poisson
Lie group G, coincides with the conjugation action Adx under the identification of
G* with G by J [RS, STS]. A routine computation using this observation leads to
the following:

Lemma 9.4. Suppose that H is any complete Poisson Lie group and D = HxH* its
double. For any (h,v)eD = HxH* and (g,u)eD* = Hx(H*)°, assume that
(S, u) = λ{h,v)(g> 4 Then $ = hλvig-λuv-ih-1).

Theorem 9.5. (1) Suppose that H is a complete Poisson Lie group. Let D = HxH*
be its double group and D* = H x (H*)°. Then the classical ^-matrix M a ΓD*x ΓD*
= DxD*xDxD* has the form {(1H, iΓ 1 ), (g, u); {{λυ-,g)~\ \H*\ (Λ, v)\g, heH

and w, veH*}.
(2) IfD* is identified with D via J and ΓD* is identified with the direct product DxD
as described before, M a ΓD*xΓD* ^DxDxDxDis thus given by

where g = λv-ig.

Example 9.6. Suppose that H is SU(2) with the standard Bruhat-Poisson struc-
ture [LW2]. Its dual is the "book group" SB(2, <C) consisting of all upper
triangular matrices with positive diagonal and determinant 1. So its double
group D is factorizable and isomorphic to SL(2, (C). Moreover D* = SU(2)
xSB(2, <C)°. The factorization x = x+xZι for xeSL(2, <C) is exactly the Gram-
Schmidt process with x+eSU(2) and x.eSB(2, C). Theorem 9.2 implies that
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the Poisson diffeomorphism τ: SL(2, <C) x SL(2, C) -• SL(2, <C) x SL(2, <C),
x(x9 y) = (y_χyZ1, (y_x);-)^ 1 y(y~xyZ1) +) satisfies the quantum Yang-Baxter
equation, and hence a braid group action on SL(2, C)" can be built up with the
generator bx acting on SX(2, C) x SL(2, C) by the map τ o σ.

Example 9.7. Let G = SX(2, C), and let fί, X+, X- be the standard generators of
si(2, <C). Then r = X+ ®X~ + i # ® H e si(2, C) ® sl(2, C) is a quasitriangular
r-matrix, which defines a complex Poisson Lie group structure on SL(2, (C). The
dual of G is B+ * #_ which consists of all the elements of the form

λ f \ (λ-1 0
0 λ-1)' \-g λ

and is considered as a subgroup of SL(2, C) x SL(2, C). R±:B+*B-^> SL(2, C)
are, respectively, the projection to the first and second factors. Let KeSL(2, C) be
the image of the map J: B+ * β _ -^ SL(2, C), J(x) = i^+(x)i^_(x)~1. Then X is an
open dense subset of SL(2, <E). Note that the decomposition for x e K into x + x l x is
not unique. In fact there are two ways of decomposing x and the resulting x+ and
x_ differ by a sign. So the map defined by Eq. (34) is still a well-defined map,
whenever its right-hand side is defined. However, we do not know the appropriate
domain for this map nor, more important, whether it still satisfies the quantum
Yang-Baxter equation.

10. Fixed Point Sets

In this section, as a first step toward obtaining link invariants from the braid group
actions induced from ^-matrices, we will study fixed point sets and some other
related aspects of these actions.

It is well-known [B] that a braid can be closed in a standard way to form an
oriented link. Two braids give rise to equivalent links if and only if they are
equivalent under Markov moves. There are two types of Markov moves: one is by
conjugation A-+BAB'1; the other is by increasing the number of strands in
a braid by a simple twist: A -• Ab*, for A e Bn, where bn is the nth generator of Bn+ ί .

Theorem 10.1. Suppose that G is a complete quasitriangular Poisson Lie group, and
(9μ a G* is any symplectic leaf of G*. Let Bn act on Θn

μ as defined in Theorem 7.4. //
A, Be\J[nBn define equivalent links, then the fixed point sets of A and B are
diffeomorphic.

Proof It suffices to check this theorem for the second type of Markov move.
Suppose that (x l 5 . . ., xn + 1)eΘn

μ

+ί is a fixed point of Abn. Then, we have

{Axid){xl9 . . . ,Xn-l,&μμ(Xn>Xn+l)) = (Xί, > * n + l ) >

that is,

( A x i ά ) ( x u . . . , X n - ι 9 d ί ' x n + ί 9 d 2 Xn) = ( x i , . . . , x n + ί ) ,

for some compatible (d1,d2)e&. In other words, we have

A ( x l 9 . . . , x n - 1 , d 1 - χ n + 1 ) = { x u . . . , x M _ 1 ? x n ) , (35)
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and

d2'Xn = xn+i (36)

From Eqs. (35) and (36), it follows that A(xl9 x 2, . ,(di *d2)'xn)
= (xi, X2> 5 xn) Since dί*d2 lies in S£9 which acts trivially on G* according to
Proposition 8.4, ( x i , . . . , x Λ ) is a fixed point of A and moreover
Xn + i = d2'xn = λφiXn) xn. Conversely, it is simple to see that if (x x , . . . , xπ) is a fixed
point of A, then (x 1 $ . . . 9xn9 λφ{Xn)xn) will be a fixed point of Aίv D

Recall that a differentiable map θ: X -> X is said to have clean fixed points if the
fixed point set Xθ of θ is a submanifold of X whose tangent bundle is the fixed point
set of the bundle map Tθ: TX -* TX. [GU2]. If a symplectic map has clean fixed
points, there is a canonical density on the fixed point submanifold, which is a key
ingredient in defining the symplectic trace [GUI, GU2].

As usual, we use 0 to denote a symplectic leaf of G*. Then, according to
Theorem 7.5, Θn admits a symplectic 5w-action.

Theorem 10.2. If the action ofAsBn on Θn has clean fixed points, so does the action
ofAbnonΘn+ι.

Proof. Assume that (x? , . . . ,x ° ) is any clean fixed point of A. Then
(x?,. . . 9Xn9Xn+i\ with x° + 1 = λφixon)x°, is a fixed point of Abn according to
Theorem 10.1. In what follows, we will show that it is clean. By definition
(Abn)(xl9. . . , xn + 1 ) = (A(xί9 . . . , d1xn + ί)9 d2xn\ where (dl9d2) is the point in
& compatible with (xn+ι9xn) in the sense that β2(d1) = xn + i and β2(d2) = xn.
Therefore, (δXι9. . . , δXn+i) is a fixed point of T(Abn) iff

(TA)(δXι9. . . , δXn_ι9δdιXn+) = (δXι,. . . , δ^, δj (37)
and

δ X n + ι = δ d 2 X n . (38)

According to Corollary 7.2, d2xn = pφ{x;+\)Xn. Equation (38) leads to

δXn = Pφ(χn+ί)'δPφ{x-+ίi)Xn + δPφ{χπ+ι)Xo+ι

That is, (<5XB, ^X Π + 1) is tangent to the fixed point set of the action of ^ o n ^ x Θ.
Therefore, δdιXn+i = δXn. It thus follows that (<SXi,. . . , δXn) is a fixed point of 7V1. The
conclusion thus follows immediately, since the fixed points of A are all clean. D

In general, it is very hard to describe the fixed point set for the action of
a particular braid. However, for the action of the nth power of the generator of B2,
one can obtain quite a neat answer.

Theorem 10.3. Suppose that G is a factorizable Poisson Lie group so that G* is
identified with G via J. Let bι be the braid group generator acting on G x G as in
Theorem 9.2 (2). For any u,veG, assume that b\ (υ9 u) = (x, y). Then,

[{w2wι)~kw2{yt2vjι)k if n = 2k

\(w2wί)~kw1(w2\v1)
k if n = 2k + 1

and J~1(x)J~1(y) = J~ί(v)J~1(u)9 where wx = v-uvZ1 and w2 = v.
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Proof We shall prove this by induction. Obviously, this theorem holds for n = 1
(Theorem 9.2). Suppose that it is true for n = 2k. Let b^v, u) = (v\ u'\
w\ = υ'-u'W-)'1 and w2 = v'. We note that w\ is in fact the first component of
&i(t/, u') = b\(v, u). It thus follows from Corollary 8.2 that w\ = wϊ1w2w1. Obvi-
ously, vv2 = v' = w1. Let (x, y) = b\k + 1(v, u) = b\k(v', u'). Thus, according to the
inductive assumption, x = {w'2wΊ)~kw'2(w'2w\)k = (w2w1)~kw1(w2w1)

k. On the
other hand, the relation J~ί(x)J~1(y) = J~1(v)J~1(u) follows directly from The-
orem 5.1. The other case (when n is odd) can be proved similarly. D

Corollary 10.4. (v,u)eGxG is a fixed point ofb\ iff it satisfies the following "Artin
relation" [Br-Sy.

w[n] w1w2w1 = w[n-X] - - w2w1w2 ,

where both sides of the equation have n factors of alternating Wj. and w2, and w±,w2

are defined as in Theorem 10.3. Also, the symbol \ή] denotes 1 ifn is odd, and 2 ifn is
even.

Although the corollary above gives a quite neat description for the fixed points
of b\, it would be still hard (almost impossible) to find the fixed points explicitly
except in certain special examples (see Remark 10.7).

When a symplectic map θ has clean fixed points, one can look at its induced
normal map, which is closely related to the symplectic trace. As the first step, we
shall look at the normal map of the single braid action.

Assume that G is a symplectic leaf of G*. Let/: G -• G be the map defined by
f(v) = λφ(v)v. According to Theorem 10.1, the fixed point set Xbί oϊbi coincides with
the graph of/ We proceed, in the following, to calculate the normal map of b x . For
any given point (ι?0, u0) in the graph of/ the normal bundle NiVQfUo) oϊXbι at (v0, u0)
is canonically identified with TUoG via the correspondence Φ: N(VOiUo) -* TU0G which
sends each class [_δVo, δuj in N{vo,Uo) to δUo - (Tf)δVoeTuoG. Let 6f: TU0G -> TUoG

denote the normal map of bγ with respect to this correspondence Φ.

Theorem 10.5. b{\ TU0G -» TU0G is equal to - Tλφ{u-ί)φ{Uo).

Proof. To calculate b\, we fix v0, and let u be in a neighborhood of u0. Assume that

b\(vo,u) = (s, t) . (39)

Then, s = λ^-^u and t = λφ{s)v0. Now taking the derivative of the equation
f(s) = λφ(s)s atu = u0 (then s = v0), one gets (Tf)δs = Tλφ{υo)δs + <5 W o . Therefore,
δt - (Tf)δs = - Tλφ{Vo)δs = - Tλφ{ϋomv-Ίδu. Taking the derivative of Eq. (39), we
have (Tbί)(0,δu) = (δs,δt). Since [0,<5M] and [_δs,δj go to δu and δt-(Tf)δs,
respectively, under the correspondence Φ, b{ sends each δu to — Tλφ{Vomv-^δu.
Finally, it is easy to see that φ(vo)\jj(voι) = ψ(uό1)φ(u0). This completes the
proof. D

When G is factorizable, λψ{u^)φ{Uo) coincides with the adjoint action of
\I/(UQ1)Φ(U0). Thus we have,

Corollary 10.6. Suppose that G is a factorizable Poisson Lie group, G a conjugacy
class in G. The normal map of b1 at the fixed point (h,hZ1h+) is equivalent to
— T(Adg-ί): TgG-*TgG, the negative of the tangent map of Ad^-i, where
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Remark 10.7. Let Θ be the conjugacy class of a generic element in SL(2, C) of the

form K = diag(fc, 1/fc) as in Example 9.6. For any geΘ, a group element P which

conjugates g to K determines an isomorphism from TgΘ to TKΘ, and the morphism

- Γ(Ad^-i): TgΘ-+TgΘ becomes - T(Adκ-i): TKΘ-+TKΘ under any such

isomorphism. The conjugacy class of K may be identified with the manifold of pairs

of independent lines in (C2, which is an open set in (CP1 x (CP1. The two coordinate

directions in C P 1 x (DP1 define transverse foliations on &, and these are the

eigenbundles of the normal map b{, with eigenvalues — k2 and — 1/k2. In other

words, when k Φ ± i, b{ — I is an invertible map. This fact implies that the fixed

point set oϊbu i.e., the graph of the map/(g) = g I* g +, is a symplectic submanifold

in 0 x 0.

As for b2

u the fixed point of b\: 0 x <P -> 0 x 0 are defined by the equation:

wiw2 = W2W1, which has exactly two components of solutions: Wι = w2 and

Wι = W21 (for SL(n, <C), the number of solutions is the order of its Weyl group). The

first component is just the fixed point set of bl9 a symplectic submanifold when

k φ ± ί; the normal map is just (b{ ) 2 . It is not hard to see that the other component

is indeed a lagrangian submanifold of Θ x Θ. Therefore, the normal map is exactly

equal to the identity map. So coincidentally, these two components correspond to

the two extreme cases of fixed point sets of a symplectic diffeomorphism. It also can

be shown that these fixed points are clean as long as b\ — I is invertible (i.e.,

k Φ ± O
An essential next step in our program is to study the symplectic traces of the

braid group actions and in particular to determine how they change under Markov

moves. Work on this problem is now in progress.
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