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Abstract. We construct a complete timelike maximal geodesic ("line") in a timelike
geodesically complete spacetime M containing a compact acausal spacelike hypersur-
face S which lies in the past of some ^-ray. An 5-ray is a future complete geodesic
starting on S which maximizes Lorentzian distance from S to any of its points. If
the timelike convergence condition (strong energy condition) holds, a line exists only
if M is static, i.e. it splits geometrically as space x time. So timelike completeness
must fail for a nonstatic spacetime with strong energy condition which contains a
"closed universe" S with the above properties.

1. Introduction

Let M be a timelike geodesically complete time-oriented Lorentzian manifold
containing a compact spacelike acausal hypersurface S. A conjecture stated by R.
Bartnik [B] says: If M satisfies the timelike convergence condition (strong energy
condition), then M splits isometrically as space x time. (In fact, Bartnik assumes S to
be a Cauchy hypersurface.) By the Lorentzian splitting theorem [N], this statement is
true if we can construct a timelike line, i.e. an inextendible maximal timelike geodesic.
However, without the timelike convergence condition, such a line need not exist (cf.
[EG]). It is the aim of the present paper to construct a timelike line if S lies in the
past of some £-ray, i.e. a future inextendible causal curve 7 starting on S such that
7 I [0, i\ is a curve of maximal length between S and 7(0 for all t > 0.

The main results are stated and proved in Sect. 5; the ingredients are given in
Sects. 2-4. For standard facts in Lorentzian geometry and for standard notation (such
as /+, J+, D+, H+) we refer to [HE, BE].
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2. Limit Curves

Let (M, g) be a space-time, i.e. a time-oriented Lorentzian manifold. Additionally, we
choose a complete Riemannian metric h on M. All nonspacelike curves are rectifiable
and (with the possible exception of certain limit curves which inherit a limit parameter)
we will always parameterize them by arc length with respect to h. Clearly, a causal
curve 7 is (future and past) inextendible if and only if it is parametrized on (—00, oo).

Limit Curve Lemma for Inextendible Nonspacelike Curves. Let 7n : (—oo, oo) —»
M be a sequence of inextendible nonspacelike curves (parametrized by arc length in
h). Suppose that p G M is an accumulation point of the sequence (7n(0)). Then there
exists an inextendible nonspacelike curve 7 : (—00, oo) —>• M such that 7(0) = p and
a subsequence (7m) which converges uniformly (with respect to h) to 7 on compact
subsets 0/R. 7 is called a limit curve of(jn).

Comment. The proof of this lemma is an application of Arzela's theorem and is
essentially contained in the proof of Proposition 2.18 in [BE]. One advantage of the
parametrization with respect to the background metric h is that one can establish
the upper semicontinuity of the Lorentzian length functional without invoking the
assumption of strong causality:

Proposition. The Lorentzian arc length functional is upper semicontinuous with
respect to the topology of uniform convergence on compact subsets, i.e. if a sequence
7n : [α, 6] —» M of nonspacelike curves converges uniformly to the nonspacelike curve
7 : [α, b] —> M, then

L(i) > limsupL(7n).
n—»oo

Comment. The idea behind circumventing the strong causality assumption is this:
One can partition [α, b] as α = £0 < tl < < tn = b so that each subsegment
7 [ίj_ι,^] is contained in a normal neighborhood A^ of M. (N^g), viewed
as a space-time in its own right, is strongly causal. By the uniform convergence,
7n ίti-i)ti\ c NI for all sufficiently large n. Now apply the known upper
semicontinuity of the Lorentzian arc length functional on the strongly causal space-
time (Ni:g) to conclude,

i(7 I [*<-ι, *il) > limsupL(7n | [t^tj).
n—>oo

Now sum over i to get the desired result.
The limit curve lemma was discussed for inextendible causal curves. There is

an obvious version for future (respectively past) inextendible causal curves
7n : [0, oo) -» M.

Let d denote the Lorentzian distance function, i.e.

d(p, q) = sup{L(μ); μ G <7(p, q)} < oo,

where C(p, q) denotes the set of future directed causal curves from p to q. The
Lorentzian distance function is known to be lower semicontinuous. A sequence
7n : [αn, bn] —> M of causal curves is called limit maximizing if
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for some sequence εn — > 0. Suppose that 7n converges uniformly to 7 : [α, 6] -» M on

some subinterval [α, 6] C Q [αn, bn]. Since L is upper and d lower semicontinuous,

there is a sequence <$n — > 0 such that

£(7n) - <$n < ^(7) <

< d(7n(α), 7n(δ))

thus
limL(7n) = L(7) = d(7(α), 7(6)) = lim d(7», 7n(6))

and in particular, 7 is maximal. (Beem and Ehrlich introduced the notion of limit
maximizing curves in the strongly causal setting; cf. [BE, Chap. 7].)

3. Rays, Co-Rays and Busemann Function

A ray in M is a maximal future inextendible causal geodesic 7 : [0, oo) — > M. Rays
often arise from limit constructions:

Lemma 1. Let zn be a sequence in M with zn — > z. Let pn G I+(zn) with finite
d(zn,pn). Let 7n : [0, αn] — » M be a limit maximizing sequence of causal curves
with 7n(0) = zn and 7n(αn) = pn Let 7n : [0, oo) — > M be any future inextendible
extension of '7n. Suppose either

(a) pn -^ oc, i.e. no subsequence is convergent,
or
(b) d(zn,pj-^oo.

Then any limit curve 7 : [0, oo) — * M o///z£ sequence 7n /s β r<2j starting at z.

Proof. All we have to show is that αn — > oo. Suppose not. By passing to a sub-
sequence, we may assume αn — > α < oo. Since 7n are parametrized by arc length for
/ι, all 7n are contained in a compact subset K c M, e.g. the closed /i-ball of radius
2α around z. This is clearly impossible in Case (a). In Case (b), let T be a timelike
unit vector field [i.e. g(T, T) = — 1] on M and r — g(.,T). Consider the Riemannian
metric

Note that for any causal curve segment σ,

L(σ) - Lg(σ) <

where LhQ denotes the length with respect to /ι0. By assumption, L(7n) > d(zn,pn) —

εn — > oo, hence L^Q(7n) — > oo. Since K is compact, there exists λ > 0 such that

h > λ /ι0 on TM I K. Therefore αn = Lh(^n) — > oo which is a contradiction.

S-Rays. Let 7 : [0, oo) — > M be a ray. Let 5 C M be a subset containing 7(0) such
that 7 maximizes distance to S, i.e. for any t G [0, oo),

L(7
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where d(S,x) = sup{d(g,x); q G S}. Then 7 is called an S-ray: E.g., any ray 7 is
a {7(0)}-ray. Observe that for any x G /~(7) Π J+(S') and all sufficiently large t,

d(S, x) + d(s, 7(0) < d(7(0), 7(0) < oo. (*)

Co-Rays. Let 7 : [0, oo) — > M be a future inextendible S'-ray and let z G
7~(7) Π J+(5). Let zn — > z in J+(5) and put pn — 7(rn) for some sequence
rn — > oo. Then zn G I~(pn) for sufficiently large n, and d(zn,_pn) < oo by (*).
Assume either

(a) pn -» oo or (b) d(zn,pn) -> oo.

[Note that (b) holds if 7 has infinite length.] Consider a limit maximizing sequence
μn of causal curves from zn to pn. By Lemma 1, any limit curve μ : [0, oo) — » M
of the μn is a ray starting at z. Such a ray is called a co-ray of 7. Note that μ is
contained in the closure of 7~(7). (In fact, if μ(0 G <9/~(7), then μ [ί, oo) is a
future inextendible null geodesic generator of 57 "(7).)

Busemann Functions. Let 7 : [0, oo) — > M be a timelike 5-ray and b : I~ (7) — >
[—00, oo) the associated Busemann function, namely b(x) = lim bf(x), where

Recall that bt(x) decreases monotonely with ί, since for 5 > t we have

), 7(5)),

d(7(0), 7(5)) - d(7(0), 7(0) +

Further, for x G 7" (7) Π J+(5), we have

&(x) > d(5, x) > 0,

since (*) shows 6t(x) > d(5, x) for any t. Recall that d is lower semicontinuous,
hence bt is upper semicontinuous, and since b is the decreasing limit of the bt, it is
also upper semicontinuous.

Lemma 2. Let 7 : [0, oo) — > M fce α timelike S-ray and μ : [0, oo) — > M α co-ray
with μ(0) = 2r G 7 "(7) Π J+(S). Then we have for any s > 0 ύm/ α/ry x G I~(μ(s))

In particular, if μ is a null ray, then b(x) < b(z)for any x G 7 (μ).

Proof. Let μ = limμn where μn is a limit maximizing sequence from zn to 7(rn).
Let bn \=brn. Then

bn(x) = d(7(0), 7(rn)) ~ ^(x, 7(rn)).
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Since μn(s) — > μ(s), we have x £ I~(μn(s)) and

d(x, 7(rn)) > d(z, μn(β)) + d(μn(*), 7(rn))

which shows
6n(x) < -d(x,μn(s)) + &n(μn(*)) < bn(μn(s)).

For two real sequences (αn), (6n) we will write αn w 6n if αn — bn is converging to
zero. Since μn is maximal up to an error εn, we have

6n(μn(*» - 6n(zn) - d(*n,7(rn)) - d(μn(*),7(rn))

«d(zn,μn(s)).

Thus
bn(x) < bn(μn(s)) « 6n(zn) + d(*n,μn(*)).

Now for any y £ /+(z) Π /~(7) we have y £ /+(^n) for large n and therefore

d(*n, j/) + d(j/, 7(rn)) < d(zn, 7(rn)),

which shows d(2/,7(rn)) < d(^n,7(rn)), hence 6n(y) > 6n(^n). So we obtain

bn(x) < bn(y) + d(zn, μn(5)) + εn.

Taking the limit as n — » cχo, we get the result; note that d(zn,μn(s)) — » d(z,μ(s))
since μn | [0, s] is limit maximizing, and use the upper semicontinuity of 6.

Comment. Lemma 2 replaces the well known fact in Riemannian geometry that the
Busemann function grows with unit speed (with respect to arc length) along co-rays.
This still holds in Lorentzian geometry provided that d is continuous and μ timelike
(cf. [E, p. 480]).

4. Spacelike Hypersurfaces

Definition. A subset S c M is called a spacelike hypersurface if for each p £ 5
there is a neighborhood U of p in M such that 5 Π U is acausal and edgeless in U.

Comment. A spacelike hypersurface is necessarily an embedded topological submani-
fold of M with codimension one. A smooth hypersurface with timelike normal vector
is a spacelike hypersurface in the sense of our definition.

Lemma 3. Let S C M be an acausal spacelike hypersurface. Then

J+(5) = J+(S) \ S.

Consequently, any S-ray is timelike.

Proof. Clearly, J+(5) 'C J+(5) \ S. So let p e J+(5) \ S and let μ be any causal
past directed curve from p to 5. Let q £ 5 be the past end point of μ. There exists a
neighborhood U of q and a coordinate chart x = (x0, . . . , xd) : U — > Jd+1 such that
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d/dx0 is timelike, and x~l(S Γ\ U) is a graph over Id. Let q' G μ Π U, q1 ^ q, and
replace the segment of μ between qr and q by the x0-ρarameter line through q1 which
also meets S. Thus q' G /+(S), hence p G /+(S). This shows that /+(£) = J+(S)\S.
If 7 is an S-ray, it cannot stay in S since S is locally acausal. So 7(ί) G /+(5) for
some t > 0 which implies that d(7(0), 7(0) > 0. Hence 7 is timelike.

Lemma 4. L<?ί S C M be a compact acausal spacelike hypersurface. Then there
exists a timelike S-ray in D+(S). IfH+(S) ^ 0, we find such a ray in Γ(p) Π D+(S)
for any pe H+(S).

Proof. If H+(S) ^ 0, this is true by the "Main Lemma" in [G2]. So it remains
to consider the (easier) case where H+(S) = 0. Let p G 5 and μ : [0, oo) — » M
be a future inextendible timelike geodesic with μ(0) = p. Since H+(S) = 0, we

have μ((0, oo)) C D+(S). Let rn — > oo and pn = μ(rn). Then pn — > oo since
pm — * p G D+(S) (for some subsequence (pm) of (pn)) would be a violation of strong
causality. By compactness of 5, there are maximal curves 7n from S to pn G D+(S).
Let £n = 7n(0) G 5. We may assume that zn — > 2 G 5. By Lemma 1, the 7n

accumulate to an S'-ray 7. By Lemma 3, 7 is timelike.

Lemma 5. Assume M is future timelike geodesically complete. Let S be a compact
acausal spacelike hypersurface in M. Then each S-ray 7 is contained in D+(S} and
any co-ray β 0/7 is timelike.

Proof. If 7 is not contained in D+(S), it will leave D+(S) at some point o — 7(ί) G
H+(S). By Lemma 4, there exists a timelike /S-ray of infinite length (by completeness)
in I~(o) Π D+(S). Therefore, d(S,o) = oo which contradicts the fact that 7 is an
S-ray.

Now let β be a co-ray of 7 with /3(0) = q G J+(S). Since 5 is acausal, we have
/3(ί) G J+(S) \ 5 = I+(S) (cf. Lemma 3) for any t > 0. Choose a sequence ίn -> oo
and put pn = /?(tn). We will show that

By perturbing the sequence (pn) slightly to the past and using the lower semi-
continuity of d, one can easily construct a sequence (gn) C /~(7) Π J+(5) with
gn G I~(pn) for all n, such that d(S,qn) — > oo. This implies that /3 cannot be null:
Otherwise, for the Busemann function β of 7 we would get 6(ςn) < 6(g) < oo (cf.
Lemma 2), but on the other hand, b(qn) > d(S, qn) — * oo (cf. Sect. 3), a contradiction.

In order to show (*), we may assume d(S,pn) < oo for all n. Let σn : [0, αn] — > M
be a limit maximizing sequence of curves from S to pn, i.e. L(σn) > d(S,pn) — εn

with εn — > 0. Let σn(0) = ^n G Sf. By compactness, we may assume zn — > z G 5.

Cα s1^ 7. pn — > oo. Then by Lemma 1, an —* oo, and σn accumulate to an 5-ray
σ : [0, oo) — » M. By Lemma 3, σ is timelike and has infinite length (by completeness).
So we have for any α > 0 and for large enough n,

d(S,Pn) > L(σn \ [0, αj) > L(σn \ [0, α]) -> L(σ \ [0, α])

(cf. Sect. 2). Since L(σ \ [0, α]) — > oo as α — > oo, we get (*).

Case 2. pn -> p e M. The coray /? is contained in D+(S), thus p G ,D+(5). Since
strong causality is violated at p, it cannot lie in D+(S), hence p G H+(S). Applying
Lemma 4 again gives an S-ray μ C /~(p) Π D+(S) of infinite length. In particular,
we have p G I+(μ(t)) for any ί > 0 and therefore pn G /+(μ(£)) for large n. Hence
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5. The Main Theorem

Recall that a line is a (future and past) inextendible geodesic 7 such that any compact
segment 7 | [α, b] is maximal, i.e. L(7 | [α, &]) = d(^(a), 7(6)).

Theorem A. Let M be a spacetime which is timelike geodesically complete and
contains a compact acausal space like hyper surf ace S. Suppose that there exists an
S-ray 7 such that S C /~(7). Then M contains a timelike line.

Proof. Let β : [0, oo) —> M be a past directed S'-ray in D~(S) which exists by the
time dual of Lemma 4. Since β(0) G S C /~(7), we have β(s) G I~(y(t)) for all s
and sufficiently large t. Pick monotone sequences ίn,sn — >• oo and set gn = 7(tn)
and pn = /3(sn). Let μn : [anJbn] — > M be a limit maximizing causal curves from

pn to #n. Since pn G D~(S) and gn £ J+(S), the curve μn must intersect 5, say
at zn, and we choose the parameter so that zn = μn(0). By compactness, we may
assume that zn — > z £ 5. Let μ be a limit curve of complete extensions of the μn's
(cf. Sect. 2). We have to show that bn — > oo, αn — > — oo (then μ is a line) and that
μ is timelike.

Note that μ+ = μ | [0, oo) is a co-ray of 7, and in particular, bn — > oo (cf. proof
of Lemma 1). Thus μ+ is a timelike ray (cf. Lemma 5), and moreover, there exists
0 < δ < liminf |αn| such that μ | [-5, oo) is maximizing, hence also a timelike ray.

In order to see that μ~ : [0, oo) — > M, μ~(f) = μ(—t) is a (past directed) co-ray
of β we have to show that z £ /+(β). But since μn [-5,0] -> μ | [-5,0] which

is a timelike geodesic, we have μn(s) G /~Cz) for sufficiently large n and suitable

s G [—5,0], hence z G I+(β(sn}) C I+(β). Hence μ~ is a co-ray of /?, and in
particular, αn — > — oo. Thus μ is a line, and since μ+ is timelike, μ must be timelike.

Remark. The proof shows that the assumption of timelike geodesic completeness can
be replaced by the assumptions that J+(S) is future timelike geodesically complete
and J~(S) is strongly causal.

As a consequence of Theorem A and the Lorentzian splitting theorem [N], we get
immediately the following rigidity result:

Theorem B. Let M be a spacetime which contains a compact acausal spacelike
hypersurface S, and which satisfies the timelike convergence condition, i.e. Ric (v, v) >
0 for all timelike vectors v G TM. If M is timelike geodesically complete and
there exists an S-ray 7 such that S C /~(7) then M splits, i.e. M is isometric to
(R x V, — dt2 Θ h\ where (V, h) is a compact Riemannian manifold.

Remark. There are numerous corollaries one can point out. The S'-ray condition is
implied by any of the following assumptions:

(a) For every future inextendible timelike geodesic 7 in J+(S), S is contained in

/-(7)
(b) For every future inextendible timelike geodesic 7 in J+(S'), /~(7) = M.
(c) There exists t > 0 such that S C I~(x}for any x G I+(S) with d(5, x) > t.

Conditions (a) and (b) both weaken the "no observer horizon" condition of Theorem
1.1 in [Gl] (which, in addition, requires S to be Cauchy). Conditions (b) and (c)
actually imply that S is a future Cauchy surface, i.e. J+(S) = D+(S) or equivalently
H+(S) = 0.
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