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Abstract. Let Λθ be the irrational rotation algebra, i.e. the C*-algebra generated by
two unitaries U, V satisfying VU\ζ=e2πiθUV, with θ irrational, and consider the
fixed point subalgebra Bθ under the flip automorphism U-^U'1, V-+V'1. We
prove that Bθ is an AF-algebra.
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1. Introduction

In this paper we continue the study, begun in [BEEK1] and [BEEK 2], of the fixed
point subalgebra of the rotation algebra under the flip. Recall from [Rie] that the
rotation algebra Aθ is the universal C*-algebra generated by two unitaries U, V
satisfying VU = ρUV, where ρ = e2πiθ and 0 ^ θ < 1. The flip σ is the automorphism
of this algebra defined through the requirements

σ (l/)=L/" 1 , σ{V)=V~ι. (1.1)

* Present address: Department of Mathematics, University of Oslo, P.O. Box 1053, N-0316 Oslo
3, Norway



606 O. Bratteli and A. Kishimoto

Denote the fixed point algebra under the flip by Bθ, and the crossed product by
Cθ. In [BEEK1] it was established that if θ is irrational, then Bθ is the universal
C*-algebra generated by two self-adjoint elements α, b satisfying

λ2)b, (1.2)

λ2)a, (1.3)

= (4λ2-ί)abab-2λa2b2 + Sλ(ί-λ2)(a2 + b2-l), (1.4)

where λ = cos(2π0). This result was extended to rational θφ{0,^} in [BEEK 2]
while the universal C*-algebra fails to exist if θe {0,i}. The connection between a,
b and U, V is

a^U+U'1, b=V+V~ί. (1.5)

When θ=p/q is rational, it was proved in [BEEK 2] that Bθ is the subalgebra of the
C*-algebra C(S2, Mq) of continuous functions from the 2-sphere S2 into the algebra
of complex q x q matrices Mq determined up to isomorphism as follows: There are
four distinct points ω0, ω l 5 ω2, and ω 3 in S2 and to each point ωf is associated a self-
adjoint projection Pf in Mβ. The dimensions of P t are all when g is odd, and

when g is even, dim(P0)= —— whilst dim(Pf)= - for ι = l,2,3. The algebra Bθ

consists of those functions fe C(S2, Mq) such that /(ωf) commutes with Pf for
1 = 0,1,2,3.

An analogous result was proved for Cθ, with the difference that Mq is replaced
by M2q, and dimP^ = q for i = 0,1,2,3, independently of the parity of q. (These latter
results were extended to other finite subgroups of the canonical action of SL(2, Z)
on Aθ by Farsi and Watling, [FW1, FW2, FW3, FW4].)

When θ is irrational, the algebras Bθ and Cθ are simple with a unique trace state,
[BEEK 1]. Furthermore,

for all θ, [Kum2]. A direct argument when θ is rational is given in [BEEK 2]. In
this paper we will prove

Theorem 1.1. The algebras Bθ and Cθ are AF-algebras when θ is irrational

Since Bθ is a corner of Cθ9 it suffices to show this for Cθ. In [BEEK 2] we
expressed some hope of proving this by approximation by rational θ, but as it is we
do not do this directly, but rather use Putnam's tower construction [Put] very
much as in [BEK], together with a method of constructing projections in Cθ which
was devised by Kumjian, [Kuml], modifying RieffeΓs method of constructing
projections in [Rie].

On the way to proving Theorem 1.1 we will show that Cθ is an inductive limit of
finite direct sums of certain subhomogeneous algebras over the unit interval and
some full matrix algebras; see Corollary 7.4 and (7.1)—(7.5). That Cθ is AF will
follow from this by combining with techniques from [BBEK] and [Su]. The
strategy is to use unique trace state and simplicity to prove small eigenvalue
variation for the inductive limit.

We can also classify the Cθ% essentially as the Aθ% by computing the range of
the trace:



Non-Commutative Spheres 607

Theorem 1.2. // 0 < θl9 θ2 < 1 and θuθ2 are irrational, then Cθί is isomorphic to Cθ2

if and only if 0X e {02, l-θ2}.

This contrasts with the rational case where the algebras Cpjq and CpΊq> (with p, q,
and also p\ q', relatively prime) are isomorphic if and only if q = q\ [BEEK2].

The proof of Theorem 1.2 is independent of the rest of this paper, and is as
follows: Since any projection in Bθ is a projection in Aθ, and the Rieffel projection
in Aθ has a representative which is flip invariant, it follows that the range of the
trace on the projections in Bθ is the same as in Aθ, which is (Z + Z0)n[O,1]. But Bθ

is isomorphic to eCθe, where e is a projection in Cθ with trace 1/2, and hence the
range of the trace on Cθ is | ( Z + Z0)n[O,1]. Thus, if Cθl and Cθ2 have the same
range of the trace, then Θ1 = θ 2

 0 Γ 0i = l — θ2, and hence Cθί and Cθ2 are non-
isomorphic unless 0X and θ2 are related in this way. On the other hand Cθ and Cί _θ

are isomorphic since the isomorphism u-+υ9 v-^u of Aθ and Aγ_θ intertwines the
flips of those two algebras. This proves Theorem 1.2.

2. Putnam's Tower Construction on T

In this section we will use the identification T = R/Z, and by the term interval in T
we will mean closed nonempty intervals where both endpoints (which are
supposed to be distinct) lie in the orbit Z θ m o d l , where O < 0 < 1 is a fixed
irrational number. By a partition of T will be meant a finite collection of closed
intervals with union T such that the intersection of any pair of the intervals consists
of at most one point (which is then an endpoint of both the intervals and thus is
contained in Z0). Note that the set of intervals are left globally invariant under
both α and σ, where

α(ί) = ί + 0, (2.1)

and

σ(t)=-t. (2.2)

In particular we will consider the partitions of T determined by the requirements
that

p
that

shall be the set of endpoints, where N is a positive integer. In particular, we will see
that these partitions arise from a Putnam tower construction with 3 towers (unless
AT is very small). For later use, we will choose ΛΓ in a specific way:

For any positive integer M, choose (5>0 so small that all the translates of
<0/2 — δ,θ/2 + δ} by mθ, with \m\ ^ M + 1 , are pairwise disjoint on T. Then choose
N>0 such that

Nθe(θ/2,θ/2 + δ} (2.3)

and such that the orbit piece { — (N—1)0,..., (ΛΓ— \)θ] intersects both the intervals
<0/2,ΛΓ0> and <ΛΓ0, 0/2 + δ). Now let kθ denote the point in the orbit piece in
<ΛΓ0,0/2 + δ} which is closest to Nθ, and Iθ the point in the orbit piece in <0/2, Nθ}
which is closest to Nθ. Thus, \k\<N, \l\<N and [AΓ0,fc0], [70,ΛΓ0] are elements in
the partition of T determined by { — Nθ,..., Nθ}, while [/0, fc0] is an element in the
partition of T determined by {-(ΛΓ-1)0, (AT-1)0}.
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Lemma 2.1. Define M, δ, N, I, k as above. Then

(2.4)

and the partition of T defined by the orbit piece { — (JV — 1) 0,..., (JV — 1) 0} consists of
the intervals

[/0,fc0]-hm0,

(2.5)

Furthermore, this partition consists of the Putnam towers associated to the
ocσ-invariant set

[(-/c+l)0,(-/+l)0]u[/0,fc0]. (2.6)

This set is contained in the interval (θβ-δ, 0/2 + <5>, and the heights of the three
towers are all at least 2M 4- 2.

Proof. For clarity, let us draw a figure of the whole tower construction (drawn in
the case that k<ΐ):

l-ί i\Γ—1

N-\ k-ί

-k -N -I

• (2.7)

-k+ί -ΛΓ + 1 - / + 1 0/2 /
-+•»

N

Here, any integer label n refers to the point nθ. Inspection of the figure above shows
that the set of left end points of the intervals occurring runs through the set
{m; — JV + l^mgJV—1} and each number of this set occurs exactly once. The
same is true for the set of right endpoints. Hence all we have to show is that the
interiors of the floors of the towers indicated above do not overlap, that is, if nθ lies
in the interior of some floor, then \n\ ^ N. We check this for the three towers
separately.

Tower ί from the right. As for the basement, note that the only nθ in </0, kθ} with
\n\ SNis Nθ, by the definition of k and /. For the remaining floors </0, kθ} + mθ we
proceed by induction with respect to m. If

n0G</0,fe0> + m0 (2.8)

with \n\^N— 1 and m^l , then

(n-1)06 <0,fc0> + (m-1)0, (2.9)

and hence, by the induction hypothesis, we must have n= — ΛΓ +1 and m — 1 >0.
But as σ, applied to Z0, Nθ, and kθ, gives -lθ, -Nθ, -kθ respectively, and the
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whole set {-iV0,(-JV + l)0,..., (N-ί)θ,NΘ} is σ-invariant, it follows that

(lθ,kθ} + (m-l)θ = (-kθ, -Iθ) (2.10)

for this m, whence

This proves simultaneously that

and that the statement for the first tower holds.

Towers 2 and 3. Note that α maps the roof of Tower 1 onto the union of the
basements of Towers 2 and 3, and that hence the only point of the form nθ in
<(-£ +1)0, (-/+1)0> with \n\SN-i is (-ΛΓ+1)0. This is seen by subtracting θ
and using that — Nθ is the only point of the form nθ with \n\ ^ N in < — kθ, — Iθ).
For the remaining floors of e.g. Tower 2, i.e., <( — JV+1)0,( — /+l)0> + m0, we
proceed by induction again: If

then

and hence n= — N+1 by the induction hypothesis. Thus,

for this m. Since the neighbouring points of — Nθ in { — Nθ,..., Nθ} are — kθ and
-Iθ it follows that

) ( - l ) = - f c and (-/

from which follows

m = N — k and m = 0,

which is a contradiction. Thus the only restriction on the range of m is that
( - N + l) + ro and (-/+l) + m should lie in {-ΛΓ + 1, ...,JV-1}, i.e. (-/ + l) + m
^iV — 1, i.e. m^N + l—2. Tower 3 is treated analogously.

Finally, since δ was chosen such that all translates of <0/2 — δ, θ/2 + δ} by m0,
with \m\ ̂  M +1, are pairwise disjoint, and all three basements are contained in this
set, it follows that any translate of any basement by m0, with \m\ ^ M +1, cannot
intersect any other basement. It follows that the height of each of the three towers is
at least 2M + 2.

3. A Subsidiary Tower Construction

In order to construct finite-dimensional subalgebras of Cθ = C(T) x αZ x σZ2, we
will have to modify the three-tower construction in Lemma 2.1 and replace it by a
six-tower construction. In the case that k < I, the new tower construction looks as
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follows:

l-i+A N-i-A

JV-1 k-\

-k+A -N

-k-Δ -k+A

-k

-l-Δ

-fc+1 -N + ί -l + ί-Δ θ/2 l+A N k-Δ k+A

(3.1)

Here, Δ h a nonzero integer such that Δθ is much closer to 0 in T than any of the
points in the orbit {— (JV —1)0,..., (N —1)0} are to each other. For definiteness, let
us assume that (mod 1)

0<ΔΘ£imin{(-l+ί)θ-(-N + ί)θ9(-N + ί)θ-(-k + l)θ}. (3.2)

It is then easily verified that the depicted tower construction really is a Putnam
tower construction over the basement [( — fc + 1 — Δ)θ, (—/+1 — zl)0]u[(/ + zl)0,
(h + Δ)θ~\. This basement is still ασ-in variant (ασ interchanges the two pieces). Note
also that σ maps each of the six towers into themselves except for the first and third
tower from the left, which are interchanged, and σ reverses the order of the floors,
in particular interchanging basements and roofs.

In the case that /<&, we use the following new tower construction:

JV-1 k-ί

/-I
— I —

JV (3.3)

-fc + 1 -JV + 1
-h

-J + l θ/2 I N

The same remarks, with the obvious modifications, apply to this construction.
In any case, let YUY29 Y3 denote the three ground floors of the wide towers, i.e.,

towers number 2, 4, and 5 from the left in Fig. (3.1), and let Y4, 75, Y6 denote the
three ground floors of the narrow towers, i.e., towers number 1, 3, and 6 from the
left in (3.1). The floors in the towers over Yl9 Y2, and Y3 will be called wide floors,
and the other floors will be called narrow floors. Let J( be the number of floors in
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the towei1 over Y(. The numerical value of J f can be read off from Fig. (3.1) or (3.3).
The next lemma follows by inspecting (3.1) and (3.3) in conjunction with
Lemma 2.1. It is an analogue of Propositions 1.2 and 1.6 in [BEK].

Lemma 3.1. Adopt the notation and assumptions of Lemma 2.1 as well as the
assumptions above. Then the following statements hold:

for fc=l,...,6. (3.4)

The sets (x\Yk\ z = 0, 1,..., Jk-1, k = l,...,6 form a partition of Ω. (3.5)

{σ(Y1),...,σ(Y6)} = {ocJi-1(Yil...,(xJ*-1(Y6)} (as unordered sets). (3.6)

If Iί912 are two floors which are adjacent in T,

then one is a wide floor and the other a narrow floor. (3.7)

The set Y=YiuY2u...uY6 is invariant under ocσ,

and is contained in a δ-neighbourhood of θ/2. (3.8)

ocσ(Yk)nYk = φ for fc = l , . . . , 6 . (3.9)

Remark 3.2. For (3.8), we assume that Aθ mod 1 has been chosen sufficiently small.
As for (3.6), we have σ(Yk) = (xJk~ x(Yk) for k = 1,2,3, and for one k in {4,5,6}, say

fc = 4, while J5=>J6 and (χJ^1(Y5) = σ(Y6) and ^ \ {)
Remark 3.3. We will not consider the extent to which the construction of narrow
towers and Lemma 3.1 is tied up to our particular choice of partitions. Having any
tower construction based on Td, the Putnam discretization of T where T is cut up
along the orbit Z0, then any floor is a finite union of intervals. Hence, splitting up
the towers, we may assume that all the floors are intervals. Cutting off a small, but
uniform, piece around each endpoint one obtains a candidate for the floors of the
narrow towers of a similar construction. However, it is not clear how one should
choose the basements of the new towers in order to ensure the validity of the
analogue of Lemma 3.1. As an illustration of the difficulties the reader may wish to
verify that if k < I and one tries to build up the narrow towers as in Fig. 3.3 rather as
in Fig. 3.1, then the construction works if and only if /<0, and even then one of the
narrow towers may have smaller height than 2M + 2.

4. Kumjian's Projections

In this section we will show that if χu ..., xn is any finite collection of elements in
C(T) £ Cθ = C(Ύ) x αZ x σZ2 and ε > 0 then there exists a finite-dimensional subal-
gebra of Cθ which approximately contains xl9 ...,xn up to ε; see Lemma 4.1.

To this end, equip T with normalized Haar measure dt, and denote the unitary
operators implementing α, σ on L2(T) by w(α), u(σ). The C*-algebra C(T) has a
faithful representation on L2(T) by pointwise multiplication, and as C(T) is abelian
and Z x σZ2 is amenable, Cθ is canonically isomorphic to the C*-algebra on L2(T)
generated by C(T), u(<x) and u(σ\ [Ped]. We thus identify Cθ with this algebra.

Let δ be a positive number such that

δ<Aθmodl. (4.1)

Then all the floors in the new tower construction have length at least 2δ. A typical
floor has the form / = [θl9 Θ2\ where θί=nίθ mod 1, θ2 = n2θ mod 1 are elements
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in the 0-orbit. Following [Kum 1], we will associate a projection pj to / as follows:
Forte[θi-δ,θi + δ'], put

φlή^ + δ-ήβδ, i=l,2, (4.2)

and define //GC(T) by

\-φγ(t) if θi-δ^t^θi + δ,

1 if

φ2(t) if θ2-δ£

, 0 elsewhere.

fi(t) = (4.3)

Define gUIeC(Ύ) by

σ ω _ ί ( ^ ( 0 ( l - ^ ) ) ) 1 / 2 if β l - « < ί < β l + 2,
g ί ? l ( j " l θ elsewhere ( 4 β 4 J

for i = l,2, and finally set
2 2 2 φ ) g 2 , / ) , (4.5)

where ε(/)e { + 1,-1}. Using that nθ is a fixed point for the homeomorphism α2πσ
of T, one verifies that px is indeed a projection, whatever the sign of ε(J). We now
make the following choice for the sign: Put ε(7) = H-1 if / is a wide floor, and put
ε(I) = — 1 if / is a narrow floor. This choice of sign ensures that the boundary terms
of the projections belonging to adjacent intervals cancel when the projections are
added up, because of (4.4), and as a consequence we have

ΣP/ = 1> (4.6)
I

where the sum is over all floors in the new tower construction.

For any floor /, let tι denote the middle point of the interval IQΎ.

Lemma 4.1. // xeC(T), then

l im|μ-Σx(ί/)Pi | |=O. (4.7)
jv-oo|| i II

Proof. For given ε>0 choose ^ > 0 such that \t — s\<δ' =>\x(t) — x(s)\<ε, and
choose N, /, k etc. as in Lemma 2.1, with δ equal to this δ'β (or choose N larger). We
have

= * - Σ*('/)//- Σe(/)x(t/)(«(α)2"l(/)u(σ)gi,/ + «(«)2"2<J)«(σ)g2>J). (4.8)

The functions fι form a partition of unity on T, and the support of each fι has width
at most δ'. It follows that

|x-Σ^/)//|<^ (4.9)

As for the remaining terms, note for example that the operator u(α)2"l(/)u(σ)g1 Λ

lives on I?§nγ{ΐ)θ — δ,n1{I)θ + δ']), and as g1>7 is symmetric around ^(7)0, this
subspace of L2(T) is mapped into itself by M(α)2ni(I)w(σ)g1. Also, there is a unique
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floor J such that n2(J) = n1(I\ i.e., the floor J that intersects / at its left endpoint.
Then ε(J) and ε(J) have opposite sign, while

(4.10)

since g2fj = gi,i by construction. As

llίi.zll^l/2 (4.11)

and

\x{ti)-x(h)\<ε (4.12)

it follows that

| | x ( t , ) β ( i ) φ ) 2 " l W i ^ ^ (4.13)

Note also that the interval [^(7)0 — 5,^(1)0+ δ] is disjoint from all the other
intervals around the endpoints of the floors except for the floor J alluded to above.
Thus the operator sum

Σ . 2 ( / ) Φ ) g 2 f 7 ) (4.14)
I

decomposes into a direct sum of operators of the form

x W ^ / t u f α l ^ ^ J ^ . + x ω e f J J φ ) 2 " ^ ^ , , (4.15)

over all adjacent intervals J, / with J to the left. It follows from (3.16) that the norm
of the operator sum is also at most ε/2. Combining with (4.8) and (4.9) we obtain

\x- ΣxitiΪPil <β + ε/2 = 3ε/2, (4.16)

and Lemma 4.1 is proved.

5. Finite-Dimensional Subalgebras

We will now define a finite-dimensional subalgebra Ao of C(T) x α Zx σ Z 2 which is
somewhat analogous to the Ao of [BEK], but in contrast to that case our Ao is not
contained in C(T)xαZ. The following lemma is analogous to Lemma 1.5 in
[BEK]:

Lemma5.1. Let Ao be the C*'-algebra on L2(T) generated by paiiYk), fc = l,...,6,
i = 0,..., Jk-\ and u(ot)pτχσ{Y), where

/W)= Σ J Σ% α i ra. (5.1)
fc=l i = 0

It follows that Ao is finite dimensional, and the operators

! j y J i (5.2)

for ij = 0,1,..., Jk — 1, k = 1,2,..., 6 constitute a complete set of matrix units for Ao.
Furthermore, Ao is invariant under Ad(u(σ)) and

j = eι

Jk_1^Jk_1_j, (5.3)

where either fc = /e{l,2,3,4}, or {/c,/} = {5,6}.
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Proof. On comparing with Lemma 3.1 and Remark 3.2, it suffices by [BEK,
Lemma 1.5] to show that

tt(α)Pjκ(α)* = p β ( / ) (5.4)

and

whenever pl9 pα ( / ), pσ(J) are defined from (4.5) with the same sign on ε, i.e.
ε(/) = ε(α(/)) = ε(σ(J)). Using the notation (4.2H4.5) it is clear that

u(α)/1u(α)* = / β ( / ),

u(a)u(a)2niu(σ)u(a)* = u(α)2(Πl + ^ ( σ ) ,

u{σ)u(0L)2n>u{σ) u(σ) = ιι(α)" 2Mlw(σ),

and hence (5.4) and (5.5) follow from the definition (4.5).

6. Homogeneous Subalgebras

By adapting the techniques of [BEK] to the present circumstances, we will now
prove the following:

Theorem 6.1. Assume that θ is irrational. Given ε > 0 and elements xl9...,xne C(T),
there exists a C*-subalgebra Bof Cθ = C(T) x α Z x σZ2 with the same unit as Cθ such
that there exist elements yu ...,yneB and a unitary u' E B with

\\yi-Xi\\<ε9 i = l , . . . , n , (6.1)

| | !i(α)-n'| |<β, (6.2)

and B has the form

(6.3)

with J5 = J6 and Jx even, where F is a closed subset of T globally invariant under
complex conjugation. Furthermore, B is Ad(u(σ))-invariant, and σ acts on the
canonical unitary z^z in ίj^CfTP) by sending it into z-*z. There exist matrix units
ejj for M 7 l ® 1 and e\} for MJk such that

ήj^^-j-t (6.4)

for k = 1,2,3,4, and

) = eJk-ί-i,jk-j-i ( 6 5 )

Before proving the Theorem we state a Corollary.



Non-Commutative Spheres 615

Corollary 6.2. Assume that θ is irrational. Given ε > 0 and elements xu...,xne C(Ύ)
there exists a subalgebra A of Cθ with the same unit as Cθ such that

and there exist elements yu .

and a unitary u' eA with

and A has the form

u(σ)eA

9yN in A with

\\yt-xt\\<*

||u(α)-w'||<ε,

where

0 = {xeC(G,M2Jl); x(-l)E=Ex(-l\x(+ί)E =

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

Here, E is a projection in M2Jl, of dimension Ju and G is a closed subset of [— 1,1]
(when G^—l (respectively +1), the condition x( — l)E=Ex( — \) (respectively

ί)E=Ex{ + l)) is vacuous.)

Proof of Corollary 6.2. As Ad(w(σ)) acts on the finite-dimensional algebra B as in
Theorem 6.1, and u(σ) is a self-adjoint unitary, it is clear that the algebra A
generated by u(σ) and B is isomorphic to a quotient of B x σZ2. Since Ad(w(σ))
restricted to the subfactors MJχ®\9 MJ2, MJ3, and MJA leaves these factors
invariant and is inner, it is clear that the corresponding components of the crossed
product are Mjy®\®MJx® 1, MJ2@MJ2, MJ3®MJ3, and Mj4φMj4, and hence,
by counting dimensions, all we have to show to prove that the corresponding
components of A are isomorphic to these is that the corresponding components of
u(σ) are not contained in the matrix algebra. But it follows from (6.4) that

Ad(u(σ))\M=Ad

\ l

0

0

1

0

0

1

0

0

= Ad(uk). (6.11)

But since σ reverses the orientation of T, it follows easily from the proof of
Theorem 6.1 that if p is a minimal projection i i JvfJk and σ(p) = q, then there are
projections pl9 p2 in Cθ such that p1p2 = Q, Pi +Pi=P and such that

Ad(wk) (pj = σ(p2), Ad(«k) (p2) = σ(px).

Thus u(σ), cut down by the central projection corresponding to MJk, is not a scalar
multiple of uk.

Next, as σ switches MJs and MJβ, the algebra generated by Mj5®MJβ and the
corresponding component of u{σ) is equal to the simple crossed product M 2 / s . The
assertion concerning Bo is proved e.g. in [BEEK 3]. The closed set G is the orbit
space of T under the flip z-+z; that is, G is the projection of F into the real axis.

Proof of Theorem 6.1. The proof closely mimics the proof of Theorem 1.1 in
[BEK]. First, we choose one N such that the given elements xί9..., xn almost lie in
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the algebra Λo of Lemma 5.1. Actually, to ensure that xu...,xn still are
approximately contained in the modification zAoz* ofΛ0 introduced later in (6.44),
we must choose JV so large that xί9..., xn have small variation over the sets a\Y)
and oc~kσ(Y) for fc = 0, ...,M. Inspection of the proof of Lemma 4.1 shows that
xl9 ...,xn can be approximated by linear combinations of the projections Pak{Y),
Pa-kσ(Y) for fc = 0, ...,M together with the P/s corresponding to the remaining
floors /. Further inspection of the proof of Lemma 4.1 shows that the approxim-
ation is uniform in the choice of A in (3.2) and δ in (4.1); that is, replacing δ by a
smaller δ we keep the estimate, for the given JV.

Now, for the moment, consider the sets

(6.12)

which are the basements in the original tower construction in Lemma 2.1. By
[BEK, Lemmas 1.7 and 1.8], if Y( is a basement such that one of the ασ-fixed points
0/2 or (0 +1)/2 lies in the tower over Yi9 then the tower over Yt has an even height Jt,
and Yi contains three mutually disjoint intervals A, B, C such that

^-\A) = σ(A)9 (6.13)

α J - 1 (β) = σ(C), (6.14)

ocJi-\C) = σ(B), (6.15)

and if k is the smallest positive integer such that cckσ(A)nYiφφ, then

B = <xkσ(A), (6.16)

and if O^j<k then

Anocj(A) = 0. (6.17)

Now, choose on N' so large that if k\ ΐ e {- (ΛΓ -1),..., N' -1} are such that k'θ is
the point in { -(JV -1)0,..., (JV' -1)0} which is closest to JV'0 from above and ΓΘ
the point which is closest to N'θ from below, then the interval [70, k'ff] is contained
in the interior of A9 above. Redefining A as

A: = irβ9kfθ] (6.18)

and
B: = ockσ(A), C: = σαJl~1(B), (6.19)

we see that A, B, C still has the properties (6.14H6.17) above; the only problem is
property (6.13). To ensure this property, we must examine the proof of Lemma 1.8
in [BEK] more closely. We see that Y1 has a σα*71"1-fixed point ω, which in our

ί—J ί—J- 1
concrete setting has to be —^^0 or ——-0+ -, and A is taken to be a small

σocJi~ι-invariant neighborhood of ω in Y Hence, in order that [/'0,fc'0] shall be
σαJl ~ 1-invariant, we must choose N' so that iV'0 is very close to the fixed point ω.
For this, let us show the following elementary lemma:

Lemma 6.3. For n = l,2,3,...letNnbe the nth nonzero integer with the property that
Nnθ is strictly closer to ω than any kθ with \k\ < \Nn\. It follows that there exists an
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n0 >0 such that if n^n0, then Nn>0and if k, l'e{-(Nn-l%...,(Nn-l)} are such
that k'θ is the point in { — (Nn — 1)0,..., (JVn — 1)0} which is closest to Nnθ from above
and Γθ the point which is closest to Nnθ from below, then

{k',l'} = {Nn^,-Nn.1~Ji + i}, (6.20)

as sets. As a consequence,

σaJi-111% fc'0] = [/'0, fc'0] . (6.21)

Proof Note that as σocJi~~1ω = ω, the two points

kθ9(-k-Jt

which are conjugate under σaJi~ι, have the same distance to ω. Thus, if k is an
integer with |fc|> Jt — 1 and k is negative, then (—k — Jt + ί) is a positive integer
with smaller absolute value than k such that ( — k — J, +1)0 has the same distance
to ω as kθ. Thus, Nn>0 when \Nn\>Ji-ί.

Let ε > 0 be such that if/ is any interval of length ε, then the translates ockl, with
|fc|^Jf, are all disjoint. Choose n0 so large that

#„„_,> J , - l (6.22)

and

\Nno_1θ-ω\<ε/4. (6.23)

Then, if n ^ n 0 —1, the translates

α*[JVn0-ε/2,JV,,

for \k\^Jt are all disjoint, and it follows that

Nn+1>NH+Jt.

Thus, if n ̂  ft0, then both the points

lie in the set

and also these two points are conjugate under σαΛ~1. It is then clear from the
definition of Nn, k', /' that

{V,η = {N.-1,-NH-1-Jt + i}. (6.20)

This ends the proof of Lemma 6.3.
By Lemma 6.3, we may redefine A as in (6.18), and still retain all the properties

(6.13H6.17). Following [BEK,(1.33)] we now define

X = Au(xσ(A). (6.24)

The Putnam tower construction over X is then exactly like the construction over Y
described in Lemma 2.1 we have just replaced N, I, k by N', ΐ, k'. Also, as AT > N,
the partition of T defined by the new tower construction is finer than the previous
one. Now choose the A in (3.2) so that

(6.25)
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and the δ in (4.1) so that

5 < 40 modi, (6.26)

with the new A. We will, furthermore, assume that Aθ and the interval A are chosen
so small that when X is modified from (2.7) to (3.1), then the resulting new A is still
contained in one of the three wide basements of the new Y, and the properties
(6.13)-(6.17) still hold for the modified A inside the modified 7-towers. Actually,
when referring to X, y from now on, we shall refer to the modified basements in the
tower construction (3.1) rather than the original basements in (2.7).

Use the new values of δ, A when defining Ao from the towers over Y, and define
another finite-dimensional subalgebra At of Cθ by using the tower construction
over X and the same values of A, δ. Since the partition of T defined by the towers
over X is a refinement of the partition defined by the towers over Y, it is clear from
Definition 4.5 that the p/s for the intervals in the y-partition are sums of p/s for the
intervals in the X-partition, and using Lemma 5.1 it is then clear that

AOCAX. (6.27)

From now on, we follow [BEK, Sect. 1] closely, just replacing χ7 by /?7 for all
intervals /. So, define

k=l i=0 *=1

=«(α)iVw+ Σ Φ I ' ^ - H W

=Φ)Λw> + J l PrA")1 ~Jk (6 2 8)
and

u0 = ι ι ( φ 8 = PΩχγ + J ^ u(<x)J*PYk. (6.29)

Then, define vl9 u1 correspondingly from the towers over X, and verify

t;*) = (ι;1ί;S)* (6.30)

as in [BEK, Lemma 1.9]. If I = l 1 u l 2 υ l 3 u l 4 υ l 5 u l 6 is the partition of X
defined by the new tower construction, then for any k such that σ maps the tower
over Xk into itself, i.e. for k = 1,2,3,4, the number of floors in this tower contained
in 7 is odd, and hence the restriction of vxvl to the corresponding central
projection in A1 has odd order, see [BEK, Lemma 1.10]. Consequently there exists
a unitary operator weAt such that

wPΩ\y = PΩ\y, (6.31)

w2M = Viv%, (6.32)

, (6.33)

(6.34)
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see [BEK, Lemma 1.11], and a unitary operator ueA1 such that

UPΩ\Y = PΩ\Y> (6.35)

uMPYiu-M^w~MPxw
M, (6.36)

Ad(vou(σ))(u) = u9 (6.37)

| | l - u | | ^ π / M ; (6.38)

see [BEK, Lemma 1.12]. Now, defining a unitary operator z in Aγ by

z= Σ vk

ow
M-kuM~%kpaHY)+ f

fc=O fc = O

ϋWu«^>)l ( 6 3 9 )

one verifies that

(6.40)

(6.41)

(6.42)

(6.43)
see [BEK, Lemma 1.13].

Now, define

B=C*(zAoz*,Uί), (6.44)

where we recall that

u^u(φχ. (6.45)

We will verify that B has the properties in Theorem 6.1. First, note that as z
commutes with the projections

as well as with the subprojections in Λo of

p

it follows that all of these projections belong to zAoz*. Since the diameter of the set
Y can be chosen arbitarily small at the outset, it follows from Lemma 4.1 and its
proof that for given ε > 0 and elements xl9...,xn€ C(T), for N large enough there
exists elements yί9 ...,ynezAoz* with

\\yi-Xi\\<ε9 ί = l , . . . , n .

This is (6.1).

Next, as ux eB and t;0e^40, we have

w/ = w1zί;oz*Gβ, (6.46)

and as u(a) = u1v1 we have

\\u'-u{a)\\ = WzVoZ^-υJ^πβM (6.47)
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by (6.43). Thus, if M is chosen large enough, w(α) is approximately contained in B,
which is (6.2). The proof of the remaining statements of Theorem 6.1 is almost
identical to the end of the proof of Theorem 1.1 in [BEK]. In particular, the partial
unitary

v= V
k O

ίJi'x \
with support z ( Y elkk)z* *s the canonical generator of the C(F)-part of B in (6.3)

W o /
that is, F is the spectrum of this partial unitary. As

by (6.40), and ux acts as the identity on PΩ\X by (6.29), it follows that

In [Put] and [BEK], one now used the fact that u1 was contained in the same
K^-class as w(α), which is non-trivial in C(T) x αZ, to conclude that F = T. However,
in the present case the definition of the projections PXk and thus of u1 involves the
operator u(σ), and so u1φC(Ύ)xaZ. Therefore we cannot conclude from this
argument that F = T in our case. In the previous case one could also conclude that
Sp(wi) = T by observing that u1 is the unitary on L2(X) which is defined by the
return map on X, which is minimal as a map on the discretization of X obtained by
cutting at all points on the orbit Zθ. We have not been able to turn this into an
argument that the present uγ has full spectrum.

7. Basic Building Blocks

In order to prove from Corollary 6.2 that Cθ is an AF algebra, we will replace Bo

with a "large" subalgebra which is easier to describe in terms of a certain number of
subalgebras which are defined as follows:

, k= -1,0,1,2, n = l , 2 , . . . , (7.1)

where

C.^C, (7.2)

CO = C([-1,1]) (7.3)

= the universal C*-algebra generated by an x = x* with — 1 ̂ x g 1,

C! = {/eC([0,l],Af2);/(0)6CΘC} (7.4)

= the universal C*-algebra generated by x, υ satisfying x = x*9 — 1 ̂  x ^ 1, υ = υ*9

v2 = l, vxv= —x, and

C2 = {/GC([- l , l ] ,M 2 ) ;/(- l)eCΘCand/( l)6CΘC} (7.5)

= the universal algebra generated by w, υ satisfying v = v*, v2 = l, uu* = u*u = l,
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The statements about Cί and C2 follow from the fact that the crossed product of
C([ -1,1]) by the flip (σf) (x) = f{-x) is just Cγ and the crossed product of C(T) by
the flip (σ/)(z) = /(z) is just C2. The embedding of x, v into Cγ is given by

_ J (7.6)

t>:te[O,l]->(j J) (7.7)

and then CφC is skewly embedded into M2 as the two eigensubspaces of

0 Γ
. ., and the embedding of u, υ into C2 is given by

f ^ ° ), (7.8)

J). (7.9)

Recall from [Kum 2] that C2 can also be characterized as the universal C*-algebra
generated by two self-adjoint unitaries vλ and v2. The connection with the other
characterization is v = vl9 u = vιv2.

We call the following elements the canonical generators for Ck:

C^Λ, (7.10)

C0:x,l, (7.11)

C^.x^U (7.12)

C 2 : M , I ; , 1 . (7.13)

Thus, Cnk is the universal C*-algebra generated by elements e^, i, j = ί,...,n
satisfying

n

e*j = efreifiid = *ufiii> Σ *«=!> ( 7 1 4 )
i= 1

together with the canonical generators of Ck, and the latter are assumed to
commute with the e^s. We will call eip together with the canonical generators of
Cfc) the canonical generators of CnΛ.

We are now ready for the reformulation of Corollary 6.2.

Corollary 7.1. Assume that θ is irrational Given ε>0 and elements xu ...,xneCθ

there exists a subalgebra A of Cθ with the same unit as Cθ such that A is a finite direct
sum of basic building blocks CnΛ, and elements yu ...,yneA such that

\\Xi-yi\\<ε9 i = l , . . . , m . (7.15)

Furthermore, if one of the basic building blocks Cn 0 or Cn x occurs in A, then Cn 2

does not occur, and in that case there is an positive integer J such that the Cn^s
occurring are all C 2 J > 0

 and the Cn /s occurring are all Cj v In any case Cn x's occur
at most twice and Cn 2 's at most once.
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Proof. Referring to Corollary 6.2, it is clear that any finite subset of the algebra Bo

occurring there can be approximated by elements in a subalgebra of Bo of the form
described in the present corollary, by dividing G into sufficiently small clopen
subsets.

Our next aim is to show that any separable C*-algebra with the approximation
property of Corollary 7.1 is in fact an inductive limit of finite direct sums of basic
building blocks.

Theorem 7.2. Let A be a unital separable C*-algebra, and assume that for any ε > 0,
and any finite number xu...,xn of elements in A there exists a C*'-subalgebra Bof A
with the same unit as A, such that B is ίsomorphic to a finite direct sum of basic
building blocks Cnk, and there exist elements yu...,yneB with H^ — X;||<ε for
i=l,...,n. Then A is an inductive limit of a sequence

where each Ak is a finite direct sum of basic building blocks.

The proof of Theorem 7.2 is patterned on the proof of Theorem 2.1 in [BEK],
and thus on the proofs in [Bra, Gli]. First we establish the following lemma.

Lemma 7.3. Let Abe a unital C^-algebra and B a C*-subalgebra of A with the same
unit as A such that B is a direct sum of basic building blocks, and let xί9 ...,xmeB.

It follows that for any ε>0 there exists aδ>0 (depending on B and xί9..., xm)
such that for any C*-subalgebra Cof A with the property that the distance of each of
the generators of each of the basic building blocks of B from C is less that <5, there
exists a morphism φ.B^C with

for Ϊ = 1, ...,m.

Proof. The proof of this lemma is almost identical to the proof of Lemma 2.3 in
[BEK] or to Lemma 4.2 in [Ell]. In either case the idea is that the relations of the
generators defining B is stable in the sense that if one has a set of elements in C
which approximately satisfy the relations, then they can be perturbed by a small
amount to exactly satisfy the relations. We give an outline of the argument:

The first step is to approximate xί9..., xn by polynomials in the generators of the
basic building blocks for B. This done, it is clear that if we have estimates like (7.16)
for the canonical generators, with a smaller ε, we have the estimates (7.16)
themselves. So assume that δ has been chosen small. If

B= Σ @ c n u k = Σ φMni®cki,
i = l i = 1

where the sum is finite, consider the finite dimensional subalgebra

Bo= Σ ΦMBi(g>l,

and let e)\ be a complete set of matrix units for Bo. By [Gli, Lemma 1.10] or [Bra,
Lemma 2.1] there exists a set of matrix units fft in C such that e)l is close to fjl* for
each ntj, /, and these matrix units span a subalgebra Co of C which is isomorphic to
Bo. By integrating Ad(w) over u in the unitary group of Co, it is clear that we can
approximate the x, u, i -generators by elements in the relative commutant C'onC of
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Co in C, and by cutting these down by the central projections fm = Σfjj i*1 ^ o * w e

may also assume that the approximants sit inside the appropriate central
projection. Hence, by universality of the algebras Co, Cί9 C2 the problem of
defining φ boils down to showing that if the relations defining these algebras are
approximately verified by some elements, a small perturbation of these elements
will exactly verify the relations. For Co this is trivial, for C2 the argument is
essentially given in the proof of Lemma 2.3 in [BEK], so let's do Cx: Assume that
we have the approximate relations

x^x*, ||x|| = l, t?£i>*, u 2 £ l and vxv^—x.

First take the self-adjoint part of v and modify it by spectral theory so that v = v*
and v2 = l. Then take the self-adjoint part of x and modify x by spectral theory so
that x = x* and ||x|| ^ 1. Then, as the new v, x are close to the old ones, vxv= —x
even after modification. Hence the element \(x — vxv) is close to x, and replacing x
by this latter element we exactly obtain vxv = —x.

This ends the proof of Lemma 7.3.

Proof of Theorem 7.2. The proof of Theorem 7.2 from Lemma 7.3 is now almost a
word-for-word rendering of the proof of Theorem 2.1 in [BEK] from Lemma 2.3
there, with the difference that the morphisms in the inductive system are no longer
necessarily injective. Apart from Lemma 7.3, the only input in the proof is
separability. A similar proof is the proof of Theorem 4.3 from Lemma 4.2 in [Ell].

Corollary 7.4. Assume that θ is irrational. Then the algebra Cθ is the inductive limit
of a sequence of algebras which are finite direct sums of basic building blocks CMfc.
Furthermore, there are the same restrictions on the basic building blocks actually
occurring in one of the algebras in the sequence as in the concluding remarks of
Corollary 7.1.

Proof. This is clear from Corollary 7.1 and Theorem 7.2, and the proof of
Theorem 7.2.

8. Small Eigenvalue Variation

In this section we will prove Theorem 1.1 by combining techniques from [BBEK]
and [Su]. Actually, Theorem 1.1 follows from the following theorem in conjunc-
tion with Corollary 7.4.

Theorem 8.1. Let C be a simple unital C*-algebra with a unique trace state, and
assume that C is the inductive limit of a sequence of algebras which are finite direct
sums of basic building blocks CnΛ. It follows that C is an k¥-algebra.

Proof Our basic building blocks are a subclass of the basic building blocks
considered in [Su], which are C*-subalgebras of C(Ω, MJ, where Ω is a finite
connected graph such that the subalgebra has diagonal block form at some
vertices in Ω. It is proved in [Su], Theorem 1 that if C has real rank zero, then
K^(C) with the graded dimension range is a complete invariant for C. For our
special basic building blocks, Kt = 0, and hence it follows from Su's classification
that our algebras are AF if they have real rank zero. To prove that C has real rank
zero, we just copy the proof of 1 => 5 in Theorem 1.3 of [BBEK], where the same
thing is proved in the case that the basic building blocks are full homogeneous
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algebras over spaces of dimension at most 2; that is, one first establishes small
eigenvalue variation and then proves that C has real rank zero. We omit the
details, but would also like to remark that one could prove directly that C is an AF-
algebra from small eigenvalue variation by essentially the same argument as in
[BEK].

This argument also occurs in [Ell 2].
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