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Abstract. We derive explicit formulas for the Chern-Simons-Witten invariants of lens
spaces and torus bundles over S 1, for arbitrary values of the level k. Most of our
results are for the group G = SU(2), though some are for more general compact
groups. We explicitly exhibit agreement of the limiting values of these formulas as
k —> oo with the semiclassical approximation predicted by the Chern-Simons path
integral.

1. Introduction

New invariants of 3-manifolds were introduced by Witten [40] using Chern-Simons
gauge theory. In this paper we study these invariants explicitly for certain families of
three-manifolds. Our ultimate objective is to verify for these families certain properties
of the invariants derived heuristically using the Feynman path integral.

Witten [40] specified his three-manifold invariants in terms of the axioms of topo-
logical quantum field theory (TQFT), based on modular functors derived from con-
formal field theory [30]. This definition can be made rigorous, and is the one we shall
use here. Three-manifold invariants were also defined combinatorially by Reshetikhin
and Turaev [36], using modular Hopf algebras associated to quantum groups. Many
properties of the invariants of Reshetikhin and Turaev have been established by Kirby
and Melvin [23] from this point of view. It had always been expected that Reshetikhin
and Turaev's definition would prove to be equivalent to the definition using the topo-
logical field theory axioms: this was, however, only proved recently by Walker ([39],
Sects. 9-11).

Pure mathematicians who have worked on these invariants have focused almost
exclusively on the combinatorial or TQFT definition. On the other hand, Witten and
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other physicists also use a complementary approach to the invariants, the Feynman
path integral. Here, the Chern-Simons partition function is defined as follows. One
takes a compact Lie group G and considers the trivial principal G bundle M xG over
a 3-manifold M. One then performs the path integral over connections i o n M x G:

Z(M,k)= &Aexp2πikCS(A), (1.1)

where the Chern-Simons functional is defined by

CS(A) = ̂  Jτr(AdA+JA3). (1.2)
M

The partition function depends on an integer parameter k, the level.
The path integral encodes certain properties of the Chern-Simons-Witten partition

function that are not superficially obvious from the combinatorial definition. In partic-
ular, the path integral predicts a formula for the asymptotic behaviour of Z(M, k) in
the limit of large k. This formula ((5.1) below) is expressed as a sum over the flat con-
nections Ai on M (assuming these form a discrete set); it involves the Chern-Simons
invariants CS(Ai), the Reidemeister-Ray-Singer torsion τ(M, Ai) and the spectral
flow IA{ of a certain family of operators parametrized by a path of connections from
the product connection AQ to A{.

In the TQFT definition, on the other hand, the more natural parameter is

r = k + h.

The invariant, which we shall denote by Z(M, r), is expressed as a polynomial in a
root of unity whose order is some multiple of r; the number of terms in the poly-
nomial is typically some power of r. Thus the asymptotic behaviour as r —> oo is
far from obvious. The axioms of topological quantum field theory [3,39] treat each
value of r separately and provide no axiomatic framework for studying the functional
dependence on r of the family of partition functions parametrized by r. From the
axiomatic point of view one can only study the behaviour as r —> oo after one has
obtained an explicit expression for the partition function of a given 3-manifold for all
values of r.

Evidence for the validity of the asymptotic expansion predicted by the path integral
has nonetheless been provided by Freed and Gompf [11], who investigated the r —> oo
limit numerically for lens spaces and Brieskorn spheres. The interest of the asymptotic
formula is not so much its effectiveness as a tool for distinguishing 3-manifolds: it is
rather that the gauge-theoretic quantities involved in the asymptotic expansion do not
enter in any obvious way in the combinatorial definition of the invariants. The path
integral nonetheless predicts a relation between these gauge theoretic quantities and
the combinatorial definition: finding this relation is a formidable challenge.

This paper has two main objectives. One is to provide explicit formulas for the
Chern-Simons-Witten invariants (defined via TQFT) for certain families of three-
manifolds for which an explicit treatment is possible: lens spaces and torus bundles
over Sι. The second is to write these formulas in a form where the behaviour as
r —> oo is obvious. In this way we explicitly exhibit the first term in the r —»
oo asymptotic expansion for these families of 3-manifolds. This work is the first
rigorous confirmation of the validity of the asymptotic expansion for a class of 3-
manifolds; we hope to extend the methods presented here to treat a larger class of
examples. More speculatively, we suggest that the partition functions Z(M,r) for
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general three-manifolds M will satisfy certain number theoretic properties that lead
to the asymptotic formula. These properties remain to be discovered, but the methods
presented here may give some indication of the general ingredients involved.

The lens space L(p, q) is obtained by gluing two solid tori using an element of
5L(2, Z). We derive an exact formula (Theorem 3.4) for the 517(2) Chern-Simons-
Witten invariant Z(L(p, g),r) for arbitrary r G Z, without assumptions that r be
coprime to any primes determined by p and q. Theorem 3.7 gives the specialization of
this formula to the case when (r,p) = 1. It follows from our formula that Z(L(p, q), r)
distinguishes a large number of L(p, q) up to orientation preserving homeomorphism,
provided p ^ 2 (mod 4). (It does not, however, distinguish all lens spaces: see Remark
3.9.) We also derive the 5Ϊ7(2) Witten invariant Z{Συ,r) for the torus bundle Συ

over 5 1 with monodromy specified by an element U of 5L(2, Z) (formula (4.8)). For
one family of torus bundles parametrized by Z, we also derive the Witten invariant
(4.16) for an arbitrary simply connected simply laced compact Lie group G.

For these families of three-manifolds M, we define Z(M, r) using the represen-
tation JB of 5L(2, Z) (the torus mapping class group) obtained from conformal field
theory, on the vector space associated to the torus by the topological field theory. For
lens spaces, this definition of Z(M, r) is transparently equivalent to the definition one
would obtain from a surgery description (see, for instance, Lemma 3.2.7 of [23].) For
torus bundles, the equivalence with the combinatorial definition in terms of a surgery
description is not obvious, but follows as noted above from the work of Walker [39].

The representation 3% of 5L(2, Z) is usually specified in terms of two standard
generators 5, T of P5L(2, Z): we derive a formula (Proposition 2.6) expressing it
explicitly in terms of the four coefficients in a 2 x 2 matrix with determinant 1. This
formula is obtained by an inductive argument using a classical identity from num-
ber theory, the reciprocity formula for Gauss sums, which follows from the Poisson
summation formula.

In Sect. 5, we explicitly demonstrate agreement of these results with the leading
order term in the path integral asymptotic expansion for Z(M, r) as r —• oo, which
was described in [11] and [40].

The results presented in this paper are part of my Oxford University D. Phil, thesis:
I would like to thank Prof. M. F. Atiyah for supervising this work. I also gratefully
acknowledge helpful conversations with D. Freed, S. Garoufalidis, R. Kirby, and D.
Zagier.

This paper is organized as follows. In Sect. 2, we construct an explicit formula for
the representation of the torus mapping class group 5L(2, Z). Section 3 applies this
formula to obtain formulas for the Chern-Simons-Witten invariants for lens spaces
for G — SU(2). Section 4 likewise uses the formula from Sect. 2 to compute the
Chern-Simons-Witten invariants for torus bundles over 5 1 . Finally, Sect. 5 compares
these values with the large r asymptotic expansion from topological field theory (see
[11]) and obtains explicit agreement.

2. Formula for the Representation of 5£(2,Z)

2.1. Preliminaries

Any topological field theory associates to a surface Σg of genus g a representation
of the mapping class group Γg on a vector space 3@Σ, the "physical Hilbert space"
of the theory. For the Chern-Simons theory, these representations may be obtained
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from conformal field theory, specifically from the Wess-Zumino-Witten model for the
group G; there is a different representation of the mapping class group for each value
of the level fc, so we may denote the vector space by 3$^ \

We shall pay particular attention to the case when g = 1, so that one obtains
representations of the torus mapping class group SL(2, Z). These representations are
known from the study of a space of theta functions arising in the theory of affine
Lie algebras (see [21]): in fact (see [14], Appendix) they define representations of the
modular group P£L(2, Z). The representation is normally specified in terms of the
generators S, T of PSL{2, Z) with

ί]
satisfying the relations

S2 = (ST)3 = 1. (2.2)

In the present section we specialize still further to the case G = SU(2). In this

case, the torus vector space 3&!^ has dimension k + 1.

Notation. We adopt the notation of [23]:

and

Also,

e(a) = exp(2τrzα),

, x def (- . θ;\

en(ά) = exp [2πι - .

. def ΪK ,_.

C = exp — . D

Convention on square roots. Throughout the following, if z G C, Λ/Z will denote the
branch that is positive on positive real numbers, with a branch cut along the negative
real axis.

Proposition 2.1 ([14], (A.44)). The representation ofPSL(2,Z) on β%τ2

(k) is given
by

(2.3)

Tj=ζ-χe4r(j2). D

Here, the indices j , / have been chosen to run from 1 to r — 1. For a general group
G, the analogous representation is given in Proposition 4.2.

Lemma 2.2. These coefficients have the following symmetries:

Sjl — Sj(2r+l) — — Sj(2r-l)i Tβ = Tj(2r+l) = Tj(2r-l) Π

We wish first to derive an explicit formula for this representation of SX(2, Z),
which expresses the representation of an arbitrary element U without expanding U
in terms of the generators S and T. To derive the formula for the representation, we
shall need the following classical number theoretic result:
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Proposition 2.3 (Gauss sum reciprocity formula in one dimension).

V e2n{m\2)e{φ\)=\- T ^m(-n(λ + φ)2), (2.4)
λ (mod n) A (mod n)

if λ G Z, n, m G Z, nra w £veft and nip e Z. Π

This proposition is proved by a minor generalization of the argument given in [7]
(Chap. IX, Theorem 1); the basic idea is to consider a limiting case of the Poisson
summation formula applied to a Gaussian function. A more general version is given
below (Proposition 4.3).

We now use the reciprocity formula for Gauss sums to derive an explicit formula
for the representation ,% of PSL(2, Z) which was specified in (2.3). We are able to
write

mn, u=[a

c

 h

d]
in terms of α, b, c, d, starting with the expression for the element U of PSL(2, Z) in
terms of the generators S and T.

2.2. Formula for the Representation

Definition 2.4. Suppose U G SX(2, Z). A continued fraction expansion [mi, . . . , mt\
for U is a sequence of integers πi\, . . . , mt such that

U = TmtS.

Such an expansion always exists, but is not unique because of the relations (2.2). The
following proposition makes clear the reason for the name.

Proposition 2.5. Suppose

and suppose [mi, . . . , mt] is a continued fraction expansion for U. Then

(i) a/c = mt 1
ΊΎlt-l 1

mi

(ii) b/a = - ( — + + ... +
atat-\/

Moreover, define aι, bi, Ci, di by the partial evaluation of this product (for i > I):

L Ci di J " ' '

with the convention that

ao = do = 1, 6o = CQ = 0 .

Then these satisfy the recurrence relations (for t > 2)

(iii) at = mtat-\ - ct-u <h = ot-iί

(iv) bt = rπtat-i — dt- i , c?t = 6t—l
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Proof. We first consider

aι 611 "I _ Γ 1 m i ] Γ O - l l Γ m i - 1 ]

j " Lo 1 J L1 0 J - L 1 0 J '
Tmιq_

so indeed the induction begins correctly. We then evaluate

<H bt 1 __ [rrttot-i - Ct-i mbt-i ~ dt-i 1
ct dt\ I at-\ bt-\ J '

which gives the inductive formulae (iii), (iv). Formula (iii) is clearly solved by the
continued fraction expansion (i). As for (ii), observe that indeed b\/a\ = —\/m\. By
induction,

-otbt-i + 1

atat-\
t-i - ct-ι)bt-ι + 1

(by (in))
atat-\

tl+atldt-l ( a s l _ c b =

αtαt-\

i + dt-i bt

αt αt

completing the proof. D

Lemma 2.6. Denote by Si the sum

(by (iv)),

= Σ Sή+ιiΛΓSkh^Jt_r^...TJrShJ0 (2.5)

(in terms of the quantities Tj, Sji specified in (2.3)). Then in the notation of Proposition
2.5, we have (provided that none of a\, . . . , at vanish):

. α t ( _ C t ( 7 + ^ ) ) _ e 4 r α t ( _ C t ( 7 _ ^ ) ) } , (2.6)

7=Jί+l (mod2r)

where Ct is given by

n —Λt-l)fDt(
 1 \f-(mι+...+mt)f,A j ( 1 I • ^ )

Y λ / 2 r | a t | y I \0Ί <k-2θt-ij

and Dt = sgn(aoai) + . . . + sgn(a t_ia t).

Proof First observe that each of the indices j \ , ..., jt appears in two of the S
in (2.5), so we may divide by appropriate factors of 2 and replace by k sum over
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j i , . . . , jt running from 1 to 2r (using the symmetries in Lemma 2.2.) First we do
not the calculation for 5f:

1 2 r

= 2 Δ-J

j (modzr)

x {e2r{U2 + Jo) j } - e2r{(J2 ~ Jo) j}} . (2.7)

(In the large curly brackets, two terms corresponding to the complex conjugates of
the terms shown have been removed, and the overall expression multiplied by 2: this
results from the substitution j —* — j.)

Now we apply the reciprocity formula (2.4): denoting the constant outside the
second sum in (2.7) by B\, we have

* - < * Σ
β(moάmλ)

= Cι Σ ίe^™. (-Qrβ + h + JoΫ) ~ e4rm, i-(2rβ + j 2 - jo)2)},
β(moάm\)

where

Gi = B\\ — =
V rn V2r

This confirms the first step in the induction.
Now we assume the result of the lemma inductively and write (again using the

symmetries in Lemma 2.2 to expand the sum over j t to run from 1 to 2r)

1 2r

2 2i
.7t(mod2r) 7(mod2rα ί_1 )

7=jt (mod 2r)

X {e2r(jί+ljt) ~ e2r(jί+lJί)}C ^τat_Stt\jl)

X e4rαt_! ("Q-lT 2) {e2rαt_! (~7Jθ) ~ ^2rat_x (TJθ)} e4rof_lCt_i (~Jθ) ( 2 8 )

We may now replace j t by 7 throughout the previous expression. Thus

~ e2r(-jt+lΊf)}

(-Ct-i72){e2rcί(-7Jo) - e2rct(7Jo)}
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Now we combine the coefficients of the η1 factors using Proposition 2.5(iii), to obtain

(2.9)

e4rc t(αt72)

x {e2rct(
crit+i + jo)7 -

(Here, the factor (—2) immediately in front of the sum arises, as in the calculation of
(2.7), from the substitution 7 —> — 7 which allows us to condense four terms to two.)

Now another application of the reciprocity law (2.4) yields (denoting the constant
in front of the sum in (2.9) by Bt),

Σ
7(mod2ra t)

7=Jt+l (mod2r)

using 7 = 2rβ + jt+\. This completes the induction.
By induction the formula for Ct is

Ct = i

Notice that the phase of y/at-ιi/at is ζ if at, at-\ have the same sign and ζ~ι if they

have different signs. Thus these factors multiply to give a factor ζDt/\at\
1^2, where

Dt = sgn(αoαi) (2.11)

So we have that

a = i(t-l)cDt -

x e4r< - (2.12)

as claimed. D
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It is ndw easy to derive the formula for J8(U). We have

7 ί
j—jt (mod 2r)

eArat_λ(atΊ

2)
7(mod2rct)

7=j t(mod2r)

X {z2rat^(Ί3ώ ~ e2rαί_1(-7Jθ)}

= - ζ~mt eArat_ιat_2(-jo2)eAratat_λ(-jo2)Ct-ι

t
Ύ=jt (mod 2r)

Now using Proposition 2.5 (ii) for the prefactor involving JQ, we have

e4ra(bj0

2)( i ϋ Γ ί ) /——

V2rlcl

x Σ ί e4- t , fat f7 + ̂  Y) - e4rat , fat (l - J^Ϋ] }, (2.13)
7=jί(mod2r)

where
Kt - i*-i^*-iζ(-^i--^*) ( ί > 2 ) ,

ifi = C" m i .

Combining all the terms quadratic in j 0 , and replacing j t by j and jo by Z, we get
finally

Proposition 2.7 (a). The representation of SX(2, Z) 6>« j ^ . ; w given by

L eΛrc(dl2)
/2r\c\

X ^ e

7(mod2rc)

^, K(U) = Kt, where Kt wao given by (2.14); it will be shown in Proposition 2.8
that Kt depends only on U and not on the choice of a particular continued fraction
expansion for U. D

We know from Lemma 2.2 that JE(U)ji depends on / only mod2r. To rewrite our
formula so that this is manifest, we consider

7 (mod 2rc)
7=j(mod2r)
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Now completing the square by introducing λ = 7 + dl, we have

Σ e4rc(Φ + dl)2 -h (2 - lad) ηl + {d- ad2) I2

e4rc(aλ2)e4r(-bdl2-2blj).

λ(mod2rc)
λ=j+d/(mod2r)

λ(mod2rc)

Thus our sum is

Proposition 2.7 (b). The representation ofSL(2, Z) 0/1 βg^ is given by

= - iK(U) i J V e4rc(aX2)e4r(-bdl2 - 2blj)
V2\\ [ λ(mod2rc)

λ=j+di(mod2r)

eΛrc(aλ2)e4r(-bdl2 + 2Wj) I.
λ(mod2rc) J

λ=.7-dZ (mod 2r)

of K(U) will be given in Proposition 2.8. D

This formula depends on j and I only mod2r, as we know it must.1

2.3. The Rademacher phi Function

Rademacher ([33], p. 150) defines an integer valued function on PSL(2, Z) by

^ ^ ~ 12(signc)5(d, \c\) if c φ 0;

c (

Here, for c > 0 the Dedekind sum s(d, c) is defined by

where for a real number x,

0, x G Z;

^ — [x] — \, otherwise.

The Dedekind sum has the alternative definition (for c > 0)

7 x 1 v ^ πk πdfc
i, c) = — > cot — cot . (2.17)

Ac ^-^ c c
k=l

1 After we had completed our work, we learned of a very similar formula for a representation of
5X(2,Z) (Proposition 4.1 of [38]) obtained in a different context and with different methods
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(For further properties of the Dedekind sum, see [15], especially p. 18.) The function
Φ is "almost" a homomorphism from SX(2, Z) to Z; more precisely, Rademacher
proves that if A" = AΆ, then

φ(A") = Φ(A) + Φ(A') - 3 sign(cc'c"). (2.18)

In particular, consider A = TmS, so Φ(A) = m; by induction, defining Φt by

Φt ^ f Φ(TmtS... T m i S ) , (2.19)

we find from (2.18)

Φt - Φt-ι = mt - 3 sign(αt_ict_i), (t > 2)

Φ\ = ΎΠ\ .

Proposition 2.8. The quantity Ktfrom (2.14) is given by

Kt = CΦt signfe);

in other words we may define

K{U) = Kt = ΓΦ ( C / )sign(c).

Proof. The recurrence relation satisfied by Kt is (from (2.14))

where
At - 4 t - i = - 2 - signfe-iot-i) + m t (t> 2) 2

2 l m

The discrepancy between this and (2.20) is Φt = Δt + X} n*, where

nz =2-2sign(ci_iC/),

so
Cn t=sign(c t_i)sign(c t) (ί > 2)

and (since ci = 1)

signet = C n 2 + "" + n t •

2.4. Framing Dependence

The invariants Z(M,r) depend on a choice of 2-framing π for M [2], i.e., on the
choice of a homotopy equivalence class π of trivializations of Γ M 0 ΓM, twice the
tangent bundle of M viewed as a Spin(6) bundle. The possible 2-framings correspond
to Z. The identification with Z is through the signature defect δ(M, π) defined by2

δ(M, π) = sign(X) - \ Pι (2TX, π), (2.22)
6

where X is a 4-manifold with boundary M and p\(2TX, π) is the relative Pontrjagin
number associated to the framing π of the bundle TX 0 TX. The canonical 2-
framing τrc [2] corresponds to ί(M, π c ) = 0. When we wish to specify explicitly the

Note that our identification (2.22) of 2-framings with Z differs from that in [11] by a minus sign
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dependence of Z(M, r) on the framing π, we shall use the notation Z(M, r\ δ(M, π)).
We have the following

Lemma 2.9. If the two-framings π, π' satisfy £(M, π') = δ(M, π) + 1, then

Z(M, r\ δ(M, π')) = Z(M, r; <5(M, π ) ) e 2 π i c / 2 4 .

Here, c is the central charge, which is defined by (A.4).

2τΓ? C 77Γ Γ ?7Γ I
Remark. For G = SU(2), we have exp — — = e x p — exp < — — — — — > = C e 4 r ( — 1).

Z4 4 [̂  λ\k> -\- 2))

If a three-manifold M is specified by a framed link L for surgery, there is a
standard 2-framing TΓJΓ, associated to the surgery link [11]. This 2-framing differs
from the canonical one by the following factor:

Proposition 2.10 ([11], Theorem 2.3). The signature defect of the 2-framing as-
sociated to a framed link L with the framings of components specified by integers
mi, . . . , vίii is

, τrL) = φL ,
for

where σ(W^) is the signature of the linking matrix WL of L.

3. Lens Space Invariants

In this section we apply our formula for the representation &> of SL(2, Z) to obtain
a formula for Witten invariants of lens spaces L(p, q). Our result for general r is
Theorem 3.4. In Sect. 3.2 we also provide formulas for the case (r,p) = 1, where
further simplifications are possible.

Our first formula (3.8) for lens space invariants is for a 2-framing that arises
naturally when one glues together solid tori using elements of SL(2, Z). Theorem
3.4 is the result of correcting this formula to the canonical 2-framing of Atiyah [2].
Theorem 3.7 gives the specialization of the formula in Theorem 3.4 to the case when
the integer parameter r is prime to p.

3.1. General Formula

Let us now apply our formula for the representation J% to obtain a formula for
Witten invariants of lens spaces. The lens space L(p, q) is specified by a pair p, q of
coprime integers with 0 < \q\ < p;3 in fact l(p, —q) is diffeomorphic to L(p, q) via an
orientation reversing diffeomoφhism. The space L(p, q) is formed by surgery on S3

along a framed link L which is a chain with the framings of successive components
specified by integers mi, . . . , mt-\. Such a surgery is a — p/q surgery on the unknot

3 We ignore the case p = 1, q = 0, which is 5 3 itself
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in S3 (see1 e.g. [11]): this means that a solid torus around the unknot is removed and
glued back using a matrix

.-q -t

Here, the matrix A is given by a continued fraction expansion [mi, . . . , mt-i], i.e.,

A = Tmt~l S... T m i S (recall Proposition 2.5). (3.1)

In other words, the m; satisfy

1
-p/q = rrtt-i (3.2)

This surgery is obviously equivalent to gluing two standard solid tori using

(3.3)

thus U has a continued fraction expansion [mi, . . . , m^-i, m* = 0],
Via Proposition 2.10, there is a 2-framing πL associated to this surgery description,

with signature defect δ(M, ΉL) = ψL.lί is shown in [11] that ψL depends only on A
and not on the particular choice of integers (mi, . . . , mt-\).A So we may introduce
the notation

(3.4)

Thus we have

where the linking matrix WL is given by

/ 777-1 1 0

1 777,2 1

0 1 . . .

t - i

(3.5)

0 1
\

0 \
0

1 τrit-ι

(3.6)

The lens space L{p,q) is obtained by gluing two standard solid tori using U\
thus, according to the TQFT axioms, the Witten invariant of L(p, q) in the 2-framing
φ(—SU) is given by

Z(L(p, g), r; φ(-SU)) = JS(U)n . (3.7)

This will also follow from Proposition 3.5, whose proof does not depend on it
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Using the expression (2.13), this is

Z(L(p, q), r; φ(-SU)) = - i 2 - — e4rq(b) V) (3.8)
7 (mod 2rp)

7=1 (mod 2r)

Q

ζ-Φ(U)

y/2rp rq

p

x ^ { e 4 r p g ( 2 r n g + q + I) 2 - e4rpq(2rnq + g - I)2}
n=l

— _ 2 — e4rα(6) V^ ev(qrn2) (3.9)

x {ep(n(g + l))e4rpg(^ + I) 2 - ep(n(q - I))e 4 r p q (g - I)2} .

We now wish to obtain a formula for the lens space Witten invariant in the canon-
ical framing. We need the following preliminary lemma:

Lemma 3.1. Assume \p/q\ > 1. Then —p/q has a continued fraction expansion given
by

-p/q = rnt-\ j ,

πit-2 -
1

πi\

with all rrii > 2 or with all mi < —2.

Proof. Assume first that — p/q > 0. By induction, any rational number > 1 has such
a continued fraction expansion. Indeed, set mt-\ to be the least integer > ra/n,
so m/n = mt-i — (m!/nf)~ι, where m! — n < m and 1 < nf < m!. Since the
denominators continue to decrease, this process must terminate. It follows likewise
that a rational number < — 1 has a continued fraction expansion with all ra« < —2.
D

In this situation, the signature defect is related to the Rademacher phi function by
the following lemma.

Lemma 3.2. If A is given by a continued fraction expansion (3.2) for —p/q with all
rrii > 2 or all mi < —2, then

Φ(SA) = -φ(A). (3.10)

Proof The linking matrix WL has signature t — 1 if all rrii > 2 ([16], Lemma 8.12).
Thus <p(A) = 3t — 3 — (mi + .. . + mt-ι) (from Proposition 2.10). In this case, all
the di are also > 1 (see the proof of Lemma 3.1, and (2.5) for the definition of the
di.) Thus (2.20) shows Φ(SA) is equal to —φ(A). A minor alteration of this argument
makes it work also for the case — p/q < 0. D

We may now reduce to the Witten invariant of L(p, q) in the canonical 2-framing:
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Lemma 3.3. The quantity

(e 4 r (-l)C) Φ ( C / ) Z(L(p, q), r, φ(-SU))

1 P

= - ie4r(-Φ(U)) -=e4rq(b) ^ ^ ± p

x e p ( n ( g ± l ) ) e 4 r M ( g i l ) 2 (3.11)

depends only on p and on q (moάp): it is independent of the choice of U.

Proof The factors in (3.11) involving roots of unity of order some multiple of r give
(recalling that a = q, c = p)

eirpqipb + q2±2q+l) = eArp(d + q ± 2). (3.12)

Introduce the integer g* (modp) solving q*q = 1 (modp). Now notice using the
Definition (2.15) of Φ(U) that

eArp(d + q± 2)e4r(-Φ(U)) = e 2 r p

since d — q^ (modp) and s(q*,p) = s(q,p). This gives

(e 4 r (-1) 0 Φ ( C / ) ^(L(P, 9), r; ^(-St/))

^ 2 l ) ) . (3.13)

The right-hand side depends only on p and on q(modp).
Hence, finally, we have

Theorem 3.4. The Witten invariant of the lens space L(p, q) in the canonical 2-framing
is given by

p

^ Σ±e2rp{±\)ep(qrn2)ep{n(q ± 1)).),r;0) / = e 4 r

Proof. If we choose [/ so that A= — SU satisfies the hypothesis of Lemma 3.2,
then that lemma says the factor (e4r(— l )Q φ ( C / ) in (3.13) is just the factor
(e4r(-l)ζ)~^~~SU) that is picked up when one changes from the framing φ(—SU) to
the canonical framing (see Lemma 2.9), so (3.13) represents the value Z(L(p, g), r; 0)
in the canonical framing. D

We may now use Lemma 3.3 to generalize the result of Lemma 3.2 to arbitrary
U G 5L(2, Z). In other words, we obtain a formula for the Rademacher phi func-
tion Φ(U) in terms of the signature of a matrix associated to a continued fraction
expansion of U\ this formula was obtained in [24]. We show that the formula follows
immediately from our results, using the transformation properties (Lemma 2.9) of the
Witten invariant under change of framing, and the identification (Proposition 2.10) of
the signature defect of the framing associated to a framed link. We have

Proposition 3.5. For arbitrary A G 5L(2, Z),

where φ(A) is given by (3.5).
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Proof. The formula (3.13) expresses

Z(L(p, q\ r; ψ(-SU)) as Z(L(p, g), r; 0) x (Ce 4r(-l))"Φ ( C / ) .

But by Lemma 2.9 we also have

Z(L(p,q),r',φ(-SU)) = Z(L(p,g),r;0) x ( C e ^

where <£>(-A) was specified by (3.5). D

3.2. The Case (r,p) = 1

We now rewrite our formula (Theorem 3.4) for the lens space invariants in a more
transparent form when (p, r) = 1. Formulas of the type obtained in this section for
the Witten invariant of L(p, q) have been obtained independently by Garoufalidis [13]
and Kirby and Melvin [25], who work under the assumption that r is prime to p. In
this section we assume q, r > 0. Consider first the factor

p

y = Σ ± Σ e2rP(±l) ep(qrn2) ep(n(q ± 1))
± n=l

7: p 6>ί/J. We can then find integers I and h such that

pl + 4qrh=l. (3.15)

Defining z/± = q ± 1, and completing the square, we than get

*L ( / / J W ^ I 2 / 2̂
p I

- i • f t- r) I

^ , ±e2rp(±l)2^y^^vM. •« / ~y\ ^

(3.16)

for
i ^ = Σ ± e 2rp(±l) eP{(^2 ± 2 ^ + 1 ) (-2 + 4qrh)h} .

±

Here, we have introduced the notation

v
G(h,p) = ^ e p ( / m 2 ) , (3.17)

n=l

and used the properties ([28], Chap. IV, Sect. 3) that

Proposition 3.6. If p is an odd integer > 1, than

G(h,p)= f-W,p),

//Λ
where [ — \ is the Legendre symbol.
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The explicit values for G(l,p) for arbitrary p > 0 are given by

{
1, p = I(mod4)

0, p = 2(mod4)
p = 3(mod4)

p = 0(moά4). Π

We first decompose 9" as ¥* = eβ(ea - e~a). Thus we have

e α = e2rp(l + 4qrh(-2 + Aqrh)) = e2rp(pψ) = elr{l).

Also

eβ = ep((q2 + 1)Λ(-1 - pZ)) = β p ( - ^ 2 + 1)).

Now because of (3.15), h is 4*g*r* (modp), so we have

e^ = ep(-4*(<z + g*)r*) . (3.18)
(We have introduced the notation g* for q~ι (modp).)

Case 2: p even. In this case, q is odd and we define the integers v± — (q ± l)/2. We
choose integers / and /ι satisfying

4p/ + g r h = l . (3.19)

Then, as before, we have

P

]Γ±e2 r p(±l)ep q ί>i(16p2Z2 - 1)} .

We manipulate the Gauss sum using the reciprocity formula (2.4); we take p = 2apf

where p' is odd, and consider

p 2a~ pf . 2

V^ 2\ V^ iπqrn
n=\ n=l

This sum is zero if a — 1 (i.e., if p = 2 (mod 4)). Otherwise, if p = 0(mod4),
reciprocity (2.4) shows

' iπ2a-ιp'n2

qr

We also have to treat the factor

y = Σ±e2rP(±l)epqr{ιy2

±(l6p2l2 - 1)} .
±

This is
h2q+ l)(-2+ qrh)h}.
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We get 3*1 = eβ(ea - e-
a), where

ea = e 2 r p{(l - 4pl)(-l - 4pl) + 1} = e r(2I(l - ςτ/ι)) = e r(2i).

Now

eβ = e4p{(q2 + 1)(-1 - 4pl)h} = e4p(-(q2 + \)h).

Thus we get simply

eβ = e4p(-(q2 + l)q*r*) = e4p(-(q + g*)r*).

These results are summarized in the following theorem:
Theorem 3.7. When r is prime to p, we have the following values for Z(L(p, q), r) in
the canonical framing:

p odd:

Z = J- (^) sin — e4r(l2s(q,p)) ep(-(q + g*)4*r*)ε ,
V r \ p J r

where
» = 1 (mod 4)ί 1, P = l

\ h P = 3 <3 (mod 4)

Here, q*, r* are inverses of q and r with respect to p, and I is the inverse ofp (mod 4r).

p = 2mod4: Z = 0.
p = 0mod4:

Z = VϊJ-sin— (^-) es(l)e4r(l2s(qiP))e4p(-(q + q*)r*)δ ,
V r r \ qr J

where
f 1, gr = I(mod4)

o = <
[ —i, gr = 3 (mod 4)

Here, 41 is the inverse of p (mod r), and q*t r* are inverses of q, r (mod4p). D

Remark 3.8. The identity Z(L(p,q);r) = 0 when p = 2 (mod4) is not necessarily
satisfied when r is not coprime to p (consider for example L(6,1)). Thus the case
(r,p) = 1 is not entirely typical of the behaviour of the invariants. D

Remark 3.9. Distinguishing Lens Spaces. Notice that if p is known, then by taking
the 2pth or 4pth powers of the expressions given in Proposition 3.7 and varying
over all r, one may use the values of Z to extract the Dedekind sum s(q,p). Since
s(q,p) = (q + q*)/p (modZ) (see (2.15)), the value of s(q,p) determines the value of
q + q* (moάp). If p is prime, this yields a quadratic equation over the field Z p , which
one may solve for the pair {q, g*}: recall that the pair {ρ, <?*} classifies the lens spaces
L(p, q) up to orientation preserving diffeomorphism. If p is not prime, however, Zp

is not a field and so the values of q + g* (modp) will not always uniquely determine
{<2S q*}- (Kirby has pointed out that L(65,8) and L(65,18) are not distinguished by
Z(L(p, q)1 r; 0), for r prime to p = 65: this is because for p = 65, the values q = 8
and qr = 18 both give q + <?* = 0.) D

Remark 3.10. We should clarify one point regarding the Dedekind sum factors. Ac-
cording to [23] Sect. 1, the invariant

τr(M)= (y/2/^ύn(jϊ/r)γl Z(M,r;0)
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takes values in the ring Z[esr(±l),r~1]. This is not superficially obvious from The-
orem 3.7: however, when p is odd, a short calculation using (3.15) and the definition
(2.15) of the Rademacher phi function establishes that

e4r(12s(q,p))ep(-(q + <?*)4*r*) = e4r (ql - Φ [£ 4 ~ J J ) . (3.20)

Similarly if p = 0 (mod4) we have using (3.19)

e4r(12s(q,p))e4p(-(q + <z*)r*) - e4r (*ql - Φ [£ " J 1 ] ) . (3.21)

Thus the invariants specified by Theorem 3.7 do indeed belong to the ring specified
in [23]. D

4. Torus Bundles over the Circle

Recall that for a surface Σ and a diffeomorphism β : Σ —• Σ1, the mapping torus Σβ
is defined as

Σr

/3 = i : x [ O , l ] / ~ , (4.1)

where

The axioms of topological field theory say that in an appropriate 2-framing (see
(4.4)),

(4.2)

We shall particularly consider the case when Σ is a 2-torus and β is an element U
of SX(2, Z).

4.7. Torus Bundle Invariants for G = 5i7(2)

In this section, we consider

U=[a

c J ] G 5 L ( 2 , Z ) , α + ίί^db2. (4.3)

We derive the SU(2) Chern-Simons partition function of Σu, where Σ is a 2-torus.
There is a canonical 2-framing £[/ [1] associated to the turus bundle over S1 formed
using U e SL(2, Z). This framing has signature defect

ψ(U) = - Φ(U) + 3 sign(c(α + d)). (4.4)

According to the axioms of topological field theory, we have

Z(ΣU9 r; φ(U)) = ΊxM{U). (4.5)

Thus, using Proposition 2.7 (a), the Witten invariant is

± βmodc jmod2r|c|

x e4rc(a(j + 2rβf) e2rc(±(j + 2rβ)j). (4.6)
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We may now replace the summation variable j by j — rβ, yielding

j(mod2r|c|) ± β(moάc)

x e4rc(d(j - rβ)2) e4rc(a(j + rβ)2) e2rc(±(j + rβ)(j - rβ))

= - ί - sign(c)C~Φ(C/) A 4l Σ ±e4rc((^ + o ± 2)i2)
4z|c| y r|c| ^

x e2c((α - d) J/?) β4c(r(d + α T 2)/?2).

Applying the reciprocity formula (2.4) to the sum over j , we get

i ( )Z(Σu,r, φ(U)) = 4z|c|

Σ
7=1 ^

The coefficient of /?2 in the exponential is

2 π i ' Λ CΛI -^o^4c(α + a ± 2)

so we obtain finally

)2 - 4 - (d - α)2} =
4c(α + α ± 2)

(46c),

s j /cx/~Φ(t/)+3sign(c(d+o±2)) ^-sign(c(d+o±2))

( 4 . 7 )

^(modc) 7=1

(In the last expression, the sign of the ηβ term was changed by substituting —β for
β.) For simplicity, we restrict to the case when U is hyperbolic, i.e., \a + d\ > 2.
Then, correcting to the canonical framing, we have

Z(Σu,r;0) = V ±
^ 2i\

2_\ 2_1 e χ p 2πίr
7=1

This simplifies to give
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Theorem 4.1. Suppose U G SX(2,Z) satisfies \ΎτU\ > 2. Then the Wίtten invariant
of the torus bundle ΣJJ in the canonical framing is given by

Z(ΣUyr; 0) = e4r(φ(U)) sign(d + a =F 2) x ] Γ ±

±
\d+aψ2\ 2

βimoάc) 7=1

4.2. Torus Bundle Invariants for General G

This section gives a similar calculation of the Chern-Simons-Witten invariant for the
torus bundles ΣJJ, where U = TPS in terms of the generators (2.1), for a general
compact simply connected Lie group G with Lie algebra Q and Cartan subalgebra
t. For simplicity we shall assume G is simply laced, i.e., all the roots of G have
the same length. First we need to list the values of the representation of PSL(2) Z)
corresponding to general G: this requires considerable notation, which is collected in
the Appendix (Sect. A.I).

Proposition 4.2. In terms of the basis for 3@j? given by the level k weights (A. 16),
the representation of SL(2,Z) is ([14] (A.44)):

7 . 1 ^

μ/2 vol ΛR

1/2

det(w)exp ( - — (w(X + ̂ μ + ^ > ] , (4.9)

7\,μ = <$λ,μ exp ( — (λ + ρ, λ + ρ) - ^ (ρ, ρ) j
\ r n J

= <5λμ exp 2πi(Hλ - c/24). D (4.10)

Here λ and μ satisfy (A. 16), and \Δ+\ is the number of positive roots. The conformal
weight H\ and central charge c are defined in Sect. A.2;5 see also [21], Proposition
13.7.

We also need a more general version of the reciprocity formula for Gauss sums,
whose proof, like that of the one-dimensional reciprocity formula (2.4), is a verbatim
generalization of an argument in [7]). Consider a real vector space V of dimension
/ with inner product (, ) and a lattice A in V with dual lattice Λ*. We introduce
an integer r, a self-adjoint automorphism B : V —> V, and an element ψ of V. We
assume

I ( λ , 5 r λ ) , (λ,JB77>, r(λ,ψ) G Z Vλ, η G AI ( λ , 5 r λ ) , (λ,JB77>, r(λ,ψ) G Z Vλ, η G

£ (μ,rξ), r(μ,ψ) G Z Vμ, ξ G Λ*

Under these assumptions we have

Proposition 4.3 (Reciprocity Formula for Gauss Sums).

* )volC4*)
XeΛ/rΛ

= ί d e t — j rι/2 Σ exp{-zτr(μ + '0,r^"1(μ + '0))}. D
μeΛ*/BΛ*

5 We correct an error in the formula in [14]. Note that [14] writes this in terms of a lattice M and
its dual M * : for simply laced groups, the identification of M with ΛR is given by [21], 6.5.8
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Now we can exhibit the formula for the torus bundle invariant for general G.
We refer to the notation of Sect. A.I and A.2, where in particular the weight

lattice Λw and the coroot lattice ΛR are introduced, and general properties of roots
and weights discussed. The basic inner product on t is denoted (, •). The conjugacy
classes of U G 5L(2, Z) for which c = 1 can be represented by U = TPS. Using
formulas (4.9) and (4.10), we obtain

1/2

weW

(4.12)

where the sum is over λ G Λw satisfying (A. 16).
We shall later wish to compare this expression with the semiclassical approximation

(Proposition 5.15). This requires us to recast (4.12) in a form where the parameter r
appears in the numerator of each exponential rather than in the denominator.

We must first alter the sum in (4.12) using some symmetries so we are summing
over something of the form I/1 /NIT1 for N some integer. Then we must apply the
reciprocity formula to convert this sum to a sum over points in a dual lattice. Let us
analyse the symmetries of the trace sum (4.12) with a view to expressing it as a sum
over Λw/rΛw. Define (for λ G Aw)

g(\) = 2^ det(tϋ) exp
, λ)1

The trace is obtained by summing g(λ) over weights

{λ = /i + £>:μGFWC, (μ,αm> < k} ,

in other words we must compute the sum

where the sum is over {λ G FWC | (λ, am) < k + h}.

Proposition 4.4. g(X) is invariant under:
(i) λ —> — λ (obvious.

(ii) λ -> uλ, u G W: for

(uX,(p- 2w)uX) = (λ, {p - 2(u~ιwu)}X).

(iii) λ -^ λ + rha, a any root (ha denotes the corresponding coroot 2a/(a, a).) For

- (λ + rΛα,(p-2w)(λ + rΛα))
r

= - (λ, (p - 2w)X) + 2{ha, (p - 2w)λ) + r(ha, (p - 2w)ha).
r

The second term is obviously in 2Z, since ha is in the integer lattice. The third term
is also in 2Z, since (/ια, ha) G 2Z (a property of the basic inner product), and

2(wa,ha){ha,wha} =
(a, a)
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The highest root, a long root, is normalized to have length 2 = 2 in the basic inner
product, and the length squared of short roots is then 2/nfor some n G Z.
(iv) g(X) = Ofor a weight X with (λ, a) = rnfor any root a (n G Z). For every even
w £ W there is an odd w contributing the opposite amount to the sum g(X), namely
TW where τ is reflection in a. For

τX — X — r nha

so

(λ, 2τwX) - (λ, 2wX) = - 2rn{ha, wX) £ 2rZ ,

so
(p - 2τwX, X) (p - 2wX, X)

exp iπ J = exp iπ . D
r r

We refer to Sect. A.5 for general discussion of alcoves, and more generally r-
alcoves. The trace formula (4.12) requires one to sum g(X) over weights λ in the
interior of one r-alcove (and (iv) above says that weights on the boundary of the alcove
do not contribute.) By Proposition 4.4, all r-alcoves contribute the same amount to
such a sum. They are permuted simply transitively ([32], 5.14) by WxrΛR C Waff.

If 5^ is the sum of g(λ) over one r-alcove, and if N is a positive integer such that
Λw /NrΛw is precisely tiled by r-alcoves, then the number of r-alcoves is obtained
by dividing the volume of Λw /NrΛw by the volume of one r-alcove, which is
rι vo\ΛR/\W\. Thus we have

] Γ g(X) = Nι\W\ vol(Λw)/ vo\(ΛR)y?.

XeΛw/NrΛw

In other words, the trace sum (4.12) gives

1 / 2 vol(ΛΛ)

rι \όi(ΛR)
exp —

Nι\W\\6ί(Λw) F h

, πi((p-w-w !)A,A)

weW XeΛw/NrΛw

The lattice volume factors in this sum combine to give vol ΛR (since vol Λw =
(vo\ΛR)-1).

Define

B=p-w-w~\ (4.14)

an endomoφhism of t. We wish to apply the reciprocity formula (Proposition 4.3) to
relate

£ exp fr^)
μ(ΞΛw/rΛw

(which appears in (4.12)) to

exp— iπr(λ, B~ιX)

λeΛR/BAR
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(which will appear in the semiclassical calculation of Proposition 5.15). We cannot
do this as stated, for the conditions (4.11) are not satisfied. However, we can choose
N e Z so that they are satisfied if we replace r and B by rN, BN. This gives

e x p — • —L

r
XeΛw/rNΛw

: det(B/iyι/2rι/2Nι x ^ exp -iπ(μ, rB~ιμ),
μ€ΛR/BΛR

by the reciprocity formula (4.3).
Using this, the trace sum (4.13) becomes

t r; ̂ ) ) = Tr S6QJ) = exp {- ̂ - } ̂ 1 exp

exp -<τr</x, rS"V> (4-

All the lattice volume factors have cancelled out.
Formula (4.15) is not in the canonical framing. If we correct it using the framing

ψ(U) = — p + 3 sign(p) from (4.4) and

(see Sect. 2.4), we obtain the formula in the canonical framing:

x exp ^ - 3πί ̂ ^ } z'^+i > J det(^)

x exp-
l

μeΛR/BΛR

x exp —iπ{μ, rB~ιμ).

After some simplification this becomes

Proposition 4.5. IfU = TPS and \p\ > 2, the Witten invariant of the torus bundle
ΣJJ for an arbitrary simply laced compact connected simply connected group G in the
canonical framing is given by

Z(Σu,r; 0) = exp j - iπ(ρ, ρ) ( P ~ 3 ' ' g " ( p ) ) } (signp)' £ det(W)

iπ^rS-V). (4.16)
μeΛR/BΛR
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5. Formula for the Large r Limit

In this section, we compare our results for the CSW invariants of lens spaces and
torus bundles (Sect. 3.4) with the path integral formulas for the asymptotic behaviour
of the Chern-Simons partition function as r —> oo. This path integral prediction
was originally obtained by Witten [40]. A more refined version of the path integral
prediction is given in [11], (1.36). One has

=

 1

 e-iττ(dimG)(l+bι(M))/4 V ^ e2πi

X Ti(M, ^)1/2e~2πi(/A/4+(dimiί^+dimfί]ι)/8)r(dimiί]ι-dimiϊ^)/2 ̂  ^ ^

Here, we sum over the gauge equivalence classes of flat connections A. The notation
is as follows. We denote the centre of G by Z(G), and the first Betti number of M
by bι(M). The element CS(A) is the Chern-Simons invariant of the flat connection
A, given by (1.2). For a definition of the Reidemeister-Ray-Singer torsion, we refer
to [12, 19 or 35]. The square root of the torsion associated to the flat connection A
is denoted by τ(M, A)1/2: it is canonically an element τo(M, A)112 0 τi(M, A)χl2 of
ΛmaxH°(M, dA)®{AmaxHι(M, dA)}*. We denote by υ a volume on ΛmaxH°(M, dA),
so that υ[τo(M, A)1/2] G C. In other words, once one chooses an element υ of
Ama*H°(M,dA)*, the square root of the torsion is a volume on Hι(M,dA), which
is the Zariski tangent space of the moduli space of gauge equivalence classes of flat
connections on M. A canonical such element υ e ΛmaxH°(M; dA)* is obtained from
the basic inner product (Sect. A.I) on H°(M;dA) c g.6

The integer IA is the spectral flow of the family of operators

D A = [dA* 0 J

on Ωι(M, $) ® Ω3(M, g), where A = A(t) is a path of connections running from the
product connection Ao to the flat connection A. We denote Hι(M, dA) by H\.

Formula (5.1) was stated in [11] only for the case G = 517(2), dim H°(M, dA) φ
0, dim Hι(M, dA) = 0; however, it extends also to the case when dim Hι(M, dA) φ 0,
by inteφreting τ(M, A)χl2 as a volume on the space of gauge equivalence classes of
flat connections on M and the sum as an integral over that space.7

In this section, we explicitly demonstrate agreement of these results with the path
integral asymptotic expansion for Z(M,r) as r —* oo, which was described in [11]
and [40]. The values of the Chern-Simons invariants of flat connections on the torus
bundle Σv are given by a certain cocycle ([5], Sect. 4.4.3) for the action of the
automorphism group Aut(P) of a bundle P over Σ on the space of connections
^(Σ): below (Theorem 5.11) we obtain values for CS(A) explicitly when Σ is a
torus, through an alternative interpretation of this cocycle. Values for the Reidemeister
torsion of flat connections on Συ will be derived in a companion paper [18]. For the

6 Although this choice of υ gives the correct normalization for the limit Z(L(p, q), r) as r —> oo, we
do not obtain the correct normalization for Z(S3,r) = JB(S)u ~ V2πr~3/2: we have no explanation
for the factor TΓ that appears here
7 This is true provided the Zariski tangent space HX{M,(1A) equals the actual tangent space to the
moduli space of gauge equivalence classes of flat connections on M
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torus bundles, we have not been able to compute the spectral flows, but we conjecture
a value based on the TQFT formulas for Z(Σχj,r).

Sect. 5.1 exhibits the precise agreement for the case of lens spaces and G — SU(2).
In preparation for the treatment of torus bundles, Sect. 5.2 describes results from [18]
on the terms appearing in the asymptotic expansion for mapping tori (i.e., Chern-
Simons invariants and Reidemeister torsion of flat connections). Our results on torus
bundles are given in Sect. 5.3. In contrast to our lens space results, which are complete,
the torus bundle results have some details unresolved: these are listed in Remark
5.17. Nonetheless, in the torus bundle case almost all of the quantities appearing
in the TQFT formula for the Witten invariant may be identified with corresponding
quantities appearing in the semiclassical formula.

Remark 5.1. For the families of three-manifolds we have treated, the mechanism
behind the proof that Z(M, r) satisfies the asymptotic expansion is the reciprocity
formula for Gauss sums (2.4), (4.3). This formula relies on the Fourier transform (via
the Poisson summation formula): the Fourier transform is essentially what transforms
the TQFT formula for the Witten invariant (where r appears in the denominator
of exponentials, as in the formula (2.3) for the representation of PSL(2, Z)) to the
semiclassical formula (5.1) where r appears multiplying CS(Λ) in the numerator of
exponentials.

Since the semiclassical formula (5.1) is expected to hold for all three-manifolds,
we expect that the Witten invariants will quite generally satisfy some number-theoretic
identities that facilitate such a transformation. Moreover, we speculate that the Fourier
transform may be the basic mechanism behind these identities. Several authors have
already studied the number theoretic properties of partition functions defined using
quantum groups [29]: it is a challenge to extend the understanding of the link between
quantum groups and number theory to find a number theoretic mechanism behind the
asymptotic expansion.

5.7. Lens Spaces

The fundamental group πi of L(p, q) is Z p , so representations ρ of TΓI in SU(2) are
indexed by n = 0, . . . , p — 1 in the obvious way (i.e., ρn sends the generator to
e 2 π m / p ) , and ρn and ρp-n are conjugate. The Chern-Simons invariants CS(ρn) and
torsion τ(L(p, g), ρn) of these flat connections have been calculated [10, 11, 26]: they
are ([11] (2.20), (2.25))

= q*n2/p, (5.3)

v[τ(L(p,q),ρn)
χl2} =

4\/2 2πn .
sin sin

P P
(5.4)

where q*q = l(modp).8

Finally, the spectral flow is given by the following proposition. We are indebted
to D. Zagier for its proof, which we include for completeness.

8 The factor y/ϊ in the torsion does not appear in [11]; it arises from the volume element υ coming
from the basic inner product, because the root of SU(2) has length \/2, whereas in [11] its length
had implicitly been normalized to 1
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Proposition 5.2. The spectral flow Infrom the product connection Ao to An is given
by

T .s . / . 2τr(7*n . 2πn\
(—ι)n = (—ί) sign sin sin

V p v )
i.e.,

Jn(mod4) =

Proof We have from [11] (2.21):

-1, 1*n>l

8g*n2 2 v ^ π ^ ^Φ •
/ n + 2 = — h - > cot — cot - 2 - sm

P P ^ P P

>
P P ^ P P P

" λ }

^ r \P=ι

\φ\

We make the expansion

— Λ ) — = (Λ + I) {A + A + . .. + Λ )
\n i o \ n ~ l i i o \ — n + l i \—n

— Λ ~r £Λ -f- . . . -f- ΔA -]- A

Similarly, we rewrite the second factor λ n - λ~n as (\q)q*n - (λq)~q*n, so we get

(\n _ λ - n } ^ ! ± i = (λ9)9*n + 2(\q)q*n-1 + . . . + 2(λ 9 )" 9 * n + 1 + (λ9)"**7 1.

So

/ n + 2 = ^- ^ (λn + 2A71-1 + . . . + 2λ" n + 1 + λ" n )

v̂  ίί\Q\Q n I O/'λQ'ΛQ Tl—1 I I ^ί \Q\~Q 71+1 I / \ Q \ —<7 71\

^ U ^ J ~r Z(Λ^J^ + . . . -f- AyA1) * -f- (Λ^) ) .

(One verifies that the contribution to this sum from λ = 1 is in fact the term
P

in (5.5). 1 In other words,

I n + 2= - V ( λ n + 2 λ n - 1 + ... + 2λ-n + 1+λ~n)
y λP=l

Since
V^ \r _ / P> P I r ;

_J^ \ 0, otherwise,

we have (mod 4)

/n + 2 = l + / 2 V Λ + /2
bΊ<" / I 0<j<nq*

j=0 or -n(moάp) / \ j d b C d
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In other words
I n = 1 + 2 J2 Hmod4). (5.6)

0<j<nq*
jq=±n (mod p)

T)

We claim the sum is even if q*n < - , and odd otherwise. This is true because the

number of j = itg*n(modp) in an interval [kp, (k + \)p\ is 2, so since ng* is the
first value of j not contributing to our sum (5.6), the interval [kp, (fc+ \)p] containing

77

ng* contributes 0 if ng* < - and 1 otherwise. This completes the proof. D

We compare these values with the prediction of the path integral formula. In the
limit r —-> oo, formula (3.9) gives

2πiq*rn2 . 2τr<?*n . 2πn
exp - sin — - — sin . (5.7)

p p p

This agrees precisely with the path integral prediction (5.1).

Remark 5.3. Notice that the semiclassical formula (5.7) does not agree with the exact
formula for Z(L,p, q), r; 0) given by Theorem 3.4, but only with its r —> oo limit: in
other words, stationary phase is not exact.

5.2. Mapping Tori

In this section, Σ is a surface of arbitrary genus, and β: Σ —> Σ a diffeomorphism. The
mapping torus Σβ with fibre Σ and monodromy /? was defined by (4.1). The Witten
invariants of these 3-manifolds are treated more extensively in a companion paper
[18], in relation to a (0 + 1) dimensional analogue of the Chern-Simons path integral
(symplectic quantum mechanics) based on Floer's symplectic action functional. In that
paper, we identify the semiclassical approximation of a special case of the ( 0 + 1 )
dimensional field theory with the semiclassical approximation (5.1) to the Chern-
Simons path integral for the mapping torus Σβ. To this end, [18] treats the Chern-
Simons invariants and Reidemeister torsion of flat connections on mapping tori. In
this section, we summarize from [18] those results we shall need for the explicit
treatment of mapping tori of tori.

5.2.1. Preliminaries. Let Σ be a surface. We recall the following:
1. The surface Σ is assumed equipped with the (topologically trivial) principal G
bundle P, and we assume a lift β of β to P has been chosen. One may then define a
mapping torus bundle Pβ —• Σβ, as the mapping torus of P under β. For reference,

we specify a flat connection Ao on Σ such that β*A0 = AQ. (For instance, one may
do this by picking a trivialization of P, and taking β to be the corresponding trivial
lift of β and Ao to be the product connection.)
2. We denote by ^4(Σ) the space of all connections on P -> Σ1, and by J6(Σ)
the moduli space of gauge equivalence classes of flat connections on P. This space
of course has an equivalent description as the moduli space of conjugacy classes of
representations of π\ Σ in G. This moduli space is equipped with the basic symplectic
form

ω(a,b)=~ Jττ(aΛb), (5.8)

Σ
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for α, b G TA^(Σ) = Hι(Σ, d^). There is aprequantum line bundle with connection
(=2?, #) over ^M(Σ)\ this is by definition a line bundle J ? over ^M(Σ) equipped with
a connection θ whose curvature is —iω.
3. The bundle map β:P —> P covering /? induces a diffeomoφhism fβ\^M(Σ) —>
^#(Σ"). This has a lift ]β\SZ ^ S$ preserving the connection 0. Such a lift is unique
up to multiplication by a constant [/(I) phase factor.
4. We denote by Λ&{Σβ) the moduli space of gauge equivalence classes of flat
connections on the bundle Pβ over the mapping torus Σβ.

First observe that a connection A on Pβ —• Σ7^ may be written as

i = A(ί) + Φ(t) dt (ί G R), (5.9)

where A(t) G ̂ ( Σ 1 ) and Φ(t) e ΩP(Σ, ad(P)) satisfy the periodicity conditions

5* /5*Φ(£ + 1) = Φ(t). (5.10)

The following facts are treated in more detail in [18]: see also [8], especially Appendix
A. The treatment of the Chern-Simons functional given in Proposition 5.5 follows
from [5], Sect. 4.4.3.

Lemma 5.4. There is a surjective map from the moduli space of gauge equivalence
classes of flat connections A = A(t) + Φ(t)dt on Σβ to the set of fixed points of
fβ :M(Σ) -* ΛS(Σ), given by [A] -> [A(0)l Π

Proposition 5.5. One may choose the lift fβiS§ —> 5§ so that the Chern-Simons
action e2πιCS^ at aflat connection A on Σβ is equal to Tr fβ, the trace of fβ on the
fibre of the prequentum line bundle over the fixed point [A(0)] G ̂ M(Σ). D

5.2.2. Reidemeister Torsion. We refer also to the following results from [18]. The
first Betti number is bι(Σβ) = 1. The fundamental group π\(Σβ) is Zxπ\(Σ), where
ΊL acts on Έ\{Σ) via the diffeomorphism β. The moduli space ^M(Σβ) of conjugacy
classes of representations of π\(Σβ) in G may thus be identified as

M{Σβ) = {ρ = (ρ,g)\ρe H o m ^ Γ , G), g G G, gρg'1 = β*ρ}/G.

Denote by ^/MQ the subspace of Λ&(Σβ) corresponding under the above identification
to a particular element ρ G Hom^iZ 1, G). One sees that if (ρ, g) G yM{Σβ), then any
g is in the normalizer iV(Stab(^)) of the stabilizer Stab(£>) of ρ under conjugation.
Furthermore, if (ρ,g), (ρ,go) £ ^ρ, then g~ιgo G Stab(^). Thus conjugation by
Stab(^) preserves the space Stab(^)^, and we may identify ^f£ρ = Stab(ρ)go/ Stab(^),
where by this we mean the quotient of Stab(£>)#o by the conjugation action of Stab(^).

Let ρ G <ySρ, and let A be a corresponding flat connection on Pβ. Then the square
root of the Reidemeister torsion τ(Σβ, A)1!1 is an element of ΛmaxH°(Σβ^d^) 0
ΛmίΆHι(Σβ, dAγ. In other words, if we specify an element υ of ΛmaxH°(Σβ, dA)*,
then τ(Σβ,A)1/2 becomes a volume on the tangent space to Λ&{Σβ) at [ρ]. The
following proposition is proved in [18]:

Proposition 5.6. Assume that fβ has isolated fixed points on ^M(Σ). Then the follow-
ing hold:
(a) For the mapping torus Σβ, we have

άimH°(Σβ, dA) = dimHι(Σβ, dΛ).
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(b) For a suitable choice of the element υ of A™xHQ(Σβ,dβ)*, the integral of the
square root of the Reidemeister torsion over the subset ^MQ of^S(Σβ) is

Here, B = ad(#)/3* - 1 G Έnά(Hx{Σ,dA)), where A is aflat connection on P —>
Σ1 corresponding to the representation ρ; we take the determinant of the restric-
tion of B to the orthocomplement ofKeΐB. We take the volume element of <yMρ =
Stab(ρ)go/ Stab(#) in an appropriate metric. Π

5.3. Torus Bundles over the Circle

The case of mapping tori of Σ when Σ is a torus can be treated quite explicitly. Firstly,
in this case there is a simple concrete description of the moduli space ^M(Σ): it is the
space (Γ x T)/W, the product of two copies of the maximal torus quotiented by the
diagonal action of the Weyl group. Secondly, there is an equally explicit description
of the vector space 3&^ and the action of SX(2,Z) on β&£\ as discussed in the
Appendix.

Notation. The diffeomorphism β of Σ corresponds to an element U G 51/(2, Z). We
shall write fu for the corresponding map on (T x T)/W, and fu for its lift to the
prequantum line bundle 3S over (T x T/W or Γ x T.

5.3.1. Semiclassical Formula for Torus Bundles. We shall define the contributions to
the semiclassical formula starting by working on T x T. Observe that if A G T x T
is a fixed point of a linear map U acting on (T x T)/W, then there is some w E W
such that A is a fixed point of wU acting on T x T. It is natural to consider all
maps / = wU on T x T and sum the contributions to the semiclassical formula
corresponding to their fixed points. In fact, wUA = A in T x T if and only if w'A
solves w'w(w')~ι U(w'A) = w'A, so it is necessary to divide our fixed point sum by

\w\.
Remark 5.7. Reidemeister Torsion. Suppose A is a fixed point of wU in T x Γ.
The stabilizer Stab(A) of a generic point A G T x T is the maximal torus Γ. As-
sume Stab(A) = Γ. Then the quantity |det(l - ad(g)β*)\ on Hι(Σ,ad(P)) from
Proposition 5.6 naturally corresponds to the quantity det(l — wU).9 The volume
vol(Stab(ρ)0/Stab(ρ)) may be identified with vol(Stab(ρ) Π Z(g)) = vol(Z(w)), the
volume of the fixed point set of the element w G W corresponding to g. When
G = SU(2), the factor vol(Stab(^) Π Z(g)) is 2 for all (ρ, #), provided we as-
sume we have a metric for which \ol(T/W) = I . 1 0 This factor cancels the factor
IZ(G)!"1 = 1/2 in the semiclassical formula (5.1). We have not determined the factor
vol(Stab(£) Π Z(g)) for a general group G.

9 We have not obtained this identification when A is stabilized by a larger group that T. The
formulas given below (Proposition 5.12, Proposition 5.15) assume the same formula for the torsion
holds for such points A; this assumption appears to agree with the TQFT formulas for the Witten
invariant
1 0 We remark that this is not the same as the normalization given by the basic inner product; we
have no explanation for this discrepancy
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This prescription determines Tr fwU\A and det(l - ad(#)/3*) for A e T x T,
provided A is fixed by only one of the maps wU, i.e., provided no nontrivial element
of W fixes A. For those elements A which are fixed by some element in W, we sum
the contributions to the semiclassical formula for all wU that fix A.

We now wish to compare with the formulas in Sect. 4. We have not been able to
obtain a prescription for the spectral flow, but make the following conjecture based
on the TQFT formulas (4.8), (4.16) for the Witten invariant:

Conjecture 5.8. We have

e-iπIA/2 e-iπ(dimH\+dimH°A)/4 ^iπdi

where w is an element of the Weyl group such that wU fixes the point A eT x T.n

mula is then,

sign(Trί/y

The semiclassical formula is then, using Proposition 5.5, Proposition 5.6 and Con-
jecture 5.8:

wUA=A

; ; ( 5 1 i )
\Z(G)\ ' ( 5 Π )

where Z(w) is the subgroup of T that is fixed by the action of w. (As discussed
above, for G = 517(2), vol Z(w) = 2 for all w.)

We now discuss the lifting of β: Σ —• Σ when Σ1 is a torus: we refer to Sect. A.3,
where the prequantum line bundle 5§ is constructed. We may view t θ t as a subspace
A of the space of connections ^ on Σ, and the actions of W and A = ΛR θ ΛR

on A as the restrictions to A of certain gauge transformations. The lifting of these
actions to the prequantum line bundle is described in Sect. A.3; it is easy to check
by explicit calculation that this lifting coincides with the lifting of the gauge group
action via the Chern-Simons cocycle (see, for instance, [34]).

We need to choose a lift of β = U: Σ —> Σ to U: P —> P, and a flat connection
AQ preserved by U. We do this by choosing a trivialization of P and letting AQ be
the product connection and U the trivial lift. This choice of U then preserves the
subspace A c J . We identify Ao with 0 e t; this enables us to lift the action of fu
on (Γ x T)/W to the linear action of U G 5L(2, Z) on A. Of course the connection
on the symplectic affine space A is given by Lemma A.I: it is simply the restriction to
A of the standard connection (A.8) on the space ^4 of connections, whose curvature
is — iω for the symplectic form ω given by (A.7).

We now choose a lift of fu'(Tx T)/W -> (T x T)/W \ofu:SZ->SZ, preserving
the connection. We choose the trivial lift to the trivial bundle over A:

fu(A,z) = (UA,z). (5.12)

The detailed proof that the lifting (5.12) descends to give a lift to the prequantum
line bundle over (T x T)/W is given in Sect. A.4.

Lemma 5.9. The lift (5.12) coincides precisely with the lift described in Proposition
5.5.

This requires interpretation when there are more than one wU fixing A: see (1) of Remark 5.17
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Proof. The lift (5.12) is easily shown to preserve the connection (A.8) on 3%. How-
ever, all lifts to the prequantum line bundle preserving the connection coincide up
to a constant in U(l). That this constant is 1 follows from the fact that the two lifts
agree on the product connection AQ. D

We now derive explicit formulas for the trace of fu at a fixed point. We refer to
section A.3 of the Appendix. If A is a fixed point of fu on (Γ x T)/W, there are
w e W and λ e A = ΛR ® AR such that

wUA-A = λ (5.13)

in 1 0 1 The trace of fu = fwu at a fixed point is computed as follows:

fwU(A, v) = (wU(A), v) = (A + λ, υ)

= (A,ex(A)-ιυ),

the last step using (A.9). In other words

Trace fwU\A=eλ(A)-1

= exp %- ω(A, λ)ε(λ) by (A. 10). (5.14)

Explicitly,

Lemma 5.10. The fixed points A^ of fu on (T x T)/W are in correspondence with
λ = (λi, λ2) e Λ/(wU - I)A: we define

= (wU-iylXet®t. (5.15)

Furthermore, the trace of the lift fwu at the fixed point A^ is given by

Trace fwU\A{\) = exp - ω((wU - I ) " 1 λ, λ)ε(λ),

= exp -iπ((wU - I ) " 1 λ, Sλ) ε(λ) by (A.7),

(5.16)

where the theta-characteristic ε(λ) is defined by (A. 17). D

By Proposition 5.9, we actually have that

Trace fwU\AW = exp(2πi CS( i ( λ ) ) ) , (5.17)

where A ( λ ) is the flat connection on Σβ corresponding to ^4(Λ). This proves:

Theorem 5.11. The Chern-Simons invariant of the flat connection A ( λ ) on the torus
bundle Σu is:

- 1.

Kirk and Klassen ([26], Theorem 5.6) have obtained this result for G = SU(2).

5.3.2. G = 517(2). We shall present the calculation of the semiclassical limit
Zsc{Σu,r) (5.1) for the Chern-Simons partition function of the torus bundle Σu
for Σ a torus. We shall see that the result agrees with the large r limit (5.20) of the
formula for Z(Σu,r;0).
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We denote by U an arbitrary element

U=[a

c

 b

d]eSL(2,Z)

(provided U is not parabolic, i.e., TrU φ ±2.) We wish to compute the semiclassical
formula (5.11) for the torus bundle partition function. We need the quantity

άet(wU - 1) = 2 ψ (α + d).

Equation (A.7) and Theorem 5.11 allow us to evaluate the action: recalling that the
theta-characteristic ε(λ) is 1 for G = 517(2), we have

2 V

where

s-\° ~]
ύ Li o

(Here, (-, •) is the inner product on t φ t, and S G SX(2, Z) acts on t φ t.) This
becomes

CS(i ( λ ) ) = * (-cλ? + 6λ^ + (o - d)λiλ 2 ) , (5.19)
α + α =F 2

where we have used the coroot basis and the basic inner product ( , •) to identify ΛR

with Z. Our expression (5.11) then gives

Proposition 5.12. The semiclassical approximation to the SU(2) Witten invariant for
the torus bundle ΣJJ is given by

sign(d + α)
Zsc(Σu,r) =

x exp I 2πi -Ί—- {-c\x

2 + bλ2

2 + (o - d)λiλ 2) > , (5.20)

over λ = (λi, λ2) G Λ/(±U — 1) A

Assume now for simplicity that J7 is hyperbolic, i.e., |Tr(ί7)| > 2. Then the
expression (5.20) is equal to the large r limit of the expression (4.8) from the TQFT
formula for Tr^?. One may see this as follows. Note that the result (5.20) is expressed
as a sum over a fundamental domain of A under the action of B = 1 ± U. The
equivalence of this with (4.8) is established by the following observations:

2. The sum

Σ Σ «p2™ jτ^±2 ( 5 2 1 )

β=l 7=1

equals | d e t £ | times the sum in (4.8). Indeed, if (ra,n) e A = Z 2 is such that deti?
divides m and n, then (m,n) is in BΛ, so the points (β,j) = (0, \d + α ± 2|),
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(/?, 7) = (|c| | d + α ± 2 | , 0) are in BΛ. The rectangle spanned by these two vectors has
volume |deti? | 2 | c | . Hence the sum (5.21) covers precisely |detB | \c\ fundamental
domains for the action of B (as it covers an integer number, each of which contains
I det BI points.) D

5.3.3. General G. In the case of general G we shall restrict ourselves for simplicity
to one specific family, namely those U G 5L(2, Z) for which c = 1.

Notation, p will denote Tr(ί7).

Lemma 5.13. We have

I det(w ® U - 1)| = I det(p - w - w~ι)\.

Here, the first determinant is the determinant of an automorphism o / t θ t = 1 0 R2,
while the second is the determinant of an automorphism oft

Proof. If the eigenvalues of U are λ, λ"1 and those of w are μ then this breaks up as

LHS = JJ(λμ-l)(λ"V- - 1) (λ"V - 1)
1/2

-l/2 μ l/2_ λ l/2 μ -l/2 )

- RHS. D

Lemma 5.14. A basis of representatives Xfor Λ/(wU — l)Λ is given by

λ = (σ, 0), σ G ΛR/(p -w- w~ι)ΛR.

Proof By Lemma 5.13, these sets have the same number of elements. Now

(wU — 1)Λ = (U — w~ )A,

ττ _i \a — w~ι b 1
U — w = \ , _i .

L c d - w 1 }

where

As c = 1, there is clearly a basis of representatives of the form (σ, 0) (since for every
τeΛR,

<"—-') [J]
is an element of (U — w~ι)Λ with the second coordinate equal to r, so the second
coordinate may be subtracted off from any set of representatives.)

Also,

a — w

c

b

d — w~

-(d-w~x)σ — w ι — w)w ισ

^ J [ σ J - L 0

so for any σ G ΛR, ((p - w - w~ι)σ, 0) G (lί C/ - 1) A D

Remark. Since a set of representatives X e Λ can be chosen in the way described in
Lemma 5.10, with the second component X2 equal to zero, it is easy to see that the
theta characteristics ε(λ) defined by (A. 17) for the representatives λ are 1<
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We need the factor

CS(I ( λ ) ) = - \ (A (λ), SX) = - \ (A2, σ), (5.22)

where (wU - 1) A ( λ ) = λ. Explicitly,

Γ(αiϋ- l ) hi; 1 \AX] _ Γσl
L cw (dw- 1 ) J [ A 2 \ ~ LOJ '

su substituting for A\, we obtain

A2 = (w + w~ι - d - a)~ι σ. (5.23)

Combining (5.22) and (5.23), we have

exp2τπτ CS(A(λ)) = (Tr/A ( A)) r = exp - iπr((p -w- w~x)σ, σ). (5.24)

Substituting this, Conjecture 5.8 and the result of Lemma 5.13 into (5.11), we have

Proposition 5.15. The semiclassical formula for the torus bundle partition function
for an arbitrary compact connected simply laced Lie group G and U = TPS is

} ~ \W\ ^wV\

x^exp{-m((p- ί ί ; -« ; ) σ,σ)\ . D

Here, the second sum is over σ e ΛR/(p — w — w~ι)AR.
The TQFT result (4.16) in the canonical framing equals what we obtained (Propo-

sition 5.15) from the semiclassical calculation, up to the factors vo\Z(w)/\Z(G)\.

Remark 5.16. Exactness of the Semiclassical Approximation. Under a change of fram-
ing by one unit, the semiclassical formula for the SU(2) Chern-Simons partition
function varies like ζ rather than like e

2 π z c / 2 4 . (This is predicted by the path integral
[40], in which the framing enters the semiclassical approximation when one adds a
"gravitational Chern-Simons" counterterm to remove the metric dependence.) Thus,
in the natural framing ψ(U) associated to the monodromy matrix U for Σu, the semi-
classical formula Zsc(Σu,r;ψ(U)) agrees precisely with Z(Σu,r;ψ(U)). There is a
simple formal path integral argument for this result: see [18].

Remark 5.17. Unresolved Difficulties. For Witten invariants of mapping tori Συ, we
have only been able to identify a large number of the factors appearing in the semiclas-
sical approximation with factors appearing in the TQFT formulas. This is in contrast
to the lens space case, where we have shown exact agreement between the TQFT
formula and the semiclassical formula (in the limit r —> oo). The ambiguities we
have been unable to resolve, which prevent our identification from being complete,
are the following:
1. The spectral flow factors need to be identified, as in Conjecture 5.8. Furthermore,
Conjecture 5.8 should be rephrased to take account of points A £ T x T that are
fixed by more than one wU. This might be done by introducing a family of operators
interpolating between an operator corresponding to U and an operator corresponding
to wU, which would have spectral flow 2 if det(iί ) = — 1. Thus, if an element A
is fixed by both U and wU, it would be natural for the corresponding terms in the
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semiclassical approximation to have different factors (—I) I A. The Maslov index (cf.
[8]) may offer a natural interpretation.
2. For general groups G, the volumes of stabilizers Stab(£>) Π Z(g) need to be com-
puted.
3. In the case G — SU(2), we have computed the volumes of stabilizers explicitly,
and find that they give an appropriate normalization only in a metric that is different
from the metric induced by the basic inner product. The latter metric however is the
one giving the correct normalization for lens space Witten invariants.
4. We have not computed the integral of the torsion J r 1/ 2 when Stab(^) is larger
than T. Λe

Some of these ambiguities disappear if, instead of the semiclassical approxima-
tion to the Chern-Simons theory, one considers the semiclassical approximation to
symplectic quantum mechanics: see [18].

A. Appendix

A.l. Notation for Lie Groups

We collect here our notation for various quantities associated to Lie groups, which
will be used in this and the next chapter. The main reference for this material is the
Appendix to [6]; see also [21].
1. We choose a compact Lie group G, which is assumed simple, connected and simply
connected. It has maximal torus T and Weyl group W. The usual alternating character
on W is denoted w —> det(υ ). The Lie algebras of G and T are respectively 9 and t.
The rank(dimΓ) is denoted I.

2. We introduce the basic inner product (, ) on t, normalized so that the highest root

has length y/ϊ.
3. "Tr" denotes a negative definite Ad-invariant quadratic form on g: the normaliza-
tion is such that on t, Ύr(XY) = - (X, Y).
4. Roots will be denoted a. Although roots are actually in the dual t*, we use the
basic inner product to identify them with elements of t. The set of positive roots will
be denoted by Δ+. Simple roots will be denoted α^, i = 1, . . . , / .
5. The highest root is denoted am.
6. Long and short roots: For any simple Lie algebra there are at most two possi-
ble lengths of roots, "long" and "short". The highest root is a long root, and has
{ot"m,&m) = 2. Short roots then have \a\2 = 2/n for some n G Z. A simply laced
Lie group is one for which all roots have the same length.
7. As usual, ρ will denote half the sum of the positive roots.
8. Coroots: To every root a e t* is associated a coroot ha e t such that a(ha) = 2.
Using the basic inner product, this gives ha = 2α/(α,α), and |Λ-Q,|2 = 2/(α,α).
9. Lattices: We define two lattices in t. The coroot lattice ΛR is the lattice spanned by
the coroots; because G is simply connected, it equals the integer lattice. The weight
lattice Λw (which is dual to ΛR) has a basis given by the fundamental weights Xa,
which is the dual basis to the basis of coroots hai for simple roots α i # Of course,
since these lattices are dual, their volumes are inverses: volyl™ = ^ 1

10. The fundamental Weyl chamber and its closure will be denoted FWC and FWC.
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A.2. Notation Associated to Loop Group Representations

We shall also need several quantities associated to loop groups, the definitions of
which are rather more involved, k G Z is the level, as before. This is in fact the same
k as appears multiplying the Chern-Simons Lagrangian in path integral formulation.
1. If λ is a weight, then Q\, the quadratic Casimir of the corresponding representa-
tion, is

2. The dual Coxeter number, denoted h, is the quadratic Casimir of the adjoint rep-
resentation.
3. FreudenthaΓ s strange formula

\ρ\2 dimG

2/ι 24 '

provides an expression for h.
4. The conformal weight of the representation indexed by the weight λ is

(A.2)

5. The level k central charge is

6. We denote k + h by r.

Hλ = - % - . (A.3)
k + h

c = . (A.4)
k + h

A3. Theta Functions and Quantization for the Torus

When Σ is a torus, the vector space j ^ £ arising from the quantization of the Chern-
Simons theory can be constructed quite explicitly. We define generating cycles a,β
for π\Σ. Then the moduli space of representations identifies with

J = (Γx T)/W (A.5)

under ρ —> (ρ(a), ρ(β)). (Because the fundamental group is abelian, any representation
must map the whole fundamental group into a maximal torus of G; then the only
conjugation freedom left is the diagonal action of W.) The tangent space to T x T is

A = t θ t ,

and
TxT = A/Λ,

where
A = ΛR θ ΛR. (A.6)

A choice of trivialization for a G bundle P —> Σ identifies A with a subspace of the
space of connections ^β(Σ), and the product connection (denoted Ao) is identified
with 0 G Σ. The semidirect product WxΛ identifies with the gauge transformations
preserving A as a subspace of ^S. The lattice in A is canonical, although the choice
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of 0 G A is not (gauge transformations may move 0 to another element of the lattice
A). The basic symplectic form ω on A is ([6], (5.19)):

(A.7)

for

S= [J "*] GSX(2,Z).

We have:

Lemma A.I. 7/"(A, α;) w α«j symplectic affine space, then a connection θ on the trivial
line bundle A x C with curvature —iω is given by

-%-ω{A-AQ,a), (A.8)

for any AQ G A. D

In our situation, we of course choose the reference connection AQ to be the product
connection, as above.

There is a line bundle ^ o n Γ x T , the prequantum line bundle, such that c\ (J£) —
ω/(2π). To construct it, we start with the trivial bundle A x C —•> A and quotient out
by the action of A lifted to A x C as follows ([6], l(c):)

, (A.9)

where
eχ(A) = ε(λ)exv{-(i/2)ω(A - Ao, λ)} (A. 10)

and the theta-characteristic ε(λ) G {±1} satisfies

ε(Xι + λ2) = ε ( λ i ) e ( λ 2 ) ( - i r ( λ l ϊ λ 2 ) / 2 π . (A.11)

To lift the action of W to J^, one chooses the trivial lift from A to A x C:

ώ(A, z) = (AQ + w(A - i4o),«) (A.12)

This lift is equivariant with respect to the A action, as we shall show in Lemma A.2.
Both actions preserve the connection θ.

Holomorphic sections of the line bundle Sk on TxT are given by theta functions.
The following is treated in more detail in [6] (Sect. 5). A complex structure on T x Γ
is defined by a modular parameter r in the upper half plane H, which specifies a
holomorphic structure on the torus Σ. For u G 1 0 C, we define

Γ Ύ 2 / τ \ Ί
07,fc(τ, u) = 2 ^ e x P i "̂Arr α + •£ + 2πik( u, a + j- ) \. (A. 13)

Since we have lifted the action of W to S, W also acts on H°(2?). We may thus
also define the Weyl anti-invariant linear combination

wew

The 07}fc are theta functions for T x T with the symplectic structure (A.7) and the
complex structure given by r.
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One may define the level k physical Hubert space J ^ as H°(^k,T x T)w,
the space of Weyl invariant holomoφhic sections of Sk. This is a vector space
depending on the complex structure r G H. The authors of [6] define a bundle over
H whose fibre over r G H is ^ ^ ( r ) , equipped with a projectively flat connection.
The sections of the bundle over H parallel under this connection turn out to be ([6],
5.44):

Here, a Weyl invariant theta function is obtained as the quotient of two Weyl anti-
invariant theta functions. The quantity φΊik (up to a phase) appears as the character
for the level k representation of the loop group LG labelled by 7, in the Weyl-Kac
character formula.

A basis for 3$% is given by those level k theta functions ψ\yk corresponding to
the highest weight integrable representations of the loop group LG at level k: i.e., by
those labelled by weights λ G t such that for every positive root a,

J f c > ( λ , α ) > 0 . (A. 16)

In fact, it is sufficient to demand that λ be in the fundamental Weyl chamber and that
its inner product with the highest root am be < k.

For the torus, M^f* has an inner product in which the φΊ^k form an orthonormal
basis: this also provides an identification of 3^^ with its dual. The vector in 3$^
corresponding to the solid torus under the axioms of topological field theory is ô,fc>
the vector labelled by weight 0. The other φ\^ correspond to the solid torus with a
longitudinal Wilson line in the representation λ.

A.4. Liftings to the Prequantum Line Bundle

This subsection proves the following technical lemma:

Lemma A.2. For a suitable choice of the theta-characteristic ε, the lift fu of fu :T x
Γ ^ Γ x Γ corresponding to U G 5L(2, Z) given by (5.12) and the lift of w G W
given in Sect. A.3 are equivariant with respect to the action of the lattice A on the line
bundle % -* T x T, which is defined in (A.9).

Proof. Write V for the linear maps on t Θ t corresponding to U G £T(2, Z) and
w G W. The equivariance condition is characterized by the following equation on

^ = AxC:

(VA + V\ ex(A)v) = (VA + Vλ, eV(X)(VA)v).

Now from (A.9) we have
evw(VA) = ε(Vλ)

eχ(A) ε(λ) '
so we need ε(VX) = ε(λ). Actually we need only check this for λ in some basis of
lattice vectors.

We fix the coroot basis {ha} of ΛR (see Sect. A.I) and correspondingly a basis
\ ( of A = AR® ΛR. We define the theta-characteristic by
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Then for U G SL(2, Z), Uhg = nth™ + nh%> for some m, n G Z; because Λα does
not mix with the other coroots hβ, β Φ a under U and because (ftα, ftα) G 2Z, we
have ε(t/ftg>) = 1.

Similarly for w G W, w/ι^ = Σ riβh^: the two summands ti and t2 in t φ t do
β

not mix. So since ω pairs ti with t2, again ε(wh$) = 1. Hence the Definition (5.12)
does indeed give a Λ-equivariant lift to 2§.

Remark A3: Theta-Characteristics. The choice of a theta characteristic for a bundle
% on Γ x T is the specification of w i ( ^ ) eHι(Tx Γ, Z 2). We know that (Γ x T)fW
is simply connected, so bundles with different choices of theta-characteristic o n Γ x Γ
descend to isomorphic bundles on (T x T)/W, and the choice of theta-characteristic is
irrelevant for our purposes. For convenience in specifying the lift of SX(2, Z) to J?\
we make the particular choice (A. 17) for the theta characteristic. A different choice
would force us to choose a different lift in order that the lift be equivariant with
respect to the A action.

The theta characteristic we have chosen is obviously identically 1 in the SU(2)
case. D

A.5. Alcoves

Suppose G is a simply laced Lie group, i.e., all the roots have the same length.
1. The affine Weyl group Waff is the semidirect product of the ordinary Weyl group
W and the translations given by the coroot lattice AR. It has an obvious action on t.
2. An alcove is a fundamental domain of Waff. One may define a distinguished alcove,
the fundamental alcove Co in t, by

Co = {x G FWC I (χ,am) < 1}, (A. 18)

where am is the highest root and FWC the fundamental Weyl chamber.
3. A basic cell of ΛR thus contains \W\ alcoves. Hence also a basic cell of Λw

contains \W\ vo\(Λw)/vo\(ΛR) alcoves.
4. By extension, we may define k-alcoves as fundamental domains of the action of
the semidirect product WxkAR. The set of weights indexing the level k integrable
representations of the loop group (A. 16) are then the weights in the fundamental
k-alcove

O)(fc) - {x G FWC I <<E,αm) < k} . (A. 19)

5. Using the formula (A.I) for h, it follows that

(am,ρ) = h-l. (A.20)

Thus translating the set of weights in the fundamental A -alcove by ρ transforms them
into the set of weights in the interior of the fundamental (k + A:)-alcove.
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