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Abstract. The evolution of a perturbed vortex tube is studied by means of a
second-order projection method for the incompressible Euler equations. We
observe, to the limits of grid resolution, a nonintegrable blowup in vorticity. The
onset of the intensification is accompanied by a decay in the mean kinetic energy.
Locally, the intensification is characterized by tightly curved regions of
alternating-sign vorticity in a 2^-pole structure. After the first U° peak, the
enstrophy and entropy continue to increase, and we observe reconnection events,
continued decay of the mean kinetic energy, and the emergence of a Kolmogorov
(fc~5/3) range in the energy spectrum.

1. Introduction

The regularity of solutions to the three-dimensional Euler equations continues to
be an area of active research. That very steep gradients exist on very small length
scales is beyond dispute; that the vorticity increases wildly as the volume of its
support collapses onto a fractal set can be persuasively demonstrated [8] that, for
smooth initial data, solutions to the three-dimensional Euler equations become
singular in finite time is an issue that remains open to debate, speculation, and
controversy [6, 17, 3, 22, 24, 25].

The importance of such an event is obvious; it would dominate the vorticity
dynamics and play a critical role in the turbulent energy cascade, thus providing a
heuristic link between the geometry of incipient singularities and the dynamics of
the intertial range. Therefore, the manner in which vorticity and strain couple to
induce strong local vorticity intensification, the time scale on which it occurs, and
the vorticity dynamics in the post-intensification regime are all issues of
fundamental interest.

Chorin [8] observed that an inviscid vorticity distribution represented as a
collection of vortex tubes becomes singular in finite time, and that the Hausdorff
dimension of the support of the vorticity collapses to a value of roughly 2.5. Siggia
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[26] performed further vortex filament calculations, with the conclusion that
counter-sign vortices will merge in finite time, becoming antiparallel at their point
of closest approach. This has inspired several numerical studies of colliding vortex
tubes [22, 27] and fueled speculation as to the role of vortex reconnection in the
turbulent energy cascade [1,17, 25].

The picture of the vorticity distribution that has emerged is of a collection of
stretched, folded, and pinched vortex tubes [9]. This has been supported by
experimental observation of tightly curved (hairpin) vortices in turbulent bound-
ary layers [15] and free shear layers [20]. Moin et al. [19] have simulated the
emergence of a hairpin vortex from a perturbed vortex layer and have shown that a
curved vortex filament can evolve into a vortex ring in the presence of viscosity and
mean shear, thus linking experimental observations of hairpin vortices with
observations of vortex rings in the outer regions of a turbulent boundary layer.
Hairpin vortices have been associated with turbulent bursts [18] and there has
been speculation as to the connection between hairpin vortices and the formation
of singularities [10, 23]. Recently, Chorin and Akao [11] have proved (in a
statistical mechanics context) that hairpin structures must occur, and are generic to
turbulent flow.

In this paper, we study the evolution of a perturbed vortex tube in a triply
periodic domain by means of a new finite difference method for the three-
dimensional Euler equations. The flow is visualized by following the evolution of a
tracer function initialized on the surface of the tube. As the flow evolves, we
calculate the L00 norm of the vorticity, the enstrophy, the entropy of the vorticity
magnitude, the mean kinetic energy, the energy spectrum, and the moments of the
diagonal components of the deformation tensor. The choice of diagnostics is
motivated by a desire to explore the following questions: What role do strong
vorticity intensification evens have in the transfer of energy to the small scales?
What is the local structure of such an event and how is that manifest in the global
(statistical) properties of the flow?

We show that as t approaches a critical time t*, Hωll^ increases as l/(ί — £*),
until the finite grid can no longer support the intensification. Accompanying the
onset of the intensification is a decay in the mean kinetic energy and the emergence
of approximately a decade of Kolmogorov (k~5/3) range in the energy spectrum.
The velocity statistics are highly non-Gaussian. The intensification is localized to
tightly curved regions whose tips have a complex structure of alternating-sign
vortex elements. The enstrophy and entropy continue to increase beyond the first
|| ω || ̂  peak, suggesting that vortex-stretching continues to dominate the dynamics.
The results imply a breakdown of the discrete solution to the Euler equations and
a viscous regularization, roughly analogous to that of shocks in Burgers' equation.

2. Governing Equations, Initial Data, and Numerics

We solve the three-dimensional Euler equations for incompressible flow:

Ut+U-VU=-VP, (1)

V U = 0, (2)

where U = (u, v, w), P is the pressure, and -1/2 <; x ̂  1/2, -1/2 ^ y ̂  1/2, -1/2 ^ z
^ 1/2. The initial data represents a hollow-cored vortex tube, or cylindrical shear
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layer, subjέct to a small transverse perturbation in the form of a wide, flat Gaussian
bump. Thus,

C/o= ( t a n h [ ( g ^ + z ) ] , 0 , e g - ^ ^ > ) . (3)

The values of the numerical parameters ρ, δ, ε, and β are, for the calculations
presented herein, 0.15, 0.0333, 0.05, and 15.0. The tracer function, φ, satisfies an
advection equation, φt + U Vφ = 0, and is initialized with a Gaussian profile that
peaks at the inflection point of the hyperbolic tangent in the u0 field, i.e.
φo = e~κ{e~Vy2 + z2\ where κ = 500, and ρ is the same as in Eq. (1).

The equations are solved by means of a second-order projection method [4, 5],
a higher-order extension of Chorin's projection algorithm [7]. Advection-
diffusion equations are solved without enforcing the incompressibility constraint,
and the resulting velocity field is projected onto a divergence-free subspace. We
incorporate a second-order, upstream-centered differencing procedure, based on
ideas first introduced by Colella [14] for numerical solutions to systems of
hyperbolic conservation laws. Respecting the characteristic structure of nonlinear
advection provides a robust treatment of nonsmooth data without introducing
spurious oscillations, even in the limit of vanishing viscosity. Monotonicity is
preserved by means of a slope-limiting procedure that introduces a nonlinear
dissipation, providing a local and selective treatment for the subgrid scales. These
features make the method especially well-suited for flows with large spatio-
temporal inhomogeneities and a wide range of length scales. Further details
regarding the numerics can be found in [4, 5].

3. Results

3.1. Flow Visualization

Figure 1 a-1 shows volume renderings of the tracer field described in the previous
section. The tracer was rendered with an opacity profile scaled to the tracer
magnitude, so that the frames show the evolution of the material surface of the
original vortex tube. The calculations were carried out on a uniform 1283 grid.

The first frame is at t = 0.8 up until this time, the growth of the perturbation has
been slow and unspectacular, manifest in the formation of patches of strain-
induced secondary vorticity on the top and bottom of the tube, offset, respectively,
to the right and left of the origin (as governed by the direction of the mean flow).
These structures intensify as the tube further deforms, acquiring definition,
interweaving, and wrapping themselves around the primary vortex in a helical
manner. The secondary vortices continue to intensify and begin to flatten into
ribbon-like structures, themselves exhibiting a tendency towards helical deforma-
tion. By this time, the primary vortex has taken the shape of an inverted "£/" at
either end, with thin ribbon-like parallel walls thickening to tubular structures at
the base and tips, rising in the middle to form a topologically complicated knot of
tightly curved vorticity (Fig. 1 f).

It is worthwhile at this point to pause a moment and note some of the large-
scale features of the flow: a predominance of hairpin structures and a tendency in
some regions towards flattening and helical deformation of vortex tubes, while in
other regions, the vortices appear to retain a substantial core structure. The
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Fig. la-1. Evolution of tracer field; ί = 0.8-(0.1)-l 9
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tendency towards "sheetification" of vorticity has been observed in other
numerical simulations [22] and has been associated with the saturation of
vorticity intensification in viscous flow simulations of vortex reconnection [25].
We will show later that the intensification we observe has a different local
structure.

Figure 1 h shows the flow field shortly after the onset of the vorticity
intensification. There are tightly curved structures at large and intermediate scales
connected by highly attenuated regions. In the final frames, we observe what
appear to be multiple reconnection events. Eventually, the flow takes on the
appearance of a series of rough, staggered rings.

These volume renderings of the support of the vorticity are useful in that they
promote a heuristic understanding of how a material surface in the flow evolves.
Unfortunately, such a representation suppresses the sign-sense of the vorticity,
which is essential to an understanding of the dynamics. In Fig. 2, we show contour
plots of the vorticity components on orthogonal planes intersecting at the origin.
It should be recalled, however, that this flow is highly three-dimensional, and these
frames only represent "snapshots" of structures passing through the plane.

The left column shows the z-component of the vorticity in the x-y plane. It is
here that we can most clearly see the characteristic Kelvin-Helmholtz rollup of the
vortex lines, particularly in the early stages. It is complicated by the entrainment of
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countersign vorticity and soon breaks up into two discrete large-scale structures
which themselves exhibit a richness of small-scale detail, showing both thin,
stretched sheets and dense-cored tubes of alternating-sign vorticity.

In the middle column, the ^-component of the vorticity in the x-z plane is
shown. The smooth vortex lines associated with the primary shear flow are
stretched and sheared, giving birth to the small intense vortices that characterize
the flow at later times. The integrity of the initial vorticity distribution is
maintained until the tube deforms enough so that vorticity from the lower surface
is entrained by the counter-sign vorticity above, inducing the formation of
energetic small scales.

The column on the right shows the component of vorticity parallel to the initial
axis of the jet. As the perturbation grows, symmetry about the horizontal plane is
lost, and patches of countersign vorticity are pushed toward the top of the jet,
forming the knot-like structure seen in the tracer field. Intense local velocity fields
arise due to the close proximity of countersign vortex patches, which induce
further stretching, and so on.

Fig. 2a, b. Contours of vorticity components on orthogonal planes through the origin;
ί = 1.0—{0.1)—1.5. Left column, ωz; center column, ωy; right column, ωx
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At latet times, the flow becomes so complicated that simple mechanistic
descriptions of the evolving dynamics are of limited utility. However, some general
observations can be made. Figure 3 shows isosurface plots of the vorticity
magnitude for |ω| = 0.5 at ί = 2.0, 2.4, and 2.8, respectively. The vorticity is clearly
not space-filling. We observe a broadening range of length scales with much small-
scale structure, an increasing tendency towards isotropy, and a continued
predominance of hairpin structures.

3.2. ||ω || oo, Enstrophy, and the Local Structure of the Intensification

Figure 4 shows the time evolution of | |ω|| ̂  for 323, 643, and 1283 grids. Its value
roughly doubles as the grid refinement is doubled. This indicates that, to the limit
of grid resolution, we are capturing the asymptotic range of a finite-time "blow-
up." It is unknown if this intensification will saturate out at the higher
wavenumbers resolvable on a finer grid, or if in the limit of infinite resolution
|| ω || oo would become unbounded. Singular or not, this vorticity intensification is
an event of some significance, and the signature of a complex local structure. In

0'- 0
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Fig. 3a-c. a |ω| = 0.5 isosurface; t = 2.0. b
ί = 2.8

| =0.5 isosurfacc; t = 2A. c |ω| —0.5 isosurfacc;

Fig. 5, we show the evolution of the enstrophy, defined as Z = J ω2dΩ. We observe
Ω

an increase that, in its early stages, follows the growth of Hωll^. The continued
growth of the enstrophy after the first L00 peak indicates that vortex stretching
continues to dominate the dynamics [12].

At ίhe highest resolution we observe a second L00 peak at roughly ί = 2.5. This
suggests a possible scenario for transition to turbulence as a cascade of vorticity
intensification events, and lends credence to speculation regarding the connection
between singularities, turbulent bursts, and intermittency.

The work of Beale, Kato, and Majda [3] provides a theoretical context for this
discussion. They prove that if a finite time singularity occurs for the three-
dimensional Euler equations, it occurs in the L00 norm and that the blow-up is non-
integrable. We have compared our results with a nonintegrable test function,
C(t*-ty\ where ί* = 1.568 (Fig. 6). It is seen that, locally,

1
ω

ί-ί*

Figure 7 shows a volume rendering of the magnitude of the vorticity field near
the first U° peak (ί = 1.5). The vorticity intensification is highly localized,
concentrating on hairpin structures. As before, in order to get a true sense of the
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MRXIMUM VORTICITY VS.TIME
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Fig. 4. HωlU vs. time; 323, 643, and 1283 grids

vorticity dynamics, we plot contours of vorticity components on two-dimensional
slices through the region of maximum intensification near the time of the first U°
peak (ί = 1.5). Figure 8 shows ωz(x,y; Z ω m β J; in Fig. 9 we plot ωx(y,z; Xωmax). The
tip of the hairpin seen in Fig. 7 is in fact a complicated 2rc-pole structure oΓstrong
alternating-sign vortices. It is not clear what determines n; examination of other
cross-sections shows that it changes as the flow evolves.

The vortices appear to retain a substantial core structure (unlike the
reconnection scenarios described in other calculations [24, 25] which report the
collapse and flattening of the vortex cores). There are also regions of tightly folded,
almost crumpled, alternating sign vortex sheets, but these do not appear to be
associated with the primary intensification. The results are consistent with the
heuristic description proposed by Chorin and elucidated in simple lattice models
of vorticity distributions [9]: a collection of vortices stretches, the local velocity
fields induced by its elements intensifies, the filaments kink in order to permit the
merger of countersign patches so that energy conservation can be satisfied, and the
process repeats itself, cascading to smaller and smaller scales.
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Fig. 5. Enstrophy vs. time; 323, 643, and 1283 grids

Fig. 6. Comparison of vorticity intensification with nonintegrable test function
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Fig. 7. Volume rendering of vorticity magnitude at f = 1.5

Fig. 8. ωx(y,z;Xω
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Fig. 9. ωz(x,y;Zω)

3.3. Energy

The mean kinetic energy is shown in Fig. 10 for the different levels of grid
resolution. It remains constant in the early stages of the growth of the
perturbation, then begins to decay as the vortex tube begins to strongly self-
interact. The onset of the decay is delayed as the grid is refined; the steeper slope at
late time in the high resolution (1283) case can be attributed to the influence of the
second L00 peak, which is under-resolved on the coarser grids. We presume that it
is this dissipation, induced by the vorticity intensification, that permits the
reconnection events we observe.

In previous calculations with the two-dimensional analog of the initial data
used here, our method has been shown to conserve energy to within 0.5% and
exhibits second-order convergence [4]. It is therefore unlikely that the dramatic
dissipation we observe in this calculation is a numerical artifact. Indeed, the onset
of decay in the kinetic energy appears to be coupled to the onset of the vorticity
intensification.
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Fig. 10. Mean kinetic energy vs. time; 323, 643, and 1283 grids

The occurrence of a singularity or near-singularity or near-singularity is
indicative of a model breakdown; in the absence of such a singularity, the three-
dimensional Euler equations conserve energy. Viscous dissipation, therefore,
serves as a physical regularization mechanism. Whether the dissipative onset we
observe occurs as a manifestation of a possible breakdown of the Euler equations
in the continuum limit, or if it is a signature of under-resolution alone, is not
known. In any case, it highlights the intimate connection between incipient
singularities and energy transfer to the small scales.

Regularization must occur; as adjacent patches of countersign vorticity merge,
the energy is fluxed into increasingly high wavenumbers, which cannot be
represented on a finite grid. In our calculation, the energy in these modes is then
dissipated numerically. The local and selective dissipation introduced by our
method at the grid scales is, in effect, a high wavenumber sink, analogous to
physical dissipation at viscous length scales. (Chorin has hypothesized a different
regularization scenario; namely, vortex reconnection as a manifestation of a
percolation threshold for the Euler equations [13]. It is unknown if the
regularization we observe can be so described, but such a mechanism is not
precluded by dissipation due to the finite grid, which is clearly also present.)
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Fig. 11. Integrated energy spectrum; a ί = 0.62, b ί = 1.65, c ί = 2.67

3.4. Energy Spectrum

To analyze the distribution of energy as a function of wave number we define an
integrated energy spectrum

Φ(K)= J E(lc)dk9

k<K

where E(jt) is the energy at wave number vector k, which is obtained by an FFT
of the velocity field. Thus,

dΦ(K)

dK ί
\k\=K

is the traditional energy spectrum defined as the integral of the energy over
spherical shells in /c-space. The choice of Φ to represent the spectral data avoids
numerical artifacts arising from using finite thickness shells to evaluate (2) on a
discrete lattice. Figure 11 shows Φ{K) at times 0.62,1.65, and 2.67, corresponding
to before, near, and after the onset of the first singularity. We observe the growth of
a region in which Φ(K)&K~213 and a steepening drop-off at high wave numbers,
indicating the emergence of a Kolmogorov (K~5/3) range in the energy spectrum.
At the last time shown the inertial range spans roughly a decade in wavenumber.

3.5. Moments of the Strain

In order to examine the statistical properties of the spatial distribution of strain
rate in the flow, and to elucidate its relationship to the vorticity distribution, we
calculate the moments of the diagonal components of the deformation tensor

1 fdut du:
e-= - — - H -

lJ 2\dXi dxf
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Figure 12 shows the time evolution of the variance, given for a random variable
χ with zero mean by V(χ) = <%2). It is a measure of the width of the probability
density function P(χ). The components appear to roughly obey an equipartition
principle. The increase in variance can be interpreted as a signature of the
generation of increasingly energetic small scales. The curves show a striking
resemblance to the enstrophy.

The skewness, S(χ), is given by S(χ) = <χ3>/<χ2>3 / 2 and is a measure of the
symmetry of P(χ). If χ is Gaussian, S(χ) = 0. In a turbulent flow, skewness indicates
the rate at which enstrophy is increased by vortex stretching. Batchelor and
Townsend [2] have reported experimental values of —0.4; numerical simulations
at moderate Reynolds number have yielded values of —0.5 [21]. In Fig. 13 we
show the time evolution of the skewness of eti. The w-component in particular
shows wild variation in the early stages of the flow; eventually all three
components relax to values between — 0.2 and — 0.6. The statistics are clearly non-
Gaussian.

In Fig. 14 we show the kurtosis, or flatness, of eii9 defined by K(χ) = <χ4>/<χ2>2.
The magnitude of the kurtosis is an indication of the peakiness of χ, or magnitude
of the values that P(χ) takes on in its tails. Again, the w-component shows a violent
initial increase. At late times, all three components relax to a value well in excess of
the Gaussian value of 3. The rapid and extreme variations in skewness and
kurtosis could be related to the turbulent bursts observed in boundary layers and
shear flows.
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3.6. Entropy

If we partition the magnitude of the vorticity on the grid \ωijk\ into L equal bins of
size δω, we can define a probability density function by

where

o t h e r w i s e ;

with ωι = lδω and l~ί, ...,L.
An entropy of the vorticity distribution is then given by

If an appeal is made to statistical descriptions of polymers, this quantity can be
regarded as a measure of line length [16,12]. Therefore, the entropy of a collection
of vortices measures the severity of vortex stretching, and is closely related to the
enstrophy. The more conventional interpretation of entropy as the number of
degrees of freedom needed to specify the state of the system is also appropriate
here, as evidenced by the emergence of an inertial range.

Figure 15 shows the time evolution of S for this flow. The entropy increases
gradually at first, then sharply, beginning to level off where the enstrophy reaches
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its maximum value. We have not carried out the calculation far enough to
determine if the entropy tends to some asymptotic value. This is not expected,
however. The maximum entropy state would correspond to a quasi-equilibrium
inertial range, in which energy is dissipated at the small scales at the same rate it is
injected at the large scales [13]. Here we are introducing no energy at low k and at
late times the high wavenumber modes will slowly decay due to grid dissipation.

4. Conclusion

We have carried out a numerical solution of the three-dimensional Euler
equations for the evolution of a perturbed vortex tube, and shown that strong
vorticity intensification events play a fundamental role in the dynamics. We have
discovered a new mechanism for such events; namely, that the intensification is
concentrated on tightly curved and crumpled regions of alternating sign vorticity.
This constitutes an instantiation of Chorin's lattice models of vorticity distri-
butions. The intensification in L00 becomes, to the limit of grid resolution,
unbounded as t approaches a critical time ί* and is nonintegrable. The onset of the
intensification is accompanied by a decay in the kinetic energy, suggesting that the
intensification is mitigated by viscous regularization in a manner analogous to
shocks in Burgers' equation. The velocity statistics are highly non-Gaussian. The
enstrophy and entropy continue to increase beyond the first L00 peak, elucidating
the continuing importance of vortex stretching. At late times we witness the
emergence of roughly a decade of Kolmogorov range.

Suggestive as this calculation is, the question of a finite-time singularity in the
three-dimensional Euler equations remains open. What we have done is shed light
on the structure and role of vorticity intensification events in transition to
turbulence. Ongoing work in this area includes an enhanced resolution study of
the 2τϊ-pole structure in the intensification region, careful analysis of the local
coupling of vorticity and strain, and implementation of the projection algorithm in
an adaptive mesh refinement shell to increase the effective resolution and enhance
computational efficiency.
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