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Abstract. The geometrical approach to the functional integral over Faddeev-Popov
ghost fields is developed and applied to construct the BRST extension of the off-shell
closed string amplitudes in the constant curvature gauge. In this gauge the overlap
path integral for off-shell amplitudes is evaluated. It leads to the nonlocal sewing
procedure generating all off-shell amplitudes from the cubic interaction vertex. The
general scheme of the reconstruction of a covariant closed string field theory from
the off-shell amplitudes is discussed within the path integral framework.

1. Introduction

In the present paper we complete our study of the Polyakov path integral over bordered
surfaces initiated in [1, 2]. The interest in this object can be traced back to Alvarez's
pioneering paper [3] where the string ansatz for the Wilson loop was considered. The
main development in calculating this functional integral was achieved in the context
of the closed string off-shell amplitudes [4-11]. This approach was aimed to derive
a covariant closed string field theory (CCSFT) from off-shell amplitudes defined in
terms of a functional integral over surfaces connecting closed contours in the target
space [11]. In spite of a very suggestive physical and geometrical picture and of
important progress in the calculating techniques involved [11, 12] this program did
not succeed. It seems that it does not mean a principal invalidity of the basic idea but
rather reflects the fact that the functional integral techniques are much less developed
than for instance the operator ones [13]. In fact the major recent achievement in
constructing CCSFT - the nonpolynomial theory [14-18] - is based on the operator
formulation of conformal field theories on punctured Riemann surfaces. There is yet
another, well developed approach to CCSFT - the improved [19] covariantized light
cone theory [20] in which the relation between an off-shell string diagram and a path
integral over bordered surfaces is even less transparent.
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i In our previous papers [1,2] the path integral representation of the off-shell bosonic
string amplitudes was constructed in the case of zero ghosts boundary conditions. The
main aim of the present work is to extend the geometrical methods of Refs 1, 2 in
order to derive the full dependence of the off-shell amplitudes on ghosts variables.
This method is then applied to construct the BRST extended off-shell amplitudes in the
constant curvature gauge. In particular the overlap path integral for these amplitudes
is calculated.

Although the operator approach is believed to be more general than the path
integral one [13] and provides a powerful tool (for instance, in solving 2-dim gravity
[21]) it seems that the functional formalism developed in [1, 2] and accomplished
in the present paper gives new insight in the structure of the closed string Feynman
diagrams. Let us also note that the geometrical approach we use to handle the path
integral over bordered surfaces is more general and gives some new tools in the
covariant functional quantization of gauge systems in the Schrodinger representation.

We began, in Sect. 2, by describing a geometrical framework for the path integral
over Faddeev-Popov ghost fields. As it is known from the Yang-Mills theory [22] and
the Polyakov path integral over closed surfaces [23] there exists behind the Faddeev-
Popov procedure a well defined geometrical construction. This construction involving
the infinite dimensional Riemannian geometry of the space of fields is motivated
by some finite dimensional integral formula [24]. Following this line of thinking we
present a finite dimensional counterpart of the "exponentiation" of the Faddeev-Popov
determinant by a Gaussian integral over ghosts. This is done within the Berezin-Leites-
Kostant approach to supermanifolds [25] and leads to the geometrical interpretation
of the Faddeev-Popov ghosts different from the standard one [26] developed in the
context of the Yang-Mills theory. Recall that in the covariant Y-M theory one prefers
to work with the space of all connections promoting nonphysical field components
to propagating variables by means of a gauge fixing term in the Lagrangian. Then
in order to "cancel" the effect of this procedure one has to add a ghost system. The
basic principle ensuring a consistency of this formulation is the BRST invariance of
the resulting system [27]. This is in contrast with the BDHP bosonic string where we
are content with the integration over a gauge slice in the space of world sheet metrics
(just because at least in d = 26 it leads to a finite dimensional integral). Therefore
the only need for ghost fields is to handle a nontrivial insertion of the Faddeev-Popov
determinant in a resulting measure. This difference reflects itself for instance in a
different structure of a kinetic term of ghost fields.

In Sect. 3 the geometrical scheme developed in Sect. 2 is applied in the case of the
closed string partition function. This leads to an equivalent system involving ghost
fields. A detailed discussion of the infinite dimensional supermanifold of boundary
conditions of this system is presented in Sect. 4. In particular the action of the group
of residual gauge transformations is described. The transformation properties of the
ghost variables justify our interpretation of "boundary reparametrizations" given in [1,
2]. We close this section by deriving the expression for the BRST extended off-shell
amplitudes in the constant curvature gauge.

In Sect. 5 we consider an overlap path integral of two off-shell amplitudes in the
constant curvature gauge. Using the results of [12] we are able to calculate it ex-
plicitly. It was shown that the integrand of the final expression reproduces exactly
the integrand of the off-shell amplitude over the surface obtained by gluing the ini-
tial surfaces along a single common boundary. The range of integration is however
essentially larger than a corresponding restricted fundamental domain. Although be-
cause of the infinite overcounting mentioned above the naive overlap integral does
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not solve the sewing problem, the sewing of integrands is a nontrivial result. Let
us stress one interesting point of this calculation. To form the overlap integral we
use the inner product in the space of functionals over the supermanifold of boundary
conditions which is given by an extension of the functional integral considered in
[1, 2]. The nontrivial measure for integration over the length parameter in this in-
ner product comes from the "1-dimensional" Faddeev-Popov procedure through the
("-function regularization of the Faddeev-Popov determinant [1]. This measure was
derived within the geometrical approach to the path integral without referring to the
off-shell amplitudes in the constant curvature gauge nor to the sewing procedure. It is
remarkable that this measure is precisely of the form required to achieve the sewing
of the Weil-Petersson volume forms.

In the last section the problem of deriving interaction vertices from the set of all
off-shell amplitudes is discussed. We present a brief comparison of two solutions of
this problem given by the constant curvature gauge and the minimal area one support-
ing the nonpolynomial approach. We conclude this section by speculations about a
possible connection between the constant curvature gauge and the covariantized light
cone approach.

2. Graded Manifolds and the Geometry of the Faddeev-Popov Ghosts

Let us consider a trivial principal fibre bundle P(B, π, G) over a compact base man-
ifold B and with a compact Lie group G as a structure group. Suppose that there is
a smooth G-invariant Riemannian structure g on the total space P of the bundle and
a family {hp}pep of right invariant Riemannian metrics on G such that for every
p G P,aeG, δa, δa! e TeG

hp

e

a(δa, δa1) = hζ(Ad(a)δa1 Ad(a)δa') (2.1)

[Ad(.) denotes the adjoint action of G on its Lie algebra G1 = TeG-]
For any global section σ:β —> Σ = σ{B) c P we construct the family of linear

maps {Δs}seΣ:

As = / I f 1 o Ts:TeG -+ Ws

λ C TSP,

where

is the orthogonal projection onto the orthogonal (with respect to g) complement
of the space TSΣ tangent to the gauge slice Σ and τs:TeG —» TSP denotes a linear
map defined by

where
βs:G 3 a —> s - a € π " 1 (ττ(s)).

The family {Z\J} s e^ of adjoint maps is defined by the relations:

hl(Δ+δw,δά) = gs(δw,Δ3δa)\ δa G TeG , δw e W^~.

For any G-invariant function / on P we have the following version of the Fubini
theorem [24]:

j ' dω9ί I dωhΛ f(p) = J dωΣ(άzxA+

sΔsγ/2f{s), (2.2)
P \G J Σ
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where dω9, dωhP, dωΣ denote the volume forms related to the Riemannian metrics
g, hp and to the induced metric on Σ respectively.

Let Σ be some smooth gauge slice in P(B, π, G). Consider a vector bundle E(Σ)
over Σ defined as the direct sum:

E(Σ) = NΣ Θ Σ x G ,

where NΣ denotes the bundle normal to Σ and Σ x G is a trivial bundle with the
standard fibre G'. Note that in our case NΣ is also trivial.

The diffeomorphism φa = Ra\Σ Σ —> Σ a induced by the right action R of G
on P extends to a vector bundle morphism Φa: E(Σ) —> E(Σ a) defined on each
fibre of E(Σ) by:

W£- Θ G 3 (δw, δa) ) (i?*5iϋ, Adία" 1 )^) G W^a Θ G'.

Let us introduce an Euclidean structure μΣ on E(Σ) given by:

, δa), (<W, 6α')) = gs(δw, δw') + /ig((5α, (5α;).

It follows from (2.1) that Φa is an Euclidean vector bundle isomorphism.
Now we consider a Berezin-Leites-Kostant graded manifold Gx(E{Σ)) defined by

the sheaf of sections of the bundle ί\E(Σ)*. For every a G G the vector bundle
morphism Φa generates a BLK-morphism of graded manifolds. Let {ή3}™^, {ξ3}™^
denote systems of global sections of (NΣ -a)* and (Σ-ax G'Ϋ respectively, forming
a basis at each fibre of E(Σ)*. These systems form a set of odd generators of the
graded commutative algebra Γ(ΛE(Σ α)*) and serve a system of odd coordinates
for the graded manifold Gv(E(Σ • a)). In these coordinates the BLK morphism

Φa:Gr(E(Σ))^Gr(E(Σ-a))

takes the following form:

(2.3)

where / 0 G ̂ ^ ( Σ 1 α) C Γ(ΛE(Σ - α)*).
Some remarks concerning notation are in order. The BLK morphism Φa between

graded manifolds can be defined [25] as a homomorphism Φ*:Γ(ΛE(Σ α)*) —>
Γ(ΛE(Σ)*) of graded commutative algebras of global functions. The formula (2.3)
describes Φ* by its values on generators of the algebra Γ(ΛE(Σ - α)*) (for simplicity
we omit an explicit description of even generators given by local charts of Σ a). Note
that since E(Σ • a) is a trivial bundle ή, ξ are global odd coordinates on Gr(E(Σ - a)).
There is however another way of notation commonly used in the physical literature
and based on the idea of "points with anticommuting coordinates." Within the graded
manifold approach one can give the following interpretation of this notation. For
every / G Γ(ΛE(Σ α)*) we have the expansion:

n

f = Σ /ί.- u. i ί^' Λ • Λ if* Λ ξ" Λ Λ ξ" , (2.4)
fe,/=l
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where, as before, {ήι}^v {&}"=\ denote bases of sections in the bundles (NΣ-af

and (Σ -ax G')*. Regarding

^ΌτnpΌTieτίts une can Ίnterpί^ ϊhe expansion 12.4) as
a formal Taylor expansion of the function /(<§, 77, £) of the even (5) and the odd (77,0
variables, at the point (s, 0,0).

Let {ηι}^{, {ζJ}n={ denote bases of global sections of the bundles (NΣ)* and

(Σ x GO* providing a global system of odd coordinates in Gr(E(Σ)). In these coor-

dinates Φ* 77% Φ* ξJ can be expressed as follows:

Φ*τf (s) = (Λ*f (5) I δwk(s))ηk(s)

= {ή\s a) \ R*Jwk(s • a))ηk(s),

( * { ξ a) \ £L()

where {δwk)l=v {5υ/}/Li d e n o t e t n e d u a l bases:

<77*(5), δwk(s)) - 4 , (^'(s), δvi{s)) ^ δ\ . (2.6)

Note that Eqs. (2.5) £an be formally regarded as the transformation rules for

vectors:

with respect to the map Rt and A d ί α ^ 1 ) ^ , respectively- With this interpretation

the algebra homomorphisfn Φ* can be written in the following more familiar form:

iî  ΎΠ mύti isxιgges\s ^v^π TΠΌT^ compact commonly u êώ notation for me mor-

phism Φ*:

Although in the present framework the transformation rule (2.7) makes sense only
through the interpretation given above, correctly used it provides a very useful short-
hand notation of the morphism defined by (2.3).

The central object of our consideration is the following Berezin integral over
Gr(E(Σ)):

Gι(E(Σ))

= I dωΣ J dωs

ηdωs

ξexp(gs(η,ΔsO)f(s^ ( 2 8 )
Σ Gv(Es(Σ))

where Gr(Es(Σ)) denotes (0, 2n)-dimensional graded manifold and the Berezin "vol-

ume forms" are defined by.'

dω* =£ (detgs(δwZl δw^Γ^dη1 • . . . dηn ,

dωί ^ (det/isC^jίαj))"1/2^1 ... dξn ,
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where {δw3}^=v {δa3}^=ι are given by (2.6). The symbol gs(η,Δsξ) in (2.8) is

interpreted as an element of the algebra Γ(ΛE(Σ)*) according to the formula:

gs(η,Δsξ) = Σ gs(δwuΔsδα3)ηι ί\^ . (2.10)

One can easy verify that for any function / G Γ(ΛE(Σ α)*) and for any α G G
the following relation holds:

/ dώΣ exp(ga(η, Δsξ))Φlf = j dώΣ'α expiry, Δsξ))f .

Gr(E(Σ)) Gr(E(Σ-α))

Moreover for every G-invariant function / G C°°(P):

dω9 I dωhF\ f(p)= / dώ^eκp(gs(η,ΔsO)f(s). (2.11)

P \G / Gv(E(Σ))

The formal generalization of the formula above provides the geometrical setting of
the Faddeev-Popov procedure with the Faddeev-Popov determinant "exponentiated"
by the path integral over ghost variables. This interpretation of the ghost variables
as coordinates in some infinite dimensional graded manifold is closely related to the
treatment of anticommuting fields in supersymmetric theories proposed in [28].

3. The Closed String Partition Function

As an illustration of the geometrical description sketched in the previous section let
us consider the /ι-loop closed string partition function:

Zh= [ ®g f &x( [ ®fx f ^φ\ exp(-S[0,z]), (3.1)

where .M^ is the space of all Riemannian metrics on some fixed oriented 2-dim
manifold Mh of genus h; :£'h is the space of all mappings x:Mh —* R26; &h denotes
the group of orientation preserving diffeomorphisms of Mh and ^ ' is the group
of conformal rescalings of metrics (the additive group of real valued functions on
Mh). The functional measures in (3.1) are regarded as infinite dimensional volume
forms related to the ultralocal Riemannian structures M(.,.), X9(., .)> Hg( > •), W9(.,.)
defined on .Mh, £h> ̂ h and Ί¥h respectively:

Mg(δg, δg1) = j ^gd2zgαcgbdδgαhδg'cd , δg, δg' G

Xg

x{δx, δx) = ί Λ/gd2zδxδx/, δx, δx e /JζJ/h =

H9

ιd(δf, δf) = I Vgd2zgαbδfαδfb , δf, δf

φ1) = I
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We consider the class of conformal gauge slices given by global sections

of the principal fibre bundle:

^ Θ 9/i • ,Mh

(3.2)

Let us denote by .'/σ = σ(.'/h) the gauge slice in the bundle (3.2), then the submanifold
Yσ

c = Yσ • 2%' c ./fflh is a conformal gauge clise in the bundle:

At every point g G .(/σ C .'/£ there is an orthogonal decomposition of the space
y^ tangent to , ^ c at g:

where
. 7 ^ = {δg e rgMh :δg = δφ.g,δφe 7/Q

and ,76'g1- is a finite dimensional space ( d i m . ^ 1 = 6h — 6).
Using the Faddeev-Popov method in a conformal gauge ,(/^c one can derive the

following expression for Zh [24]:

13

' ( 3 l 3 )

where (Ag denotes the Laplace-Beltrami operator acting on scalar fields on Mh\ Pg

is the conformal Lie derivative operator and P^ is adjoint to Pg. Other symbols in
(3.3) are defined by:

dωσ^ = dωσ

where dωσ is the volume form on.% related to the induced Riemannian structure on
Yσ\ {δχz}^^6 is an orthonormal basis in 3$^ and {δψj}^^6 is an arbitrary basis in
kerP+.

For every point (#, x) G .!/£ x :&h we define a vector space:

where

The disjoint union:

%σ = II T
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can be given the structure of a trivial vector bundle over. % x://'h On Kσ we introduce
the Euclidean structure E{.,.) defined by:

E(giX)((δh, δf), (δti, δf')) = Mg(δh, δti) + H9

ιd{δf, δf).

According to the finite dimensional scheme described in the previous section one
can rewrite the expression (3.3) in the following form:

Zh= ί C/ΩσMg(δφ{, ή) • . .. Mgtfψn, η)

where the functional ί/ Ωσ over the graded infinite dimensional manifold Gr(^ σ ) is
defined by:

r
YΩσ =

The Berezin infinite dimensional volume form &9η.(/9ξ is related to the Euclidean
structure £"(.,.) on Kσ. Note that the integrand in (3.4) is interpreted as a function
on the infinite dimensional graded manifold Gr(^ σ ) , i.e. as an element of the graded
commutative algebra P(Λ^Γσ*), where ^Tσ* denotes the bundle dual to oσ.

The action of the diffeomorphism group ί/]x on the base space .'/σ x .//^ of (Cσ\

(g,x) - ^ U (f*g,f*x)

extends to the action on cσ by the Euclidean vector bundle isomorphisms

Φf : (Kσ, Eσ(.,.)) -> {<:r\ Erσ(.,.))

given at each fibre o°χ of ̂ σ by:

(δh,δf) —^ (f*δhof,uδforι).

This in order induces a BLK morphisms of graded manifolds:

ΦfF[g, x , η, ξ] = F[f*g, f * x , f * η o /, f * ξ of~1]. (3.5)

The expression (3.4) is invariant with respect to the transformations (3.5). More-
over, since the conformal anomaly vanishes it is also invariant under the BLK mor-
phisms Φφ, φ £ 37ji of the following form:

ΦφF[g, x, 77, ξ] = F[exp φ • g, x, 77, ξ].

Another form of (3.3) can be obtained by choosing a special subclass of gauge
slices Y of the bundle (3.2) which are determined by sections:

σ:,5^ 3 t —> gt G . Λ ^ 1 (3.7)

with values in the space - ̂ ^ ] of metrics with the constant scalar curvature equal to
- 1 . In this case the partition function takes the following form [24]:

Zh =
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where dω^ denotes the Weil-Petersson volume form on the Teichmϋller space .7^.
For the expression (3.8) one can construct slightly different path integral repre-

sentation with a simplified treatment of ghosts zero modes. Using the orthogonal
decomposition:

we construct for any Sect. (3.7) the vector bundle:

= U *».*.
(g,x)e./χ./h (3.9)

with the Euclidean structure £(.,.) defined by obvious restriction of E(.,.).
We have the following Gaussian path integral representation of Z^:

Zh= I σ dω I &9x I &9ή&9ξexip(S[g, x] + MJή, Pqξ)). (3.10)
J J J
.7 t-h Gr(/^ j X ))

4. The BRST Extension of the Off-Shell Closed String Amplitudes

In this section we will construct the BRST extension of the closed string amplitudes.
The basic idea is to consider instead of the constrained system described by the action
functional:

S[g,x] = l- J ^g-d2zgabdax»dbx»

M

defined on the manifold of fields . J6h x J,'h an equivalent "Gaussian" system deter-
mined by the action functional:

S[g, x, η, ξ] = S[g, x] + Sgh[g, η, ξ] + S'gk[g, η, ξ],

Sgh[g,η,ξ] = Mg[η,Pgξ] = ί sfgd2zgabgcdηac(Pgξ)bd ,

M (4.1)

S'gh[g,η,ξ] = " 2 J edσnatbηabtcξ
c

dM

defined on the graded manifold of fields Gr(^ σ ) or Gr(<?σ). These two possibilities
are related to two different expressions (3.4) and (3.10) for the off-shell amplitudes.
In the present paper we will conider only the constant curvature gauge for which the
second possibility is relevant (1.2).

Note that the first two terms in (4.1) follow from the path integral representation
(3.9) of the partition function. The boundary term S'h[g,η,ξ] is added to ensure the
existence of the extrema of the action functional (4.1) with nonhomogeneous boundary
conditions for ghost variables [9].

We will start with the discussion of the geometry of the (graded) manifold of
the boundary conditions for trajectories of the system (4.1). It proceeds along the
standard lines described in [1.2]. Let Mh,b denote the 2-dimensional oriented world
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sheet manifold with /i-handles and 6-boundary components. For a single boundary
component Σ of Mh,b l e t u s fiχ some orientation preserving diffeomoφhisms

where S is an oriented 1-dim circle and Σ is endowed with the induced orientation.
The boundary values along Σ of a given "trajectory" (g,x,η,ξ) over M^ 5 are defined
by:

e = ρ q , X Ξ O X ,
(4 2)

ή = ρ*(natbηah), ξ = 0*(nαξα),

where n and t denote the unit vectors normal and tanget to Σ respectively.

The space of all boundary conditions for "trajectories" of the system (4.1) is then

the graded manifold Gr(rC) generated by the vector bundle:

Z = {.Ms xSx .£'s) x (C°°(S) x C°°(5)).

(As it was discussed in [2] for some technical reasons the "bosonic" part of the space
determined by (4.2) has to be extended by the factor S.)

The residual gauge transformations can be easily derived from the relations (3.5),
(3.6), and (4.2). They are described by the group & = (.'/s Θ U(\)) Θ &s, where
Ws denotes the additive group of real valued functions on 5, !7(1) Ξ [R, -f mod2π]
and (/;$ is the group of orientation preserving diffeomoφhisms of 5. The .^-action
on Gr(rC) by BLK moφhisms is generated by the .^-action R on rC by the vector
bundle moφhisms:

R:K x /y -* K

R((e,s,x,a,b),{φ,θ,η))

= ( exp(φ) 7*e,7~1(s) + ^—,5 o 7, exp(—2φ)a o 7,
V 2π

/θ
where we use the shorthand notation s —> s + -— for the isometry J(e, θ) of e

/θ 2π
determined by the distance — between s and 7(e, θ) (s).

2ττ
The correspondence between a trajectory and its boundary value along Σ C dMh^b

given by (4.2) depends on the choice of a diffeomoφhism ρ:S —+ Σ. One can

overcome this difficulty choosing instead of Gr(£f) the quotient space Gx{K)/ί/s. As

it follows from the definition (4.3) of the .^-action on Gr(^') the following relation

holds:

where . ^ ' is a vector bundle defined as the base space of the principal fibre bundle:

&s > f

7.7/- (4.4)

In order to parametrize 3K we will use a special class of global gauge slices (1-dim
conformal gauges) in the bundle (4.4):

,y^[e, s] = {(e, s,x,a,b) G ϊ%: e = const e, s = 5} . (4.5)
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Consider the trivial vector bundle:

ί/> = (M+ x .%s) x (C°°(S) x C°°(S)).

For every (e, s) G ,/Ms x *? we have the vector bundle isomorphism:

ί[e, «§] :,̂ ° 9 (/, x, α, 6) —> (f/~ιe, 5, x, α, 6) G .5^[e, s]

which yields the following parametrization of JB":

p[e, s] = Πjt o t[e, s] : .^ -^ . ^ ' . (4.6)

The residual gauge transformations in the space Gr(J%Γ) are described in the one

dimensional conformal gauge (4.5) by the subgroup R + x ί^sfe, s] c S% consisting

of all transformations preserving the gauge slice ,^[e, s]. R + denotes the 1-dim group

of constant rescalings of einbeins while &s\β-> s] is given by:

G •%: exp((p)7*e = e,7 - 1(s) + -— = s
2π

For a fixed 7 G &s m e conditions for (/? and θ in the formula above have unique
solutions and the map:

c?[e, s]: ^ s [e, s] 3 ((/?, 9 , 7 ) - > 7 G ^ s

is a group isomorphism. Moreover for every (e, s) G , ^ s x 5 the following diagram
is commutative:

.y L^ 5 "-̂  J ~^ o L^ i ^ J ' ^ L^ Ί ^ J

where R' denotes the restriction of the action R (4.3) and Rp is defined by:

Ή p ( ( / , x, α, 6,), 7) ΞΞ (/, £ o 7, (7)2α o 7, (7)-16 o 7). (4.7)

It follows that the residual gauge transformations in Gr(J£ί) form the group & «
R + x £^5, where the action of R + on C/* is given by:

(/',£, 77,0

Note that the formula (4.7) gives the well known rule of transformations for x-
and 6, c-ghost variables with respect to the conformal transformations. In particular
it yields the correct conformal weights: 0,2,-1 of the fields involved. The transfor-
mations (4.7) are frequently called the boundary reparametrizations. It is somehow
misleading since, according to the considerations given above, these transformations
are a consequence of the invariance of the original system (4.1) with respect to con-
formal rescalings of metrics and their form is a result of our choice of the 1-dim
confcormal gauge (4.5). It should be stressed that the symmetry (4.7) has nothing to
do with the ύί-invariance which is completely "solved" by taking the quotient S/'&s

Now we proceed to the construction of the BRST extended off-shell closed string
amplitudes. Let M ^ denote an oriented compact 2-dim manifold with /^-handles and
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ft-boundary components diffeomorphic to a circle. On the relative Teichmuller space
T^h of M/̂ 5 we introduce Frenchel-Nielsen coordinates:

T iR —. i / r T ύ / ύ / \ —̂ TΓD fo /TIP \/ TIP \3h-\-b—3

M 3 ί -> ( L i , . . . , Lb,θU/U . . . , ^3/ ι + 6_3,4/ ι + 6_ 3 ) G lϋ + (M X JR+)

For a given pattern for gluing 2h — 2 + b pants to obtain the surface M ^ the
coordinates L\, ... , Lb are lengths (with respect to the hyperbolic geometry on Mhjb)
of the boundary components Σ\, ... , Σ5 while (4, #J, i = 1, ... , 3h + 6 — 3, are
parameters of gluing [30]. In these coordinates the Weil-Petersson volume form has
especially simple form:

(We use the convention where the Dehn twists corresponds to θτ = 2kπ.) We introduce
the restricted Weil-Petersson volume form:

3/1+6-3

n
and the restricted fundamental domain:

ϊ £ b [ / u . . . , / b ] = { t e [ T g b ] : L 3 ( t ) = / j , j = 1 , . . . , b } ,

where [T^b] is a fundamental domain of the modular group. Let us consider the
following principal fibre bundle:

I πhtb (4.8)

rpR

The constant curvature gauge consists in the choice of a section

with values in the space ./M^\ of metrics with the scalar curvature equals - 1 and
with the property that every boundary component of M^^ is a geodesic line. In this
gauge and for a given set {t\, ... , cb} (c3 G .Ms x S x .$sl&s) of boundary values
for "bosonic part of a trajectory" we have the following expression for the off-shell
closed string amplitude [2]:

/
( ί

dώψp x / e\dσ\ x x / e\dσh
j J

+ 1 / 2 13 \σ \c{... cb]). (4.9)

For a given σ — (σ\, . . . , σb) G ΣΊ x x Σ'j the functional Wf̂ *, σ \ ό\, ... , έt,]
is defined by:

ί ' . σ l c i , . . . ,cb) = S[gt,xcl], (4.10)
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where xcι is the solution of the boundary value problem:

%gtxci=θ,

xcι\Σj = Xj °Ίj[g ,σ I e, s].

In the formulae above (/3,x3) is the parametrization of c3 in the 1-dim conformal
gauge determined by (e, 5) with Je<is = 1. The diffeomorphisms

η3[g\σ \ e,s]:Σj -> 5

are uniquely determined by the equations:

η3[gι,σ \ e,s](σ3) = s.

where i3: Σ^ —» M ,̂6 denotes the inclusion of the A;th boundary component.
As it was mentioned above the BRST extended off-shell amplitudes could be

constructed by means of the path integral over some space of trajectories of the
system (4.1) with prescribed boundary values for "bosonic" and ghosts variables.
Because of the anticommuting nature of ghost variables the description of the relevant
supermanifold of trajectories is slightly more complicated than in the bosonic case.

For every k = (k\, . . . , kb)\ k3 6 :7/>' let us consider the following ίibration:

Z[k]= U r[gt,σ,x\k],

where

•nk] = {(g\σ,x) e Ξ(Tζb[/]) x Σx x .. x Σb x %hy.

xd\Σ3 =Xj O7j[^,

k] = {(δh.δf) e .Mgt x .?a!^y.Mgt{6hM*Pp = 0;

natbδhabιΣj = a3 o η3\_gι, σ \ e, <§J;

and

fcj = ^ [ e , s J ( ^ , x J , α : ? , 6 J - ) , j = 1, . . . , 6.

Note that the definition above is independent of the choice of a 1-dim conformal
gauge (e, s).

The bundle r̂  [fc] is a vector bundle if and only if for every j = 1, . . . , b.

k3 =p[e,s](/j,Xj,0,0).

In this case one can identify k3 with t3 and the expression (4.9) can be rewritten in
terms of the graded manifold Gr(£f[ci, . . . , qj) of the trajectories.

In the case of nonhomogeneous boundary conditions for the ghost variables W [k] is
an affine bundle and one cannot construct a corresponding graded manifold. However
in the present case of the Gaussian integral one can make a shift by the classical
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solution. At every fibre ^ ' [g^σ,x \ k] let us fix the "reference" point (δhcl,δfcι)
uniquely determined as the solution of the following boundary value problem:

Mgt(δhMrPp = 0 , (4.12)

\ σ | e, s\\

It yields the isomorphism of the affine bundle &'[k] onto the vector bundle ίZ[k0],
where k° denotes the "bosonic" part of k,

^°=p[e,5](4,x, ,0,0) , j = 1, . . . , b.

The action Sgh + S' h originally defined as a functional onr(ί[k] transforms under this
isomorphism to the functional

(Sgh + S'gh) [g\ σ, δh, δf] + W^Λ[p*, σ | α, 6],

n ( b λ
defined on the cartesian product (S[k ] x yx .%).

The functional Wghig1,** \ «,̂ J in the formula above is defined by
bb

Wgh[g\ σ I α, b] = - 2 ^ /

It is bilinear with respect to the variables a = (a\, ... , α&), 6 = (6i, . . . , 65) and,
according to the formula (2.10) can be regarded as a function on the graded manifold

b

x Gτ{,7£). Let us observe that a more careful treatment requires a similar construction

for the x-variables as well. It follows that the supermanifold of trajectories of the
system (4.1) with prescribed boundary values should be regarded as a member of the

b

family of graded manifolds parametrized by the graded manifold x Gτ(.%').

Choosing some basis ή Θ ξ = {ήt}^=\ θ {ζjjJLi in the dual bundle J£* one can
write the final expression for the BRST extended off-shell closed string amplitude in
the constant curvature gauge:

e\dσx x ••• x / eldσh(tetAP+Pgtγ'2 x ( d e t D ^dώwpx
J 1 *

I fc? ... fcg] - Wgh[g\σ I ( ί ^ ξ i ) . . . (ήh,ξh)]). (4.13)

The expression above is independent of the choice of coordinates in the base
manifold fcΓ of the bundle J6' nor of the choice of a basis of global sections of
,76'. The off-shell amplitude (4.13) is therefore a well defined functional on the oo-

b

dim supermanifold x Gr(.^Γ). As an off-shell object it is not invariant with respect
2 = 1
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to the residual gauge transformations. In fact using the methods of [1, 2] one can
show that the off-shell amplitudes defined in different gauges are related by these
transformations.

5. Sewing Amplitudes

In order to discuss the sewing procedure for the amplitudes defined in the previous
section it is convenient to use the parametrization of Gr(.y£f) given by a 1-dimensional
conformal gauge (4.5). Let us fix (e, s) on S and a set of points σ = (σi, . . . , σ&)
such that for any ί στ belongs to the ith boundary component Σι of M^^ Changing
variables

[-7Γ,τr] 3θ->σι + (2ττyι/iθι

and using the U{\) transformation properties of W and Wgh, we have the following
expression:

Ah[(at,xt,ήt,ξt)
b

t=ι]

h ^

ί dώwp x f[ (2πΓιaτ/ ί dθ% x (detΛP£P gtγ
/ 2 x

- Wgh[g\ σ I (ήz(. + θi), ξi(. + θi))b

i=x]), (5.1)

where /,(. + θt) = ft o / ( ^ / , 0); Λ = ^ , f/2, £ .
The second ingredient we need for sewing is an inner product in the space of

functionals on Gr(.y^). The "bosonic" part of such a product was discussed in [2]. Its
BRST extension has in the 1-dim conformal gauge the following form:

x Φ[a, x(-.\ ή(-.), ξ(-.W[a, x, η, ξ], (5.2)

where /(—.) = / o rfe, s]; f = xz,ήi, ξi, and r[e, «s] denotes the orientation reversing
ίsometry of e uniquely defined by the condition r[e, s] (s) — s. The oo-dim "Berezin
volume forms" C/aέή< rSaέξ are related to the Euclidean structure:

r
E{a,X)((a, b\ (a, b')) = / aeaa +

Let Au A2 be the off-shell amplitudes over the disjoint model surfaces M'h, b,9 M£,,b,,9

respectively. For simplicity we consider a procedure for sewing amplitudes A\ and
A2 along a single boundary component of Mf and M". In this case the path integral
framework suggests the following overlap integral:

12 = / (a/y[da/

o

x Ax[(OLUXUηuξi)^1, (α,x(-.),77(- ) ,ξ(- )

x yl2f(«, 5, ry, 0 , (au Xΰήi, ξi)iί2]
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The question is whether the formula above gives the off-shell amplitude over a model
surface M^ & of genus h = h! + h" and with the number of boundary components
b = b' + b" - 2.

After substitution of (5.1) into (5.3) one gets in particular the double integration
over the twists θ', θ" on the boundary components Σy C dMhιy and Σ\ C dMhnhn
respectively. Due to the U(\) invariance of the functional measure in (5.2) the inte-
grand depends only on the sum θ' + θ", and the integration over one twist decouples
yielding the factor a/ which in order cancels the factor (a/)~ι in the integral over
a in (5.3). Thus we have the following expression

00 π y+y_2 π

In = I a/da/ ί dθ ί dώ^p ί dώfp f[ (2πΓιaz/ ί dθ%
J J J J J

θi))bί+[

b"-2}. (5.4)

where

T2

R = T2

R[a/,/b,, ... ,4'+6"-2]

are restricted fundamental domains in the Teichmϋller spaces of M' and M", respec-
tively. The functionals J\Ί, K\2 are defined by the following overlap path integrals:

Wί/, σ' I {Xi)b^, x(-.)]

x (detD ^gt"Γ" e x p ( - W [ / , σ" | x(. + θ), (xι)
b-+^2], (5.5)

+, Pgt,

Wghlgt", σ" \ (ή(. + θ), | ( . + θ)), (ήt, xι)Ϋ^ξ^2]) (5.6)

The form a/d(a?) A (2πYιdθ Λ dtυ^¥ Λ dω^v originally defined on the cartesian
product

ι + χ i χ Γiβ[4 . . . , 4>-u i] x τ2

R[i,/b,,..., 4>+b»-2]

can be regarded as the restricted Weil-Petersson volume form d ώ w p on

Tβ,[4, ... ,/b](h = ti + h",b = b' + b"-2).

In fact identifying the boundary components Σ'b and Σ" by means of an orientation
reversing diffeomoiphism Ύ'-Σ'b, —> Σ1" (7(σ^) = σ") one obtains an oriented surface
M' U M" diffeomoφhic to Mhib. Using an orientation preserving diffeomorphism
f'.Mhfi —*• M' U M" one can construct a partition of M f̂, into 2h — 2 + b pairs of
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pants from partitions of M' and M". With this choice of Frenchel-Nielsen coordinates
in T^h the diffeomorphism /, induces an isomorphism

and provides the identification

dώψp = σ/d(a/) Λ (2πΓιdθ Λ dώfp Λ dug* .

Note that the range of integration of dώψp in (5.4),

T 1 2 = M+ x [-7Γ, π] x f^ x ΐ f ,

is not a restricted fundamental domain in T^[/ί, . . . , / £ ] . In fact it contains infinitely
many restricted fundamental domains which leads to an infinite overcounting in the
formula (5.3).

Postponing a more detailed discussion of this point to the next section let us now
turn to the overlap integrals (5.5) and (5.6). Our aim is to show that for any

and for any collections σ' = (σ\, . . . , σ'b,), σ" = (σ'/, . . . , σ'y,) of points on dM' and
dM" there exists on M^j, a smooth metric gι over £(77^5(gέ) = t) with the constant
scalar curvature equal to — 1, and a collection σ = (σu ... , σb) of points on
such that the following formulae hold:

(5.7)

Ofc,&)?=i]). (5-8)

We will show that the sewing relations above are equivalent to the sewing relations
for conformal field theories on M ^ (at a fixed conformal structure) recently proved
in [12]. The reasoning is the same for both relations and we will present it only
for (5.7). First, let us observe that the classical action functional W[g.σ | Orz)J=1]
regarded as a functional W[Mh,b-> 9, σ I (Xι)\=\\ is invariant with respect to the action
of arbitrary orientation preserving diffeomorphisms changing the model surface M^y.

W[Mhtb,g,σ I (£<)?=,] = W\Γ\Mhtb),f*g,Γ\σ) | (ϊ,)ti] (5.9)

This is a simple consequence of the transformation properties of the PDHP string
action and of the boundary conditions (4.11) under general diffeomorphisms. Using
the diffeomoiphism f:Mh,b ~^ M' U M" considered above one can replace the
functionals appearing in (5.5) by the following ones:

W\ f~ι(Mf), f*qι , f~1(σ/) I {xΊ)
bl}, x(—.)\ ,

„ _ ~ (5.10)
W[f~ι(M")1 f*gι , f~x(σ") I x(. + θ), (Xi)^=b,].

The final problem is whether the metrics / * # * ' on Mx

h b = f~ι(Mf) and f*gι"

on M^ b = f~x(M") can be regarded as restrictions of some smooth metric gι on
h b

^ b = f~x(M") can be regarded as restrictions of
the whole surface M^^. Note that the metrics f*g* , / * # * have the constant scalar
curvature equal to —1. Moreover the common boundary is a geodesic of the same
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length with respect to both metrics. Thus by an appropriate choice of diffeomoφhisms
fi'.M^fr —» M^ b, f2'.M^h —>• M\ b one can achieve the coincidence of induced
einbeins, normal directions and other metric components along Σ = M^ b Π M\ h in

such a way that /f/*^' and f%f*gtΠ form a smooth metric g' on Mh^b. Within the
Frenchel-Nielsen coordinates on T^b induced by /, g' is a constant curvature metric
over (α/, 0, £',£"). Using again the relation (5.9) one gets the following equivalent
form of the functionals (5.10):

W[Mι

hibJ*f*gi/,σι KxOtl1,^-.)],

l ϊft\ {. + 0), (xz)lb,],

where σH = / f 1 / " 1 ^ ) , σ2, = / 2 " 1 / - 1 ( < ) .
Finally by the twist 0 along Σ1 one can proceed from the metric g' to the metric

gL over £ = (a/, 0, tf, t"). In terms of this metric the formulae (5.7), (5.6) can be
rewritten in the following form:

= (det D %gt)-

where g\, g\ denote the restrictions of the metric gι on M^ b and M\ b respectively
and σ = (σπ ... <J\y-\ 3 CΓ22 02b")• The relation above is just the formula for sewing
at a fixed conformal structure derived in [12]. Using a similar formula for ghost fields
we finally have the following result:

J I 10 r

-1™ X / /̂Λ (Art A~P+T> Λι/2(Aί>\πV. Λ~n

xz(.

6. Towards the Covariant Closed String Field Theory

In this section we will briefly discuss the problem of reconstructing a CCSFT from
off-shell amplitudes. Let us note that the passage from off-shell to on-shell amplitudes
consists in filling each "hole" of an off-shell amplitude by a disc with an appropriate
vertex insertion which corresponds to a physical string state. Since the physical string
states are supposed to respect the residual gauge invariance this procedure is gauge
independent. The choice of gauge however becomes crucial if we try to inteφret
off-shell amplitudes as a set (possibly consisting of one element) of Feynman dia-
grams arising from a perturbation expansion of some CCSFT. In fact the problem of
reconstruction can be posed as a problem of constructing a gauge with some prop-
erties ensuring the Feynman diagram inteφretation. Such properties were recently
formulated within the framework of nonpolynomial CCSFT [16]. Here we propose a
slightly different formulation motivated by the path integral approach.
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Within our framework the process of reconstruction consists in constructing the
following objects:
a) off-shell amplitudes;
b) off-shell amplitudes with "cut propagators" in external legs (ACP);
c) string Feynman diagrams;
d) a sewing procedure;
e) interaction vertices.
a) In the previous sections the functional integral method was used to derive expres-
sions for off-shell string amplitudes in the constant curvature gauge. This method can
be applied in an arbitrary gauge yielding for each topological type (h,b) a well defined
volume form Ω^^ on the moduli space mh^b which is a functional of boundary values
of x- and ghost variables. For a detailed discussion of the gauge fixing in the path
integral over bordered surfaces we refer to our previous papers [1, 2]. Let us note
that for the present discussion the third stage of a gauge fixing considered in [1, 2]
is relevant. Since all further stages of the reconstruction process crucially depend on
the definition of off-shell amplitudes, the existence of objects b)-d) can be regarded
as an implicit form of very restrictive requirements for an admissible gauge.
b) The construction of ACP involves two choices. Firstly for every topological type
(/ι, b) one has to identify 6-real modular parameters Cπ, . . . , τ&) E Rb

+ corresponding
to "times" of cut propagators in external legs. Secondly, this identification should
be supplemented by a prescription how to reduce the volume form Ω^b o n mh,b to
volume forms i7^^(ri, . . . , τb) on the restricted moduli spaces rrih,b(^\i 5

 τb) C
mhjb determined by each set of fixed values of "time" parameters. Both choices are
not canonical and should be regarded as a part of a gauge fixing.
c) For each restricted moduli space m^^Ti, .. . , rb) we introduce a family
m%

h b(τ\, . . . , 75) of open subsets of mh,b(f\, . . . , 77,) such that

UU , ( T u ••• ' r ^ D m h M r u ••• , n ) , (6 .1 )

and for any i = j

mι

hh(τ\, . . . , τb) Π rn3

hb(τ\, . . . , τb) = 0 . (6.2)

The string diagram with /z-loops and ^-external legs is defined as the integral

d) The sewing procedure consists of two basic operations on string diagrams:
A - sewing two external legs of different string diagrams,
B - sewing two external legs of the same diagram.

Both operations are supposed to produce a string diagram of an appropriate topo-
logical type and involve integrations over common boundary values and a common
time parameter of sewing legs. In addition we require the locality of the sewing
procedure which means that the measure of this integration as well as its range are
independent of the global structure of sewing diagrams.
e) Having constructed the objects a)-d) satisfying the properties listed above one can
define the quantum interaction vertices of CCSFT as a minimal set of string diagrams
generating all diagrams by the sewing procedure. Restricting oneself throughout all
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constructions to Riemannian surfaces of the topological type (0, b), b > 3 one gets
interaction vertices corresponding to a classical CCSFT.

To find a gauge for which all objects above exist and satisfy the required properties
is a very difficult problem. There are in fact only two approaches: the covariantized
light cone CCSFT [19, 20] and the recently developed nonpolynomial one [14-18].
In the rest of this section we will concentrate on the comparison of the constant
curvature gauge with the minimal area one underlying the nonpolynomial approach.

Let us look how the constant curvature gauge fits into the reconstruction scheme
sketched above. This gauge was defined in [2] by the choice of the subspace of
metrics with the constant scalar curvature equal to —1. For the identification of "time"
parameters one uses the Frenchel-Nielson coordinates on the Teichmϋller space. The
"time" Ti of a cut propagator in an external leg can be identified with the inverse of
the length 4 of a corresponding boundary component. With this choice the restriction
of the volume form Ωh,b is determined by neglecting the term d/\ Λ Λ d/ί in the
Weil-Petersson volume form [2]. The resulting expression for ACP is given by the
formula (4.13). The structure of string diagrams in this gauge is very simple - for
each topological type (/ι, b) there is only one string diagram coinciding with ACP. As
it was pointed out in the previous section the sewing procedure defined by means of
the overlap path integral does not produce a string diagram. Since the volume forms
are sewn up perfectly the only problem is the range of integration over a common
"time" parameter. One can try to improve this sewing procedure just by taking a
range of integration yielding a unique cover of the restricted moduli space (clearly
it always exists). Such a range however crucially depends on the global structure of
sewing objects. Moreover, it is extremely difficult to calculate it even in the simplest
cases. Tf one accepts this improved sewing which is essentially nonlocal then the only
interaction vertex is the cubic one. One also has the manifest modular invariance as
well as a factorization property in each channel.

Within the nonpolynomial approach [14-18] the off-shell amplitudes are defined
in terms of punctured surfaces with prescribed coordinates around each puncture. The
choice of these coordinates corresponds to the choice of a gauge in the functional
approach under consideration. In order to make the comparison of both formulations
more clear let us consider the punctured spheres for which the prescription of coor-
dinates around punctures is fully established. (Note that there are strong indications
that a generalization of this prescription works for arbitrary surfaces as well [15]).
The corresponding tree off-shell amplitudes are completely determined by the min-
imal area metric which is a unique solution of the minimal (reduced) area problem
(under the condition that all noncontractible closed paths on a surface have lengths
greater than or equal to 2π) [15]. Around each puncture this metric determines a
semi-infinite tube with the constant circumference equal to 2τr. The "time" parameter
of an external leg is identified with the length parameter of a corresponding tube.
The ACP in the minimal area gauge is defined by cutting external legs along constant
time lines. In comparison with the constant curvature gauge the structure of string
diagrams is much more complicated. The strategy to determine this structure is to
start with the symmetric Witten vertex and with a completely local sewing procedure
and then to analyse missing regions in moduli spaces of higher order ACP's. It turned
out to be an infinite procedure yielding recursion relations for missing regions and
required interaction vertices [15, 16J. As a result one gets (at least in the classical
theory) a finite number of string diagrams at every order and an infinite set of in-
teraction vertices with an increasing number of external legs. The unique cover of
the moduli space (the properties (6.1), (6.2) in our formulation) was recently proved
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[14-16, 18]. Also some lower order calculations show that the correct measure on
the moduli space is reproduced [17]. Due to the properties of the minimal area metric
the modular invariance and the factorization in every channel are manifest. Summing
up, the minimal area gauge is in a way complementary to the constant curvature one.
One gets a formulation of CCSFT with the completely local sewing procedure but
with the nonpolynomial (and in fact nonlocal) interaction.

The nonlocality of both approaches leads to serious calculation problems. The ex-
plicit calculation of a correct range in the constant curvature gauge is, however, much
more hopeless. Moreover, it is very hard to realise how such nonlocal sewing could
follow from a perturbation expansion of a cubic CCSFT action. We will finish this
section with some speculation about a possible "localization" of the sewing procedure
in the constant curvature gauge.

From the mathematical point of view the origin of the overcounting in the overlap
formula (5.11) is clear - the modular group of a surface is essentially larger than
the direct product of modular groups related to its component. For this reason the
problem of determining a fundamental domain of the modular group in the Frenchel-
Nielsen coordinates is very difficult. On the other hand it is interesting to indicate a
"physical" origin of the breakdown of the overlap formula which is motivated by the
well known factorization property of the Feynman path integral. It can be done by
a careful examination of the passage from the Minkowski to the Euclidean space. In
fact the factorization of a functional integral over trajectories is deeply related with
the time evolution of a system. In the case of the interacting bosonic string it can be
easily seen in the light cone gauge where the global time parameter enters explicitly.
In this gauge one can check the factorization for any light cone diagram cut along
a constant time line. As elementary building blocks of light cone diagrams one can
take pairs of pants with a flat metric singular at the point of interaction and with
geodesic boundaries. Note that this metric determines a global internal time on the
pair of pants in such a way that the boundary components are lines of constant time.
Gluing several pairs of pants of this type together one gets a light cone diagram if
and only if all internal times give rise to a global internal time on a resulting surface.
This special feature of the light cone diagrams ensures in fact a unique cover of the
moduli space [29]. One can expect that a similar pattern could be applied to cure the
overcounting in the constant curvature gauge. It requires some additional structure
on a bordered surface playing the role of an internal time and uniquely characterized
by some data on boundary components. The realisation of this idea requires some
existence and uniqueness theorems and is beyond the scope of the present paper. Let
us only mention that the resulting theory should be very similar to the covariantized
light cone approach [19, 20].
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