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Abstract. We prove instability of stationary solutions of the Navier-Stokes
equations on the domain [0,2π] x [0,2π] with periodic boundary condition for
a class of external forces for large Reynolds number. Moreover, we give a lower
bound for the Hausdorff dimension of the global attractors.

1. Introduction

This paper is a continuation of our previous work [9]. We consider the two
dimensional Navier-Stokes equations for a viscous incompressible fluid with
spatially periodic boundary conditions (with periods 2π, 2π). The Navier-Stokes
equations with velocity u and external force / (assume / is time independent) in
functional form can be written as (see [3, 14, 15])

du
-r + Άu + B(u,u) = f, (1)
dt

κ(0) = uo, (2)

in a Hubert space H, where H consists of those u such that

u= X UjeiUiχι+j2X2)9 UjeC29 u_j = aj9 W o = o, (3)
j = Uι,J2)eZ2

j * Uj = 0, for each j , (4)

| M | 2 = (2π) 2 Σ |W, | 2 < o o . (5)

Let P be the orthogonal projection onto H in (L2(Ω))2 (where Ω=[0,2π]
x [0,2π]), then

Au= -PΔu9
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We denote D(A) the domain of the operator A.
Now for (£ l 9fc 2)#(0,0), we define

k2

Let

K - {(k l5k2)\kγ > 0 or k, = 0,k2 > 0}.

We see that W(kl)fc2), W[kuk2), (k1,k2)eK are eigenvectors of A with eigenvalues
/c2 + k\\ and those M^(kljk2), W[kuk2) form an orthonormal basis in H.

It is easy to see for (kuk2) #(0,0),

lΊ<ττ(mlr _ ^ J

W(fc fc )J (^)

~ ^ ^ M/' (7)

for any α, j^.
In this paper, we consider the Navier-Stokes equations with external forces

/ 0 = s 2/!^^ 4). A corresponding stationary solution is

uo = λW[OtS)9 (8)

where λ is a parameter. For simplicity, we only consider λ > 0; the case / < 0 is the
same.

As in [5, 15], the nondimensional Grashof number is defined by

G = -yλ (9)
2λ

In our case here, since the viscosity v = 1 and λ1 = 1, so

G = \fo\ = s2λ. (10)

The Navier-Stokes equations linearized around w0 are

dω Λ , ,
. J(MO)W = 0, (11)

where

Θ(MO)W = Aw + B(w, M0) + β(w0. w). (12)

We concentrate on the linearized Navier-Stokes equations (11). We show below
that Θ(u0) has negative eigenvalues for large λ and instability of the corresponding
Navier-Stokes equations follows from this [2, 12]. We give an estimate to the
dimension of these unstable directions at the stationary solution u0 including the
following results:
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• A positive answer to a problem of V. I. Arnold (see [l]):/s it true that the minimum
of the Hausdorff dimension of minimal attractors of the Navier-Stokes equation
(on, say, the two-dimensional torus) grows as the Reynolds number increases!

• An answer to a problem of M. I. Vishik (see [1]): Find a lower bound for the
Hausdorff dimension of the attractor of the two-dimensional Navier-Stokes system
of equations for large values of Reynolds number.

In Sect. 2, we will reduce the eigenvalue problem for Θ(u0) to an infinite system
(uncoupled) of three term recurrent relations. Section 3 will recall some properties
of these recurrent relations. Section 4 gives some Lemmas and Sect. 5 proves our
main results.

2. Reduction of the Problem

As in [9], we use a Fourier expansion, and consequently we reduce the eigenvalue
problem for Θ{u0) to a set of three term recurrent relations among the Fourier
coefficients.

First, by the definitions of B(u, υ\ P, W{kι ki), W'(kι ki) and using (6), (7), by direct
calculations, we get

Lemma 1. For every {kι,k2)Φ (0,0), we have:
(A).

• k1 4- k2λ [
1 + 2') ' -_=wn

o ) ΠΓϊ TΛ ϊϊ (kiMi+s)
2j2πjk\ + k2

2 Ijk2+(k2 + s)2

and

(B).

In the above equations, we notice that the denominators of some terms could
be zero. But from the process of getting these formulas, we see that those terms
whose denominators are zero are also zero.

We want to find an eigenvector V and a number σ, Re σ ^ 0, such that

Θ(uo)V= -σV. (13)

We decompose the eigenvector V as even and odd part:

V=W+W\ (14)

(kι,k2)eK
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From Lemma 1 and the properties of operators A and B, we can decompose the
above Eq. (13) into the equations

Θ{uo)W= ~σW, (17)

Θ(μo)W'= ~σW. (18)

We note (17) and (18) are the same. We concentrate on Eq. (17). Equation (18) can
be handled analogously.

From Lemma 1, we obtain

B(W, M0) + B(u0, W) = λB(W, W[OtS)) + λB(W{Os), W)

(kuk2)eK

Now, we substitute W and (19) into (17), and compare the coefficients of W{kuk2).
We get the following recurrent relations for a{kuk2):

For each fixed kx ^ 0, the above equation gives a three term recurrent relation
among a(kitk2_s)9 a{kχMy a{kltk2 + s). So the problem of solving (17) is reduced to solving
(20) for each fixed ki \! It is easy to note that for kx = 0, under the assumption Re σ ̂  0,
the only solution of (20) is a(QM) = 0, Vfc2 > 0. So we assume kί>0 below.

From (20), we get

Lemma 2. For every fixed k1>0,

C(kUkΛkuk2) + b(kuk2-s) ~ b(kuk2+s) = 0 '

where

K +

( 2 3 )

The problem of solving (20) now becomes solving (21) under the assumption
Re σ ̂  0. Because the eigenvector W belongs to the space D(A), we try to find
nontrivial solutions of (21) such that

* W 2 > - 0 i f l ^ h o o . (24)
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If the aboVe is true, then from (21), for all n > 0,

\k2\
nb{ki >k2)-*0 if |/c2|->oo.

Now we let

_ 2χ/2π(ί2 + {sn + r)2)(ί2 + {sn + r)2 + σ)
β , - <us»+r) - Γί(ί2 + (sn + r) 2 -s2) '

where ί is a positive integer, n is an integer and r = 1,..., s — 1. And we let

ί2 + (sn + r)2 - s2

Cn = O( ί l S B + r) = Γ I , a<t.sn + rV ( 2 6 )

+ r)

From Lemma 2, for each fixed positive integer t and fixed r = 1,..., s — 1, we get
the following three term recurrent relation

ancn + cn-x-cn + 1=09 n = 0 , ± l , ± 2 , . . . . (27)

By the trivial solution of (27) we mean the solution cn = 0 for Vn. We want to find
nontrivial solutions of the above Eq. (27) such that

Re σ ^ 0, (28)

lim Recn = 0. (29)
|w|->oo

In the following, by the nontrivial solutions of (27) we mean those nontrivial
solutions of (27) that also satisfy the conditions (28) and (29).

3. The Three Term Recurrent Relations and Continued Fractions

We first recall some results [9, 11, 16]. For the property of continued fractions, we
refer to [8]. We consider the three term recurrent relations:

ancnΛ-cn^ι —cn + 1 = 0 , (30)

where an, cn are complex numbers and n = 0, + 1, ± 2,... . We have

Theorem 1. (cf. [9,11, 16]) Assume

R e α Π > 0 , for VnΦ 0,1, (31)

lim R e α Π = oo. (32)
|n|-x

Then the following two conditions are equivalent:
(A). There exists a non-trivial solution {cn} of (30) such that

lim cn = 0. (33)

|n|-»oo

(B). The following equation is true.

a0 4- 1 = — ^ j — . (34)

Λ - 2 + Λ 2 +
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Moreover, the solution which satisfies the condition (A) is unique within a con-
stant factor.

Corollary 1. Under the conditions (31), (32). If

ak = a_k, /orV/c^O,

then condition (A) of Theorem 1 is equivalent to

a0 1

2 1
(35)

Corollary 2. Under the conditions (31), (32), if

ak = a_ik_1}, forVk,

then condition (A) of Theorem 1 is equivalent to

1
— i or —i. (36)

4. Some Lemmas

Now, we give the following lemmas.

Lemma 3. Assume t^s. Then for each fixed t and r, Eq. (27) has only the trivial
solution.

Proof. First, assume t > s or t = s, r Φ 0. From (25)

R e α π > 0 , forVrc,

lim Reαn = oo.

Now it is easy to see that (34) is impossible, so by Theorem 1, (27) has only the trivial
solution.

Second, assume t = s, r = 0. From (25) and (26),

Re «„>(), forVπ^O,

lim Reαn = oo,

By the proof of Theorem 1 (see, for example, [9]), we see that if (27) has nontrivial
solution, then

cnΦ0, forVrc,

which is a contradiction with c0 = 0. Π

Denote by [x] the largest integer less than or equal to x.
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Lemma 4. 'Assume r — 0. For each t = 1,..., s — 1, there is a unique λo(t) > 0 which
increases monotonically with t such that

• // λ^ λo(t\ then there is a nontrivίal solution of (27) with σ = σt(λ).
• If 0 < λ< λo(t), then (27) has only the trivial solution.

Also σt(λ) increases monotonically with λ ^ λo(t) and σt(λ0(t)) = 0,

σt(λ)SO(λ) if λ -+OO.

Moreover, if we assume t = 1,2,..., [^/z/^s], then

σt(λ) = O(λ) if λ^oo.

Proof. The proof is similar to the proof of Lemma 4 in [9].

Step 1. Since r = 0, from (25)

_ 2 v/2π(ί2 + (sn)2)(t2 + (sn)2 + σ)
a" ~ λt(t2 + (sn)2-s2) '

we see an = a_n and R e α n > 0 for Vn/0. By Corollary 1, there is a nontrivial
solution of (27) iff

- α ° = ί . (37)
2 1

Now we define the functions

α 2 +

So (27) has a nontrivial solution iff

/(σ) = ^(σ). (38)

Step 2. If (38) has a solution σ with Re σ ^ 0, then σ must be a real number.
This is because if Im σ ^ 0, then

so

But by (38) and the definition of the function g,

I arg (f(σ))\ = | arg (g(σ))\ = arg ( - a0),
so

we get Im σ = 0. The same consideration for the case Im σ ^ 0.
In the following, we restrict σ such that σ is real and σ ^ 0.
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Step 3. From (38) and the definition of g, we obtain that (38) is equivalent to

(t2 + σ)~ιf(σ) = ̂ — Γ — - — . (39)
λ sz — t

By the definition of /, we have

(t2 + σyιf(σ) = - , (40)

(t2 + σ)aι + —

since (t2 + σ)a2n+1 increases monotonically and (ί2 + σ)" 1α 2 n decreases mono-
tonically for σ ^ 0, the function (t2 + σ)~1f(σ) decreases monotonically for σ ̂  0.
By a property of continued fractions, we know

(t2 + σ)-ιf(σ) < - ^ = — ,
(ί + σ)a1 2^/ϊπ{t2 + s2)(ί2 -f 52 + σ)(t2 + σ)

so

, for σ large. (41)
A s2 -1

We want to find a Λ.o such that

llπt
(42)

that is

A 0 r 2 /(0) = - ^ . (43)

Since

Ar 2 /(θ) = 1 ,

because λ~1t2a2n+1(0) decreases monotonically with λ>0 and λt~2a2n(0) is
independent of λ, so the function Aί~2/(0) increases monotonically for λ>0.
From

we get

lim λt~2f(0)^0. (44)

From

1
/r2/(0)>

λ-1t2a1(0) +
λΓ2a2(0)
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SO

λΓ2f(0)> — .
2 ( 0 )11 r2a2(0)

We obtain

lim λΓ2f (0)^oo. (45)
λ->oo

Now from (44) and (45), since λt~2f(0) increases monotonically for λ > 0, there is
a unique λ0 > 0 such that (43) is true. So (42) is true. And we take this λ0 as our λo(t).

By Eq. (42), because λt~2f(0) increases monotonically for λ > 0, for Mλ > λo(t),
we have

, - . Jlπ t
(t2 + 0)" V(0) > 2 2'

SO A 5 — ί

for σ small. (46)
s2 - r

From (41) and (46), we obtain that for VA > λo(t), there is a σ > 0 such that (39) is
true. Because (t2 + σ)~if(σ) decreases monotonically for σ ̂  0, we conclude that
for each λ > λo(t), there is a unique σt(λ) > 0 which solves (39).

And for λ = λo(t\ σt(λ) = 0 solves (42), so solves (39).
And if 0 < λ < λo(t\ then

A 5 2 - ί 2

Since (t2 + σ)~ι f(σ) decreases monotonically for σ ̂  0, so (39) has no solutions with
Re σ ̂  0.

Step 4. From (39) and (40), we get

1 x/2πί

s2-ί2'

λ(t2

By the above inequality, we imply σt(λ) increases monotonically in [λo(t\cc).
Otherwise, from λ~ι(t2 + σ)a2n + 1 decreases monotonically and λ(t2 + σ)~ia2n

increases monotonically for λ > 0, so the left-hand side of the above equation
increases monotonically for some interval of λ > 0 which is a contradiction.

Step 5. Because:

s2-ί2'

SO 2π

1 s 2 - ί 2 '
Λo(ί)-1ί3α1(0) + — — j i —

λo(t)t 3α 2(0)+ .
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From the above equality, we have that λo(t) increases monotonically for
ί = l , . . . , s — 1 . Otherwise λo(t)~1t3a2n + 1 (0), will increase monotonically and
λo(t)t~3a2n(0) will decrease monotonically, so the left-hand side of the above
equation decreases monotonically for some interval of λ > 0 which is a contradiction.

Step 6. From (38) and

we obtain

Jlπt(t2 + σ) λt3

λ(s2 - t2) 2v/2π(ί2 + s2)(t2 + s2 + σ)

So

(47)
4π2(s2 + ί2)

and we get

σ ^ ^ O μ ) if λ ^ o o .

From (38) and

1

1 '

we obtain

<

s2)(t2 + s2 + σ) At(t2 + 3 s 2 ) λ ( s 2 - t 2 )

j + 4s2)(t2 + 4s2 + σ)

hence

4π2(52 + f2)(s2 + t2 + σ)(f2 + σ) ί2(t2 + 35

2)(f2 + σ)
1 ^ I" z

Λ2t2(52 - ί2) 2(ί2 + 4s2)(ί2 + 4s2 + σ)(s2 - ί2)'

so

s 2 - 1 2 )

From the above (48), we see that if

( 4 8 )

^ £ ± ί > <, . (491

then combining (48) with (47) we get

σt(λ) = O{λ) if



Navier-Stokes Equations 227

Now, we assume 1 ̂  t ^ y/2/3s. We have

ί2(ί2 + 3s2)(ί2 + σ) t\t2 + 3s2)

2(ί2 + 4s2)(ί2 + 4s2 + σ)(s2 - t2) 2(t2 + 4s2)(s2 - t2)

t2

< 2(s 2 ^?)

We have proved Lemma 4. Π

5. Instability and a Lower Bound for the Global Attractors

Now we give our main result. The notations are the same as in the previous sections.

Theorem 2. Assume 1 ̂  t < s. Then for each

λ>λo(lί]),

Θ(u0) has at least [ί] negative eigenvalues ηj9j = 1,..., [ί]; each of them has at least
two eigenvectors. Also each ηj (j = 1,..., [ί]) decreases monotonically with λ'^λo([t'])
and

-ηj(λ)ίO(λ) if λ^K.

Moreover, ifl^t^ [y/ϊβs], then

if A->oo, Vj= l , . . . , [ ί ] .

Proof. By Lemma 4, since λo(t) increases monotonically, so for \/λ > A0([ί]), Θ(u0)
has at least [t] negative eigenvalues

ηj(λ)= -σj(λ), j = \ , . . . , [ t ] .

Now from (17) and (18), we imply each of these eigenvalues has at least two
eigenvectors. The other parts of the proof follow from Lemma 4. •

Now we want to give an estimate of λo(t). This can be done from the Step 6 of
the proof Lemma 4. λo(t) is determined by (43), that is

Γ2"' .50)

Now in Step 6 of the proof of Lemma 4, we let σ = 0. From (47), we get

ls2-t2

From (48), we get

- (52)
Js2 -t2 I (t2 + 3s 2 ) t 4

2(t2+4s2)2(s2-t2)
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So λo(ή is bounded by the inequalities (51) and (52). Now we let

t''-[0
From (51) and (52), we easily obtain

5π 5x/578π
F 0 W ) (53)

v3 JΪ
Now we choose

/o = s2A'WVs), (54)

where

From (10), we have that the Grashof number for the Navier-Stokes equations with
the forcing term f0 of (54) is given by

By Theorem 2 and a result of [2], we see that for this forcing term / 0 , the

Hausdorff dimension of the global attractor X is at least 2 - \ = s. So we obtain

Theorem 3. For the choices of external forces given by (54\ we have

dim H p0 ^ cG 1 / 3, (55)

where

c= - ^ — - . (56)

Remark. The above Theorem 3 gives an example that the Hausdorff dimension of
the global attractor (minimal attractor) grows as the Reynolds number increases.
Depending on how one understand Arnold's problem which is mentioned in the
Introduction, we think that the above Theorem 3 gives a positive answer to his
problem. We note that generally speaking, the answer to Arnold's problem is
negative, because there are examples of Navier-Stokes equations on a torus with
arbitrary big Reynolds number but its dynamics is trivial (cf. [10]). The above
Theorem 3 also serves an answer to a problem of Vishik which also is mentioned
in the Introduction.

Remark. The estimate of (55) could be improved by more carefully examining Eq.
(27) since actually here we only considered a subset of those unstable directions at
the stationary solution u0. We will consider elsewhere more general forcing terms
of the form λW{kuk2) and λWr

{kuk2y Moreover, we have already found points of
stationary bifurcation for those cases (to be given elsewhere), and we hope we may
find a Hopf bifurcation as well.
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We note that for the 2D Navier-Stokes equations with periods L, 2π and with
forcing term f0 = (λg(x2),0), where g(x2) is a 2π-periodic function whose average
value over the period is zero; if L is big enough, instability for large Reynolds number
has been shown by Babίn and Vishik [2]. Also lower bounds for the Hausdorff
dimension of the global attractor for the Geometry [0, L] x [0,2π] where L is big
enough have been given in [2, 5, 7].

An upper bound for the Hausdorff dimension of the global attractor has been
given (cf. [3,5, 15]):

X)^c1G
2l3(l +logG) 1 / 3 , (57)

where cx is a nondimensional constant. For the Geometry [0,L] x [0,2π] where L
is big enough, lower bound in the form

ά\mn{X)^cιG
2l\ (58)

has been given in [5]. Here we caution that the G in the above equation (58) is
different from the G in Eq. (57) which is defined by Eq. (9). If one uses the same G
as in (57), then [5] can only get lower bound in the form

dimH(X)^ClG
2'\ (59)

which is not logarithmically close to the upper bound of (57) as stated in [5]. The
same caution should apply to the results in [7] also.

Remark. After the completion of this paper, Titi told us that Foias and he (cf. [6])
have found a simple proof for the problems of Arnold and Vishik. Their proof is
based on the work of Babin and Vishik [2] and by the observation that a periodic
function with periods π and 2π is also a periodic function with periods 2π and 2π.
One can also check this by noting the specific form of eigenfunctions of the
operator Θ(u0) we get in this paper.

Based on the work of Babin and Vishik [2], if one uses the idea of Foias and
Titi [6] to transform the geometry [0,L] x [0,2π] to the geometry [0,2π] x [0,2π],
then one will get a lower bound exactly in the form given by Theorem 3, of course
with a different constant. Since the dynamics considered by Babin and Vishik [2]
is only part of the dynamics on a square torus, we believe our method will reveal
more information about the dynamics of the Navier-Stokes equations on the torus
[0,2π] x [0,2π]. The exploration will be pursued elsewhere.
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