Commun. Math. Phys. 147, 191-197 (1992)

The Semiclassical Limit for Gauge Theory on S^{2*}

Ambar Sengupta

Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA

Received July 1, 1991

Abstract. It is shown that the Yang-Mills measure $Z_h^{-1}e^{-S(\omega)/h}[D\omega]$, where h > 0, describing gauge fields on the two-sphere converges to a probability measure on the moduli space of Yang-Mills connections on S^2 , as $h \rightarrow 0$.

1. Introduction

In this paper we prove that the quantum Yang-Mills measure $d\mu_{YM}^T(\omega) = \frac{1}{Z_T} e^{-S(\omega)/T} [D\omega]$ (notation to be explained in Sect. 2) for gauge fields over the two-sphere S^2 converges, as $T \rightarrow 0$, to a probability measure μ_{YM}^T on the set of minima of the Yang-Mills action functional S. The measure μ_{YM}^T has been constructed and studied in [Se 1, 2] (and, from a different point of view, by Fine in [F]) for a wide class of gauge groups. On the other hand, the minima of the Yang-Mills action S for gauge fields over S^2 are also well-understood [AB, G, FH, Se 1, NU]. In Sect. 2 we summarize the relevant results that are known and in Sect. 3 we describe the limiting process.

2. Classical and Quantum Yang-Mills on S^2

Let G be a compact connected Lie group with a fixed bi-invariant metric $\langle \cdot, \cdot \rangle_g$ on its Lie algebra g.

Equip S^2 with a Riemannian metric. If E is a Borel subset of S^2 we denote by |E| its area as given by the area-measure $d\sigma$ induced by the metric. For the geometric discussions we will visualize S^2 as the usual sphere sitting in R^3 and we will equip it with a north pole n, a south pole s, and the hemispheres N and S which intersect in the equator \mathscr{E} . We will often refer to the meridians – these are the usual meridians

^{*} This work was partially supported by NSF Grants DMS-8922941, and PHY-8912067

on $S^2 \,\subset\, \mathbb{R}^3$ running from *n* to *s*. We fix a basepoint $e_0 \,\in\, \mathscr{E}$ and denote by M_0 the meridian through it. We will work with a principal *G*-bundle $\pi: P \to S^2$. We fix a point *u* on the fiber $\pi^{-1}(n)$. The space of smooth connections on *P* will be denoted by \mathscr{A} , the group of automorphisms of *P* covering the identity map on S^2 by \mathscr{G} , and the subgroup of all those automorphisms in \mathscr{G} which fix the fiber over *n* by \mathscr{G}_n . The quotients $\mathscr{C} = \mathscr{A}/\mathscr{G}$ and $\mathscr{C}_n = \mathscr{A}/\mathscr{G}_n$ will be of basic importance. If ω is a connection on *P* then we denote its curvature by Ω^{ω} . Consider any $m \in S^2$. If $e_1, e_2 \in T_p P$, where *p* is any point on the fiber $\pi^{-1}(m)$ and e_1, e_2 project to an orthonormal basis of $T_m S^2$ then the number $\|\Omega^{\omega}\|^2(m) = \|\Omega^{\omega}(e_1, e_2)\|_g^2$ is independent of the choice of *p* and (e_1, e_2) . The Yang-Mills action $S(\omega)$ depends only on the class $[\omega] \in \mathscr{C}$. So *S* is

naturally defined on the quotients \mathscr{C}_n and \mathscr{C} .

Choose any trivializations over the hemispheres N and S which agree at the basepoint $e_0 \in \mathscr{E}$ and let $\phi : \mathscr{E} \to G$ be the transition function. Then the homotopy class of ϕ , as a loop based at $e \in G$, specifies the topology of the bundle P (see [St]). We denote this homotopy class by $[P] \in \pi_1(G, e)$.

Recall that u is a fixed point on the fiber over n. If C is a piecewise smooth closed loop in S^2 based at n then we denote by $g_u(C; \omega)$ the holonomy around C for the connection ω , with initial point u. We will often drop the subscript u in $g_u(C; \omega)$. Given C (and u) the value $g_u(C; \omega)$ depends only on the class $[\omega] \in \mathscr{C}_n$ and, conversely, the values $g_u(C; \omega)$ for all C as described above specify the class $[\omega] \in \mathscr{C}_n$ uniquely.

Recall that if $\gamma:[a,b] \to G$ is a piecewise smooth path then its energy is $\int_{a}^{b} ||d\gamma/dt||^{2} dt$.

The following relates the minima of S to minimum energy geodesics on G:

Theorem 2.1. Let $[\omega] \in \mathcal{C}_n$ be a minimum of $S(\cdot)$. Then there is a unique minimum energy geodesic $\gamma^{\omega}: [0, |S^2|] \rightarrow G$ in the homotopy class [P] such that if C is any piecewise smooth closed loop in S^2 based at n, which bounds, in the positive sense, a region $E_C \subset S^2$, then:

$$g_u(C;\omega) = \gamma^{\omega}(|E_C|).$$

Conversely, if γ is a minimum energy geodesic $[0, |S^2|] \rightarrow G$ in [P] then there is a unique $[\omega] \in \mathscr{C}_n$ such that $\gamma = \gamma^{\omega}$.

Thus there is a one-to-one correspondence between the set \mathscr{C}_n^0 of minima of S on \mathscr{C}_n and the set $\Gamma_0^{[P]}$ of minimum energy geodesics in the homotopy class [P]. By taking the quotient of both sides by suitable actions of G one obtains a one-to-one correspondence between the set \mathscr{C}^0 of minima of S on \mathscr{C} and the conjugacy classes of minimum energy loops in [P].

Proof. See any of the references cited in Sect. 1 in this context. We give a brief sketch of the argument in [AB]. The Yang-Mills variational equations, in this situation, say that the curvature is a covariant constant and this can be used to show that the equation of parallel-transport corresponds to that of a geodesic on G. One then computes that $S(\omega)$ is proportional to the energy of the corresponding geodesic. \Box

Note that if the bundle P is trivial then the minimum of S is 0 and is given by the flat connections.

Now we turn to the quantum description. We will use the results of [Se 2](which extends ideas used in [GKS] and [Dr] for gauge fields on the plane to those over S^2). In that work the Euclidean quantum field measure $\mu_{\rm YM}$ representing gauge fields over S^2 was constructed for gauge groups G with compact universal cover (G compact semi-simple, for example) and for G abelian. If G is a general compact connected group covered by the product of a compact simply connected group H with N copies of the real line, and the metric on g is the product of the usual metric on R^N and an invariant metric on the Lie algebra of H then the theory extends in a straightforward way to the gauge group G as well. The discussion below applies to such situations. In the quantum setting, the space \mathscr{C}_n of gauge equivalence classes of smooth connections is replaced by a larger space $\overline{\mathscr{C}_n}$. On $\overline{\mathscr{C}_n}$ is defined the Yang-Mills probability measure which has the heuristic form $d\mu_{YM}$ $=Z^{-1}e^{-S(\omega)}[D\omega]$, where $[D\omega]$ denotes the pushforward of "Lebesgue measure" on \mathscr{A} to \mathscr{C}_n , and Z is a "normalizing constant" insuring that $\mu_{YM}(\mathscr{C}_n) = 1$. We now pause to give a summary description of $\overline{\mathscr{C}_n}$ (details may be found in [Se 2]) – this material is not essential to the understanding of the discussions that follow it.

The sphere S^2 is divided into the two hemispheres N and S, as before, intersecting in the equator \mathscr{E} ; a base meridian M_0 is fixed and this meridian intersects \mathscr{E} at the point e_0 . Let us first consider the part P_N of P which is over N. Fix a point u on the fiber over n and corresponding to any connection ω on P_N define a section ("radial gauge") s_{ω}^N of P_N by parallel-translating u along meridial lines. Define $F^{\omega}: N \to g$ by requiring that $(s_{\omega}^N)^* \Omega^{\omega} = F^{\omega} d\sigma$. Let \mathscr{C}_n^N denote the quotient of the space of connections on P_N by the group of gauge-transformations which fix the fiber over n. Then the assignment $[\omega] \mapsto F^{\omega}$ sets up a well-defined bijective correspondence between \mathscr{C}_n^N and the space X_N of smooth g-valued functions on N. By use of this map it is standard practice to identify the Yang-Mills measure for gauge fields over N with Gaussian measure on the space X_N described heuristically by a density proportional to $e^{-\|F\|^{\frac{1}{2}}(D, g)}$ (the space X_N has a natural inner-product structure and hence, informally, a "Lebesgue measure" defined on it; the density just referred to is with respect to this Lebesgue measure.) To be quite precise the Gaussian measure is defined on some Banach space \overline{X}_N containing X_N but we will write X_N instead of \overline{X}_N . The F^{ω} is now replaced by the following stochastic analog: for any Borel set $E \subset N$, there is a Gaussian random variable F(E) on X_N , taking values in g, which is the analog of $\int F^{\omega} d\sigma$. We now outline how

parallel-translation is defined in this context. Consider a well-behaved curve $C:[a,b] \rightarrow N$ and, for each $t \in [a,b]$, denote by C_t the loop based at n obtained by following the meridial segment from n to C(a), followed by C up to time t and then followed by the meridial segment back to n. If $g(C_i; \omega)$ denotes the holonomy, with initial point u, around C_t with respect to a smooth connection ω then it is an immediate consequence of the definition of parallel-translation that $g_a = e$ and $dg_t = -dM_t g_t$, where M_t is the integral of F^{ω} over the region E_t whose positive boundary is formed by C_t . To obtain the quantum analog we replace the differential equation by its stochastic form (interpreting it as a Stratonovich stochastic differential equation) and take M_t to be $F(E_t)$. Put another way, g. describes Brownian motion on G with time clocked by $|E_t|$ instead of t. We say that the random variable g_b describes stochastic parallel translation along the entire curve C. We can carry out an exactly analogous procedure over S, using a section s_{ω}^{S} and obtaining a space X_{S} corresponding to X_{N} . The transition function between the sections s_{ω}^{N} and s_{ω}^{S} can be taken as the (random) function $\phi : \mathscr{E} \to G$ given by $\phi(m)$ $=g_N(e_0m)g_S(e_0m)^{-1}$, where $g_N(e_0m)$ gives the stochastic parallel-transport along the part of \mathscr{E} from e_0 to *m* with respect to the connection as viewed from *N* and $g_S(e_0m)$ is the corresponding quantity for *S*. For the Yang-Mills space \mathscr{C}_n for S^2 we take the product probability space $X_N \times X_S$ and *condition* the measure so that ϕ describes a loop in *G* in the homotopy class [*P*]. Thus is obtained \mathscr{C}_n and μ_{YM} on \mathscr{C}_n . If *C* is a well-behaved curve in either *N* or *S* then g(C) has been defined as a random variable on X_N or X_S and, viewing it as a random variable on the product $X_N \times X_S$ in the natural way, g(C) is defined as a random variable on \mathscr{C}_n and it is well-defined under the measure μ_{YM} . If *C* is a closed loop based at *n* but passing through both hemispheres then g(C) is defined by breaking up *C* into pieces in *N* and *S* and with appropriate factors involving the transition function ϕ introduced at the points where *C* crosses from one hemisphere to the other.

The quantum analog of the holonomy is a random variable $g(C):\overline{\mathscr{C}_n}$ $\rightarrow G: \omega \mapsto g(C; \omega)$ associated to a closed loop in S² based at n. Due to technical (but conceptually irrelevant) reasons one has to restrict to a certain class of curves C. For our purposes a curve or curve segment in S^2 will always mean a piecewise smooth map of a compact interval in the real line into S^2 . Let us say that a curve segment in S^2 is a basic segment if it is smooth one-to-one and either lies entirely on a meridian or intersects each meridian in at most one point (if the latter condition is satisfied we say that the curve is *horizontal*); a collection of basic segments is a basic collection if it contains finitely many segments and any two segments in the collection either do not intersect or intersect at one or both endpoints only. We say that a set of \mathscr{S} of curves in S^2 is *admissible* if (i) there is a basic collection such that every curve in $\mathcal S$ is made up of a finite number of segments each drawn from the basic collection, (ii) \mathcal{S} is non-empty but finite, and (iii) no curve in \mathcal{S} is a point curve. The random variable $\omega \mapsto g(C; \omega)$ is defined whenever $\{C\}$ is admissible. For our purposes, the σ -algebra on \mathscr{C}_n will be taken to be the one generated by the g(C)'s.

We will always work with an admissible collection $\mathscr{S} = \{C_1, ..., C_m\}$ of loops in S^2 all based at *n*. The rest of this section describes a way to compute the joint distribution of the random variables $g(C_i; \omega)$. The strategy is to construct a collection of special loops (called lassos) $L_1, ..., L_K$ such that each C_i is essentially a composite of a number of the L_i 's (and reversed L_i 's) so that $g(C_i)$ is the product of the corresponding $g(L_i)$'s [and $g(L_i)^{-1}$'s]. Thus if we know the joint distribution of the $g(C_i)$'s, too.

We draw enough meridians $M_0, ..., M_k$ so that the curves C_i are broken up into segments which together with the segments from the M_j form a basic collection. We label the M_i 's in increasing order of the angles they make with the fixed initial meridian M_0 . A lasso is a closed loop formed in the following way from five legs: (i) follow a meridial segment from n along some meridian M_i to the initial point of some horizontal segment σ running from M_i to M_{i+1} (here, as always, $M_{n+1} = M_0$) or until the south pole s is reached; (ii) then follow σ till it reaches M_{i+1} ; (iii) move "back" along M_{i+1} towards n until the final point of some horizontal segment σ' (running from M_i to M_{i+1}) is reached or until n is reached in case there are no segments like σ' ; (iv) follow σ' in reverse until M_i ; (v) finally, return to n back along M_i . Note that in degenerate examples some of these legs would be absent; for example, if s is reached in step (i) then step (ii) is not necessary. Having defined a lasso we observe that the lassos can be arranged in a natural sequence $L_1, ..., L_K$ such that the composite curve $L_K ... L_1$ (read from right to left) reduces to the constant curve at n after all segments that are traversed consecutively in opposite Semiclassical Limit for Gauge Theory on S^2

directions are dropped. For example, one can start with L_1 as the lasso with its first ("long") leg reaching all the way along M_0 to s, L_2 as the lasso with its first leg along M_0 but "closest" to s after L_1 , etc. If L is a lasso and we drop from L part of its first leg and all of its last leg then we obtain a simple closed loop (the little "square" at the head of the lasso) – we denote by |L| the area of the region enclosed (in the positive sense) by this closed loop at the "tip" of L.

The following result involves the Brownian loop $[0, |S^2|] \rightarrow G$, based at e, in the homotopy class [P]. This is obtained by projecting onto G the corresponding Brownian bridge process on the universal cover of G. To be precise, the Brownian loop we deal with here is described by a probability measure on the space $\Lambda_{|S^2|}$ of continuous loops $[0, |S^2|] \rightarrow G$ based at e and in the homotopy class [P]; the basic random variables on $\Lambda_{|S^2|}$ are the maps $\gamma \mapsto \gamma(t)$, where $t \in [0, |S^2|]$. The set $\Lambda_{|S^2|}$ is a metric space under uniform convergence.

Theorem 2.2. The G^{K} -valued random variable $\omega \mapsto (g(L_{1}; \omega), ..., g(L_{K}; \omega))$ on $\overline{\mathscr{G}_{n}}$ has the same distribution as $\gamma \mapsto (\gamma_{t_{1}}, \gamma_{t_{2}}\gamma_{t_{1}}^{-1}, ..., \gamma_{t_{K}}\gamma_{t_{K-1}}^{-1})$, where $t_{i} = |L_{1}| + ... + |L_{i}|$, and $[0, |S^{2}|] \rightarrow G: t \mapsto g_{t}$ is a Brownian loop in G, based at $e \in G$, in the homotopy class [P]. \Box

Proof. See [Se 2].

3. The Limiting Process

We wish to consider the probability measure constructed in the same way as $d\mu_{YM}$ except with $S(\cdot)$ scaled to $S(\cdot)/T$, where T > 0. That is, we consider the measure $d\mu_{YM}^T = Z_T^{-1} e^{-S(\omega)/T} [D\omega]$.

There is an easy way to see how the measure μ_{YM}^T is related to μ_{YM} . Instead of the metric ds^2 on S^2 that we have been working with, introduce a new metric $ds'^2 = Tds^2$. Then the corresponding area-measures $d\sigma$ and $d\sigma'$ are related by $d\sigma' = Td\sigma$. Now recall that $S(\omega) = \int_{S^2} \|\Omega^{\omega}\|^2 d\sigma$, where $\|\Omega^{\omega}\|^2$ is the function on S^2 whose value at a point *m* is given by $\|\Omega^{\omega}(e_1, e_2)\|_{q}^{2}$, where (e_1, e_2) are tangent vectors to *P* at some point on $\pi^{-1}(m)$ and which project to a basis of T_mS^2 which is orthonormal with respect to the metric ds'^2 . Thus $S'(\omega)$, the corresponding object for the metric ds'^2 , is related to $S(\omega)$ by: $S'(\omega) = S(\omega)/T$. This suggests that the measure μ_{YM}^T should be constructed just as μ_{YM} except all areas should be scaled by *T*. Both the probability measure μ_{YM}^T on $\overline{C_n}$. Thus, if $\mathscr{S} = \{C_1, ..., C_m\}$ is an admissible collection of curves in S^2 and $L_1, ..., L_K$ is the sequence of lassos constructed as in Sect. 2, then the random variables $g(C_i)$ are products of the $g(L_i)$'s and $g(L_k)^{-1}$'s as before, but the joint distribution of the $g(L_i)$'s is a described in Proposition 3.1 below.

We denote by Λ_a the space of continuous loops $[0, a] \rightarrow G$, based at e, lying in the homotopy class [P]. The standard Brownian loop in G in the homotopy class [P] is described by a probability measure $\mu_{[0,a]}$ on Λ_a . If $t \in [0,a]$ then $\gamma \mapsto \gamma(t)$ is a random variable on Λ_a (and these variables generate the σ -algebra on Λ_a). On the other hand, for T > 0, one also has a probability measure μ_T on Λ_a such that, for any $t_1, \ldots, t_l \in [0, a]$, the random variable $\gamma \mapsto (\gamma_{t_1}, \ldots, \gamma_{t_l})$ has the same distribution under μ_T as does $\gamma \mapsto (\gamma_{Tt_1}, \ldots, \gamma_{Tt_l})$ as a random variable on the space Λ_{Ta} with the measure $\mu_{[0, Ta]}$. Put another way, the measure $\mu_{[0, Ta]}$ describes the standard

Brownian loop $[0, Ta] \rightarrow G$ (in the homotopy class [P]) whereas μ_T is a measure on loops $[0, a] \rightarrow G$ (in [P]) which is related to $\mu_{[0, Ta]}$ by time scaling. In our usage, $a = |S^2|$.

Using Theorem 2.2 and the discussion above we can then formulate the relationship between μ_{YM}^T and μ_T as follows:

Proposition 3.1. The G^{K} -valued random variable $\omega \mapsto (g(L_{1}; \omega), ..., g(L_{K}; \omega))$ on \mathscr{C}_{n} has the same distribution with respect to the measure μ_{YM}^{T} as $\gamma \mapsto (\gamma_{t_{1}}, \gamma_{t_{2}}\gamma_{t_{1}}^{-1}, ..., \gamma_{t_{K}}\gamma_{t_{K-1}}^{-1})$ on $\Lambda_{|S^{2}|}$ has under the measure μ_{T} . \Box

We now invoke the following result proved by Molchanov [Mo] and Hsu [H]:

Theorem 3.2. The sequence of probability measures μ_T on $\Lambda_{|S^2|}$ converges weakly to a probability measure μ_0 which is concentrated on the set $\Gamma_0^{[P]}$ of minimum energy geodesic loops $[0, |S^2|] \rightarrow G$, based at e, in the homotopy class [P]. \Box

Proof. See Sect. 5 of [Mo] or Theorem 4.2 of [Hsu].

Note that a minimum energy loop in G is described by a smooth map of S^1 into G.

Combining Theorem 2.2 with Proposition 3.1 we see that for any bounded continuous function f on G^K the expectation value $\int_{\frac{G}{g_n}} f(g(L_1; \omega), ..., g(L_K; \omega)) d\mu_{YM}^T(\omega)$ converges, as $T \to 0$, to $\int_{\Gamma_0^{[P]}} f(\gamma(|L_1|), \gamma(|L_2|)\gamma(|L_1|)^{-1}, ..., \gamma(|L_K|)\gamma(|L_{K-1}|)^{-1}) d\mu_0(\gamma)$. Recalling the correspondence (Theorem 2.1) between \mathscr{C}_n^0 and $\Gamma_0^{[P]}$ we see that the measure μ_0 can be transferred to a probability measure μ_{YM}^0 on \mathscr{C}_n^0 and then we have as $T \to 0$:

$$\int_{\mathscr{C}_n} f(g(L_1;\omega),\ldots,g(L_K;\omega)) d\mu_{\mathrm{YM}}^T(\omega) \to \int_{\mathscr{C}_n^0} f(g(L_1;\omega),\ldots,g(L_K;\omega)) d\mu_{\mathrm{YM}}^0(\omega) d\mu_{$$

Now recall that the L_i 's were constructed as tools for computing $g(C_i; \omega)$, where the C_i 's constitute an admissible collection $\{C_1, \ldots, C_m\}$ of closed curves in S^2 all based at *n*. Now if *f* is a bounded continuous function on G^m then $f(g(C_1; \omega), \ldots, g(C_m; \omega))$ is of the form $F(g(L_1; \omega), \ldots, g(L_K; \omega))$ for some bounded continuous function *F* on G^K , since each $g(C_i)$ is a product of some $g(L_j)$'s and some $g(L_k)^{-1}$'s. Thus we have:

Theorem 3.3. There is a probability measure μ_{YM}^0 on \mathscr{C}_n^0 such that for any admissible collection $\{C_1, ..., C_m\}$ of closed loops in S^2 based at n, as $T \to 0$

$$\int_{\mathscr{C}_n} f(g(C_1;\omega),\ldots,g(C_m;\omega))d\mu_{YM}^T(\omega) \to \int_{\mathscr{C}_n^0} f(g(C_1;\omega),\ldots,g(C_m;\omega))d\mu_{YM}^0(\omega). \quad \Box$$

By taking only those f which are invariant under the replacement $f \mapsto f^g$, for every $g \in G$ [where $f^g(x_1, ..., x_m) = f(gx_1g^{-1}, ..., gx_mg^{-1})$], we obtain the analogous result for the full quotient spaces \mathscr{C} and \mathscr{C}^0 .

References

- [AB] Atiyah, M., Bott, R.: Proc. Indian Acad. Sci. (Math. Sci.) 90, 11–20 (1981)
- [Dr] Driver, B.K.: Commun. Math. Phys. 123, 575–616 (1989)
- [F] Fine, D.: Commun. Math. Phys. 134, 273 (1990)
- [FH] Friedrich, Th., Habermann, L.: Commun. Math. Phys. 100, 231–243 (1985)

Semiclassical Limit for Gauge Theory on S^2

- [G] Graveson, J.: Commun. Math. Phys. 127, 597–605 (1990)
- [GKS] Gross, L., King, C., Sengupta, A.: Ann. Phys. 194, 65-112 (1989)
- [NU] Nahm, W., Uhlenbeck, K.: The equivalence of quantized gauge fields on S^2 and the quantum mechanics of a particle moving on the group maniold. Preprint
- [Se 1, 2] Sengupta, A.: The Yang-Mills measure for the two-sphere (Ph.D. Thesis, Cornell University), June 1990; J. Funct. Anal. (to appear)
- [St] Steenrod, N.: The topology of fiber bundles. Princeton, NJ: Princeton University Press 1951

Communicated by K. Gawedzki