The Semiclassical Limit for Gauge Theory on $\boldsymbol{S}^{\mathbf{2} \star}$

Ambar Sengupta
Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA
Received July 1, 1991

Abstract

It is shown that the Yang-Mills measure $Z_{h}^{-1} e^{-S(\omega) / h}[D \omega]$, where $h>0$, describing gauge fields on the two-sphere converges to a probability measure on the moduli space of Yang-Mills connections on S^{2}, as $h \rightarrow 0$.

1. Introduction

In this paper we prove that the quantum Yang-Mills measure $d \mu_{\mathrm{YM}}^{T}(\omega)$ $=\frac{1}{Z_{T}} e^{-S(\omega) / T}[D \omega]$ (notation to be explained in Sect. 2) for gauge fields over the two-sphere S^{2} converges, as $T \rightarrow 0$, to a probability measure μ_{YM}^{T} on the set of minima of the Yang-Mills action functional S. The measure μ_{YM}^{T} has been constructed and studied in [Se 1, 2] (and, from a different point of view, by Fine in [F]) for a wide class of gauge groups. On the other hand, the minima of the YangMills action S for gauge fields over S^{2} are also well-understood [AB, G, FH, Se 1, NU]. In Sect. 2 we summarize the relevant results that are known and in Sect. 3 we describe the limiting process.

2. Classical and Quantum Yang-Mills on $\boldsymbol{S}^{\mathbf{2}}$

Let G be a compact connected Lie group with a fixed bi-invariant metric $\langle\cdot, \cdot\rangle_{g}$ on its Lie algebra g.

Equip S^{2} with a Riemannian metric. If E is a Borel subset of S^{2} we denote by $|E|$ its area as given by the area-measure $d \sigma$ induced by the metric. For the geometric discussions we will visualize S^{2} as the usual sphere sitting in R^{3} and we will equip it with a north pole n, a south pole s, and the hemispheres N and S which intersect in the equator \mathscr{E}. We will often refer to the meridians - these are the usual meridians

[^0]on $S^{2} \subset R^{3}$ running from n to s. We fix a basepoint $e_{0} \in \mathscr{E}$ and denote by M_{0} the meridian through it. We will work with a principal G-bundle $\pi: P \rightarrow S^{2}$. We fix a point u on the fiber $\pi^{-1}(n)$. The space of smooth connections on P will be denoted by \mathscr{A}, the group of automorphisms of P covering the identity map on S^{2} by \mathscr{G}, and the subgroup of all those automorphisms in \mathscr{G} which fix the fiber over n by \mathscr{G}_{n}. The quotients $\mathscr{C}=\mathscr{A} / \mathscr{G}$ and $\mathscr{C}_{n}=\mathscr{A} / \mathscr{G}_{n}$ will be of basic importance. If ω is a connection on P then we denote its curvature by Ω^{ω}. Consider any $m \in S^{2}$. If $e_{1}, e_{2} \in T_{p} P$, where p is any point on the fiber $\pi^{-1}(m)$ and e_{1}, e_{2} project to an orthonormal basis of $T_{m} S^{2}$ then the number $\left\|\Omega^{\omega}\right\|^{2}(m)=\left\|\Omega^{\omega}\left(e_{1}, e_{2}\right)\right\|_{g}^{2}$ is independent of the choice of p and (e_{1}, e_{2}). The Yang-Mills action $S(\omega)$ is defined to be $\int_{S^{2}}\left\|\Omega^{\omega}\right\|^{2} d \sigma$, where $d \sigma$ is the area measure on S^{2}. The value $S(\omega)$ depends only on the class $[\omega] \in \mathscr{C}$. So S is naturally defined on the quotients \mathscr{C}_{n} and \mathscr{C}.

Choose any trivializations over the hemispheres N and S which agree at the basepoint $e_{0} \in \mathscr{E}$ and let $\phi: \mathscr{E} \rightarrow G$ be the transition function. Then the homotopy class of ϕ, as a loop based at $e \in G$, specifies the topology of the bundle P (see [St]). We denote this homotopy class by $[P] \in \pi_{1}(G, e)$.

Recall that u is a fixed point on the fiber over n. If C is a piecewise smooth closed loop in S^{2} based at n then we denote by $g_{u}(C ; \omega)$ the holonomy around C for the connection ω, with initial point u. We will often drop the subscript u in $g_{u}(C ; \omega)$. Given C (and u) the value $g_{u}(C ; \omega)$ depends only on the class $[\omega] \in \mathscr{C}_{n}$ and, conversely, the values $g_{u}(C ; \omega)$ for all C as described above specify the class $[\omega] \in \mathscr{C}_{n}$ uniquely.

Recall that if $\gamma:[a, b] \rightarrow G$ is a piecewise smooth path then its energy is b $\int_{a}^{b}\|d \gamma / d t\|^{2} d t$.

The following relates the minima of S to minimum energy geodesics on G :
Theorem 2.1. Let $[\omega] \in \mathscr{C}_{n}$ be a minimum of $S(\cdot)$. Then there is a unique minimum energy geodesic $\gamma^{\omega}:\left[0,\left|S^{2}\right|\right] \rightarrow G$ in the homotopy class $[P]$ such that if C is any piecewise smooth closed loop in S^{2} based at n, which bounds, in the positive sense, a region $E_{C} \subset S^{2}$, then:

$$
g_{u}(C ; \omega)=\gamma^{\omega}\left(\left|E_{C}\right|\right) .
$$

Conversely, if γ is a minimum energy geodesic $\left[0,\left|S^{2}\right|\right] \rightarrow G$ in $[P]$ then there is a unique $[\omega] \in \mathscr{C}_{\boldsymbol{n}}$ such that $\gamma=\gamma^{\omega}$.

Thus there is a one-to-one correspondence between the set \mathscr{C}_{n}^{0} of minima of S on \mathscr{C}_{n} and the set $\Gamma_{0}^{[P]}$ of minimum energy geodesics in the homotopy class [P]. By taking the quotient of both sides by suitable actions of G one obtains a one-to-one correspondence between the set \mathscr{C} 覀 of minima of S on \mathscr{C} and the conjugacy classes of minimum energy loops in [P].

Proof. See any of the references cited in Sect. 1 in this context. We give a brief sketch of the argument in [AB]. The Yang-Mills variational equations, in this situation, say that the curvature is a covariant constant and this can be used to show that the equation of parallel-transport corresponds to that of a geodesic on G. One then computes that $S(\omega)$ is proportional to the energy of the corresponding geodesic.

Note that if the bundle P is trivial then the minimum of S is 0 and is given by the flat connections.

Now we turn to the quantum description. We will use the results of [Se 2] (which extends ideas used in [GKS] and [Dr] for gauge fields on the plane to those over S^{2}). In that work the Euclidean quantum field measure $\mu_{\mathbf{Y M}}$ representing gauge fields over S^{2} was constructed for gauge groups G with compact universal cover (G compact semi-simple, for example) and for G abelian. If G is a general compact connected group covered by the product of a compact simply connected group H with N copies of the real line, and the metric on g is the product of the usual metric on R^{N} and an invariant metric on the Lie algebra of H then the theory extends in a straightforward way to the gauge group G as well. The discussion below applies to such situations. In the quantum setting, the space \mathscr{C}_{n} of gauge equivalence classes of smooth connections is replaced by a larger space $\mathscr{\mathscr { C }}_{n}$. On $\overline{\mathscr{C}}_{n}$ is defined the Yang-Mills probability measure which has the heuristic form $d \mu_{\mathrm{YM}}$ $=Z^{-1} e^{-S(\omega)}[D \omega]$, where $[D \omega]$ denotes the pushforward of "Lebesgue measure" on \mathscr{A} to \mathscr{C}_{n}, and Z is a "normalizing constant" insuring that $\mu_{\mathrm{YM}}\left(\mathscr{C}_{n}\right)=1$. We now pause to give a summary description of $\overline{\mathscr{C}}_{n}$ (details may be found in [Se 2]) - this material is not essential to the understanding of the discussions that follow it.

The sphere S^{2} is divided into the two hemispheres N and S, as before, intersecting in the equator \mathscr{E}; a base meridian M_{0} is fixed and this meridian intersects \mathscr{E} at the point e_{0}. Let us first consider the part P_{N} of P which is over N. Fix a point u on the fiber over n and corresponding to any connection ω on P_{N} define a section ("radial gauge") s_{ω}^{N} of P_{N} by parallel-translating u along meridial lines. Define $F^{\omega}: N \rightarrow g$ by requiring that $\left(s_{\omega}^{N}\right)^{*} \Omega^{\omega}=F^{\omega} d \sigma$. Let \mathscr{C}_{n}^{N} denote the quotient of the space of connections on P_{N} by the group of gauge-transformations which fix the fiber over n. Then the assignment $[\omega] \mapsto F^{\omega}$ sets up a well-defined bijective correspondence between \mathscr{C}_{n}^{N} and the space X_{N} of smooth g-valued functions on N. By use of this map it is standard practice to identify the Yang-Mills measure for gauge fields over N with Gaussian measure on the space X_{N} described heuristically by a density proportional to $e^{-\|F\|_{L^{2}(D ; g)}^{2} \text { (the space } X_{N} \text { has a natural }}$ inner-product structure and hence, informally, a "Lebesgue measure" defined on it; the density just referred to is with respect to this Lebesgue measure). To be quite precise the Gaussian measure is defined on some Banach space \bar{X}_{N} containing X_{N} but we will write X_{N} instead of \bar{X}_{N}. The F^{ω} is now replaced by the following stochastic analog: for any Borel set $E \subset N$, there is a Gaussian random variable $F(E)$ on X_{N}, taking values in g, which is the analog of $\int_{E} F^{\omega} d \sigma$. We now outline how parallel-translation is defined in this context. Consider a well-behaved curve $C:[a, b] \rightarrow N$ and, for each $t \in[a, b]$, denote by C_{t} the loop based at n obtained by following the meridial segment from n to $C(a)$, followed by C up to time t and then followed by the meridial segment back to n. If $g\left(C_{t} ; \omega\right)$ denotes the holonomy, with initial point u, around C_{t} with respect to a smooth connection ω then it is an immediate consequence of the definition of parallel-translation that $g_{a}=e$ and $d g_{t}=-d M_{t} g_{t}$, where M_{t} is the integral of F^{ω} over the region E_{t} whose positive boundary is formed by C_{t}. To obtain the quantum analog we replace the differential equation by its stochastic form (interpreting it as a Stratonovich stochastic differential equation) and take M_{t} to be $F\left(E_{t}\right)$. Put another way, g_{t} describes Brownian motion on G with time clocked by $\left|E_{t}\right|$ instead of t. We say that the random variable g_{b} describes stochastic parallel translation along the entire curve C. We can carry out an exactly analogous procedure over S, using a section s_{ω}^{S} and obtaining a space X_{S} corresponding to X_{N}. The transition function between the sections s_{ω}^{N} and s_{ω}^{S} can be taken as the (random) function $\phi: \mathscr{E} \rightarrow G$ given by $\phi(m)$ $=g_{N}\left(e_{0} m\right) g_{S}\left(e_{0} m\right)^{-1}$, where $g_{N}\left(e_{0} m\right)$ gives the stochastic parallel-transport along
the part of \mathscr{E} from e_{0} to m with respect to the connection as viewed from N and $g_{S}\left(e_{0} m\right)$ is the corresponding quantity for S. For the Yang-Mills space $\overline{\mathscr{C}}_{n}$ for S^{2} we take the product probability space $X_{N} \times X_{S}$ and condition the measure so that ϕ describes a loop in G in the homotopy class [P]. Thus is obtained $\overline{\mathscr{C}}_{n}$ and μ_{YM} on $\overline{\mathscr{C}}_{n}$. If C is a well-behaved curve in either N or S then $g(C)$ has been defined as a random variable on X_{N} or X_{S} and, viewing it as a random variable on the product $X_{N} \times X_{S}$ in the natural way, $g(C)$ is defined as a random variable on $\overline{\mathscr{C}}_{n}$ and it is well-defined under the measure μ_{YM}. If C is a closed loop based at n but passing through both hemispheres then $g(C)$ is defined by breaking up C into pieces in N and S and with appropriate factors involving the transition function ϕ introduced at the points where C crosses from one hemisphere to the other.

The quantum analog of the holonomy is a random variable $g(C): \mathscr{C}_{n}$ $\rightarrow G: \omega \mapsto g(C ; \omega)$ associated to a closed loop in S^{2} based at n. Due to technical (but conceptually irrelevant) reasons one has to restrict to a certain class of curves C. For our purposes a curve or curve segment in S^{2} will always mean a piecewise smooth map of a compact interval in the real line into S^{2}. Let us say that a curve segment in S^{2} is a basic segment if it is smooth one-to-one and either lies entirely on a meridian or intersects each meridian in at most one point (if the latter condition is satisfied we say that the curve is horizontal); a collection of basic segments is a basic collection if it contains finitely many segments and any two segments in the collection either do not intersect or intersect at one or both endpoints only. We say that a set of \mathscr{S} of curves in S^{2} is admissible if (i) there is a basic collection such that every curve in \mathscr{S} is made up of a finite number of segments each drawn from the basic collection, (ii) \mathscr{S} is non-empty but finite, and (iii) no curve in \mathscr{S} is a point curve. The random variable $\omega \mapsto g(C ; \omega)$ is defined whenever $\{C\}$ is admissible. For our purposes, the σ-algebra on \mathscr{C}_{n} will be taken to be the one generated by the $g(C)$'s.

We will always work with an admissible collection $\mathscr{S}=\left\{C_{1}, \ldots, C_{m}\right\}$ of loops in S^{2} all based at n. The rest of this section describes a way to compute the joint distribution of the random variables $g\left(C_{i} ; \omega\right)$. The strategy is to construct a collection of special loops (called lassos) L_{1}, \ldots, L_{K} such that each C_{i} is essentially a composite of a number of the L_{i} 's (and reversed L_{i} 's) so that $g\left(C_{i}\right)$ is the product of the corresponding $g\left(L_{i}\right)^{\prime}$ s [and $g\left(L_{i}\right)^{-1}$'s]. Thus if we know the joint distribution of the $g\left(L_{i}\right)$'s (under the probability masure μ_{YM}) then we would know that of the $g\left(C_{i}\right)$'s, too.

We draw enough meridians M_{0}, \ldots, M_{k} so that the curves C_{i} are broken up into segments which together with the segments from the M_{j} form a basic collection. We label the M_{i} 's in increasing order of the angles they make with the fixed initial meridian M_{0}. A lasso is a closed loop formed in the following way from five legs: (i) follow a meridial segment from n along some meridian M_{i} to the initial point of some horizontal segment σ running from M_{i} to M_{i+1} (here, as always, $M_{n+1}=M_{0}$) or until the south pole s is reached; (ii) then follow σ till it reaches M_{i+1}; (iii) move "back" along M_{i+1} towards n until the final point of some horizontal segment σ^{\prime} (running from M_{i} to M_{i+1}) is reached or until n is reached in case there are no segments like σ^{\prime}; (iv) follow σ^{\prime} in reverse until M_{i}; (v) finally, return to n back along M_{i}. Note that in degenerate examples some of these legs would be absent; for example, if s is reached in step (i) then step (ii) is not necessary. Having defined a lasso we observe that the lassos can be arranged in a natural sequence L_{1}, \ldots, L_{K} such that the composite curve $L_{K} \ldots L_{1}$ (read from right to left) reduces to the constant curve at n after all segments that are traversed consecutively in opposite
directions are dropped. For example, one can start with L_{1} as the lasso with its first ("long") leg reaching all the way along M_{0} to s, L_{2} as the lasso with its first leg along M_{0} but "closest" to s after L_{1}, etc. If L is a lasso and we drop from L part of its first leg and all of its last leg then we obtain a simple closed loop (the little "square" at the head of the lasso) - we denote by $|L|$ the area of the region enclosed (in the positive sense) by this closed loop at the "tip" of L.

The following result involves the Brownian loop $\left[0,\left|S^{2}\right|\right] \rightarrow G$, based at e, in the homotopy class [P]. This is obtained by projecting onto G the corresponding Brownian bridge process on the universal cover of G. To be precise, the Brownian loop we deal with here is described by a probability measure on the space $\Lambda_{\left|S^{2}\right|}$ of continuous loops $\left[0,\left|S^{2}\right|\right] \rightarrow G$ based at e and in the homotopy class [P]; the basic random variables on $\Lambda_{\left|S^{2}\right|}$ are the maps $\gamma \mapsto \gamma(t)$, where $t \in\left[0,\left|S^{2}\right|\right]$. The set $\Lambda_{\left|S^{2}\right|}$ is a metric space under uniform convergence.
Theorem 2.2. The G^{K}-valued random variable $\omega \mapsto\left(g\left(L_{1} ; \omega\right), \ldots, g\left(L_{K} ; \omega\right)\right)$ on $\overline{\mathscr{C}}_{n}$ has the same distribution as $\gamma \mapsto\left(\gamma_{t_{1}}, \gamma_{t_{2}} \gamma_{t_{1}}^{-1}, \ldots, \gamma_{t_{K}} \gamma_{t_{K-1}}^{-1}\right)$, where $t_{i}=\left|L_{1}\right|+\ldots+\left|L_{i}\right|$, and $\left[0,\left|S^{2}\right|\right] \rightarrow G: t \mapsto g_{t}$ is a Brownian loop in G, based at $e \in G$, in the homotopy class [P].

Proof. See [Se 2].

3. The Limiting Process

We wish to consider the probability measure constructed in the same way as $d \mu_{\mathrm{YM}}$ except with $S(\cdot)$ scaled to $S(\cdot) / T$, where $T>0$. That is, we consider the measure $d \mu_{\mathrm{YM}}^{T}=Z_{T}^{-1} e^{-S(\omega) / T}[D \omega]$.

There is an easy way to see how the measure μ_{YM}^{T} is related to μ_{YM}. Instead of the metric $d s^{2}$ on S^{2} that we have been working with, introduce a new metric $d s^{\prime 2}=T d s^{2}$. Then the corresponding area-measures $d \sigma$ and $d \sigma^{\prime}$ are related by $d \sigma^{\prime}=T d \sigma$. Now recall that $S(\omega)=\int_{S^{2}}\left\|\Omega^{\omega}\right\|^{2} d \sigma$, where $\left\|\Omega^{\omega}\right\|^{2}$ is the function on S^{2} whose value at a point m is given by $\left\|\Omega^{\omega}\left(e_{1}, e_{2}\right)\right\|_{\underline{g}}^{2}$, where $\left(e_{1}, e_{2}\right)$ are tangent vectors to P at some point on $\pi^{-1}(m)$ and which project to a basis of $T_{m} S^{2}$ which is orthonormal with respect to the metric $d s^{2}$. Thus $S^{\prime}(\omega)$, the corresponding object for the metric $d s^{\prime 2}$, is related to $S(\omega)$ by: $S^{\prime}(\omega)=S(\omega) / T$. This suggests that the measure μ_{YM}^{T} should be constructed just as μ_{YM} except all areas should be scaled by T. Both the probability space $\overline{\mathscr{C}}_{n}$ and the σ-algebra are the same as before but now we have a new probability measure μ_{YM}^{T} on \mathscr{C}_{n}. Thus, if $\mathscr{S}=\left\{C_{1}, \ldots, C_{m}\right\}$ is an admissible collection of curves in S^{2} and L_{1}, \ldots, L_{K} is the sequence of lassos constructed as in Sect. 2, then the random variables $g\left(C_{i}\right)$ are products of the $g\left(L_{j}\right)$'s and $g\left(L_{k}\right)^{-1}$'s as before, but the joint distribution of the $g\left(L_{i}\right)$'s is as described in Proposition 3.1 below.

We denote by Λ_{a} the space of continuous loops $[0, a] \rightarrow G$, based at e, lying in the homotopy class [P]. The standard Brownian loop in G in the homotopy class [P] is described by a probability measure $\mu_{[0, a]}$ on Λ_{a}. If $t \in[0, a]$ then $\gamma \mapsto \gamma(t)$ is a random variable on Λ_{a} (and these variables generate the σ-algebra on Λ_{a}). On the other hand, for $T>0$, one also has a probability measure μ_{T} on Λ_{a} such that, for any $t_{1}, \ldots, t_{l} \in[0, a]$, the random variable $\gamma \mapsto\left(\gamma_{t_{1}}, \ldots, \gamma_{t_{l}}\right)$ has the same distribution under μ_{T} as does $\gamma \mapsto\left(\gamma_{T t_{1}}, \ldots, \gamma_{T t_{1}}\right)$ as a random variable on the space $\Lambda_{T a}$ with the measure $\mu_{[0, T a]}$. Put another way, the measure $\mu_{[0, T a]}$ describes the standard

Brownian loop [0,Ta] $\rightarrow G$ (in the homotopy class [P]) whereas μ_{T} is a measure on loops $[0, a] \rightarrow G($ in $[\mathrm{P}])$ which is related to $\mu_{[0, T a]}$ by time scaling. In our usage, $a=\left|S^{2}\right|$.

Using Theorem 2.2 and the discussion above we can then formulate the relationship between μ_{YM}^{T} and μ_{T} as follows:
Proposition 3.1. The G^{K}-valued random variable $\omega \mapsto\left(g\left(L_{1} ; \omega\right), \ldots, g\left(L_{K} ; \omega\right)\right)$ on \mathscr{C}_{n} has the same distribution with respect to the measure μ_{YM}^{T} as $\gamma \mapsto\left(\gamma_{t_{1}}, \gamma_{t_{2}} \gamma_{t_{1}}^{-1}, \ldots, \gamma_{t_{K}} \gamma_{t_{K}-1}^{-1}\right)$ on $\Lambda_{\left|S^{2}\right|}$ has under the measure μ_{T}.

We now invoke the following result proved by Molchanov [Mo] and Hsu [H]:
Theorem 3.2. The sequence of probability measures μ_{T} on $\Lambda_{\left|S^{2}\right|}$ converges weakly to a probability measure μ_{0} which is concentrated on the set $\Gamma_{0}^{[P]}$ of minimum energy geodesic loops $\left[0,\left|S^{2}\right|\right] \rightarrow G$, based at e, in the homotopy class $[P]$.
Proof. See Sect. 5 of [Mo] or Theorem 4.2 of [Hsu].
Note that a minimum energy loop in G is described by a smooth map of S^{1} into G.

Combining Theorem 2.2 with Proposition 3.1 we see that for any bounded continuous function f on G^{K} the expectation value $\int_{\frac{\mathcal{Q}_{n}}{}} f\left(g\left(L_{1} ; \omega\right), \ldots\right.$, $\left.g\left(L_{K} ; \omega\right)\right) d \mu_{\mathrm{YM}}^{T}(\omega)$ converges, as $T \rightarrow 0$, to $\int_{\Gamma^{(P)}} f\left(\gamma\left(\left|L_{1}\right|\right), \gamma\left(\left|L_{2}\right|\right) \gamma\left(\left|L_{1}\right|\right)^{-1}, \ldots\right.$, $\left.\gamma\left(\left|L_{K}\right|\right) \gamma\left(\left|L_{K-1}\right|\right)^{-1}\right) d \mu_{0}(\gamma)$. Recalling the correspondence (Theorem 2.1) between \mathscr{C}_{n}^{0} and $\Gamma_{0}^{[P]}$ we see that the measure μ_{0} can be transferred to a probability measure μ_{YM}^{0} on \mathscr{C}_{n}^{0} and then we have as $T \rightarrow 0$:

$$
\int_{\frac{\mathscr{C}_{n}}{}} f\left(g\left(L_{1} ; \omega\right), \ldots, g\left(L_{K} ; \omega\right)\right) d \mu_{\mathrm{YM}}^{T}(\omega) \rightarrow \int_{\mathscr{C}_{n}^{0}} f\left(g\left(L_{1} ; \omega\right), \ldots, g\left(L_{K} ; \omega\right)\right) d \mu_{\mathrm{YM}}^{0}(\omega) .
$$

Now recall that the L_{i} 's were constructed as tools for computing $g\left(C_{i} ; \omega\right.$), where the C_{i} 's constitute an admissible collection $\left\{C_{1}, \ldots, C_{m}\right\}$ of closed curves in S^{2} all based at n. Now if f is a bounded continuous function on G^{m} then $f\left(g\left(C_{1} ; \omega\right), \ldots, g\left(C_{m} ; \omega\right)\right)$ is of the form $F\left(g\left(L_{1} ; \omega\right), \ldots, g\left(L_{K} ; \omega\right)\right)$ for some bounded continuous function F on G^{K}, since each $g\left(C_{i}\right)$ is a product of some $g\left(L_{j}\right)$'s and some $g\left(L_{k}\right)^{-1}$'s. Thus we have:

Theorem 3.3. There is a probability measure μ_{YM}^{0} on \mathscr{C}_{n}^{0} such that for any admissible collection $\left\{C_{1}, \ldots, C_{m}\right\}$ of closed loops in S^{2} based at n, as $T \rightarrow 0$

$$
\int_{\mathscr{C}_{n}} f\left(g\left(C_{1} ; \omega\right), \ldots, g\left(C_{m} ; \omega\right)\right) d \mu_{\mathrm{YM}}^{T}(\omega) \rightarrow \int_{\mathscr{C}_{n}^{0}} f\left(g\left(C_{1} ; \omega\right), \ldots, g\left(C_{m} ; \omega\right)\right) d \mu_{Y M}^{0}(\omega)
$$

By taking only those f which are invariant under the replacement $f \mapsto f^{g}$, for every $g \in G$ [where $\left.f^{g}\left(x_{1}, \ldots, x_{m}\right)=f\left(g x_{1} g^{-1}, \ldots, g x_{m} g^{-1}\right)\right]$, we obtain the analogous result for the full quotient spaces \mathscr{C} and \mathscr{C}^{0}.

References

[AB] Atiyah, M., Bott, R.: Proc. Indian Acad. Sci. (Math. Sci.) 90, 11-20 (1981)
[Dr] Driver, B.K.: Commun. Math. Phys. 123, 575-616 (1989)
[F] Fine, D.: Commun. Math. Phys. 134, 273 (1990)
[FH] Friedrich, Th., Habermann, L.: Commun. Math. Phys. 100, 231-243 (1985)
[G] Graveson, J.: Commun. Math. Phys. 127, 597-605 (1990)
[GKS] Gross, L., King, C., Sengupta, A.: Ann. Phys. 194, 65-112 (1989)
[NU] Nahm, W., Uhlenbeck, K.: The equivalence of quantized gauge fields on S^{2} and the quantum mechanics of a particle moving on the group maniold. Preprint
[Se 1, 2] Sengupta, A.: The Yang-Mills measure for the two-sphere (Ph.D. Thesis, Cornell University), June 1990; J. Funct. Anal. (to appear)
[St] Steenrod, N.: The topology of fiber bundles. Princeton, NJ: Princeton University Press 1951

Communicated by K. Gawedzki

[^0]: * This work was partially supported by NSF Grants DMS-8922941, and PHY-8912067

