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Abstract. It is shown that generic "small data" Robinson-Trautman space-times
cannot be C123 extended beyond the "r = 2m Schwarzschild-like" event horizon.
This implies that an observer living in such a space-time can determine by local
measurements whether or not he has crossed the event-horizon of the black-hole.

1. Introduction

Perhaps the two most striking predictions of Einstein's theory of gravitation are the
existence of gravitational radiation and of black holes. There are known four classes
of asymptotically flat space-times containing gravitational radiation, the global
structure of which is reasonably well understood: the Christodoulou-Klainerman
metrics [7], the Friedrichs metrics [13], the boost-rotation symmetric metrics [2]
and1 the Robinson-Trautman (RT) metrics [17]. On the other hand known
examples of space-times which contain a black hole are given by the Kerr-Newman
space-times, the static Einstein-Maxwell Majumdar-Papapetrou multi-black hole
solutions, the Tolman-Bondi perfect fluid metrics, Christodoulou's collapsing
scalar field black-holes [6] (for these last two classes of space-times the metric in
the vacuum region is the Schwarzschild metric) and the RT space-times. The
privileged role of the Robinson-Trautman space-times stems from the fact that they
provide an arena in which both gravitational radiation and black-hole formation
can be studied simultaneously, in the vacuum. These space-times were orignally
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1 It seems that Christodoulou's scalar field space-times [5,6] should not be considered as
containing gravitational radiation, since by Birkhoff s theorem the metric is the Schwarzschild one
wherever the scalar field φ vanishes. Moreover, the l/r part of the Riemann tensor, usually thought
of as the manifestation of gravitational radiation, vanishes for these metrics (D. Christodoulou,
private communication)
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discovered in a search for metrics containing gravitational radiation [17], and it is
only recently that it has been recognized that the RT metrics can be used as building
blocks for constructing black-hole space-times: in Ref. [21] it was shown that any
two RT space-times can be "glued" together along a Schwarzschild-type "r = 2m"
event horizon to form a space-time which contains both a black and a white hole2,
with global structure somewhat similar to that of the Kruskal-Szekeres extensions
of the r>2m Schwarzchild space-time. Although not explicitly stated in [21], the
space-times so constructed were generically expected to have a metric of C5 but not
C6 differentiability class (cf. also [9, 19, 20]). It was shown in [9] that a careful
choice of the space-times which were being glued together led to a space-time the
metric of which was of at least C117 differentiability class, and the methods of proof
of that paper suggested very strongly that for generic RT space-times no extensions
beyond the "r = 2m event horizon" with a metric of C118 differentiability class will
exist. In this paper we show that generic RT space-times evolving from "sufficiently
small" initial data admit no C123 extensions, vacuum or otherwise, across the
"r = 2m" null boundary. We believe that generic RT space-times do not admit
extensions with a metric of C118 differentiability class; thus the small-data
restriction is probably not necessary, while the discrepancy between C123 and C118

is an artefact due to the inextendability criterion used.
It may be argued that a singularity which shows up in the 118'th (or 123'rd)

derivatives of the metric has no physical meaning, and that anything which is Ck

with k ̂  2 may be considered as being smooth, as far as physical applications are
concerned. We believe that this is not the case. For instance, an observer in a
space-time with a smooth event-horizon has no way of detecting by local
measurements whether or not he has crossed the event horizon, while an observer
in a Robinson-Trautman space-time with a singular horizon can in principle keep
track of the 120'th derivatives of the scalar VvRaβyδVvRaβγδ and verify, by observing
their blow up, that he has entered the region from which he can no longer com-
municate with the outside world. This unexpected property of generic Robinson-
Trautman black-holes should probably be considered as a manifestation of the
naked singularity r = 0, since the metric in space-times evolving from smooth data
on a spacelike Cauchy surface, in which a stable version of cosmic censorship holds,
is necessarily smooth in a neighbourhood of the event horizon.

This paper is organized as follows: in Sect. 2 we briefly review what is known
about solutions of the RT equation, and give the precise statement of our main
results, Theorems 2.1 and 2.2. A "final state" characterization of those RT
space-times for which the event horizon Jjf is singular is presented in Sect. 2.1 when
m>0, 2Jt = S2, and in Sect. 2.2 for m<0, 2Jί^S2, T2, where S2 is the
two-dimensional sphere and T2 is the two-dimensional torus. In Sect. 3.1 results on
the linearized RT equation needed for the proofs of Theorems 2.1 and 2.2 are
established; and the proofs of Theorems 2.1 and 2.2 are given in Sect. 3.2.

2 In the "maximally extended" RT space-times, as considered in Sect. 2, the event horizon can
be defined as usual as the boundary of the past of 1+: this justifies the statement of the existence
of a black hole. On the other hand the notion of the "white hole" in these space-time is only an
intuitive one (cf. also [21] for a discussion), since generic RT space-times cannot be extended up
to J+ (in the RT class of vacuum metrics; cf. [8] [Proposition 2.1])
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2. A "Final State" Characterization of Robinson-Trautman Space-Times
with a Singular "r = 2m" Horizon

Let gab be a smooth metric on a two dimensional, compact, connected, orientable
manifold 2Jt, let/(w) be a w-dependent family of positive functions on 2Jt. It has
been shown by Robinson and Trautman [17] that if the w-dependent family of
metrics

9ab=f("Γ29ab (2.1)

satisfies the evolution equation

— = — 4,^0., (2.2)
du 12m 9 y°b V \

where m is a constant, R(g) = Rab

ab is the curvature scalar of the metric gab and Δg

(Δ0) denotes the Laplacian of the metric g(g\ then the four-dimensional Lorentzian
metric

ds2 = - Φdu2 - 2dudr + r2f~2gabdxadxb, (2.3)

will satisfy the vacuum Einstein equations. Equation (2.2) is a quasi-linear parabolic
equation for/,

R=R(g)=f2(R0 + 2Δ0\nf), (2.5)

where K0 is the curvature scalar of the metric gab. Solutions of (2.4) can be found
by prescribing f(u0)eH4+k(

2Jf), /r^O and integrating forward in u if m>0 or
backward in u if m < 0 (H^Jί) is the Hillbert space of functions the derivatives of
which up to order / are square integrable on M\ Local existence of solutions of
this problem was first pointed out in the physical literature by Schmidt [18];
existence for all u ̂  u0 with "small initial data" has been shown by Kendall [16]
when 2Jί / S2 (S2 denotes the two dimensional sphere), and in [20] when 2Ji = S2;
existence for all u ̂  u0 without restrictions on the size of the data has been shown
in [8]. In that last reference it has also been shown that every solution of (2.4)
immediately becomes smooth (in fact, even analytic). In [9] it has been shown that
there exists a sequence N(i\ with Af(0) = N(l) = 0, and a strictly increasing sequence
{vj, v0 = 0, depending only upon the metric gab, such that every solution of (2.4)
has an expansion of the form

VneN /= Σ ΣΛX*~ V l U + ' « (2-6)

with some (u-independent) functions/. jeC°°(2Jί)9 and

Vi./ceN, M ^ M 0
V*Ar(s«)<'

. N ( n + l ) _ - v n +
(2 7)
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n~(u = u0)

where V is the co variant Riemannian derivative of the metric gab, for some constants
Cn k . depending upon the solution/.

2.1. 2<M = S2. Conformally rescaling the metric gβb and redefϊning/(w0) if necessary
we can without loss of generality assume that gab is the standard "round metric" on
the sphere, R(gab) = 2. In that case/0 0 in the expansion (2.6) can be set to 1 by an
appropriate conformal transformation, and we also have

vf = v x i, v = 2/m,

0^/^14,

i=15,

(cf. [9] [Proposition 4.2]). The expansion (2.6) in the S2 case thus takes the form

f = l + f1e-« + f2e-2»+.. +f1te-"" + fίβtUe-"« + flse-ls«+ . . (2.8)

Given a solution of (2.4) defined on [MO, oo) the corresponding space-time ^Ji with
m > 0 has the global structure displayed in Fig. 2.1, and it has been showed by Tod
[21] that the space- time 4Jί can be extended across JΓ+ in a way similar to the
Kruskal-Szekeres extension of the r>2m Schwarzschild space-time (cf. also [9])
(a black-hole - white-hole space-time with a metric of C117 differentiability can be
obtained by glueing to *M a time-reversed, space-inverted copy of itself along Jf+,
as one does in the Kruskal-Szekeres-Schwarzschild manifold). The main result of
our paper is the following:

Theorem 2.1. There exists an open nonempty subset X of C°°(2«^) such that if
f(u0)eX then the corresponding RT space-time cannot be extended across 3? + in
the class of manifolds with C123 Lorentzian, vacuum or otherwise, metrics. Moreover
there exists ε0 > 0 such that the set Bε n X is dense in Bε n C™(2Jί) equipped with a
C"(2Jt) topology, where Bε = {f(u0)εH6(

2JΪ): ||ln/(ιιβ)l|fl6(aur) ̂  ε}.

We have stated Theorem 2.1 in a C°° setting to emphasize the fact that the
non-differentiability of the extensions across J f + has nothing to do with the
potentially low differentiability of the initial data f(u0). In fact we also have the
following stronger statement:

Theorem 2.2. Let /ceN, k ̂  4. There exists an open nonempty subset Xk ofHk(
2Jί)

such that iff(u0)eXk then the corresponding RT space-time cannot be extended
across J^+ in the class of manifolds with C123 Lorentzian, vacuum or otherwise,
metrics. Moreover for k^β there exists ε0>0 such that Bε n Xk is dense in
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Bε r\Hk(
2^) (equipped with a Hk(

2Jt) topology), where Bε is defined in the
statement of Theorem 2.1.

To prove Theorems 2.1 and 2.2 we shall need several auxiliary results, some of
which are of independent interest; the proofs of Theorems 2.1 and 2.2 are deferred
to Sect. 3. Leίt us start with the following statement:

Lemma 2.1. Consider the expansion (2.8):
1. /! is a linear combination with constant coefficients of 1 = 2 spherical harmonics

2. Let P denote the antipodal map of the sphere into itself. For i = 1, . . . , 4 we have

fι°P=fι (2.9)

3. There exists a homogeneous polynomial ψ(B*) of degree 5 in B* with coefficients
being smooth antipodally symmetric functions on S2 such that f5 — ψ is a linear
combination with constant coefficients of 1 = 3 spherical harmonics φ~,

Δ0φ-= -

IfB~ = 0 then (2.9) holds for l^i = 34.

4. Set (C0) = (β;,(β~)1/5)e]R12. There exist homogeneous polynomials Ey(Cβ) of
degree 15 with constant coefficients such that /log is a linear combination of 1 = 4
spherical harmonics χy with coefficients Eγ:

Cβ)χ7, (2.10)
y

Δ0χy = -20χr

Proof. Equation (2.4) can be rewritten in the form

*f f4 f 3 o o

2ΔJ) + -— [2VabfV ,f - (ΔJ)2~\. (2.11)
OJ ' * r\ *- •> ΛD 7 v "•/ ' -» v '

Inserting the expansion (2.8) in (2. 1 1) one finds the following hierarchy of equations:

1^-^14, LJ^CL + iv]/^^/!,. ..,/,_,), (2.12)

with

0 .
12m

The 0t 's are obtained by grouping together terms containing the exponent e~ivu

in the right-hand side of the equation

Σ βie-'vu =f-^-(Δ2J + 2ΔJ) - £- [2Vfl*/VαlJ/ - (4./)2], (2.13)
, =o
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so that one has g0 = g^ = 0. A simple REDUCE code gives

g2 = -
m

Λ=--
m

flf4 = -
m

etc., where

v^ - 4./A/Λ

and we have used the equations satisfied by the /j's to somewhat simplify the
expressions for the 0/s. The eigenfunctions of L are the spherical harmonics and its

• uspectrum is given by < - - - — - — - - > =<— - - — - — - - x v

it follows that

- — - - > =<— - - —
12m JίeK ί 24

I./! is in the kernel of L t and is thus a linear combination of 1 = 2 spherical
harmonics.
2. For 2 ̂  i ̂  14, i Φ 5, the operators Lf have trivial kernels and thus Eq. (2.12) can
be solved uniquely for/,- in terms of gt.
3. Since L commutes with P, where P is the antipodal map of the sphere into itself,
one can show by induction (cf. e.g. [9] [Proposition 4.2]) that for 1 = i = 4 one has
0i°P = 9i> ft ° P =ft and also g5op = g5.
4. L5 has a non-trivial kernel consisting of / = 3 spherical harmonics; this implies
that Eq. (2.12) with i = 5 has the integrability conditions

s2

where the φσ are / = 3 spherical harmonics and dμ0 is the standard SO (3) invariant
measure on S2. This is automatically satisfied because g5 has even parity
(g5op = g5) while ψσ ° P = - ψσ. We can therefore solve for/5 which is then defined
up to the addition of / = 3 spherical harmonics.
5. For i = 1 5 one finds

^5/log = 0, (2-14)

Wi5^+15v]/15 = 015(/ι,->/i4) + /,og (2-15)

The kernel of L15 consists of / = 4 spherical harmonics χy, so that/log must be a
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linear combination of those. The integrability conditions of (2.15) read

(2.16)
s2

which determines /log uniquely in terms of/Ί and/5.
6. The functions gi are polynomials in/} and their derivatives by construction, which
by uniqueness arguments implies in turn that them's must be polynomials in B*
and B~ . The homogeneity of order i of gt and of / follows easily by construction,
but can also be seen by noting that if f(u) solves (2.4) on [u0, oo), then so does
fδ = f(u + <5)| tWojQO) for any δ ̂  0. Equation (2.8) shows that/a has the expansion

+ /14*-14v^-14v"+^

and uniqueness arguments yield the result. Π

Proposition 2.1. Let P be the antipodal map of the sphere into itself and let Rφ be the
rotation of the sphere around the z-axίs by an angle φ, suppose that

for 0 ̂  φ ^ 2π. We have

unless the function f1 in the expansion (2.8) vanishes.

Proof. Since symmetries of the initial data which are also symmetries of gab are
preserved by evolution via (2.4), it is not too difficult to show tha? all the expansion
coefficients in (2.8) satisfy

It follows from Lemma 2.1 that

ι2.18)

where a is a real constant and P2 is a Legendre polynomial (we use the normalization
of Legendre polynomials of Ref. [1]; we have found it convenient to introduce the
factor 2/3 in (2.18) to keep down the numerical value of some of the coefficients
appearing in the functions /f for large i\ and that B~ = 0, thus /, is uniquely
determined by α. We have written a REDUCE code which effectively implements
the procedure described in Lemma 2.1 assuming in variance of/(w0) under rotations
around the z axis. The analysis is considerably simplified by noting that the
coefficients/; must be linear combinations of spherical harmonics of order less than
or equal to 2i: this reduces the task of solving the equatiions L JΪ = gt to algebraic
operations in finite dimensional spaces. The change of variables x = cos θ further
simplifies the problem to manipulations with polynomials in x of order 2i ̂  30. To
illustrate the results one obtains, here follow the first five functions/:
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2/2= — α x72

-
f =aό x [

2 (23 4 47 2 49 \
— x4 -- x2 H -- ,

\78 39 234 J

- /997
 6
 36697

 4
 25309

 2
 8899 \

a
ό
 x[ - x° -- x H -- x -- ,

V5226 47034 15678 47034/

4
 / 4519475

 8
 1636874143

 6
 73857848527

 4
/4= -tf X - X8 -- X 6 + - X4

\27990456 2078291358 45722409876

17112915619 2 18150013841\

" 7620401646 * + 9Ϊ4448Ϊ9752/

, / 646556531 10 5057087713397 R 84695216485153 fi/5 = fl5 x - χ10 -- ^X

8 + - x6

\41 14597032 5567049784296 38191860727020

1554887482454485 4 1086788290750781 2 231262717823569 \

~ 511770933742068 * + 341180622494712 * ~ 1023541867484136/

The length of the numerators and the denominators of the coefficients tends to
grow rather rapidly with i, leading to rationals involving integers of more than 100
digits for i ^ l l (up to more than 210 digits for ϊ=15), however with the
normalization of (2.18) the numerical values of the coefficients of the polynomials
a~lfi, 1 ̂  i ̂  15, are all of order 10" * - 104. It takes about two and a half hours of
CPU time on a VAX 8700 to obtain3

/log ~ 1.009201657002 x HΓ10 x a15 x P4(cos0)

^(0.2155750672866α)15 x P4(cos0). (2.19)

This result has been obtained using integer arithmetic, so that the only error
in the first equality in (2.19) is due to round-off when translating a rational into
floating point notation: the exact value of a~15P4(cos0)~1/iog ^s a rat^° °f two

integers of 109 and 118 digits which we can make available to anyone interested on
request. In order to minimize the risk of programming errors we have built in several
checks in the code to test the consistency of the results. Because we were quite
perplexed by the numerical value of a~ 15P4(cos θ)~l flo%, which is at least 9 orders
of magnitude smaller4 than the typical coefficients of the polynomials a~lfh 1 ̂  i ̂  15,
we have written a MACSYMA code5 which checked the REDUCE results by
reading the output of the REDUCE calculation and verifying whether Eq. (2.4) was
satisfied up to terms decaying faster than e~ 15v".

3 We had to make various optimizations to our code to be able to obtain (2.19) without exceeding
the job limit of 4 hours of CPU time on the machine we were using. The same result (to the accuracy
of (2.19)) can be obtained by running the code in E-30 floating point precision in about 15 minutes
of CPU time
4 Equation (2.19) clearly shows that a change of the normalization of a by a factor « 5 would
lead to a coefficient of P4 in/log of order 1 - this will however not change the relative size of typical
coefficients in/log as compared to typical coefficients in/15.
5 The MACSYMA code was a "brute force one," without any fancy time- and memory-saving
tricks; the checking run took about one and a half hours of CPU time on Sequent Symmetry. Both
our codes together with all the coefficients ft up to / = 15 are available on request.
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Equation (2.19) shows that/ log does not vanish unless 0 = 0, which had to be
established. Π

Lemma 2.1 and Proposition 2.1 imply that for "generic final states" of RT
space-times the function /log does not vanish:

Proposition 2.2. There exists an open dense subset Ω c=R12 such that iff is a solution
of (2 .4) for which (B+ 9B~)e Ω, (β+ , B~ ) as in Lemma 2.19 then

/log^O.

Proof. As shown in Lemma 2.1, /log is determined uniquely by (B* , B~ ). Consider
the set CΩ of (B+ , B~ ) for which /log = 0. Since /log is a polynomial in (B+ , B~ ), CΩ
is closed and thus the set Ω of (B* , B~ ) for which /log φ 0 is open. Suppose that Ω
is not dense, therefore there exists a pεCΩand an open neighbourhood tft of p such
that m ci CΩ, therefore /log I ̂  = 0. But a polynomial vanishing on an open set is
identically zero, which contradicts6 Proposition 2.1, and proves our claim. Π

Let us show that the non-vanishing of /log implies a form of singular behaviour
of J^+ in the corresponding RT space-time:

Proposition 2.3. Suppose that the function /log of the expansion (2.8) does not vanish.
There exists no extensions of the corresponding RT space-time *Jl across J^+,
vacuum or otherwise, with a metric ofC123 differentiability class.

Remark. Let us mention that all scalar functions of the form
ι ... V** R<*ιβιyιδι ... V ..-V R 1

v A v ^ ^
where C [ - ] denotes a (total) contraction operation over the indices, are uniformly
bounded in a neighbourhood of 2? + in *Jl, which follows immediately from the
fact that in the coordinate system used in (2.3) g 9 g

μv and all partial derivatives
thereof are uniformly bounded on Φε = {r ̂  ε, u ̂  u0 + ε}, for any ε > 0 (u ̂  u0 if/(w0)
is smooth). The proof below shows that at least one entry of the tensor
^vi * " ̂ vi2i ^Λβγό wiN blow up at Jf +, whatever coordinate system one chooses, even
though every scalar function constructed out of this tensor by contractions with
products oίgμ\gpσ and Vμι •••VμjRΛkβkykδk will be bounded on 0e.

Proof. Suppose that there exists an extension t# of^t^ with a metric of C123

differentiability class. We then have RΛβyδRΛβyδeCi21(l/), and a SHEEP calculations
gives

RaβγδRΛβyδ = Wm2r-6 (2.20)

on t/^, therefore we can extend r to a function reC121(t^) by setting

6 To obtain further evidence that the polynomial/log (B+, Ba ) does not vanish identically we have
also analyzed, using our REDUCE code, the case of axially symmetric initial data without imposing
the parity condition f(u0)°P =f(u0). In such a case/5 is determined by/j up to the addition of
b5 x F3 (cos Θ), where 6 is a real constant, and using the same normalization for/j as in (2.18) the
REDUCE code gives/lθί w {(0.2155750672866fl)15 -0.6581020070622 x asb*°} x P4(cos0); this
result has also been obtained using integer arithmetics, so that the w accounts only for round-off
error of the translation of a rational number into floating point notation (and subsequently taking
the fifteenth root in the first factor)
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where φeC™(*Jί) is equal to 1 in *M and in a neighborhood of Jf+, and 0 = 0 in
a neighborhood of the points for which RaβγδRaβyδ vanishes. According to SHEEP,
on 4JK the scalar VμRΛβyδVμRaβγδ takes the form

R -—- * + 2rf-^+ — (221)/^- +2r/ + . (2.21)

Since by hypothesis r can be extended to t^in a C121 way and VμRΛβγδVμRΛβyδe
it follows from (2.21) that the function

(2.22)
2 tfw

can be extended to *M as a C120(t^) function. Inserting the expansion (2.8) in
(2.22) one finds

with

at r = 2m, and the argument of the proof of Theorem 4.1 of [9] shows that there

exists a geodesic Γ in *jβ on which ——— blows up as Γ crosses ffl*, which
ds υ

contradicts ψGC120(4jί) and proves our claim. Π

It follows from the results of this section that the potentially singular character
oϊ J^+ is controlled by the "asymptotic data" (£α

+,£~)elR12. Obviously these
"asymptotic data" do not determine the whole space-time, though it is tempting to
conjecture that the collection of all/. O's determines every RT space-time uniquely;
we shall however not attempt to analyze that problem.

2.2. Other Topologies. Throughout this section we shall assume that m < 0 and that
the genus g(2J?) of 2<M satisfies g(2J?) ^ 2 (for the remaining cases, cf. e.g. [9]). By
conformally rescaling the metric gab and redefining/(w0) if necessary we can without
loss of generality assume that R(gab)= -2. Given a solution of (2.4) we can
define

A = {αelR: 3CeR such that |(/- l)ύ~a\ ^ C},

where

—
4m

set
v = lim sup A.

From the existence of the expansion (2.6) it follows that if v Φ oo then veA, and if
we set V; = 4 | m | v f , v ί as in (2.6), we also have

+2)t (2.23)
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Z-(r = oo)

Fig. 2.2. Maximal vacuum RT extensions of (4Jΐ,g), m < 0, ) > 1

where μ! is the first non-trivial eigenvalue of — Δ0. For generic f(u0) one expects
v = v1: this is indeed the case iίf(u0) is generic and In f(u0) is "small enough," as follows
from Theorem 3.2. On the other hand Corollary 3.1, point 2, implies that there

exist (non-generic)/(w0)'s, not identically equal to 1, for which v ̂ -, where

μ2 is the second non-trivial eigenvalue of - Δ0 (an example in which v = oo is given
by/= 1, which solves (2.4) and leads to the so-called "DS-metrics" [12]). If

vA^2, (2.24)

the corresponding space-time (?Jt, g) can be extended across the boundary u = — oo
(w = 0) to a space-time (4Jt,g) with a continuous metric g the degree of dif-
ferentiability of which will depend upon v [9]. The global structure of (t^,0) is
displayed in Fig. 2.2. If v < 2 the "hypersurface" u = — oo is expected to be singular,
although we have not been able to prove such a claim (cf. also the Remark following
Proposition 2.3).

As is well known, metrics gab satisfying R (gab) = - 2 may be used to parametrize
the Teichmύller space 3~(2Jί) [11], which allows one to consider μx as a function
on 3~(2Jί). It is also known that μ^ varies continuously over &~(2Jί\ is uniformly
bounded from above and tends to zero as one approaches the boundaries of 3~(2Jί).
For g(2Jf) = 2 it has been shown7 by Jenni [14] that there exists a metric on 2Jt
for which

3.83 <μ,< 3.85

and also that we have the bound

sup μ!<4.81

(2.25)

(2.26)

7 The following has been explained to us by C. Hodgson: it follows easily from the Gauss-Bonnet
theorem that the diameter of a genus g manifold with a metric gab for which R(gab)= —2 tends
to infinity as g -> oo, which together with e.g. Theorem 8 of Ref. [4] shows that μλ ^ μ(g\ with
μ(g) \ 1/4 as g -> oo. This implies that there exists g0 such that if g(2Jt) ^ g0 then V j < 2 for all
metrics gab on 2Jί such that R(gab) = — 2; thus for g(2Jί] ^ g0 the analysis that follows applies to
non-generic f(u0) only.



148 P. T. Chrusciel and D. B. Singleton

(it is actually expected that the supremum over g is attained for g = 2, and that for
g(2Jl) = 2 the supremum over 3f~(2Jί) is attained by the metric considered by Jenni).
For Jenni's metric one obtains

5.44 <v- 2 < 5.51

which shows that at least for g(2Jΐ) = 2 there will exist a large set of metrics for
which v x > 2. From the definition of v and from (2.6) if v Φ oo we have

f-l+W + rt, fiφQ, (2.27)

with r t = 0(ύ*+€) for some ε > 0. From Eq. (3.3) of [9] it follows that the metric on
4J/ can be extended across the boundary w = 0 in a clntί*~2] way, where Int[x]
stands for the integer part of x, but for v^N the metric will not be c lnt[ΐ>~1] in the
coordinate system used8. Thus for generic pairs (gab,fι\ with g such that
μι(μ± + 2) ̂  6, the space-time metric will have some of its derivatives blowing up
in the coordinate system used in [9]; for example Jenni's metric on 2Ji will lead to
C5 but not C6 extendible RT space-times in the coordinate system used in [9]. If
(2.24) holds, an argument similar to the proof of Proposition 2.3 (note that both
(2.20) and (2.21) hold irrrespective of the topology of 2Jf) shows that no CInt[yA+4]

extensions of a RT space-time exist when v^N and the function f1 in the expansion
(2.27) does not vanish (by Theorem 3.2 this will be the case if e.g. In/(w0) is small
enough and generic) - no details will be given.

3. Generic "Final States" Versus Generic Initial Data

The results presented in the previous sections show that RT space-times with
"generic asymptotic data" in the sense of Proposition 2.2 are inextendible across
Jf+ in the class of manifolds with C°° metrics. This leads immediately to the
question, do generic Cauchy data for Eq. (2.4) lead to generic asymptotic parameters
(B*,B~)? We believe that this is indeed the case, a partial answer to this question
will be given in Theorem 3.2, Sect. 3.2 below. Before addressing this problem we
shall need some results concerning the linearization of the RT equation, which are
derived in the next section:

3.1. The Linearized Problem. Throughout this and the next section, the letter C
denotes a constant the value of which may vary from line to line; by gab we will
denote a metric of constant scalar curvature R0 = 2 for 2Jί = S2,R0 = Q for 2M — T2

and R0 = — 2 otherwise. In the arguments that follow we shall assume that the
reader is familiar with the methods and the results of [8] and [9], and we shall skip
the non-essential details which may be filled in using either the results or methods
of [8] and [9]. Let us simply recall here that from what has been proved in [8] it
follows that for/(w0)e//fc(

2^), /c^4, there exists a solution of the RT equation
satisfymg/6C([ιιβ, <x>),Hk(

2Jf))nCl([u09 oo),Hfc_4(
2^))nC°°((w0,oo) x 2Jt).

8 In the S2 case a sufficient and necessary condition for a singular Jtf+ is the occurrence of log
terms in the expansion (2.6), because for (S2, gab\ with gab - the standard round metric, the spectrum
of — Δ0 consists of integers; this will certainly not be the case for a generic (2Jt,gab) with
R(gab) = — 2. Whenever v = μ^ £N and/j in (2.27) does not vanish, the log terms become irrelevant
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Let/, t>e a one-parameter family of solutions of the modified RT equation (cf.

[9, 20] for details), with/J ί = 0 =/, = φ:

du

where

at i — \j

(3.1)

(3.2)
A 2jf

A= dμ0,

with c = 0 unless 2Ji = S2; in this last case the φ^ form an L2-orthonormal basis
(with respect to cj>) of the space of / = 1 spherical harmonics (Δ0φi = — 2φt)9 and c is
a constant which we shall choose to satisfy

.
12m

(if 2^ = S2, then μ, = /(/ + 1)). We shall assume that the/t's are normalized in such
a way that

$f-2(uβ)dμβ=l.

It follows from (3.1) that φ satisfies the equation

, (3.4)
du

(3.5)

- Σ {«((/) [Φ<Φ + V>, <?>,J + α,(φ) [φ,/ + V^J, J} - Lφ. (3.6)
i

\ϊf(u0)εHk(
2J{\ /c^4, it is simple to show by straightforward energy estimates

that for φ(u0)€Hk(
2Jί) there exists a solution of (3.4) satisfying φeC([u0, oo),

//fc_2(
2^))nC°°((M0, oo) x 2 )̂; using the methods of Appendix B of [8] one can

then show that moreover φeC([u0, vz\Hk(
2Jt))πC^([u0, ao\Hk_4(

2Jΐ)). Using
the methods of [9] it can be shown that φ has an expansion as in (2.6).

Define

/» Ξ P°f Ξ $fdμa = f /rfμ0 f dμ0. (3.7)
2,̂  / 2,̂

1. If 2^ - S2, let P : S2 -> S2 be the antipodal map, set
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let P+, respectively P~, denote the ίΛorthogonal projection operator onto the
second, respectively the third, non-trivial eigenspace, $+, respectively $ ~, of — Δ0.
~ " r ' """} are L2-orthonormal bases of $ ±:

p = p+ +p-, p=i-p-p°.

2. If 2M φ§2, set /+ =/, /" =0, let P+ denote the L2-orthogonal projection
operator onto the first non-trivial eigenspace, <ί+, of —Δ0, let {φ*} be an
L2-orthonormal basis of <f + :

we also define

Pf = p+f9 p-/ = 0, p=l-p-p°, μ~=0,

Whatever the topology of 2 ,̂ we thus have

(3.8)

(A;,A;), (3.9)
α

and we define

,
24m

v"-r— μ~(μ"-^0).
24m

Since the modified RT equation is area-preserving,9

§f-2(u)dμ0 = l (3.10)

it follows that for all u^unwe have

where φ = Pψ and <p = P<jo. From (3.4) and (3.1 1) one obtains

dA±
<

(3.11)

<£ ψ*Ά'f + Ξϊίφ ], (3.12)
σ=±,β

(3.13)

9 As pointed out in [20], this follows from the fact that the RT equation is area-preserving, and
that the solutions of the modified RT equation differ from solutions of the RT equation only by
a pull-back by a diffeomorphism
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ΦΪ dμ0 - -~- 1 L*^ dμjf- 3φdμ0, (3. 14)

where L\ is the formal adjoint of L1; and

(3.15)
du

(3.16)

(3.17)
α \ 0 /

where

The sums in (3.16) and (3.17) (and in the matrix equations below) are implicitly over
both the index and their "associated ±." We shall be interested in solutions of (3.4)
for which

A^ = e~v±u(B^ + F^\ (3.18)

where 5* are prescribed constants, and F * —> 0. In order to prove existence of

such solutions it turns out to be necessary to keep track separately of the even and
odd parity parts10, φ±, of φ\ if we set

ζ±=ev±uφ±, (3.19)

one finally obtains the following system of equations:

du

= (L + v ± K ± + Σ L±"ζσ + p±\iF + Bl (3.21)
du a=±

with

(322)}

7= ±

10 The idea of separating the even parity terms from the odd parity terms in the RT equation has
also been considered by Rendall [16]



152 P. T. Chrusciel and D. B. Singleton

Ψ f * , Ξ f , L! and Ξ being as in (3.13), (3.14), (3.16) and (3.17) respectively. With
the choice of c given by (3.3), it follows from the results of [9] by the same arguments
as in the proof of Lemma 2.1 that any solution of the modified RT equation (3.1)
on S2 has the asymptotic expansion

-™+ +(fϊ+f-)e-*-» + 0(e-6vu\ (3.23)

Moreover, there exists a constant Cf depending only upon ||ln/(w0)||H6(2^) such
that

+ e(v++v~}u\\f~-fϊe-*-»\\c4(2Jr^cf (3.25)
and it follows from Proposition 3.1, point 1, and the results of [8], that for any ε > 0
there exists a δ>0 such that if \\lnf (u0)\\H6(2^^δ=>Cf^ε. A straightforward
analysis, which requires somewhat tedious parity considerations if 2Jt = S2, shows
the following key lemma:

Lemma 3.1. Let Cf be the constant defined by (3.25). There exists a constant C(K)
such that ifCf ^ K, then

v + + v->", (3.26)
+u

9 (3.27)

\ξ\ ί CCfe~^\\\ζ+ ||L1(2^ + IK' \\Lί(2Jn), (3.28)

I^WI^CC^-^IAΊI^, (3.29)

and the operators L± ± can be written in the form
4

I^A^'-V", (3.30)
i = 0

for some tensors A**, satisfying

*", (3.31)

^..Λi smooth for all u>u0 and uniformly C2 for u ̂  u0.

Let us start by analysing Eq. (3.20) assuming that ξ is a given function of

Lemma 3.2. For σ > 0 and /c, meN, let Xσ

k(^m) = {F = e-σuG\GeC\[u0, oo),Rm)},
define

\\F\\ ,=\\eσuF\\c«(M,^r

suppose that &\Xσ

k + 1 -+ Xσ

k is defined by
J r-τ

F, (3.32)
du

), v>0. (3.33)



Robinson-Trautman Black Holes 153

Then & is an isomorphism, in particular there exists a constant C such that for every
σ

k, there exists a unique solution of the equation

Λ - - . , (3.34)
du

satisfying

I|F|L „ ^C\\ξ\\v,. (3.35)

Proof. 1. Surjectivity: it is sufficient to show surjectivity on [ul9 oo), with some u1

large enough, since any solution defined on [w l9oo) can be uniquely continued
backwards in u by standard theorems on solutions of linear ODE's on compact
intervals. Consider the problem

dFi+1 (3.36)
du

FO = 0, thus
00

U

and

so that for M6[M15 oo) we get

£ - V M l

1 f \ \ ψ \ \ χ \
and if ut > - In I the contraction mapping principle shows the existence of

v V σ + v /
a fixed point F for the problem (3.37), which solves (3.34) and is in X%+1.

2. Injectivity: Let Fl9F2 satisfy (3.34), then we have

F \ r 17 . π (1 1Q\
2)9 *l — ^ 2 " (J.JOJ

du

Suppose that \\F1 — F2 | |R m>0, then In H^ — F 2 | |Rm is differentiable and from
(3.38) one obtains

)
= II •* II v,

du

(ΨVe~VUl

f - K I l m for

Letting u2 -> oo one obtains || (F1 — F2)(u1) \\ = 0 which contradicts the assumption
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thalt || F1 — F2 ||Rm > 0, i.e., there exists ύ such that (F1 — F2)(u) = 0. In this case,
F1=F2 follows from standard results for first order ODE's.

3. To prove (3.35), note that 3? is a bounded linear bijection from X°+1 to Xσ

k thus,
by the open mapping theorem, J^7"1 is a continuous linear operator from Xσ

k to
X%+i, which implies (3.35). Π

Lemma 3.2 shows that Eq. (3.20) can be solved for F in terms of B and £*. By
well known results, there exists functions R^ such that

00

u σ= ±,β p= ±,γ

Inserting (3.39) into (3.21), one obtains an equation of the form

—(
du \_ σ=±

00

dζ±

which has the amusing property that the derivative at time u depends on ξ±(v)
du

for all v ̂  u. To avoid the supplementary step of proving estimates on R± ±

9 rather
than analysing (3.40) we shall consider the system (3.20), (3.21) directly. We shall
need the following Lemma, which gives information about solutions of Eq. (3.21)
when p± are considered as being given functions of (w,p):

Lemma 3.3. Let ζ = (ζ+,ζ~\ p = (p+,p~\ set

\\2HM = \\P+ III*™ + \\P~ IIL^ (3-42)

There exists constants Cl9 C2 such that for all u^ satisfying

,), (3.43)
v

where Cf has been defined in (3.25), all solutions ζ±eCί([ul,oo\L2(2^))n
C([uί9 oo),//4(

2^)) of (3. 21) satisfy, for u^uί9

Proof. In what follows we shall assume 2Jf — 52; for other topologies the proof is
obtained by similar arguments. By expanding φ± in spherical harmonics and using
straightforward approximation arguments (cf. e.g. [9] [Lemma 4.1]), one obtains

2dμ09 (3.44)
2dμ0, (3.45)

and similarly one proves that there exists a constant C0 such that

§ φdμ0 = 0 => § φLφdμ0 ^-C0\\φ llj^r (3-46)
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Set

let α, β > 0, α + β = 1; we have, by (3.44)-(3.46),

dE
— = 2$
du

+ 2
p=±,σ=± ±

ί -(30α - 2)v§(ζ+)2dμ0 - (70α -

- 2j?C0( || ril|

where we have used 2ab^-a2 + εb2. Some integration by parts in the terms

containing ζ±L± ±ζ± gives

£ $ζ pL p σζ σdμ0 ^ CCfe~vu( \\ ζ+ ||2 2(2^} + || Γ \\2

H2(^}) (3.47)
p= ±,σ= ±

(cf. (3.30), (3.31)), so that with (3.41) and (3.42), one finally obtains

— ̂  -(30αι; - lOu - ε)E(u) - (2C0β - CCfe~vu)\\ ζ\\2

2^ + -
du ε

Choosing

1 o C

2' ' CCf

one gets
u

"1

for some constant C2. D

Theorem 3.1. Let /eC°([ιι0, oo), H6(
2Jί))n Cl([u0, oo), //2(

2^)) ftβ α solution _ „ _ _ _ _
modified RT equation. There exists U1'^.u0 depending only upon \\ In /(w0) llπβί2^)swc^
that for all u^ύ^ B^elR12 0m/ φ0ePH4(

2Jΐ) there exists φQePH^(2Jί) =
(\—P — P°)H4(

2Jΐ) with the property that the unique solution of (3.4) satisfying

with φ^Wj) = (P°φ)(uί) given by (3.11), satisfies, for u -> oo,

Moreover there exists ε0 > 0 such that if \\ In/(w0) ||H6(2^) ̂  ε0' then U1 = u0.
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Proof. Set F0 = 0, and for i ̂  1 let Fi9 ζϊ be solutions of the equations

dF
— '-=Ψ(Fί + B) + ζK+,ζ-l
au

±κ(± l+ Σ L±aζ^+l + p± IF t + B],

with £.± i f a ) = C° *(«!)• For i ̂  1, we have

~ , - F ,.) + fκ(

+

+ , - CΛ £f+ 1 - £f 1 (3-48)

(3.49)

with

«£ i - CrX"ι) = 0 (HI Cΐ i - :»*)(«!) lliVur) = 0), (3.50)
and Lemma 3.2 with σ = v and (3.28) gives, for u ̂  ult

^ CCje-" sup Σ II (Cΐ ! - C.^W ||LΪ(2ur).
S^Ml ±

This together with (3.29), (3.49), (3.50) and Lemma 3.3 implies, for u ̂  u1,u1 large
enough,

Σ ιι (ίiΐ 2 - α ,)(«> ii^
so that if

the sequence ζ^(u) converges in L2(2Jt) for each u to a function £^(w). It is
straightforward to show that in fact ζ*(u)eC(\ul9 oo),H4(

2^))n C^((ul9 oo) x 2 )̂,
and the remaining claims follow by methods similar to those of [8, 9]. Note that
it follows from the methods of [8, 9] that the constant Cf in (3.25) depends only upon
|| In/(w0) \\Hβ(2^)9 and in fact for || In/(w0) ||H6(2^} ̂  1 it follows from Proposition 3.1,
point 2, that we have

(3.51)

which shows that for || In f(uσ) ||H6(2^) small enough we can set u^ = u0. D

3.2. The Nonlinear Equation. In this section we shall show how the genericity
problem can be reduced to the linearised problem analysed in Sect. 3.1. Let us
note the following:

Proposition 3.1. Consider the map &Uok:Hk(
2Jΐ)-+J&N (respectively <%Uoίk:

RN)(N = 12 if2Jί = S2) which to an initial datum f(u0)εHk(
2Jΐ) assigns °'
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1. the coefficients (B^) of the expansion (2.8) if 2Jΐ = S2 (respectively (B^1) of
expansion (3.23)), or
2. the function /I f0 of the expansion (2.6) otherwise11.

Then

1. for k ̂  4 the map &Uo k(f(u0)) (respectively ^Uotk(fM))is a C® function off(u0), and
2. fork^β the map 8Uotk(f(u0)) (respectively ΛUotk(f(u0))) is a C1 function off(u0).

The proof of Proposition 3.1 is a rather lengthy and straightforward application
of the techniques developed in [8] together with parity considerations similar to
those of the previous section; no details will be given. It is rather likely that the
thresholds k ̂  4 for continuity and k ̂  6 for differentiability are not optimal; we
have not attempted to analyse this question. With these thresholds it is easy to
prove continuity and/or differentiability in an L2(2Jί) norm, and use interpolation to
get the result for higher norms as well.

Suppose that f(u0) is such that &u k(f(u0))eΩ where, for 2Jί = S2

9Ωis the set
of (B*) for which /log φ 0 (cf. Propositio°ή 2.4), while for 2Jl Φ S2, we set Ω = R*\{0}.
As discussed in Sect. 2, for 2Jt φ T2 the corresponding space-time will be
geometrically singular at the null boundary 3? = {mu = oo}(m>0 for 2Jί = S2, m < 0
otherwise, and if 2Jt Φ S2 then we assume μl / N). It follows from Proposition 3.1,
point 1, that for /c^4 the map 3$Uθik is continuous, so that for all /(w0)'s in a
sufficiently small neighborhood of f(u0) in H4(

2Jί) the corresponding space-times
will be singular at 3?. Thus to prove genericity of the set of f(ujs which lead to
singular J fs we only need to analyse what happens for f(ujs such that

Proposition 3.2. Suppose k ̂  6, letf(u) be a solution of the RT equation, f(u0)εHk(
2^).

There exists ύί ^ u0 depending only upon l|ln/(w0)||H6(2^) such that for all u^ ^ ύ1

is surjective. Moreover there exists ε0>0
U\,K^J \ - - J L / 7 ς

oφ
such that if \\ In/(w0) ||Hβ(2 ̂  ̂  ε0, then ύ^ can be chosen to be equal to MO.

Proof. If 2Jt Φ S2, this is Theorem 3.1, let us thus consider the case 2Jt = S2. Let
f(u) be the solution of the modified RT equation (3.1), with f(u0)=f(u0). Recall
that / can be obtained from / by the following procedure [9,20]: let M(w)eSL(2, <C)
satisfy the equation

— = MX(α), M(tO = id, (3.52)
du

with

for some constants Aa

bi, where

(cf. (3.2)). There is a natural identification between 5L(2,C) and the group of

11 Recall that /1§0 satisfies Δ0flt0= -μι/ι,0 and is thus determined by a finite number of
parameters (#a)eRmi, where m j is the dimension of the first non-trivial eigenspace of Δ0
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conformal transformations of S2, define ΦM as the conformal map of S2 into itself
corresponding to MeSL(2,C), let Ψ2

M be the corresponding conformal factor,

We then have

f(u) = {.ΨM(J(u)^φ-MlY (3.53)

Equation (3.53) and lim/(w) = 1 show that

thus the solution of the RT equation which has the expansion (2.8) is f(u)°ΦM(ao} x
ΨΰLt (3.53) gives

Since α£ = 0(e~(v+ +v")u) (cf. (3.26)) it follows from (3.52) and from Lemma 2.1 that

which shows that

It follows that for M : ̂  w0, the derivative — ̂  acting on φ(ul) is the map which to
δf

φ^J assigns the coefficients B* of the expansion analogous to (3.23) of solutions
of the linearised equation (3.1), which is surjective by Theorem 3.1. D

Theorem 3.2. Let k ̂  6, suppose thatf(u), u^u0 is a solution of the RT equation with
f(u0}εHk(

2J{\ let @ujf(u0}}

1. There exists uγ ^ w0 ana a neighborhood Θu^k of B^ such that for all B^e(9Uι k

there exists a solution fB±eC([u^co\Hk(
2Jt)) of the RT equation such that

0uM&in=B*.
2. For any δl>0 there exists δ2 > 0 such that for \\ B± — B^ \\ RJV < δ2 we can choose
fB±(uJ so that || fB±(uJ -f^) \\Hk(2^ <d^

3. There exists ε > 0 such that if \\ In/(w0) \\Hf>(2Jί) ^ ε, then uί can be chosen to be
equal to u0.
4. There exists δ3 > 0 such that for all B±G@u^k, the set of fB±(u^s satisfying

\ \ f B ± ( u 1 ) — f ( u 1 ) \ \ H k ( 2 J f ) < δ 3 is a C1 submanifold of finite codimensίon N (TV =12

if2M = S2)ofHk(
2Jΐ).

Proof. It follows from Proposition 3.1 that for u1 ^u0,@Uιk:Hk(
2Jΐ)^ΉίN is dif-

ferentiable, thus both Ker ffl'Uίtk and (Ker &f

uifk)
λ are (closed) Banach spaces, and the

map ^(KerJ^)1-*!^ defined by ^(φ) = ̂ Uίk(φ) is differentiable. We have

= &'Uί fc|(κer^' )J-> an(l Proposition 3.2 shows that ^' is an isomorphism.

By the implicit function theorem, ̂  is an isomorphism from <%uι k c (Ker J*^ fc)
1
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to an open neighbourhood 0MιJk of (B±), which proves points 1-3. Point 4 follows
from the implicit mapping theorem, cf. e.g. [15 Chapter I, §5], D

Corollary 3.1. 1. Let 2Jί = S2. There exist non-trivial (i.e. /^E/^, where f^ is a
conformal factor for a conformal transformation) RT metrics such that \f — fao\ ^

Ce- i 5 v + u = ce~30u/m. Every such metric can be C55Ί extended across tf .
2. Let 2M ^S2. There exist non-trivial (i.e./V 1) RT metrics such that |/- 1| g
Ce ~ λ2U, λ2 = μ2(^2 + R0)/( 1 2wι), where μ2 is the second non-trivial eigenvalue of — Λ0.

Proof. We shall consider the case 2Jί = S2 only, the remaining cases follow in a
similar manner. Let w0eR be arbitrary, let f(u0)= 1, thus the corresponding RT
space-time is the Schwarzschild space-time; for any k ̂  6 it follows from Theorem
3.2, point 4, that there exists a submanifold of codimension 12 of/(w0)'s in Hk(

2J{)
for which $UQ k(f(u0)) = 0, and the arguments of the proof of Lemma 2.1 show that
for such initial data we will have |/— /«,! ̂  Ce~15v+", for some/^ = lim/(w). The

M— > oo

C557 extendability follows from Lemma 2.1, point 3, by parity considerations.

Proof of Theorem 2.2. Let Xk = {feHk(
2Jt)\ the horizon of the RT space-time with

/ such that /(MO) =/is singular}. For k ̂  4 openness of Xk follows from Proposition
3.1, point 1. To prove density, consider a solution f(u) of the RT equation such that
|| In/(w0) || H6(2^) < ε, ε given by Theorem 3.2, point 3, and assume that f(u0)φXk. Let
(£±) = ΛMβik(/(nβ)), thus (B*)eCΩ, where Ω = {B± :flogφ 0} if 2Jt = S2, and Ω =
R"\{0} otherwise. Since Ω is dense in K" (cf. Proposition 2.2 if 2Jί = S2), it follows

/— »00 o

that there exists a sequence B^ - > B±, such that B^eΩ; for k ̂  6 it follows from

Theorem 3.2, point 2, that there exists a sequence fi(u0)eHk(
2Jt) converging to f(u0)

in Hk(
2Jt) norm such that &UQ k(f0(u0)) = B^, and thus the corresponding space-

times are singular at J^. D

Proof of Theorem 2.1. Let X = {/eC°°(2^): the horizon JP of the RT space-time
with / such that f ( u 0 ) = f is singular}. Openness follows as in the proof of
Theorem 2.2; to show density consider a solution/(w) of the RT equation such that
f(u0)φX, and || In f ( u 0 ) \\Hf>(2^ < ε, ε given by Theorem 3.2, point 3. For any fceN by
Theorem 3.2 point 2 we can find a sequence/fe/fmax(fc + 2 6)(

2^) converging to/(w0)
in #maχ(* + 2,6)(2^0 norm such that/*6*. By density of C^(2Jί) in Hmax(fc + 2>6)(

2^)
/— »oo

there exists a sequence/^. eCco(2Jί) such that/^. - >/* in Hmax(k+2 6 ) ( 2 J ΐ ) norm;

by continuity of <%Uo max(fc + 2 §6) it follows that for; ^/(/), ΛBβfin»(k + 2f6)(/?j)eβ, and
thus for j^j(i) we have f^^X- We can find a sequence ji^j(i) such that

/-,;,. -^/("o) in //max(fe + 2,6)(
2^) norm, thus/*,. — /(uβ) in Cfc(2^) norm by

Sobolev embedding; redefine /* to be/^ .. Define a sub-sequence/^ of/j" by the
condition \\fk

il-f(u0)\\ck(2^)^2~(l+k\ The sequence/^ converges tό/(w0) in C°°
topology as / tends to infinity, and the solutions f^u) of the RT equation satisfying
fι(u0) =fl

il are singular on the event horizon Jf . Π

4. The Robinson Trautman Equation as a Dynamical System
on the Space of Metrics

Let Riemm(2^) be the space of smooth metrics on a compact, connected, orientable
two dimensional manifold 2Jt, let Diff0(

2

t///) be the connected component of the
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sp'ace of smooth diffeomorphisms of 2Jί which contains the identity, both equipped
with the C°° topology. The RT equation with, say, 12m = 1, may be used to define12

a flow Φu:Riemm(2^)/Diff0(
2^)-^Riemm(2^)/Diff0(

2^) as follows: let [#]e
Riemm(2^)/Diff0(

2^), let g(u) be the solution of the RT equation such that 0(0) = g,
then Φu(\_g~\) = \_g(u)~] (throughout this section we use [#] to denote the equivalence
class of g in Riemm(2^)/Diff0(

2^)). If we define Riemm^2^) as the set of metrics
gab for which R0 = R(gab)G{ -2,0,2}, then the results of [8] show that Φaΰ =
lim Φ(u) exists, and that 3~(2Jί} = Riemm0(

2^)/Diff0(
2^) is an attractor for

M-K30

Φu, with basin of attraction equal to the whole of Riemm(2^)/Diff0(
2^). Given

\_g0]e^'(2Jί) let j/([#0],
 2M} be the basin of attraction of

We have

U *([flα 2^) = Riemm(2^)/Diff0(
2^), (4.1)

fooled.*)

V[<7je«r(2^) s/([g0'],2Je)*0. (4.2)

We wish to point out that because of the asymptotic expansion (2.6) one can
naturally associate to ^~(2Jΐ) an infinite sequence of "blow-up" structures, as
follows: let [g0]e<&~(2^), let {μjj^i be the increasingly ordered spectrum of — Δ09

μ1 > 0, let J^i c I2(2Jί) be the ith eigenspace; we have tff { w lRmι for some mt . Define
μj = {μi(μi - 2)}^2 if

 2^T = S2; and {AJ - (μ^ + Λβ)}, *ι otherwise (thus {λj is
the spectrum of the operator which appears at the right-hand side of the
linearization at a metric 00eRiemm0(

2^) of the RT (2Jf Φ S2) or of the modified
RT (2^ = S2) equation). Let {vj.^ be as described in Sect. 2 (cf. [9] for more
details). We have (AJ c= {vj, and along the lines of the proof of Lemma 2.1 one
shows, that if we write

oo JV(i)

/ ~ ι + Σ ΣΛX e ~ V ί ">

where "^" stands for "asymptotic to," in the sense of Eqs. (2.6), (2.7), then

1. if v^{Λ,j}ίeN, then the functions/. j9j = Q , . . . 9 N ( i ) are defined uniquely by the
functions / fc0, 1 g k ̂  i — 1,
2. if Vi = λl for some /, then the functions /. J9j=l9... 9N(i) are defined uniquely by
the functions fk 0, 1 ̂  k ̂  i — 1, and there exists a function φt determined uniquely
by/k 0, 1 g k ̂ i - 1, such that/. - c

The coefficients X; = (*,, JΓ= i eRmί of the decomposition /-</>,-= Σ Xi*Φw
k = l

where the functions 0ί>k form a basis of Jf f, will be called the free coefficients of the
expansion (4.3).

12 Since Riemm(2^)/DifΓ0(
2^) is a stratified Inverse-Limit-Hilbert manifold [3] with singularities

occurring on sets of metrics for which the isometry group jumps, and since the symmetries of a
metric are preserved by the RT equation, it seems likely that one can define the RT equation on
Riemm(2^)/DiίΓ0(

2^); a simpler way, which avoids some technicalities, is to proceed as above
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k k

Let /ceN, we have 0 jft. = RMk, Mk = £ mf For any *eRMk we define
i = l ί = l

j3/k(X, [0J, 2<JO = { to]ej?/([0J, 2 )̂: the free coefficients
of the expansion (4.3) are equal to X}.

We have

U *̂(*> to*], 2^) = ̂ ( tool 2^0>
ATelRΛίk

/ /

and more generally, if we set 0 tf t = RMk 0 1RM/ " Mk, where RM ' ~ Mk - 0 JPi9
i=l i=k+l

then

19 X2\ tool 2Λ) = sfάXi, Idol 2^\

Note that if [^]e^((0,AΓ2),[^0],
2^), Jί2eRM'~Mk, then Φu(to)] converges to

Φoo(to]) exponentially fast with decay rate larger than or equal to λk+l.
The terminology introduced above allows us to restate what has been proved

in Sect. 3 as follows:

Proposition 4.1. For any 00eRiemm0(
2^) there exists ε 0>0 such that i

\\X\\w ><*<>, then

Proposition 4.2. Let 2Jt = S2. For any gfβeRiemm0(
2^) there exists ε0>0 such

that ifXeW™\ || X ||RM2 < ε0, then

If rather than considering smooth metrics and diffeomorphisms we consider Hl

metrics and Hl + 1 diffeomorphisms, the slice theorem [10] and Theorem 3.2 give:

Theorem 4.1. Let 00eRiemm0(
2^) and suppose that the isometry group of g0 is

trivial. For I ̂  6 there exists a neighbourhood &l o/[gfj (in the Ht quotient topology)
such that £#ι(X, [̂ J, 2Ji}r\(9{ is a C1 submanifold of finite codimension.

It seems natural to ask the question:

Define A^'elR00" as a sequence XteViMl such that FRMZί = X. for j^i, where
PRMj is the coordinate projection on IRMj = RMj 0 {0} c R^ © IRώί " M^ = RM«; set

<o(*oo, too], ̂ ) = Π °ΆX* too], 2^)
fc

The conjecture mentioned at the end of Sect. 2.1 can be formulated as follows:

?
^oo(^oo> too], 2^) = {a one dimensional submanifold, unless empty}.
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