Commun. Math. Phys. 147, 137-162 (1992) Communications in

© Springer-Verlag 1992

Non-Smoothness of Event Horizons
of Robinson—Trautman Black Holes

Piotr T. Chrusciel* and David B. Singleton**
Australian National University, G.P.O. Box 4, Canberra A.C.T. 2601, Australia

Received July 1, 1991

Abstract. It is shown that generic “small data” Robinson-Trautman space-times
cannot be C!23 extended beyond the “r = 2m Schwarzschild-like” event horizon.
This implies that an observer living in such a space-time can determine by local
measurements whether or not he has crossed the event-horizon of the black-hole.

1. Introduction

Perhaps the two most striking predictions of Einstein’s theory of gravitation are the
existence of gravitational radiation and of black holes. There are known four classes
of asymptotically flat space-times containing gravitational radiation, the global
structure of which is reasonably well understood: the Christodoulou-Klainerman
metrics [ 7], the Friedrichs metrics [13], the boost-rotation symmetric metrics [2]
and! the Robinson-Trautman (RT) metrics [17]. On the other hand known
examples of space-times which contain a black hole are given by the Kerr—Newman
space-times, the static Einstein—Maxwell Majumdar—Papapetrou multi-black hole
solutions, the Tolman-Bondi perfect fluid metrics, Christodoulou’s collapsing
scalar field black-holes [6] (for these last two classes of space-times the metric in
the vacuum region is the Schwarzschild metric) and the RT space-times. The
privileged role of the Robinson—Trautman space-times stems from the fact that they
provide an arena in which both gravitational radiation and black-hole formation
can be studied simultaneously, in the vacuum. These space-times were orignally
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! It seems that Christodoulou’s scalar field space-times [5,6] should not be considered as
containing gravitational radiation, since by Birkhoff’s theorem the metric is the Schwarzschild one
wherever the scalar field ¢ vanishes. Moreover, the 1/r part of the Riemann tensor, usually thought
of as the manifestation of gravitational radiation, vanishes for these metrics (D. Christodoulou,
private communication)
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discovered in a search for metrics containing gravitational radiation [17], and it is
only recently that it has been recognized that the RT metrics can be used as building
blocks for constructing black-hole space-times: in Ref. [21] it was shown that any
two RT space-times can be “glued” together along a Schwarzschild-type “r = 2m”
event horizon to form a space-time which contains both a black and a white hole?,
with global structure somewhat similar to that of the Kruskal—Szekeres extensions
of the r > 2m Schwarzchild space-time. Although not explicitly stated in [21], the
space-times so constructed were generically expected to have a metric of C* but not
C* differentiability class (cf. also [9, 19, 20]). It was shown in [9] that a careful
choice of the space-times which were being glued together led to a space-time the
metric of which was of at least C*!7 differentiability class, and the methods of proof
of that paper suggested very strongly that for generic RT space-times no extensions
beyond the “r = 2m event horizon” with a metric of C**8 differentiability class will
exist. In this paper we show that generic RT space-times evolving from “sufficiently
small” initial data admit no C!?3 extensions, vacuum or otherwise, across the
“r =2m” null boundary. We believe that generic RT space-times do not admit
extensions with a metric of C!!® differentiability class; thus the small-data
restriction is probably not necessary, while the discrepancy between C!23 and C**8
is an artefact due to the inextendability criterion used.

It may be argued that a singularity which shows up in the 118th (or 123°rd)
derivatives of the metric has no physical meaning, and that anything which is C*
with k > 2 may be considered as being smooth, as far as physical applications are
concerned. We believe that this is not the case. For instance, an observer in a
space-time with a smooth event-horizon has no way of detecting by local
measurements whether or not he has crossed the event horizon, while an observer
in a Robinson-Trautman space-time with a singular horizon can in principle keep
track of the 120’th derivatives of the scalar V"R“"VJVVR“M ; and verify, by observing
their blow up, that he has entered the region from which he can no longer com-
municate with the outside world. This unexpected property of generic Robinson—
Trautman black-holes should probably be considered as a manifestation of the
naked singularity » = 0, since the metric in space-times evolving from smooth data
on a spacelike Cauchy surface, in which a stable version of cosmic censorship holds,
is necessarily smooth in a neighbourhood of the event horizon.

This paper is organized as follows: in Sect. 2 we briefly review what is known
about solutions of the RT equation, and give the precise statement of our main
results, Theorems 2.1 and 2.2. A “final state” characterization of those RT
space-times for which the event horizon # is singular is presented in Sect. 2.1 when
m>0, 24 =S? and in Sect. 2.2 for m<0, 24 #S? T? where S? is the
two-dimensional sphere and T2 is the two-dimensional torus. In Sect. 3.1 results on
the linearized RT equation needed for the proofs of Theorems 2.1 and 2.2 are
established; and the proofs of Theorems 2.1 and 2.2 are given in Sect. 3.2.

? In the “maximally extended” RT space-times, as considered in Sect. 2, the event horizon can
be defined as usual as the boundary of the past of Z+: this justifies the statement of the existence
of a black hole. On the other hand the notion of the “white hole” in these space-time is only an
intuitive one (cf. also [21] for a discussion), since generic RT space-times cannot be extended up
to Z* (in the RT class of vacuum metrics; cf. [8] [Proposition 2.1])
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2. A “Final State” Characterization of Robinson-Trautman Space-Times
with a Singular “r =2m” Horizon

Let g,, be a smooth metric on a two dimensional, compact, connected, orientable
manifold 24, let f(u) be a u-dependent family of positive functions on 2#. It has
been shown by Robinson and Trautman [17] that if the u-dependent family of
metrics

9o =F W)™, (2.1)
satisfies the evolution equation
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ou  12m 0 O ,
where m is a constant, R(g) = R®,, is the curvature scalar of the metric g, and 4,
(4,) denotes the Laplacian of the metric g(g), then the four-dimensional Lorentzian
metric
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will satisfy the vacuum FEinstein equations. Equation (2.2) is a quasi-linear parabolic
equation for f,

__ T aR, 2.4)
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R=R(g)=f*R,+24,Inf), 2.5)
A= f24,

where R, is the curvature scalar of the metric §,,. Solutions of (2.4) can be found
by prescribing f(u,)eH, , (3#), k=0 and integrating forward in u if m>0 or
backward in u if m < 0 (H,(24) is the Hillbert space of functions the derivatives of
which up to order [ are square integrable on 24). Local existence of solutions of
this problem was first pointed out in the physical literature by Schmidt [18];
existence for all u = u, with “small initial data” has been shown by Rendall [16]
when 24 # S? (S? denotes the two dimensional sphere), and in [20] when 24 = §2;
existence for all u = u, without restrictions on the size of the data has been shown
in [8]. In that last reference it has also been shown that every solution of (2.4)
immediately becomes smooth (in fact, even analytic). In [9] it has been shown that
there exists a sequence N (i), with N(0) = N(1) = 0, and a strictly increasing sequence
{v;}, v, =0, depending only upon the metric §,,, such that every solution of (2.4)
has an expansion of the form

n N
VheN f=3 Y f, ue " +r, (2.6)

i=0 j=0

with some (u-independent) functions f; ;e C* (3#4), and
2
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Fig.21. m>0

where V is the covariant Riemannian derivative of the metric .- for some constants
C, .. depending upon the solution f.

2.1. 24 = S*. Conformally rescaling the metric g, and redefining f(u,) if necessary
we can without loss of generality assume that g, is the standard “round metric” on
the sphere, R(4,,) = 2. In that case f , in the expansion (2.6) can be set to 1 by an
appropriate conformal transformation, and we also have

v, =V X, v=2/m,
0<i<14, N(i)=0,
i=15, N@()=1,
(cf. [9] [Proposition 4.2]). The expansion (2.6) in the S? case thus takes the form
f=1+fie ™™+ fre” ™+ ... +f14e_14”“+f,ogue‘15“"+ fise P4 (28)

Given a solution of (2.4) defined on [u,, c0) the corresponding space-time “# with
m > 0 has the global structure displayed in Fig. 2.1, and it has been showed by Tod
[21] that the space-time “4 can be extended across # * in a way similar to the
Kruskal-Szekeres extension of the r > 2m Schwarzschild space-time (cf. also [9])
(a black-hole — white-hole space-time with a metric of C'!7 differentiability can be
obtained by glueing to “# a time-reversed, space-inverted copy of itself along # *,
as one does in the Kruskal-Szekeres-Schwarzschild manifold). The main result of
our paper is the following:

Theorem 2.1. There exists an open nonempty subset X of C®(24) such that if
f(u,)eX then the corresponding RT space-time cannot be extended across # ™ in
the class of manifolds with C'23 Lorentzian, vacuum or otherwise, metrics. Moreover
there exists ¢, > 0 such that the set B, N X is dense in B, n C* (%) equipped with a
C*(24) topology, where B, = { f(u,)é Ho(24): | In {4, M gy < &)-

We have stated Theorem 2.1 in a C® setting to emphasize the fact that the
non-differentiability of the extensions across # * has nothing to do with the
potentially low differentiability of the initial data f(u,). In fact we also have the
following stronger statement:

Theorem 2.2. Let kelN, k = 4. There exists an open nonempty subset X, of H,(24)
such that if f(u,)eX, then the corresponding RT space-time cannot be extended
across # ¥ in the class of manifolds with C*?3 Lorentzian, vacuum or otherwise,
metrics. Moreover for k=6 there exists g,>0 such that B, N X, is dense in
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B, mHk(ZJI) (equipped with a H,(’4) topology), where B, is defined in the
statement of Theorem 2.1.

To prove Theorems 2.1 and 2.2 we shall need several auxiliary results, some of
which are of independent interest; the proofs of Theorems 2.1 and 2.2 are deferred
to Sect. 3. Let us start with the following statement:

Lemma 2.1. Consider the expansion (2.8):
1. f, is a linear combination with constant coefficients of | = 2 spherical harmonics
+

ZB ¢S ,B]eR?,
ud): = _6¢:
2. Let P denote the antipodal map of the sphere into itself. For i=1,...,4 we have
fieP=f,. 2.9

3. There exists a homogeneous polynomial Y(B_) of degree 5 in B} with coefficients
being smooth antipodally symmetric functions on S* such that fs— is a linear
combination with constant coefficients of l = 3 spherical harmonics ¢_,

fs=¥(B;)+YB; ¢, B eR’,
8,67 = —12¢;.
IfB; =0 then (2.9) holds for 1 <i < 34.

4. Set (Cy)=(B; ,(B,)!"*)eR'2. There exist homogeneous polynomials E.(Cj) of
degree 15 with constant coefficients such that Siog s @ linear combination of | =
spherical harmonics y, with coefficients E :

flog:ZEy(Cﬂ)Xy: (2.10)
Y
Ax,= —20y,.
Proof. Equation (2.4) can be rewritten in the form
0
U Lwrvoan+l gt -aps e
u
Inserting the expansion (2.8)in (2.11) one finds the following hierarchy of equations:
1<ig14, Lfi=[L+ivlfi=g9:(f1s---sfi 1) 2.12)

with
1
L=— ——(Af +2A4,).
12m

The g;’s are obtained by grouping together terms containing the exponent e ™™
in the right-hand side of the equation

© . 4 1 3 o o
._Zogie‘”" =fle(Aff +24,f) - Tom L2V*fV, [ — (4,1, (213)



142 P. T. Chrusciel and D. B. Singleton

so that one has g, =g, =0. A simple REDUCE code gives

g2= @12 =01 fi))
m

G5 = — Q03— 241, £, +20(f1- f) — [0 1> f)

m
ge =$(40f1‘ _80f2/, +32f1f2 + 1612 =20(fy. f5)— Q(f2. )
+zle(flsz)+f2Q(f1’f1)_f%Q(f1:f1))’

1
gs = _;(70ff_200f3f2+ 100fff3-40f1f4+ 100f1f§_40f2f3

+20(f1, f4) +2Q(f2, f3) = 2/1Q(f1, f3) — [3Q(f1, [1) = 1@ (f2, f2)
—2£,0(f1, f2) +2f1Q(f1, 1) + 211 [2Q (f1.f1) — F1Q (f1:. /1))

etc., where
1 o o
Q(fiuf)) = E(2V“”f,- Vi — A A1)

and we have used the equations satisfied by the f;s to somewhat simplify the
expressions for the g;’s. The eigenfunctions of L are the spherical harmonics and its

{_(l—l)l(l+1)(l+2)} _{_(l—l)l(l+1)(l+2)xv} .
12m N 24 N

spectrum is given by
it follows that

1. f, is in the kernel of L, and is thus a linear combination of /=2 spherical
harmonics.

2.For2 <i=<14,i+#S5, the operators L; have trivial kernels and thus Eq. (2.12) can
be solved uniquely for f; in terms of g;.

3. Since L commutes with P, where P is the antipodal map of the sphere into itself,
one can show by induction (cf. e.g. [9] [Proposition 4.2]) that for 1 <i < 4 one has
gi°P=g;, ficP=f;and also gs° P =g;.

4. L has a non-trivial kernel consisting of / = 3 spherical harmonics; this implies
that Eq. (2.12) with i = 5 has the integrability conditions

j gs woduo = 0’
S2

where the Y, are | = 3 spherical harmonics and dy, is the standard SO(3) invariant
measure on S2. This is automatically satisfied because g5 has even parity
(gs° P =gs)while y, o P = —y . We can therefore solve for f5s which is then defined
up to the addition of I = 3 spherical harmonics.

5. For i =15 one finds

Lisfig=0, (2.14)
Lisfis=[L+15V]f15=015(f1, S 14) + fiog- (2.15)

The kernel of L, 5 consists of | =4 spherical harmonics g,, so that f,  must be a
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linear combination of those. The integrability conditions of (2.15) read
[ 95 + fiog) Xyl =0, (2.16)
S2

which determines f,,, uniquely in terms of f; and f.

6. The functions g; are polynomials in f; and their derivatives by construction, which
by uniqueness arguments implies in turn that the f;’s must be polynomials in B,
and B . The homogeneity of order i of g; and of f; follows easily by construction,
but can also be seen by noting that if f(u) solves (2.4) on [u,, ), then so does
fs= f(u+9),, ) for any 6 2 0. Equation (2.8) shows that f; has the expansion

ft§= 1 +fle—vée-vu+fze—2vée—2vu+
+fl4e—14v5e—14vu +floge—15v5ue—15vu+(f15+5flog)e—15vée—15vu+ .
and uniqueness arguments yield the result. [

Proposition 2.1. Let P be the antipodal map of the sphere into itself and let R, be the
rotation of the sphere around the z-axis by an angle @, suppose that

f,)oP=f(u,)°R, = f(u,) 2.17)
for 0 < ¢ < 2n. We have
Jiog EO;
unless the function f, in the expansion (2.8) vanishes.

Proof.. Since symmetries of the initial data which are also symmetries of §,, are
preserved by evolution via (2.4), it is not too difficult to show tha: all the expansion

coefficients in (2.8) satisfy
fioP=fioRy=f.

It follows from Lemma 2.1 that
2
fi= ?a x P (cos ), (2.18)

where a s a real constant and P, is a Legendre polynomial (we use the normalization
of Legendre polynomials of Ref. [1]; we have found it convenient to introduce the
factor 2/3 in (2.18) to keep down the numerical value of some of the coefficients
appearing in the functions f; for large i), and that B, =0, thus Jiog 18 uniquely
determined by a. We have written a REDUCE code which effectively implements
the procedure described in Lemma 2.1 assuming invariance of f (u,) under rotations
around the z axis. The analysis is considerably simplified by noting that the
coefficients f; must be linear combinations of spherical harmonics of order less than
or equal to 2i: this reduces the task of solving the equatiions L, f; = g; to algebraic
operations in finite dimensional spaces. The change of variables x = cos 6 further
simplifies the problem to manipulations with polynomials in x of order 2i < 30. To
illustrate the results one obtains, here follow the first five functions f;:

f1=ax<x2—§>,
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f2= —a2 X <§x4_ﬂx2 +£>,
78 39 234
fimatx (997 o 36697 , 25309 , 8899 )
’ 5226 47034 15678 47034/

. 4519475 . 1636874143 . 73857848527 ,
fa=—a*x x°%— x x
27990456 2078291358 45722409876

17112915619x2 + 18150013841>
7620401646 91444819752/

646556531 5057087713397 84695216485153
fs=a’> x| ——x'"— x® x®
4114597032 5567049784296 38191860727020

1554887482454485 + 1086788290750781 2 231262717823569)
— x - .
511770933742068 341180622494712 1023541867484136

The length of the numerators and the denominators of the coefficients tends to
grow rather rapidly with i, leading to rationals involving integers of more than 100
digits for i=11 (up to more than 210 digits for i=15), however with the
normalization of (2.18) the numerical values of the coefficients of the polynomials
a”'f,, 1 <i<15,areall of order 10~ ! — 10 It takes about two and a half hours of
CPU time on a VAX 8700 to obtain?

frog = 1009201657002 x 1071° x a'* x P,(cos 6)
~(0.21557506728664a)'> x P,(cos 0). (2.19)

This result has been obtained using integer arithmetic, so that the only error
in the first equality in (2.19) is due to round-off when translating a rational into
floating point notation: the exact value of a”'>P4(cos ) f,,, is a ratio of two
integers of 109 and 118 digits which we can make available to anyone interested on
request. In order to minimize the risk of programming errors we have built in several
checks in the code to test the consistency of the results. Because we were quite
perplexed by the numerical value of a~ %P, (cos 6) ~* Jiog> Which is at least 9 orders
of magnitude smaller* than the typical coefficients of the polynomials a ™' f;, 1 <i < 15,
we have written a MACSYMA code® which checked the REDUCE results by
reading the output of the REDUCE calculation and verifying whether Eq. (2.4) was
satisfied up to terms decaying faster than e~ 1",

3 We had to make various optimizations to our code to be able to obtain (2.19) without exceeding
the job limit of 4 hours of CPU time on the machine we were using. The same result (to the accuracy
of (2.19)) can be obtained by running the code in E-30 floating point precision in about 15 minutes
of CPU time

* Equation (2.19) clearly shows that a change of the normalization of a by a factor ~ 5 would
lead to a coefficient of P, in f,,, of order 1—this will however not change the relative size of typical
coefficients in f},, as compared to typical coefficients in f .

> The MACSYMA code was a “brute force one,” without any fancy time- and memory-saving
tricks; the checking run took about one and a half hours of CPU time on Sequent Symmetry. Both
our codes together with all the coefficients f; up to i = 15 are available on request.
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Equation (2.19) shows that f,, does not vanish unless a =0, which had to be
established. [

Lemma 2.1 and Proposition 2.1 imply that for “generic final states” of RT
space-times the function f,,, does not vanish:

Proposition 2.2. There exists an open dense subset 2 =IR'2 such that if fis a solution
of (2.4) for which (B} ,B; )€, (B, ,B_ ) as in Lemma 2.1, then

f log $ 0'
Proof. As shown in Lemma 2.1, f, . is determined uniquely by (B, B ). Consider
the set CQof (B;, B, ) for which f,,, = 0. Since f,__is a polynomial in (B, , B; ), CQ
is closed and thus the set Q of (B;", B, ) for which J10g 0 is open. Suppose that £
is not dense, therefore there exists a pe C2and an open neighbourhood # of p such
that % < C£, therefore f, |% = 0. But a polynomial vanishing on an open set is
identically zero, which contradicts® Proposition 2.1, and proves our claim. []

Let us show that the non-vanishing of f, . implies a form of singular behaviour
of ™ in the corresponding RT space-time:

Proposition 2.3. Suppose that the function f,,, of the expansion (2.8) does not vanish.
There exists no extensions of the corresponding RT space-time “# across #*,
vacuum or otherwise, with a metric of C'*3 differentiability class.

Remark. Let us mention that all scalar functions of the form
e Bividy |
C[V#i... Y RHFPmo VV1 Vv;:Rajﬁij"i]’

where C[ ---] denotes a (total) contraction operation over the indices, are uniformly
bounded in a neighbourhood of #* in “.#, which follows immediately from the
fact that in the coordinate system used in (2.3) g,,, g** and all partial derivatives
thereof are uniformly bounded on O, = {r=¢,u=u,+e¢}, for any ¢>0 (u=u, if f (u,)
is smooth). The proof below shows that at least one entry of the tensor
V., Vy.,, Rypys Will blow up at # %, whatever coordinate system one chooses, even
though every scalar function constructed out of this tensor by contractions with
products of g**,g,,and V,, ---V_ R will be bounded on 0,.

P 1Ok

Proof. Suppose that there exists an extension *# of 4# with a metric of C123
differentiability class. We then have R*¥”R , ;e C'?'(“4), and a SHEEP calculations

gives
R#VR ;.= 48m?r~° (2.20)
on 4/, therefore we can extend r to a function Fe C'2!(44) by setting
F= {RaﬂyoRaﬂyé/(“gmz)} - 1/64),

5 To obtain further evidence that the polynomial Srog (B}, B ) does not vanish identically we have
also analyzed, using our REDUCE code, the case of axially symmetric initial data without imposing
the parity condition f(u,)o P = f(u,). In such a case f is determined by f, up to the addition of
b x P5 (cos ), where b is a real constant, and using the same normalization for £, as in (2.18) the
REDUCE code gives f,,, ~ {(0.2155750672866a)' * — 0.6581020070622 x a*b*°} x P, (cos 6); this
result has also been obtained using integer arithmetics, so that the ~ accounts only for round-off
error of the translation of a rational number into floating point notation (and subsequently taking
the fifteenth root in the first factor)
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where ¢peC(44) is equal to 1 in “# and in a neighborhood of #*, and ¢ =0 in
a neighborhood of the points for which R**”’R _, ; vanishes. According to SHEEP,

on “/ the scalar V*R*"’V R, ; takes the form

720 R af 2
VuRaﬂy6VMR¢ﬂ75=78_(_E+2rf_16_5+ Tm> (2.21)

Since by hypothesis r can be extended to 4 in a C'?! way and V*R*"V R ;. .e
C12°(%4) it follows from (2.21) that the function

_ RS
Y= 5 +2rf r™ (2.22)

can be extended to 44 as a C'2°(44) function. Inserting the expansion (2.8) in
(2.22) one finds

Y=14y e+ -+ ue” 4

with
lplog = - lozflog
at r =2m, and the argument of the proof of Theorem 4.1 of [9] shows that there
120

exists a geodesic I' in 44 on which 5120 blows up as I' crosses #*, which
s

contradicts Y e C*2°(“4) and proves our claim. []

It follows from the results of this section that the potentially singular character
of #* is controlled by the “asymptotic data” (B}, B )elR'2. Obviously these
“asymptotic data” do not determine the whole space-time, though it is tempting to
conjecture that the collection of all f; ;’s determines every RT space-time uniquely;
we shall however not attempt to analyze that problem.

2.2. Other Topologies. Throughout this section we shall assume that m < 0 and that
the genus g(24) of 24 satisfies g(34) = 2 (for the remaining cases, cf. e.g. [9]). By
conformally rescaling the metric g, and redefining f (u,) if necessary we can without
loss of generality assume that R(g,)= —2. Given a solution of (2.4) we can
define

A= {aeR:3CeR such that |(f— 1)d"*| < C},

where

set

From the existence of the expansion (2.6) it follows that if ¥ # oo then ¥eA4, and if
we set ¥, =4|m|v;, v, as in (2.6), we also have

29, =t (2.23)

3
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Ho (u = o) I*(r = )

I7(r =) Ho (u = tho)
Fig. 2.2. Maximal vacuum RT extensions of (“.#,g), m <0, g(>4) > 1

where p, is the first non-trivial eigenvalue of — A4,. For generic f(u,) one expects
¥=1,: thisis indeed the case if f (u,) is generic and In f(u,) is “small enough,” as follows
from Theorem 3.2. On the other hand Corollary 3.1, point 2, implies that there

pa(pz +2)
3

exist (non-generic) f (u,)’s, not identically equal to 1, for which ¢ = , where

U, is the second non-trivial eigenvalue of — A4, (an example in which ¥ = co is given
by f= 1, which solves (2.4) and leads to the so-called “DS-metrics” [12]). If

P22, (2.24)

the corresponding space-time (“#, g) can be extended across the boundary u = — o
(1 =0) to a space-time (%#,J) with a continuous metric § the degree of dif-
ferentiability of which will depend upon ¢ [9]. The global structure of (44, ) is
displayed in Fig. 2.2. If § < 2 the “hypersurface” u = — oo is expected to be singular,
although we have not been able to prove such a claim (cf. also the Remark following
Proposition 2.3).

Asis well known, metrics g, satisfying R(g,,) = —2 may be used to parametrize
the Teichmiiller space J (2#) [11], which allows one to consider y, as a function
on J (34). 1t is also known that u, varies continuously over 7 (24), is uniformly
bounded from above and tends to zero as one approaches the boundaries of 7 (24).
For g(2#) =2 it has been shown’ by Jenni [14] that there exists a metric on 24
for which

383<pu, <3.85 (2.25)
and also that we have the bound
sup uy <4.81 (2.26)

9(2M) 22,§ave T (2M)

7 The following has been explained to us by C. Hodgson: it follows easily from the Gauss—Bonnet
theorem that the diameter of a genus g manifold with a metric g, for which R(g,,) = —2 tends
to infinity as g — oo, which together with e.g. Theorem 8 of Ref. [4] shows that u, < ji(g), with
fi(g) \ 1/4 as g — co. This implies that there exists g, such that if g(2#) = g, then ¥, <2 for all
metrics §,, on %4 such that R(§,,) = —2; thus for g(2#) 2 g, the analysis that follows applies to
non-generic f(u,) only.
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(it is actually expected that the supremum over g is attained for g = 2, and that for
g(34) = 2 the supremum over 7 (24 )is attained by the metric considered by Jenni).
For Jenni’s metric one obtains

544 <$—2<5.51

which shows that at least for g(34) =2 there will exist a large set of metrics for
which ¥, > 2. From the definition of ¥ and from (2.6) if ¥ # co we have

f=14+fid°"+r,, f,#0, (2.27)

with r, = O(#°*<) for some & > 0. From Eq. (3.3) of [9] it follows that the metric on
“4 can be extended across the boundary # =0 in a C™"~2 way, where Int[x]
stands for the integer part of x, but for #¢IN the metric will not be C™!"~ ! in the
coordinate system used®. Thus for generic pairs (d,,, f;), with § such that
11(pq +2) = 6, the space-time metric will have some of its derivatives blowing up
in the coordinate system used in [9]; for example Jenni’s metric on 24 will lead to
C3 but not C® extendible RT space-times in the coordinate system used in [9]. If
(2.24) holds, an argument similar to the proof of Proposition 2.3 (note that both
(2.20) and (2.21) hold irrrespective of the topology of 2#) shows that no C™!l?+4]
extensions of a RT space-time exist when #¢IN and the function f; in the expansion
(2.27) does not vanish (by Theorem 3.2 this will be the case if e.g. In f(u,) is small
enough and generic) — no details will be given.

3. Generic “Final States” Versus Generic Initial Data

The results presented in the previous sections show that RT space-times with
“generic asymptotic data” in the sense of Proposition 2.2 are inextendible across
A" in the class of manifolds with C* metrics. This leads immediately to the
question, do generic Cauchy data for Eq. (2.4) lead to generic asymptotic parameters
(B, B, )? We believe that this is indeed the case, a partial answer to this question
will be given in Theorem 3.2, Sect. 3.2 below. Before addressing this problem we
shall need some results concerning the linearization of the RT equation, which are
derived in the next section:

3.1. The Linearized Problem. Throughout this and the next section, the letter C
denotes a constant the value of which may vary from line to line; by g, we will
denote a metric of constant scalar curvature R, = 2 for 2# = S, R, = 0 for 24 = T?
and R, = — 2 otherwise. In the arguments that follow we shall assume that the
reader is familiar with the methods and the results of [8] and [9], and we shall skip
the non-essential details which may be filled in using either the results or methods
of [8] and [9]. Let us simply recall here that from what has been proved in [8] it
follows that for f(u,)e H,(3#), k = 4, there exists a solution of the RT equation
satisfying fe C([u,, o), H,(3#)) " C*([u,, 00), H, _ ,CM )) "C* (uy, 00) X 2H).

8 In the S? case a sufficient and necessary condition for a singular # * is the occurrence of log
terms in the expansion (2.6), because for (2, §,, ), with §,, — the standard round metric, the spectrum
of — A4, consists of integers; this will certainly not be the case for a generic (34,4,,) with
R(4,,) = — 2. Whenever ¥ = u; ¢IN and, in (2.27) does not vanish, the log terms become irrelevant
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Let f, be a one-parameter family of solutions of the modified RT equation (cf.

[9, 20] for details), with f,|,_, =1, dd_f;t —
t=0
0 3 °
a—f' = = A LfHR,+ 24,0 f)] = f L ou(f) i — X Vafls (3.1
u 24m i
where
w(f) = c§dif du, Eji‘ [ bufdps, (32)
2
A= | du,
2

X'=Y o ())V'és,

with ¢ = 0 unless 2# = S in this last case the ¢;’s form an I*-orthonormal basis
(with respect to §) of the space of I = 1 spherical harmonics (4,¢; = — 2¢;), and c is
a constant which we shall choose to satisfy

> Halts = R,) (3.3)
12m

(if 24 = S2, then u, = (I + 1)). We shall assume that the f,’s are normalized in such
a way that

$f 7 2u)dp, = 1.
It follows from (3.1) that ¢ satisfies the equation

0
2~ Lo+ Lo, (34)
ou

- e -
Lo= 12m[Ao+2A.,]<P ;ai(qo)d)i, (3.5

LA al)
Lio= 12mA°[f G 7 ) T am®\ ) e AR
—Y (N80 + V00 1+ a(@ (6 +70S 1~ Lo, (36

If f(u,) e H (24 ), k = 4, it is simple to show by straightforward energy estimates
that for ¢(u,)e H,(24) there exists a solution of (3.4) satisfying ¢ € C([u,, ),
H,_,(3#)"C*((u,, 0) x 24); using the methods of Appendix B of [8] one can
then show that moreover @eC([u,, ), H,(3#))nC*([u,, o), H,_, (324)). Using
the methods of [9] it can be shown that ¢ has an expansion as in (2.6).

Define |

fe=Pf=§fdu,= !fdua/ | du,. (3.7)
24 2N

1. If 24 = §?, let P:S*— S? be the antipodal map, set
fr=3(feP+f) fT=3(f-P-f)
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let. P*, respectively P, denote the L?-orthogonal projection operator onto the
second, respectively the third, non-trivial eigenspace, & *, respectively & ~, of — A4,.
If {¢ }} are L*-orthonormal bases of & *:

A0 =—n* ot
set (@g) = (4, , ¢, ), and
P=P*+P~, P=1—-P—P"
2. If 24 #8% set f*=f, f~ =0, let P* denote the L*-orthogonal projection

operator onto the first non-trivial eigenspace, &*, of —A4,, let {¢;} be an
L*-orthonormal basis of £*:

Apy = —p" o), p=p >0
we also define
Pf=P*f, P f=0, P=1—P—P°, u =0,
and {¢,} ={¢,}, {6,}={0}.
Whatever the topology of 24, we thus have
Pro=3 A7 b5, A7 =$0; pdp,, (3.8)

Pop=3 A, (A)=(4].4]), (3.9)

and we define

1
v=)v*=—pu*(ut —R),
(v=) Yy (u o)
= (4" —R,)
~ 2t T
Since the modified RT equation is area-preserving,®
§$ 7 2 (wydp, = 1, (3.10)

it follows that for all u > u, we have

1
-3 du, =0 = @°= — ‘3'+~d0, 3.11
$f odu ® §f‘3duo§f (@ + @)du (3.11)
where ¢ = Pg and ¢ = ﬁ(p. From (3.4) and (3.11) one obtains
dAf + + + — ~
=—viAr+ )y YA+ EX[¢] (3.12)
du EEN ]
1 _
'{I:;}i =§¢;_'Ll¢ﬂid:uo _M_—3d#§LT¢ai—duo §f 3(}35:(1#0, (313)

® As pointed out in [20], this follows from the fact that the RT equation is area-preserving, and
that the solutions of the modified RT equation differ from solutions of the RT equation only by
a pull-back by a diffeomorphism
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1
Ef—§GLrdEdy, — — §LrdEdu, § £ Gdu,, 3.14
S =$oLtd; du, §f‘3duo§ Yosdu,$f @y (3.14)
where L¥ is the formal adjoint of L;, and
% _Lp+L,p+E[42], (3.15)
ou
Lip=L,¢p—$pLidu,— Y 5,614, + T'(@), (3.16)
E[Af] = Z<L1¢a - §LI d’aduo - Z Ylﬂa(bﬂ + r(d)a))Aw (317)
p ]
where §f‘30d
Ko
I'@)y==———(¢L,1du,— L,1).
(9) §f‘3d,uo(§l U 1)

The sums in (3.16) and (3.17) (and in the matrix equations below) are implicitly over
both the index and their “associated +.” We shall be interested in solutions of (3.4)
for which

L, —viupt +
A;-" =e "B +F]), (3.18)
where Ef are prescribed constants, and F ;—’ . 0. In order to prove existence of

such solutions it turns out to be necessary to keep track separately of the even and
odd parity parts'®, ¢, of @; if we set

(r=e""p, (3.19)
one finally obtains the following system of equations:
dF = b -
T Y(F+B)+ (7, 07] (3.20)
aCi — EAVES taora + R
T—(L+v )X*+ Y L*°(°+p*[F+B], (3.21)
u c=1*

with

() 5-(5)

F; B,

.{,=< lIl;l-3+ e(v*-—v‘)uc{/;}]—)
e(v’ —v*tu q/a—ﬂ+ Wa—ﬁ— >
ev“u‘_:;;[e—v+uc+ +e—v“uc—]

ev‘uEa— [e—v*uc+ +e—v“u€—]>’

Z Liaco’Eeviu[Zl(e—v+u€+ +e—v"u€—)]i~,
g==

é[c*,C‘]=< (3.22)

p*[F + Bl=e[E[e " (Ff + B})11%,

10 The idea of separating the even parity terms from the odd parity terms in the RT equation has
also been considered by Rendall [16]
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YiE EL L, and E being as in (3.13), (3.14), (3.16) and (3.17) respectively. With
the ch01ce of ¢ given by (3.3), it follows from the results of [9] by the same arguments
as in the proof of Lemma 2.1 that any solution of the modified RT equation (3.1)
on S? has the asymptotic expansion

f=1+ffe™+  +(fI+f5)e " “+0( ), (3.23)
with ffeé™, fSeé,
=YBrol, fi=YB ¢, Adl=-ute..
Moreover, there exists a constant C, depending only upon |[In f(u,) || g,c.4) Such
that
In f ||c4(2,1{) +e' Ifr—1 ||c4(2,/{) +e Ml fT ”C“(M{)
+e(v++v‘)u“f‘_fs—e—v_uuca(zﬂ)écf (3.25)

and it follows from Proposition 3.1, point 1, and the results of [8], that for any ¢ > 0
there exists a 6 >0 such that if ||Inf(u,)] Heea = 0=>C,<e. A straightforward
analysis, which requires somewhat tedious parity considerations if 24 = S2, shows
the following key lemma:

Lemma 3.1. Let C, be the constant defined by (3.25). There exists a constant C(K)
such that if C; < K, then

lai(f)| < CCpe= O +v7, (3.26)
|P|<CCre, (3.27)
11 CCre™ (I sy + 1 Ny (3.28)

P (X)) S CCre™ || X || g1y (3.29)

and the operators L* * can be written in the form
4
Y oAEE Vv (3.30)
i=0
Jor some tensors A satisfying
|AEE | <CCpe, (3.31)
A} *, smooth for all u> u, and uniformly C? for u z u,.
Let us start by analysing Eq. (3.20) assuming that ¢ is a given function of
(u, p)e[u,, ) x M-

Lemma 3.2. For o >0 and k, melN, let X{(R™) = {F = e~ "“G:GeC¥[u,, ), R™)},
define

”F“Xi: H e”F ”Ck([umm),mm)s
suppose that &: X7 | — X[ is defined by
dF

PF=——VF, (3.32)
du

¥eX}(GLR™R™), v>0. (3.33)
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Then % i$ an isomorphism, in particular there exists a constant C such that for every
EeX], there exists a unique solution of the equation
dF
—=WYF+¢ (3.34)
du
satisfying
IFll,, SCIE,. (339)
Proof. 1. Surjectivity: it is sufficient to show surjectivity on [u,, c0), with some u,
large enough, since any solution defined on [u,, c0) can be uniquely continued
backwards in u by standard theorems on solutions of linear ODE’s on compact
intervals. Consider the problem
dF; s,
u

= WF,+¢, (3.36)

F, =0, thus
Fiiy=— [ (YF;+&)s)ds, (3.37)

and

29

I(Firy — FY@)| < [ |P(F;— F,_)(s)lds

u

—(a+v)u
=

P IR Fil
so that for ue[u,, o) we get

= vuy

e
”Fi+1—Fi||X5§O_+v” Fly IFi—Fi il

v g+t+v
a fixed point F for the problem (3.37), which solves (3.34) and is in X}, ;.

. 1 (1¥ly .
and if u; > - ln< X") the contraction mapping principle shows the existence of

2. Injectivity: Let F,, F, satisfy (3.34), then we have
dF,—F U
(—ldﬂ =¥Y(F,—F,), F,—F,—0. (3.38)
u

Suppose that |F; — F,||gm>0, then In||F; — F,||g.. is differentiable and from
(3.38) one obtains

d(In ]|F1—F2||]R,,,)>

i 2 —1¥l,e™

| ¥l gre™ ™™
= [[(Fy — Fp)(uy) | gm S €Xp %*} 1 (Fy — F2)(uy) | gom for u,2u,.

Letting u, — co one obtains ||(F; — F,)(u,)]| = 0 which contradicts the assumption
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thdt | F; — F, || g >0, ie., there exists & such that (F, — F,)(#) = 0. In this case,
F, =F, follows from standard results for first order ODE’s.

3. To prove (3.35), note that L is a bounded linear bijection from X7, | to Xy thus,
by the open mapping theorem, %~ ! is a continuous linear operator from X7 to
X7, ., which implies (3.35). [

Lemma 3.2 shows that Eq. (3.20) can be solved for F in terms of Band (*. By
well known results, there exists functions Rfﬁi such that

[« o)

Ff=| Y Ri'u s){g,,[ci(s)]+ z 'P""B”}ds. (3.39)

uas=1=,p

Inserting (3.39) into (3.21), one obtains an equation of the form

%(u x) = [(L+v*>z;*+ 5 L*“c"+ﬁ*(§)](u,x>

c=1
+ [ds [ Y R*(u,s,x,x")E%s,x")dp,(x'), (3.40)
u 2 o=+
. . Y +
which has the amusing property that the derivative e at time u depends on &*(v)
u

for all v > u. To avoid the supplementary step of proving estimates on R* *, rather
than analysmg (3.40) we shall consider the system (3.20), (3.21) directly. We shall
need the following Lemma, which gives information about solutions of Eq. (3.21)
when p* are considered as being given functions of (u, p):

Lemma 3.3. Let {=(",(7),p=(p*,p "), set

1 ey = 1 ety + 18 Nty (341)
1o Wiy = 10" Wiy + 10 N oosy- (342)
There exists constants C,, C, such that for all u, satisfying
1
ul gﬁl =_1n(C1Cf), (3.43)
v

where C, has been defined in (3.25), all solutions (*eC'([uy,00), L*(34))n
C([uy, ), Hy(M)) of (3.21) satisfy, for u 2 u,,

1) 12220y S 1 L) 1 E22.0) + C267 2 [ €3]] p(5) 1 F2(2.4y -

uy

Proof. In what follows we shall assume 24 = S?; for other topologies the proof is
obtained by similar arguments. By expanding ¢* in spherical harmonics and using
straightforward approximation arguments (cf. e.g. [9] [Lemma 4.1]), one obtains

$CTLL dp, < —15v§ (L) dp,s (3.44)
$CTLLdu, < —35v§(L ) du,, (3.45)

and similarly one proves that there exists a constant C, such that
$odu, =0 = §oLodu, < —C, Il 014, c.0 (3.46)
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Set
Ew=§[(*)+ () 1du,
let a, >0, a + = 1; we have, by (3.44)—(3.46),

%=2§C+(L+ W dp, + 20 (L +v7) " dp,
+2 Y §eereledu, + 22§C tptdu,
p=t,0=%

< — (30— 2)v§(C*)?dp, — (700 — 10)v $ (L 7)?duo
= 2BC,(N " sy + 17 sy

+2 Y $LPLdpg + eE(W) + - znp*an,,
p=t,0=%

1
where we have used 2ab <-a® + ¢b%. Some integration by parts in the terms
containing {*L* *{* gives
Y §orrrlodu, < CCre (10 ey + 1 Iy (3.47)

p=t, =%
(cf. (3.30), (3.31)), so that with (3.41) and (3.42), one finally obtains
dE
< (B30 — 100 —)B() ~ QC,8 — CCre ™) I Iy + ||pnm<zm
Choosing
1 )
d:ﬁ:—, 8=3V, e_"“1=—C",
2 CC,
one gets

u 2 U g i‘l vy E(u) é e2v(u1-u)E(ul) + C2 j e2v(s—u) “ p(s) ||12{2(2A)ds,

uy
for some constant C,. []

Theorem 3.1. Let feC%[ug, ), HG(ZJI))r\ C([u,, 00), H,(24)) be a solution of the
modified RT equation. T here exists it 2 u, depending only upon ||In f(u,) | nee.a) such
that for all u; 24, BeR'? and $ocPH, (M) there exists GoePH,(3M)=
(1—P— P)H ,(*4) wzth the property that the unique solution of (3.4) satisfying
(Po)uy) = G0, Po(u;) = o,
with @°(u,) = (P°@)(u,) given by (3.11), satisfies, for u — co,
) + _ Zﬁa—_l-d)aie—viu + O(e—(v+v:t)u)’

[-3

Ay = =60, Ap, =—12¢,.

Moreover there exists o > 0 such that if |Inf(u,)|l g 2.4 < €0» then iy = u,
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Proof. Set Fy =0, and for i > 1 let F;,{;* be solutions of the equations

dF, =
— = YEA B+ LD

0 -
; —(LAvEE + Y LET, | 4 p*[F+ B,
o=+

with (% | (u;) = {°*(u,). For i = 1, we have

d(%l)_ !II(F;+1 1)+6[C,+1 i a(,.{-] C ]a (3'48)
u
0 *
—(37“ Ly =8+ B L2 =8+ p*TFi= Fic]
(3.49)
with
CE, — L) =0 (= 1CE, — L)) gy =O) (3.50)

and Lemma 3.2 with o = v and (3.28) gives, for u = u,,
(s = F@ s S Ce™ sup eI ELL , — Ly = (10

< CCse™™sup Z 1CE L = DO L2y

s2uy

This together with (3.29), (3.49), (3.50) and Lemma 3.3 implies, for u = u,,u, large
enough,

2 2
I:Z”(Curz z+1)(“)||1.2<2/{):| §CC4 ZV(“1+“)|:SUPZ||(C,+1 +)(S)IIL2(2V/[)] >

s2uy

so that if
C‘/“Cfe'“‘1 <1

the sequence {*(u) converges in L*(>.#) for each u to a function {Z(u). It is
straightforward to show that in fact { Z(u)e C([uy, 00), H4(3#)) N C*((uy, ) x 24),
and the remaining claims follow by methods similar to those of [8, 9]. Note that
it follows from the methods of [8, 9] that the constant C in (3.25) depends only upon
[1n f(u,) [l 2.4 and in fact for |[1n f(u,) || .4, < 1 it follows from Proposition 3.1,
point 2, that we have

Cf é C ” lnf(uo) ”116(2‘,/()’ (351)
which shows that for ||In f(u,) ]|y, 4, small enough we can set u; =u,. [

3.2. The Nonlinear Equation. In this section we shall show how the genericity
problem can be reduced to the linearised problem analysed in Sect. 3.1. Let us
note the following:

Proposition 3.1. Consider the map %, ,:H,(24)—>R" (respectively %, ,:Hy(S*—
RM\(N = 12 if 24 = S?) which to an mltlal datum f (u,)e H (*4) assigns
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1. the coefficients (BX) of the expansion (2.8) if 24 = S* (respectively (BX) of
expansion (3.23)), or
2. the function f|  of the expansion (2.6) otherwise'*

Then

1. fork = 4themap A, (f(u,))(respectively Quo‘k( f(u,)))is a C° function of f (u,), and
2. for k = 6 the map A, ,(f(u,)) (respectively ‘@“o’k( f(,))) is a C* function of f(u,).

The proof of Proposition 3.1 is a rather lengthy and straightforward application
of the techniques developed in [8] together with parity considerations similar to
those of the previous section; no details will be given. It is rather likely that the
thresholds k = 4 for continuity and k = 6 for differentiability are not optimal; we
have not attempted to analyse this question. With these thresholds it is easy to
prove continuity and/or differentiability in an L%(2#) norm, and use interpolation to
get the result for higher norms as well.

Suppose that f(u,) is such that B, i (f(uo))e R where, for 24 = §%, Qs the set
of (BF)for which f, % 0(cf. Proposition 2.4), while for 24 # S2, we set 2 = RM{0}.
As discussed in Sect 2, for 24 # T? the corresponding space-time will be
geometrically singular at the null boundary # = {mu= 00 }(m>0 for 24 =S*,m<0
otherwise, and if 24 # S? then we assume u, # IN). It follows from Proposition 3.1,
point 1, that for k >4 the map %, x is continuous, so that for all f(u,)’s in a
sufficiently small neighborhood of f (u,) in H,(34) the corresponding space-times
will be singular at . Thus to prove genericity of the set of f(u,)’s which lead to
singular #”’s we only need to analyse what happens for f(u,)’s such that
B i [(,))eCQ=RNQ.

Proposition 3.2. Suppose k = 6, let f(u) be a solution of the RT equation, f (u,)e H,(34).
There exists ii; 2 u, depending only upon ||In f(u,) |l 4.4, Such that for all u, 2,

X
the map #, (f(u;))= g"k((p) is surjective. Moreover there exists ¢, >0
¢ =S(u)
such that if |1n f (u,) | g, 2.0y < €0 then i, can be chosen to be equal to uy,.

Proof. 1f 24 # §?, this is Theorem 3.1, let us thus consider the case 24 = S2. Let
JS(u) be the solution of the modified RT equation (3.1), with 7 (uo) = f(uo). Recall
that f can be obtained from f by the following procedure [9, 20]: let M(u)eSL(2, C)
satisfy the equation

M _ MAw), M) =id, (3.52)
du
with
[A(@)])% = Z A%yt
b
for some constants 4%,;, where

o; = C§¢i7 dp,
(cf. (3.2)). There is a natural identification between SL(2,C) and the group of

1 Recall that f, , satisfies A f 1.0= —H1f1, and is thus determined by a finite number of
parameters (Ba)e]R"” where m, is the dimension of the first non-trivial eigenspace of A,
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conformal transformations of $2, define @,, as the conformal map of S? into itself
corresponding to MeSL(2,C), let ¥2, be the corresponding conformal factor,

O3dar = ¥ 3o

We then have

S@) =LYy S W1 Dy, (3.53)
Equation (3.53) and “an:) f(u) =1 show that

S 1) Py X ‘I’M(w) LOO»I
thus the solution of the RT equation which has the expansion (2.8) is f(u)° @y, X
M(w), (3.53) gives
S@e®y o) X ¥ rriy =¥, (u)f(“)] D 1160° Prtteor X ¥ htoor
Since a; = O(e~ " *¥7) (cf. (3.26)) it follows from (3.52) and from Lemma 2.1 that
| M) — M(c0)| < Ce™ " Y7 = F(u) — F)o® 10,0 Payery| < Ce™ O 71,

-1 —(vt+viu
|('PM<.,)°‘DM<u) D)) X ‘I’M(w, 1|SCe™ ™ ™V

which shows that
BYf=Bf=4%, ,= %—’uo,k

uo,k

1k acting on @(u,) is the map which to

... 0
It follows that for u;, = u,, the derivative

¢(u,) assigns the coefficients Eai of the expansion analogous to (3.23) of solutions
of the linearised equation (3.1), which is surjective by Theorem 3.1. O

Theorem 3.2. Let k = 6, suppose that f (u), u 2 u, is a solution of the RT equation with
fu)eH,(CAM), let B, (f(u,)=(BF)eR".

1. There exists u; 2 ug and a neighborhood O, , of BZ such that for all B €0, «

there exists a solution f B;eC( [u,, 00), H(24)) of the RT equation such that
B, (fp2(uy)) =BE.

2. Foranyd, >0 there exists 6, > 0 such that for | B} — B * | g~ < 8, we can choose

fsu( u) so that ||f31 (uy) — f(ul)ny,‘(lﬁ) <9

3. There exists ¢ >0 such that if ||In f(u,)ll g4 < & then u; can be chosen to be

equal to u,.

4. There exists 63 >0 such that for all B;—Le(Oul,k, the set of f Bf(ul)’s satisfying

||f33(u1) — [l gemy <03 is a C' submanifold of finite codimension N (N =12

if *M = S?) of H,(* ).

Proof. 1t follows from Proposition 3.1 that for u, > u,, 8, ,:H,(4)—R" is dif-

ferentiable, thus both Ker 4, , and (Ker %, )+ are (closed) Banach spaces, and the

map #:(Ker %, ) —R¥ deﬁned by # ((p)— (@) 1s differentiable. We have

F'= % =B, il ker &, )b and Proposition 3.2 shows that &' is an isomorphism.
By the implicit function theorem, # is an isomorphism from #, , < (Ker %, k)l
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to an open neighbourhood 0, , of (ﬁf), which proves points 1-3. Point 4 follows
from the implicit mapping theorem, cf. e.g. [15 Chapter I, §5]. O

Corollary 3.1. 1. Let 24 = S%. There exist non-trivial (i.e. f £f,, where [ is a
conformal factor for a conformal transformation) RT metrics such that |f—f,| <
Ce ™ 15v"4 = Ce™3%/m Every such metric can be C3°7 extended across # .

2. Let 2 # S%. There exist non-trivial (i.e. f # 1) RT metrics such that |f—1| <
Ce™ %" 1, = u,(u, + R,)/(12m), where u, is the second non-trivial eigenvalue of — A,.

Proof. We shall consider the case 24 = S* only, the remaining cases follow in a
similar manner. Let u,eIR be arbitrary, let f(u,) = 1, thus the corresponding RT
space-time is the Schwarzschild space-time; for any k = 6 it follows from Theorem
3.2, point 4, that there exists a submanifold of codimension 12 of f'(u,)’s in H,(34)
for which 8, ,(f(u,)) =0, and the arguments of the proof of Lemma 2.1 show that
for such initial data we will have |f — f | < Ce™ 15" for some f, = hm f (u). The

C>°7 extendability follows from Lemma 2.1, point 3, by parity con31derat10ns

Proof of Theorem 2.2. Let X, = { f e H, (/). the horizon of the RT space-time with
S such that f(u,) = f is singular}. For k = 4 openness of X, follows from Proposition
3.1, point 1. To prove density, consider a solution f(u) of the RT equation such that
[0 f () | aec) < &€ given by Theorem 3.2, point 3, and assume that f(u,)¢ X,. Let
(BE)= A, (f(u,), thus (BX)eCQ, where Q2= {BF:f,,,#0} if 24 =S and Q=
RM\{0} otherwise. Since €2 is dense in R (cf. Proposition 2.2 if 2# = §?), it follows

that there exists a sequence B, 7, BZ, such that BX,e; for k = 6 it follows from

Theorem 3.2, point 2, that there exists a sequence Sfiu a)er(Z//Z) converging to f(u,)
in H,(24) norm such that B, (folu,)) = B, and thus the corresponding space-
times are singular at »#. O

a,i’

Proof of Theorem 2.1. Let X = { f eC®(24):. the horizon # of the RT space-time
with f such that f(u,)=f is singular}. Openness follows as in the proof of
Theorem 2.2; to show density consider a solution f(u) of the RT equation such that
f(u,)¢X, and [[In f(u,)| 4, .0 <& € given by Theorem 3.2, pomt 3.For any keN by
Theorem 3.2 pomt 2 we can find a sequence f "eHmax(k r2,6) 24 ) converging to f (uo)
in H,,, 4 +2,6)*#) norm such that f{e X. By density of C°°(%/%) in H et 2.63H)
there exists a sequence /¥ JEC” (34 ) such that f f} 2, f¥inH max(k+2,6)( 24 )norm;
by continuity of B, ...u+ 2.6 it follows that for j 2j (i), B,, max+2.6/(f+)€€2 and
thus for j=j(i) we have f €X. We can find a _sequence ji=j(i such that

i — f(u,) in I 6)( ) norm, thus f% . ——»f(u in C¥24) norm by
Sobolev embedding; redefine /¥ to be f¥ ;. Deﬁne a sub-sequence f* pof f * by the
condition || /¥ — f(u,)llcgy < 27"**. The sequence f} converges to f(u,) in C*
topology as [ tends to infinity, and the solutions f;(u) of the RT equation satisfying
filu)=f ﬁl are singular on the event horizon #. [J

4. The Robinson—-Trautman Equation as a Dynamical System
on the Space of Metrics

Let Riemm (%4 ) be the space of smooth metrics on a compact, connected, orientable
two dimensional manifold 2/, let Diff,(2#) be the connected component of the
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space of smooth diffeomorphisms of 2# which contains the identity, both equipped
with the C* topology. The RT equation with, say, 12m = 1, may be used to define'?
a flow @,:Riemm(%:4 )/Diff,(4)— Riemm(%:4 )/Diff,(’#4) as follows: let [g]e
Riemm(%# )/Diff, (24 ), let g(u) be the solution of the RT equation such that g(0) = g,
then @,([g]) = [g(u)] (throughout this section we use [g] to denote the equivalence
class of g in Riemm(%4 )/Diff, (24 )). If we define Riemm, (24 ) as the set of metrics
g for which R,=R(g,,)e{—2,0,2}, then the results of [8] show that &, =
lim @(u) exists, and that J (3#)= Riemm,(24)/Diff,(24) is an attractor for

@,, with basin of attraction equal to the whole of Riemm(24 )/Diff,(2#). Given
[9.,]eT (4)let o/ ([g,], 2#) be the basin of attraction of [g,]:

A ([9,1,°M) = {[g]eRiemm(%4)/Diff,*.4): D,,([9]) = [9,]}-
We have
U ([g,], 24 ) = Riemm(24 )/Diff, (24 ), 4.1)

(g0l (M)
Vig,JeT M) <(19,),°M)# B 4.2)

We wish to point out that because of the asymptotic expansion (2.6) one can
naturally associate to J (3#) an infinite sequence of “blow-up” structures, as
follows: let [g,1€ 7 (34), let {y;}; > | be the increasingly ordered spectrum of — 4,,
Uy >0, let #; = I?(24) be the i eigenspace; we have #; ~ R™ for some m;. Define
{A} = {m(ps — 2)}i 22 i 24 = S?;and {4, } = {u(w; + R,)},; » ; otherwise (thus {4;} is
the spectrum of the operator which appears at the ?ight-hand side of the
linearization at a metric g,eRiemm,(%#) of the RT (ZJ% # §2) or of the modified
RT (34 = S?) equation). Let {v; },>1 be as described in Sect. 2 (cf. [9] for more
details). We have {4;} = {v;}, and along the lines of the proof of Lemma 2.1 one
shows, that if we write

0

f~1+ % Z figwle™, “3)

i=1j=
where “~” stands for “asymptotic to,” in the sense of Egs. (2.6), (2.7), then

1. if v;¢{4,} . then the functions f; ;, j=0,..., N(i) are defined uniquely by the
functlonsfk o 1Sk=Zi—1,
2.if v; = A, for some l then the functions f; J, j=1,...,N(i) are defined uniquely by
the functlons Si0o 1 £k <i—1, and there exists a function ¢; determined uniquely
by fi.0» 1 Sk <i—1,such that f; — ;e #;.

The coefficients X, = (X, )i eR™ of the decomposition fi—¢;= > X,, ;.
k=1

where the functions ¢, , form a basis of #;, will be called the free coeflicients of the
expansion (4.3).

12 Since Riemm(2#)/Diff,(24) is a stratified Inverse~Limit-Hilbert manifold [3] with singularities
occurring on sets of metrics for which the isometry group jumps, and since the symmetries of a
metric are preserved by the RT equation, it seems likely that one can define the RT equation on
Riemm(24 )/Diff,(24# ); a simpler way, which avoids some technicalities, is to proceed as above
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k k
Let kelN, we have @ #; = RM< M, = Y m, For any X eR™* we define
i=1 i=1
(X, [9,]), 24) = {[g]eH([g,), 2#): the free coefficients
of the expansion (4.3) are equal to X}.

We have
U #uX,[9.1.24) = 4([g,],24),

XeRM)
1 1
and more generally, if we set (P o, = RM<@RM!~Mx, where RM' M= P #,
i=1 i=k+1
then
U (X1, X2) [9,], Zﬂ): (X 1,[9,]), 2/1)'

X,eRM ;- M,

Note that if [g]le. (0, X,),[g,],%#), X ,cRM' "M« then @,[g)] converges to
@, ([g]) exponentially fast with decay rate larger than or equal to 4, ;.

The terminology introduced above allows us to restate what has been proved
in Sect. 3 as follows:

Proposition 4.1. For any g,eRiemm,(24#) there exists ¢, >0 such that if XeRM:,
| X | g, <&, then

(X, [g,),%M) # B

Proposition 4.2. Let # =S%. For any g,eRiemm,(3#) there exists ¢,>0 such
that if XeRM2, | X | gu, < &, then

(X, [9,), % M) # B.

If rather than considering smooth metrics and diffeomorphisms we consider H,
metrics and H,, , difftomorphisms, the slice theorem [10] and Theorem 3.2 give:

Theorem 4.1. Let g,eRiemm,(34) and suppose that the isometry group of g, is
trivial. For | = 6 there exists a neighbourhood O, of [g,] (in the H, quotient topology)
such that o,(X,[g,], 2#)n O, is a C* submanifold of finite codimension.

It seems natural to ask the question:
{X:dk(X7 [go]a 2‘%) = @} : Q

Define X ,“eR™” as a sequence X;eRM: such that Py, X, = X, for j <i, where
PR, is thecoordinate projection on R = R™ @ {0} c RM/ @ R~ = RM+; set

J%oo()(oo’ [go]’ Zﬂ) = m dk(xb [gol 2'//1)
k
The conjecture mentioned at the end of Sect. 2.1 can be formulated as follows:
A (X ,[9,], “#) = {a one dimensional submanifold, unless empty}.
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