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Abstract. The pih GePfand-Dickey equation and the string equation [L, P] = 1
have a common solution τ expressible in terms of an integral over n x n Hermitean
matrices (for large n), the integrand being a perturbation of a Gaussian, general-
izing Kontsevich's integral beyond the KdV-case; it is equivalent to showing that
τ is a vacuum vector for a 1^+-algebra, generated from the coefficients of the
vertex operator. This connection is established via a quadratic identity involving
the wave function and the vertex operator, which is a disguised differential ver-
sion of the Fay identity. The latter is also the key to the spectral theory for the
two compatible symplectic structures of KdV in terms of the stress-energy tensor
associated with the Virasoro algebra.
Given a differential operator

L = Dp + q2(t)Dp~2+ . - . +qp(t), with D = —, t = (tl912, *3, ...), x = tl9

consider the deformation equationsx

|̂  = [(L"I*)+9L] n = 1,2, . . . , n Φ O(mod^) (0.1)
dtn

Q?-reduced KP-equation)

of L, for which there exists a differential operator P (possibly of infinite order)
such that

[L, P] = 1 (string equation). (0.2)

In this note, we give a complete solution to this problem. In section 1 we give a
brief survey of useful facts about the /-function τ (t\ the wave function Ψ (t, z),
solution of dΨ/dtn = (Ln/p)x Ψ and L1/p Ψ = zΨ, and the corresponding infinite-
dimensional plane V° of formal power series in z (for large z)

V° = span{<P(r,z) for all

( Σ MιJ+ ΣbiDi9
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in Sato's Grassmannian. The three theorems below form the core of the paper;
their proof will be given in subseuqent sections, each of which lives on its own
right.

Theorem 1. After an appropriate time shift t -+ t + c (choice of time origin), the
solution to dL/dtn = [(Ln/p)+ , L] constrained to [L, P] = 1 with L and P differen-
tial operators is given by 2

= S(t}DpS(tΓ\ S = S(t) =
Ό (_

n = o τ ( t )

and, moduls a Taylor series in L with coefficients depending on (t2, £3, . . .)?

i constants,

(0.3)

P = -ML
P

where τ satisfies the KP hierarchy and

(04)

(0.5)

After an appropriate rescaling τ(t)r\τ(t) £Σί;4, which alters S and M, but not
L, we have

with the requirement

In general we have

= 0

ML

(0.6)

(0.7')

* = -!, 7 = 1,2,...

* = 0 , 1 , 2 , . . . , . / = 1 , 2 , . . . . (0.7)

Corollary 1.1. [Kae-Schwarz], [Schw], [FKN2]. The plane V° e Gr associated with
the wave function Ψ(t,z) of L (in Theorem 1) is invariant under the action of the
differential operators L and P; they act on V° as z-operators, to wit

hence

zp V° c V° and Ap V° c V° with [Ap,z
p] = 1

^,-^,- — , . . •dΐί 2 ct2 3 dt3 J
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Corollary 1.2. For L and P as above, the relation [L, P] = 1 is equivalent to

-- Σ

In particular for p = 2 (KdV equation), this is equivalent to

Σ */. — + •
fc=3,5,... dtk-2

(0.8)

(0.9)

So Theorem 1, inspired by work of Goeree [G], Krichever [K], T. Shiota [Sh]
and Fukuma, Kawai and Nakayama [FKN3], proves that if L and P are to satisfy
(0.1) and (0.2), then L must satisfy [0.7'], which imposes strong constraints on τ,
as will appear in Theorem 2.

Introduce the algebra ι̂ "1 + 00, with generators W^\ defined by the vertex
operator (as explained in Sect. 3 in the context of the Backlung transforma-

00 ( LL — IV °°

= Σ , Σ
0 V !

(o.io)

for explizit formulae, see (3.7) and the appendix. Also introduce the /^-reduced
algebra ̂

Hrp - {algebra generated by W$\ 1 ̂  v ζpJeZ, with /p = t2p = . . . = 0}

and the truncated sub-algebra

_+ _ Γclosure underbracketing of W$\ 1 ̂  v ̂  pj = - 1, 0, 1, .
"

note that Wi + ao and τίΓp have a central term, whereas iΓ* does not; it implies that
every element of W* can be expressed as a bracket of two elements in Hf* (see
[FKN2]).

Theorem 2. Consider the differential operator

S(t)=
Pn(~

τ(t)
D~n

then

{solutions L of (0.1) and (0.2)}

solution τ is unique.

solutions τ of

Wτ = 0 for all (0.12)

The proof of this statement given in Sect. 4 hinges on the differential Fay
identity (see Sect. 3), which plays an important role in this paper:
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and so by Taylor's theorem and (0.10)

έ / v ~ 1 )

—
UA

In the context of the /7-reduced KP equation (Felfand-Dickey hierarchy), it is
natural to define so-called ̂  stress-energy tensors (see Sect. 3 for more details);
namely setting y = λp,

τp

(j}(y)=ΣJ$y~n~j, ί^j^P with tip = o all ι^ ι ,

for an appropriate choice of generators J$ of iff. The /7-reduced KP equation is
known to have two (or more) symplectic structures and the Hfp stress-energy

tensors relate intimately to their spectral theory. For instance, 7J2) (y) relates to
the spectrum of the two symplectic structures D and K = (D3 + 2(qD + Dq))/4
in the following simple way (Proposition 3.4)

We now state Theorem 3, which is proved and discussed in Sects. 5 and 6:

Theorem3. The unique solution to (0.1) and (0.2) is given by the limit (for
large N ) of

Ap (®^

and

where A(

P

N) and B^ are the following integrals:

ί (Z — <9)p+1\
AP(Θ) = J dZ exp Trl non-linear terms in — 1 (0.14)

/ (Z-Θ)P+1\
BP(Θ) = \dZ exp Tr I quadratic terms in ——— J (0.15)

over the space of N x TV skew-hermitian matrices, dZ being its invariant mea-
sure, Θ = diag(#!,..., ΘN) and

Corollary 3.1. After a time shift tp+1 r^ tp+1 + 1,

dt, p +

Ed. Witten [Wl] conjectured that the partition function for 2d-gravity is a
specific generating function for the intersection theory of moduli space and
that its second derivative satisfies the string equation and the KdV equation.
M. Kontsevich [Kl] conjectured, also in the KdV-context, that the exponential
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of the same partition function has the matrix integral representation (0.13) for
p = 2, based on the fundamental work on D. Bessis, Cl. Itzykson and J. B. Zuber
[BIZ]; Kontsevich [K3] and Witten [W2] then showed that 2(logτ)" is a solu-
tion of KdV, using quite different methods: Kontsevich shows that the matrix
integral representation is a τ-function, by a direct calculation, viewing τ as the
determinant of a projection, whereas Witten shows that it is a vacuum vector for
the Virasoro algebra (i. e. Ltτ = 0 for i = — 1,0,1,2,...); he then uses the inde-
pendent observations of R. Dijkgraaf and E. and H. Verlinde [D-V-V] and
M. Fukuma, H. Kawai and R. Nakayama [F-K-N1] that KdV and string equa-
tions are equivalent to being a vacuum vector for the Virasoro algebra. For
general /?, [D-V-V] and [F-K-N1] also conjectured the equivalence of the follow-
ing sets

{τ a solution of the /^-reduced KP and string equation}

an {τ vacuum vector of a -^-algebra}

and Goeree [G] developed some of the mathematical machinery to show that
this is true for p = 3 and indicated a possible approach in general.

Guided by Witten's computations in [W2] and by V. Kac and A. Schwarz's
[K-S] observation that the wave functions (at some appropriate initial condi-
tion) is related to a generalization of the Airy function, we conjectured a matrix
model for arbitrary p. This note contains a complete proof for p ^ 3; a general
proof hinges on the observation that a certain partial differential equation ap-
plied to the ratio (0.13) above produces at once the stress-energy tensor for
^-gravity. It shows this algebra is naturally associated to these solutions and
this should have a "physical" interpretation. Concurrently Kontsevich [K3]
came up with the same model and the method, which he employs for p = 2,
should work as well in general.

A link should also be made with the question discussed by J. J. Duistermaat
and F. A. Grϋnbaum [D-G] to find an x-operator L and a A-operator A such that
LΨ(t9λ) = λΨ(t,λ) and AΨ((x90,...90),λ)=f(x) Ψ((x9Q9 ..., 0),λ), where
f(x) is a function of x. For second order L, there exists a solution L with
unbounded potential q(x), asymptotically linear, leading to the classical Airy
equation.

1. Facts about τ

When the set of deformation equations

§7 = [(β")+,β] * = 1,2,... (1.1)
oin

for the pseudo-differential operator

has a solution, then Q conjugates to D, by means of S(t) = 1 4- pseudo-dif-
ferential

1, with — = _(β»)_S; (1.2)
otn
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then S(t) admits the representation

in terms of a tau-function τ satisfying the KP hierarchy.

Remark. The operator S(t) is unique up to multiplication by S0,

S(t)π,S(t)S0, S0 = l + *>,/>"'» ftf constants, (1.3)
i

since

Also a well-known fact is that the wave functions

, .

are solutions of

dΨ dΨ*
— = (Q")+Ψ, ΎΓ = -(QT)liΨ* (1.5)

and

zΨ = QΨ, zΨ* = QτΨ*. (1.6)

In view of the Heisenberg relation [d/dz,z] = 1, it is natural to compute, using
(1.4)

ly ^
oz oz

= s
d

(1.7)

Therefore, since [d/dz,z] = 1 and more generally

1- a l l p ί l (! 8)
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we have

, -Mβ-p + 1] = 1, all /> £ 1. (1.9)
P J

We now prove the following identity, due to Goeree [G]

)Dί(
\dz

/i = 0,1,2,. . . ,
m = - 1,0,1,... . (1.10)

Proof. The proof is based on an identity of Date, Jimbo, Kashiwara, Miwa
[DJKM] for general pseudo-differential operators U(x9 d/dx) and V(x9 d/dx),
depending on x :

where H(x) = ( — \ δ(x) is the Heavy side function; the integral can be
\dxj

evaluated by the residue theorem.
Setting

t = (t1,t2,...) and f ' = ( f ί ,/ 2 , . . . )

we evaluate (MnQmp+ "(0)- in two different ways: on the one hand

(MnQmp+"(t)).δ(tl-t'1)=Σ(MnQn"'+"(t))-iD-iδ(t1-t'1)i

= Σ (M g""+ (θ)-« (fl

(Γ- i)'ι

and on the other hand, using (1.11) in the third equality

- Resz ψ(t9z) - zm^+« ^*(ί',z) tffo - ίi), using (1.7).

Comparing these two expressions, when tv > t[9 dividing by H(t± — t[)9 taking
derivatives on both sides and letting tί\ t { 9 leads to (1.10).
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When

~2L = Qp = Dp + q2(t)Dp

is a differential operator, then (1.1) becomes the /^-reduced GeΓfand-Dickey
hierarchy (^-reduced KP hierarchy)

= 0, n = p,2p,3p,... . (1.12)

Conversely, if the differential operator L of order p satisfies (1.12), then
Q = L1/P satisfies (1.1).

Incidentally, relation (1.9) amounts to

where the second operator in the bracket is pseudo-differential.
The wave function Ψ leads naturally to the consideration of an infinite-

dimensional plane F° in Gr, that is Sato's Grassmannian of linear spaces, con-
taining formal power series in z ([Sa] or [SW]). It is defined as follows:

= span{!P(f,z) all ίeC0 0}, using Taylor's theorem; (1.14)

then it is well known that

Observe also that since F° is a linear space, it is closed under differentiation
up to any order.

2. Proof of Theorem 1

Since the flow must preserve [L, P] = 1, differentiating this relation with re-
spect to tn and using dL/dtn = [(Lnlp) +, L], we have

If [L, P] = 1 for some differential operator P, then L has the following property
(see Shiota [Sh, Remark 3])

{differential Q such that [L,β] - 0} =

and so
P p oo

— -[(L"/')+,P]= Σ
Otn fc = 0
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The most general solution for this equation in P has the form

00 00
1 — V / V /Λ")

— 2^ ln L, Ck
n=l k=0

with

~ = ((L"'^,P],

and so, modulo a Taylor series in L, the operator P is a solution of

= 0 n = p,2p,3p,.... (2.1)

Both L and P are independent of tp,t2p,..., i.e. we may set trp = 0
(r = 1, 2, . . .) whenever it appears.

Since L = SDPS~ 1 , the constraint [L, P] = 1 amounts to

= [D",S-1PS]-ί. =

implying

S-ipS-'D1-^ Σ CιDl, Cι = cι(t2,t3,...) (2.2)
P ί= -oo

we now specify the ί -dependence of q; taking the derivative d/dtn for w > 1,

00 PC. Λ

Σ tiDl = --s-lPS

+ S-1[(Ln/p)+,P]S-S-1P(Ln/p)_S, using (1.2)

= \D\ Σ CiD^-D1-*], using (2.2)
I P J

- - [/>",*] Z)1"11, since q - c{(t2, ί3, . . .)

leads to

-Γ-*- = -<5 ί ? n _ p for n > 1, n φ O(modp)

= 0 for n = p, 2p, . . . .
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Therefore

cn-p = ~tn + cn-p(0) for n > 1, n φ O(mod^)

= cπ-p(0) for n = p, 2p9 ...

= cn-p(0) for n < 1 (2.3)

and
-1 1 °° * 1- °° r i

/> n = 2 " 7? r = 0 KP ί< l-p
« Φ r p

with constants q. Since P is defined modulo <C[L] and since SDrpS~{ = Π,
we may remove, without harm, the terms ΣcrPD

rp from S~l PS, leading to

.. j. ^ ..

/ ? w = 2 " /? i < l - p

1 oo

= - Σ «ίB/)--'+ Σ ctD>, (2.4)
P n-\ > ί<1-p

and thus, since P = P+ and since Lί/p (/ < 1 - /?) is strictly pseudo-differential,

_ 1 °° π-p -1

P 1 ί < l - p

1 ^ ~
^"1 + Σ CiLi/p

P 1 ί<l-p

1 i^
= -MLP + Σ ctL

i/p. (2.5)
/? i < l - p

As pointed out in (1.3), there remains the freedom to change S (t) r* S (t) S0

without modifying P+ and L; in the expression (2.4), this will only affect the
γ 00

term -D1'". Indeed, setting 50 = 1 + ψ = 1 +'ΣbίD~ί pseudo-differential,
P iP

with constant coefficients, notice that

So1= 1 -ψ + ψ2+ ... and SrfSj1 = η

and so

-D1-'n,-
P P

^ 1 p

1->

1 p

+Ά— "''" 1

(2.6)
P
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for some polynomial expression Ft. Therefore

J. X ]

P 2 P P

+ Σ , (- l - j + Fi(bi,...9bi-i) + C-i.

1 GO

upon picking the ftj's such that

l-^-F(bl9...,bi-1) = c-i.p.
P

The map Sr*SSQ has the following effect on Ψ and τ:

where 6f = pt ( — ί/i, — - y , . . . ) , z = 1,2,.. . . Finally it will be shown at the end

of the proof of Corollary 1.1 that C-P = so by (2.5)

P

Therefore P is a differential operator if and only if

=-L~γ. (2.8)

proving (0.7') and thus (0.7) for j = 1 and k = ~ 1.
To prove (0.7) in general we proceed by induction on j: assume that (0.7)

holds up to 7, then for k = 0, 1, 2, . . .

- ((MsL~i+jlP)- Lfc + 1)_, since Lfc + 1 is a differential operator
1!/^1)-, using the inductive step
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From the commutation relation

Γ
[Ln+j/p, M] = S Dpn+j, Σ ktkD

k~v

L i
= S[Dpn+j,x]S~ΐ

= (Pn + j)SDpn+j~1S~1 = (pn

it follows that

(MjLn+j/p) (MLm+i/p) = Mj(MLn+j/p + [Ln+slP,M]) Lm+1/p

= Mj+1LH + n+'Ύ~ + (pn +;') MjLm+n+j/p.

Then, setting m = - 1 and n = 0 into this relation, using the fact that Mj Lj/p

is a differential operator and the precise expression (2.8) for Mj L~1+j/p (both
by the inductive step)

M' I + 1L~1 +~

P ~

concluding the proof of Theorem 1.

Proof of Corollary 1.1. This proof, inspired by Kac and Schwarz [K-S], seems
more direct than theirs. Since the plane V° = span{^(i,z), all ίeC°°}eGr is
closed under differentiation Dk and, in particular, under the action of the
differential operators L(f) and P(t) (see (1.14)), we have

LVQ a V° and PVQ c F°, with [L, P] = 1. (2.9)

Then

L(t)Ψ(t,z) = zpΨ(t,z)εV°, for all

and

P(t) ψ(t,z) = S(Σ -tnD"-lDl-p + c..pD-

,)eF° (2.10)
/

for all t, using (1.7).
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Therefore, since F° = span {Ψ (t, z) all te(C°°}, the conditions (2.9) translate into
^-independent conditions,

zp γQ c F° and Ap F° c K°, with [Ap, z
p] = 1. (2.11)

We now prove a point, left open in the proof of Theorem 1, namely that
c-p = (1 — p)/2p. The proof given below is based on calculations of [A] and
[Schw], but is more straightforward. Consider the related pair of maps

2
n φ f c p

i f ,
n φ f c p

= z

and

I -p + j

using Dj - x = xDj +jDj~l

a linear combination of

with holomorphic coefficients in t

a linear combination of

with holomorphic coefficients in t
which are Laurent in zp

= APD
JΨ

a linear combination of

Ψ9 DΨ, D2Ψ, . . . , w i t h

holomorphic coefficients in t

a linear combination of
Ψ Γ)Ψ Π2Ψ Γ)P~1Ψi, xv i, LJ ι , . . . , ^ y i

7pψ 7p Γ)Ψ ΠP~I ΨΔ i, Δ A y χ , . . . , i y T

z2^ Ψ, ... , with

holomorphic coefficients in t

a linear combination of
Ψ, DΨ, ... ,DP~1Ψ, with

coefficients polynomial in zp

and holomorphic in t

since A F°

since F°
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Therefore j/0 is represented by a matrix of the form

Ό 0

0

p-\

and j/ by a matrix holomorphic in t and polynomial in zp. These two maps
intertwine; the following diagram commutes:

=APD
JΨ

and

L

and thus

Setting y = zp, we have

and
Res,=oo 7>Λ/ = 0;

by the equality of the above traces, we have

^^+/>c_p = 0,

confirming that c_ p = (1 — p)/2p.

Proof of Corollary 1.2. To prove (0.8), compute

1

1

-, Σ
k-p

Γ P

= - Σ ktk
P k^p+1

ί ^ ,
= -- Σ

8L
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For p = 2, setting
L = S(t) D2S(tΓ1 = D2 + 2(logτ)"

in the previous expression, one finds

-1= Σ ktk-

leading to (0.9) upon integration.

3. Vertex Operators, the Fay Identity, TfF-Algebras and the Spectral Theory
for the Second Symplectic Structure

Given an arbitrary, but fixed parameter μ, the Bάcklund-Darboux transfor-
mation 4

transforms a wave function Ψ into a new wave function Ψί and a τ-function into
a new one

f, μ) τ(0 = τ^) = * ' τ(ί - [μ-1]). (3.1)

In the Grassmannian picture (1.14), the transformation Ψr*ψ± induces a
transformation in Gr: (for precise statements and generalizations, see for in-
stance [A-vM])

Vt e Gr Λ> Vί ε Gr such that z V{ ^V1. (3.2)

It is natural to consider the "inverse" X(t,λ)9

( t , λ ) τ , = e τ,(t + [A'1]); (3.3)

in the Grassmannian picture

V} E Gr r* V* e Gr such that z VI ^Vl. (3.4)

It is not quite an inverse, since the following expression has a singularity, when
λ -> μ; indeed, using (0.10)

X(t,X) X(t, μ)τ =
- μ

using exp[ -,

00

λ Σ tt(μ' -
e'

λ X(t,λ,μ)τ
λ-μ

1 00 ( it

<3 5)
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where the expressions Wn

(v} form the generators of a so-called τ^ + 00 -algebra,
i.e. the commutators of two such generators is a (non-linear) polynomial of
the generators. Here are a few generators :

~ + (-n)t-n, ί_ B = 0 f o r n > 0 ,

(« + !)(« + 2) jw,

π

(4) = 7Π

(4) - 2(n + 3) /n

(3) + (2«2 + 9n + 11) Λ<2) -(« + !)(» + 2) (n

(3.6)
with 5 (see also the appendix for explizit formulae)

- Σ r W:, J™ = Σ :
i + j = n i + j + k = n

Λ(4)= Σ -.jpjpjpjt":- Σ dv^o ̂ O .etc ..... (3.7)

In the Grassmannian picture, we have the following inclusions, using (3.2) and
(3.4)

Ff ID z F/ c F'

τ(0^> T! = X(t,λ)τn*τ = X(t,λ9 μ)τ = e^^ ~λ\(t + [/I'1] - [μ'1]).

Consider now the generating functions (the stress-energy tensors)

^(v)= Σ λ~n-vWn

(^ and /]v)= Σ λ-"-vJ}v\ (3.8)
n= — oo n= — oo

We now have the following relations, essentially a reformulation of the Fay
identity.

Lemma 3.1 (Fay identity). In the general KP-context, the wave function Ψ(t,λ)
and the adjoint wave function Ψ*(t, μ) satisfy

^, (3.9)
μ —

and thus

dλ
' (3.10)

Proof. Differentiating the Fay identity for τ-functions

Σ (so ~ ̂ ) (s2 - s3) τ(t + [s0] + [ί J) τ (/ + [s2] + [s3]) = 0
cyclic

permutations of 1, 2, 3

:: means normal ordering, i.e., pull the differentiation to the right
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with regard to s0, then setting s0 = s3 = 0, dividing by s1s29 and shifting t by
tr\t — [s2], lead to the differential Fay identity

{τ(0, τ(t + [Sl] - [s2]} + (if1 - sϊ1) (τ(t + [Sl] - [s2]) τ(0
-τ(ί + [Sl])τ(ί-[52])) = 0; (3.11)

see Mumford [Mu] and [A-vM]. This relation (3.11) with λ = sϊ1 and μ = s2

l,
00

multiplied with exp Σ ^(μ1 — λl) leads to equality (*) below; we thus have
i

μ-λ τ(0
oo (,ι _

,., "" '--Σ

Differentiating this relation with regard to μ and setting μ = λ leads to (3.10),
ending the proof of Lemma 3.1.

Remark. It was pointed out to us by A. Radul that the Fay trisecant identity has
already appeared in the context of quantum field theory; see for instance
A. K. Raina [Rai].

Lemma 3.2. For the p-r educed GeΓfand-Dίckey equations

sλ (λmp+n Ψ*(t,λ) D* ί - Y Ψ(t9λ)

m = - 1,0,1,... (3.13)

ι = 0, l ,2 , . . . ,
and in particular

/ + r-L

P _ 1 =
v τ

j= -1,0,1,.... (3.14)

Proof. Equation (1.10) applied to Q = L1/p leads to (3.13); in particular

-! = ResΛ

which by Lemma 3.1 leads to (3.14), ending the proof of Lemma 3.2.
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For p = 2, the Gelfand-Dickey equations reduce to the KdV equation

^- = Kq = ̂ (q"' + 6qq' (' = 0(5*))

where

L = Q2 = D2 + q, ? = 2(iogτ)"

As is well-known, it has two compatible symplectic structures K and D (see
[MM]). We now have

Lemma 3.3. (Spectral theory for K — z2D). In the KdV case (p = 2), the wave
functions Ψ (t,z) and Ψ*(t,z) defined in (1.4) satisfy the following formulas

(i) {<?*, Ψ} = -2z,
(ii) (K-z2D)Ψ*Ψ = 0,

Γ)Ψ
(iii) CK-z2!))^*^^ -z2 + zDΨ*Ψ.

Proof. Substituting

tr\t — [si], slr\ -z"1 and

into the differential Fay identity (3.11) leads to (3.15)

-2z(τ(t-[z-1])τ(t [-z'1]) - τ(ί) τ(f - [-z'1] - [z'1])) = 0.

Since in the KdV (/? = 2) case τ(ί) = τ (t^ , ί3 , /5 , . . .) does not depend on t2 9t4 , . . . ,
wehaveτ(/ - [-z'1] - [z'1]) = τ(t + [z'1] - [z'1]) - τ(/)and τ(t - [-z~1])
= τ(t + [z'1]). Using {e~xza, exzb] = {a,b} - 2zab and {a/e,b/e} = [a,b}/e2,
one computes

= -2z using (3.15),

which establishes (i).
Using the eigenrelations

(L-λ2)Ψ*(t,λ) = 0 and (L - μ2) Ψ(t,μ) = 0

we compute

4K(Ψ*(t,λ) Ψ(t,μ)} = (λ2 + 3μ2) Ψ*(t,λ)'Ψ(t,μ)

+ (μ2 + 3λ2)Ψ*(t,λ)Ψ(t,μ)'. (3.16)
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Setting λ = μ = z leads at once to (ii). Then taking the /^-derivative of (3.16) and
setting λ = μ = z yield

(K-z2D)Ψ*(t9z)-jtψ(t9z) =

= I z OP* (f, z) !P (f, z))' - z OF* (t, z) ψ (t, z)')

= z OP* (ί, z) Ψ (ί, z))' - z z + OF* (ί, z) <F (ί, z))' using (i)

which establishes (iii), ending the proof of Lemma 3.3.
Having considered the generators of the H^ + ̂ -algebra, recall from the intro-

duction the definition of

9 l^j^p,neZ,tp=t2p=...=Q}; (3.17)

correspondingly define the ^-stress energy tensors (in terms of y = zp)

Tp

(j}(y) - Σ Jtfy~n-J l^J^P, with tip = 0, all i £ 1 (3.18)
neZ

and the (truncated) Hfp

 + -stress energy tensors (meromorphic part of Tp

(j}(z))

Tp(j}(y) = Σ J$y-*-j l^J^P, with tip = 0, all / ^ 1. (3.19)
n^-j+1

Then Tp

(j)(y) can also be expressed in terms of so-called p — 1 free bosons φ\p)

(1= 1,2, . . . ,/?- 1), defined by

= = Σ ΛV+,,^ ^ , (3.20)

as illustrated in the examples below.

Example 1. For each/?, the operators

(with ίίp = 0, / ^ l ) (3.21)

are the generators of the Virasoro algebra, namely

[LW,LJ = (n - m) Lw + w + ̂ (π3 - /ι) (5rt+w. (3.22)

In particular (see F-K-N1)

and

TP

(3)(y) = 6p3'2 Σ φi^ί^:. (3.24)
Igi i . ί i thSp-l <5.y 5y 5j
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1
Example 2. For p = 3, the Ln = - J^ and Wn = J^ are the generators of the
^-algebra with relations

[Ln, Lm] — (n — m) Ln+m -\- — (n — n) on+m,

[Wn,Wm] = quadratic functions of Lk and Wk. (3.25)

As pointed out in the introduction, stress-energy tensors seem to also arise
naturally in the context of the two (or more) compatible symplectic structures of
the GeΓfand-Dickey equations, as we illustrate here for the KdV equation
(p = 2), where

with two symplectic structures D and K, where

L = Q2 = D2 + q, <7 = 2(logτ)"

4

Proposition 3.4. In the KdV case (p = 2), we have the following relations

(i) (K-z2D)D Σ

(ii) (K-z2D}D Σ

or what is the same

(iii) recurrence relation

(a} KD J l ( T ) - D 2 /J")+l(τ) = 0 n = 0, 1 , 2, . . .

= -2 for6 n= -1.

Corollary. TjΓτ satisfies the KdV equation and J(2\ (τ) = 0 (i.e., L-v τ = 0),
= Q fording -1 (i.e., Lπτ = Ofor all n ̂  -1).

6 for w = — 1, it can also be written
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Proof of Proposition 3.4. From Lemma 3.3 (ii), we have (K - λ2 D) Ψ* Ψ = 0
Wlth °° W(1)M /(1)(Y)

Ψ*Ψ= £ λ-n~lD * ( ) = Σ λ-x^D^-^, (3.26)
«= — oo T /lodd T

since τ is independent of t2, t4, £6, . .. ,

leading to (i) and (iii, a) by identifying powers of λ. Then using again (3.10) for
v = 2, relation (3.6), and the fact that /w

(2)(τ) identically vanishes for

n odd

2 Ψ = Σ λ + n - 2 D - -
OΛ n even T

using (i), (iii, a) and (3.26), one computes

(K-λ2D) Σ -(n
n odd T « odd T

Using this information, we have
df

-2A2 = (K-λ2D)2Ψ* — - 2λD Ψ* Ψ
oλ

establishing (ii) and thus also (iii, b).

Proof of Corollary. By relation (iii, a) for « ̂  0, we have that /i2] (τ) = 0 implies
inductively D2J$(τ)/τ = 0 and so /β>(τ) - 0.

Remark 0. [DVV] have considered relations of the type (ii) for solutions τ of the
KdV and string equations. Proposition 3.4 shows that such relations hold for
general solutions of KdV, regardless of the string equation.

Remark 1. Recurrence relation (iii, a) is nothing but the by now classic Lenard
relation ~ , ~ i

Remark 2. Relations (iii, b) for n ̂  - 1 turn out to be reducible to (iii, a). For
instance for n = - 1, relation (iii, b) can be written

k-4

Σ
fc=5,7,...

- Σ ^ - 2 D 2

*=3,5,... Otk-2

= 0,

using AΓDί3 = q' t3/2 and (iii, a).
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Remark 3. In Magri's theory (see [MM] and [McK]), integrability implies double
eigenvalues for the Nyenhuis tensor D'1 K. How is the observation related to
Proposition 3.4? Along a different vein, in a beautiful computation, Kirillov [Ki]
has shown that changing variable x in D 2 + q (x) by means of a diffeomorphism
χr*s(x), leads to a new operator D2 + q(x) (after an appropriate "conjuga-
tion"), where q(x) contains a Schwarzian derivative:

1

The infinitesimal deformation of this operation, thus belonging to the Virasoro
algebra, leads at once to the second symplectic structure of KdV; this has been
generalized for arbitrary/? by [FIZ] . Another connection between ^algebras and
symplectic structures comes up as follows: the two symplectic structures yield two
different Poisson brackets between the various functions #2(0> ><7p(0 °f
the differential operator L (fact first observed in the KdV case by Gervais [Ge]).
Then expanding these functions into Fourier series and expressing the second
Hamiltonian structure in terms of its Fourier coefficients lead to brackets between
these Fourier coefficients; they exactly generate thei^-algebra. Consult for in-
stance A. O. Radul [R]. The connection between these different points of view
remains obscure.

4. Proof of Theorem 2

Step 1. If τ satisfies the ^-reduced GePfand-Dickey and the string equations,
then τ is a null-vector (vacuum-vector) for i^p

 +, which upon bracketing reads

Indeed if τ is a solution of dL/dtk = [(Lklp)+, L] and [L, P] = 1, then accord-
ing to Theorem 1 and Lemma 3.2 (in that order),

for v = 1,2,... and j = - 1,0,1, . . . ,
v τ

implying
W£}(τ} = cτ,

Since iΓp

 + has no central term, every element of i^p

 + can be written as a commu-
tator (see Lemma 4.2 of [FKN2]) of two elements of H^ +, implying the constant
c = 0, and thus by (3.6),

J$(τ) = 0 for v = l ,2, . . . , ; = -!,0,1,...,

which for v = 1, implies d τ / d t k p = 0; so we may set tkp = 0 for k = 1,2, . . . .
That ^+ is spanned by the generators in (4.1) is obtained by repeatedly

bracketing J™p with /I2j, yielding /(

(

v̂ + 1)p; for instance, from (3.23) we have

I-6 J~P•> Jmp J — (~ 2 — m) J(m- i ) p ,

and so J(-1P can be generated from the higher ones but not J(-lp,

[i j™, yW] = - J^p, whereas [i J™, J^p] = 0.

This ends the proof of Step 1.
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Step 2. The solution τ to the ̂ -reduced GeΓfand-Dickey and the string equation
[L, P] = 1 exists.

According to (2.9) and (2.10), the linear space F°eGr is invariant under the
action of the operators L(t) and P(t), which act as (multiplication by) zp and Ap

respectively, with [Ap, zp] = 1. By modifying the time-origin with the shift
tp+i ^tp+i + 1, the new operators L(t) and P(t) thus obtained still satisfy

and
PΨ = APΨ,

where

and [Ap, zp] = 1 indeed the shift tp+1r* tp+1 + 1 produces the linear term in Ap,
as appears from (2.10). Since Ak Ψ(0,z) blows up like zk for z / oo and since in
the big stratum, it is possible to find a basis whose functions blow up as zk

(k = 0,1,2,...), we have

F° = span{<F(0,z), Ap Ψ(0,z), A2

P Ψ(0,z), A*p Ψ(0,z),...}

but since zpV° a F°, the function Ψ(Q,z) must satisfy

zp Ψ (0, z) £ α, 4 Ψ (0, z), αp Φ 0, (4.4)
i = 0

for some constants αt . Therefore the existence of a τ-function solution to
/?-reduced GeΓfand-Dickey and string reduces to the existence of a formal plane

oo

F°eGr containing a function !F(0,z) = 1 +Σ ^z ~ f satisfying (4.4) for some
i

constants α f . The above differential Eq. (4.4) for ^(Ojz) with αf = 0
(1 ^ / ^ j7 - 1) reduces by means of elementary transformations to an equation
(in φ) for which a solution exists, namely the higher Airy function

/ χ P + 1 \

= yφ, with φ ( j / ) = f e x p ( — + xy } dx. (4.5)
"y* \ P + * /

This ends the proof of Step 2.

SYe/? 3. The vacuum vector τ of ̂  is unique.
The generators J^ of

have the form

+ Σ Σ Ci l... i t:4
1)41).--41): (4-6)
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for some constants cίt ... ίk. Making the substitution tp+ί rv tp+ί + 1,

-

_ι

non-linear terms

i of the form tΛl9 ...

( higher order linear \

\differential operators/'

and similarly for the second half of (4.6). Hence

_v + 1 , .. d d /non-linear termsλ
/ί'-V+r),, = (v + i) -j-— + Σ <v +

otv+rp V ' < v otv+rp-(v-V'}p \ as above /

/ higher order linear \

^differential operators/'

Thus possibly after taking linear combinations we find new generators of H^p

 +

of the form

d ( higher order linear \
Hi = — + (non-linear terms) +

dti \differential operators/

/ = 1 , 2 , ... and φ/?, 2p, ...

To prove uniqueness we must show τ (0) = 0 implies τ = 0; that is, by Taylor,
all partial derivatives of τ vanish at / = 0. Indeed, one shows inductively that all
derivatives of τ with respect to t±, t2,..., tk (at t = 0) vanish as a consequence of

Step 4. To prove Theorem 2, we now proceed as follows: letting / and II be
the two sets in (0.12). Step 1 implies at once the inclusion / g //in (0.12). Accord-
ing to Step 2, the space / of solutions is non-empty and according to Step 3, the
space // contains exactly one function. Therefore / = //, ending the proof of
Theorem 2.

5. An Explicit Solution of Gel'fand-Dickey and String (Theorem 3)

In showing τ^N}(t) of (0.13) is a ^-vacuum vector, a first step consists of
making the following substitution X=Z—Θ and Λ = (— Θ)p, yielding (remember

-
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/ (Z — Θ)p

J dZ exp Tr I non-linear terms in — —

J dZ exp Tr ί quadratic terms in J

J dZ exp Tr - -̂ - ((Z - Θ)p+ί + (- 1)P + 1(O + 1) ZΘP - Θp+1))

J dX exp Tr - —ί-̂  (Xp+1 + (- 1)^+1 ((p + 1) (X + 0) <9P -

• "fθf-θfY112

constant Π f — *

J dX exp Tr ( - ^—- + (- θ)pX j

/ N ΩP £}P\ ~ ^/^ n
constant) fl j ~ Ω

j } exp Tr^—-(- θ)p + 1

\ij=ί V i - V j J p + l

= constant

\ dX exp Tr f + XΛ }
\ P + 1 /

Π ^""fT'πexp ^
> + !"'

s constant "?mΓ'. (5.1)

In a second step, we exhibit a PDE for ^4P(/L). To do this consider first

A = Ap(Y) with all entries of Ύ = Ft non-zero 7.

Then, since by integration by parts

we have

and thus
pp j

^- Σ
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But since A (7) is invariant under conjugation of F, we have

A

where
Y= UlλU,

Then, differentiating the latter by Y i j 9 leads to

τέL=^U., (5-3)
u Iij

We shall need quantities like

= -Σ-Γ-T if J8 = α,
y Φ / 5 Ay — Aβ

F3(«,β) = Σ £ft d*y"Y Uβl = - F2(a, β)2 + 2F2(v, α) F2(α, β) if β Φ α

F2(«, ()) = Σ Cft ^7 . V "̂ ^/" = ̂ <α' ̂  if « = 7 > / 5 Φ αaiϊ^ik =jF2(α5y) i f α = ) 8 5 7 Φ α

= 0 otherwise. (5.4)

Then multiplying (5.2) to the left and to the right by Ut\ and Uιj; summing over
/, j and using the chain rule

dA dA dλx

'
d2A dλx dλ d2A 8A

one finds the partial differential equations

αφί x^'^α ^ ' " f / /r c\

^!+v F(nn(-<L_-<L\(JL.<>
Λ 2 3 ~ f ~ ^ j Γ 2 V α ? U l Λ Λ Λ Q l l ^ T "r^
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etc. . . . , with F2(α, /), F3(α, / ) , . . . given by (5.4).
We now define

1 N

f — _ ^ l - i / p j _ \ 9τi = L* λj ϊ — 1 , Z, . . .

which become independent time-variables when Nsao. In Sect. 6 we show
that τ*(0 is indeed a function of t only. Now set Ap(λ) = τ^(0 5p(λ) in the
partial differential equations above (5.5) and (5.6) and take the following
derivatives (set ' = d/dλΛ):

^ = τ" + 2

and, using a symmetrization procedure,

T ' _ γ δ V r" Y d2
τ -2.TΓία> τ - 2. Λ ,

α C α̂ α,/S ί7ία

τ =
α,)β,y VΛ Oβ Oly £y.,βOaLOβ

Letting 7V/oo, we find by means of a not straightforward calculation that

-*„ for p = 2, (5.7)

5, (5.8)

where
1 / \

, (P = 3),

where Tp

(j}(y)= Σ Jnpy~n~j(^P = 0, all / ^ l ) is the truncated stress-

energy tensor associated with ϋ^ + and introduced in (3.18) and φ}p} the bosons
introduced in (3.20).

Case, p = 2. When T V / o o , the λl move independently for fixed tt and are thus
indeterminates; therefore

) = 0 implies /2

(2)(τ2) = 0

and so, τ2 is a vacuum vector for the truncated Virasoro algebra (p = 2). This
is a reinterpretation of an argument of Kontsevich [K2].

Case, p = 3. As before, for large N, λt plays the role of an indeterminate and
all the coefficient of the various power in (5.8) must vanish. Since R+(y)τ3

contains the only positive ^-powers of (5.8), we have

Σ t3(n+J+3)Jfl(τ3) = 0 for 7^0.
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Since t3k does not appear in /3

(2)(τ3), they are also indeterminates, and so all
jΓ3

(^(τ3) = 0 for n ^ - 1, i.e. f3

(2)(y)τ3 = 0. Therefore again from (5.8)

0=Γ 3

( 3>(y)τ 3= Σ y-*-* J f l f a )
n^ -2

yielding /3^(τ3) = 0 for n ̂  — 2. This shows τ3 is a vacuum vector for the
truncated algebra i^ +. Therefore also from Theorem 2, the function τ3 is a so-
lution of the Boussinesq and string equations. The proof for general p pro-
ceeds along similar lines.

Proof of Corollary 3.1. Defining with Witten [W2] the operator

one checks that

Al+rptk = (- \)">(k - rp) tk.rp (£ = 1,2,.. .)

and, using the explicit expression (5.1) for Bp, that

ί+j=P

On the one hand, we have using the two formulas above

^
A1.p(τpBp) = - Bp Σ itJtj + 2 Σ iti — τ9 (5.9)

^ \-i-J=-p ~i + J=-p OtjJ

and on the other hand, using the explicit representation (5.1) for Bp in terms
of the integral (letting Ap = $dZe*)

= (-ί)p-1p$dZe'ΎΐZ. (5.10)

Equality (*) follows from the observation that by integration by parts

Since τpβp = Άp, comparing (5.9) and (5.10) leads to
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By means of the (often used) time shift tp+lr\tp+l + l (see for instance
Sect. 4, Step 2),

then, since J(-pτp = 0 by Theorem 3, the result of Corollary 3.1 follows.

6. An Explicit Evaluation of τp(t)

We shall evaluate τ p ( t ) = Ap(λ)/Bp(λ), the ratio of determinants, in the style of
the classical formula for Schur polynomials, using an integration formula of
Mehta [Me], following Kontsevich [K3] in the KdV case. This will immedi-

ately prove τ p ( t ) is a formal sum in the variables t{ = TΣ λj~i/p', a fact taken

for granted in Sect. 5. Indeed, Mehta observed if Φ is a conjugacy invariant
function on the space of hermitian N x N matrices, then for any diagonal her-
mitian matrix Y

ί
(Hermitian matrices)

= (-2π^
(diagonal matrices)

with

V(dmg(Xl9X2, . . . , XN)) = Π (Xj ~ Xt) = fetWΓ^iϊijzN

From this it follows that (c is a constant)

(dj-v

detU7
A* (X) = c \y,,,^ "*'"*" (6.1)

with

here we have made use of

Substituting into (6.1) the specific expression (6.2) of ap(y) with the following
asymptotic expansion for large y (see [K-S]):

±I\ oo -P^λ

Σ<*ny
 P n,
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and using

where

g.(s) = s~j(l 4- a{j)s 4- a(

2

j)s2 + ...) = s~jhj(s), s small;

yields

_ p + l

k

Thus (see (5.1) for Bp(λ))

(Π^1/P Π
i ί < j

after multiplying the / t h

f both ma

byλΓN/p

JSK ' row of both matrices

Π (μ» - Mi) Π (^ - μ7
i<j i<j

with

μ£ = λΓ1/p, Hj(s} = ̂ - 7̂.(^) = ^-^Ί 1 +Σ
i

Therefore H(μl9 ..., μN) is a formal power series in the μ ί 9 skew-symmetric
in its arguments, and so divisible in the ring of formal power series by
Π (μ; — μ/) Then, the ratio H(μ)/Yl (μt — μ/) is a symmetric function in the
i<j i<J
μi, and hence (as in the polynomial case) a formal series in the elementary
symmetric variables π/ = Σ μ/, j = 1,2,. . . therefore τ p ( t ) is a formal series
in the tj = π///, 7 = 1,2, . . . , as claimed.
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7. Appendix

J^ = ~-nt-n with ίΛ = O i f w < 0 ,
dtn

2)= Σ τ + 2 Σ / ί ι τ + Σ

r<3> = Σ +3 Σ / ί ;
= n dti dtj dtn -i+j+k=n

 ldtjdtk

+ 3 Σ (^)(/θ)- + Σ (
— i-j + k = n Oik —i-j — k = n

Acknowledgements. We learned the subject from O. Babelon, J. Fastre, Cl. Itzykson, V. Kac,
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