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Abstract. We show that the 1-dimensional Schrδdinger equation with a quasi-
periodic potential which is analytic on its hull admits a Floquet representation
for almost every energy E in the upper part of the spectrum. We prove that the
upper part of the spectrum is purely absolutely continuous and that, for a generic
potential, it is a Cantor set. We also show that for a small potential these results
extend to the whole spectrum.

1. Introduction

In this paper we will consider the Schrόdinger equation

for a real quasi-periodic potential q(ωt) with frequency vector ω, and for large
energies E or small potential q. We will study the existence and non-existence of
Floquet solutions or Block waves, i.e. solutions of the form y(t) = ekt(p1(t) + tp2(t}\
where k is a constant and pί9p2 are quasi-periodic functions with the frequency

co — —
vector ω or — . We will also study the nature of the spectrum σ(<£\ where <£ is

the closure of the operator

in the space L2(R) of complex square integrable functions on R.
We shall assume that g T^-^R, T = R/(2πZ), is analytic in a complex neigh-

bourhood |Imx| < r of Ύd, and we shall use the norm

\q\,= sup \q(x)\.
\lmx\<r

We shall also assume that ω is diophantine, i.e.
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for some τ > d — 1, where <n> = <n,ω> is the scalar product in Rd.

LetJ?=< -—'.neZ* I -half the frequency module ofq- and let p = ρ(E) be the

rotation number of (*). p is a monotone and continuous function, and

(see [1]J. The connected components of mi(p~l(Jί}) are the gaps. So the resolvent
set of 3? is the union of all gaps. A collapsed gap is a point {E} for which ρ(E}<=Jl

A real number p is said to be dίophantίne (with respect to Jί) if there exist K
and σ such that

p- neZd\Q92

and it is said to be rational (with respect to

Description of the Results. We shall formulate our result for the matrix equation
corresponding to (*).

(**)
\q(ωt)-E

Theorem A. There exists a constant C = C(τ, r) such that if

— oo s<C

then the following hold for E > E0(|g|r).
A.I. If p(E) is diophantine or rational, then there exists a matrix A = Λ(E) in

5/(2,R) and an analytic matrix valued function 7:Td-»G/(2,R), also depending on

E, such that X(t) = Y( — i

A2. If p(E) is neither diophantine nor rational, then

liminf \X(t)- X(0)\ <-\X(Q)\ and lim ^̂  = 0.
|ί|-χ» 2 |f|->oo t

Theorem A is a statement about reducibility of equation (**). Indeed, YI —t
solves the equation ^

dt \ 2 / \q(ωt)-E 0

for almost every rotation p(E) > p(E0). Linear periodic systems are always reducible
as was shown by Floquet - Floquet theory - but the situation for q-p systems is
more complicated.
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In the resolvent set it is_known that (**) is reducible (see [2]). The first positive
result in the spectrum σ(=£?) was obtained by Dinaburg-Sinai [3] (see also [4]).
They showed the existence of a set 0i\ cz ]E0, oo [nσ(J^) such that (**) is reducible
and p(E) is diophantine for all Ee^l. This set, however, is not of full measure in
]£0, oo [nσ(j^). Moser-Pόschel in [2] constructed a set @2 c ]£0, oo[nσ(J^) for
which (**) is reducible and p(E) is rational for all Ee^2- ^

ut this set was also not
as large as one could reasonably hope for.

In fact, both 3t^ and ̂ 2 are defined by certain arithmetric conditions on p(E\
and these conditions can be relaxed only by letting E0 become larger - which essen-
tially amounts to require a stronger smallness condition. The principal achievement
of this paper is that the smallness condition is completely freed from any dependence
of the arithmetic properties of p(E) other than being diophantine or rational.

By Theorem Al, (**) is reducible for a.e. rotation number pε{ρ(E):E> E0},
but one may ask if this also holds for a.e. E > E0. That this indeed is the case is
the content of the following corollary.

Corollary. 2p(E)p'(E) ^ 1 for almost every Eeσ(J^)n]E0, oo[. In particular, the set
of all E> E0 for which p(E) is neither diophantine nor rational is of measure 0.

The corollary is almost immediate. It is known that 2p(E)p'(E) ^ 1 for a.e.
Eε{E:γ(E) = 0}, where γ(E) is the "maximal Lyapunov exponent" of (*) (see [5]).
If now p(E) is diophantine, then y(E) = 0 by Al, and if if p(E) is neither diophantine
nor rational, then y(E) = 0 by A2. Hence γ(E) = 0 for a.e. E in the upper part of
the spectrum.

One may reasonably ask if (**) is reducible for all E > E0. There are of course
q for which this is the case - q = const for example - but this is not the generic
situation. In fact, if X is reducible with p(E) neither diophantine nor rational,

then lim = 0 by A2, which implies that X is bounded. The existence of
iπ-oo t

unbounded such solutions is the content of the next theorem.

Theorem B. For E > E0(\q\r) the following hold.
Bl. The matrix A(E) = 0 if{E} is a collapsed gap, and it is nilpotent + 0 ifE is an

endpoint of a gap.
B2. For a generic set of q's, in the \q\r-topology, there exist E>E0(\q\r) for

which X is unbounded and p(E) is neither diophantine nor rational.

There are several examples in the literature of non-reducible linear q-p systems,
but these examples are all non-smooth in the sense that q only is continuous on
Ύd. To our knowledge the only smooth examples are [6] (see also [7]). These
examples sit in the bottom of the spectrum and are exponentially localized, while
the above result concerns the upper part of the spectrum, and the solutions are
clearly not localized because of A2.

Theorem C. For E > E0(\q\r) the following hold.
Cl. For a generic potential q, in the \q\r-topology, σ(JSf)n]£0(|g|Γ), oo[ is a

Cantor set._
C2. σ(JS?) n ] E0( I q |r), oo [ is purely absolutely continuous. In particular, there are

no point eigenvalues in ]£0(klrX °°[
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tl follows, as described in [2], from Theorem A. And from A it is also clear
that there is no point spectrum in ]£0(l4lr)> °°[ (For previous results in this
direction, see [8,9].) In particular, if q is small there is no point spectrum at all,
in distinction to the case when q is large and point spectrum can occur [6].

It was in [3] that the existence of some absolutely continuous_ spectrum was
first proven. From [10] we know that the^Lebesgue measure \σΆC(^)Δy~1(Q)\ is 0,
and from [1] we know that y'HOJczσO^.JSince y^O on σ(&) by Theorem A,
and since σac(J$?) c σ(&) we have that \σ(&)Δσac(&)\ = 0. Since both σ(&) and
σac(£f) are closed we can conclude that they are equal, if we just know that, for
any interval /,

σ(J^)n/ / 0Hσ( J^)n/| > 0.
This follows quite easily from the estimates given below, but it does not establish
C2, since there may still be some singular continuous spectrum. In order to rule
this out we shall show, following [3], that all spectral measures are absolutely
continuous with respect to the Lebesgue measure on the set ]£0(klr)» °°[.

Let us also mention that some cases of the discrete Schrodinger equation has
been shown to have purely absolutely continuous spectrum [11, 12].

Idea of proof . The problem is to study an equation

where A1 is constant and F! is small, \F1\^ε1 say. This is obvious if q is small,
but it is true for any q, as was found by Dinaburg-Sinai, if E is large enough.

One wants to construct a transformation Y2 such that

Y'2 = (Al+F1)Y2-Y2(A2 + F2), (1.1)

where A2 is constant and F2 is much smaller than F l 5 in order to start up an
iteration. To do this one solves a linear equation

Y'2 = lAι>Y2l + Fι-(A2-Aά (1-2)

and simply defines F2 by (1.1). In order for F2 to be small one needs a diophantine
condition on the imaginary parts +ϊ'α1 of the eigenvalues of A±\

\2*,-(ny\^K-l\n\-\ rceZd\0, (1.3)

where K± may be large but not too large. In fact, K^ε^ must be small but may
be much larger than ε l 9 so one can take K1 ~ s~σ for σ < 1, for example.

If this holds, then one gets a solution of (1.1) with Y2 close to the identity and
A2 close to A±. And then one can repeat the same procedure for A2 + F2 if just

for some K2 ~ |F2Γ
σ. This is the approach taken by Dinaburg-Sinai in [3].

One crucial point here is that one tries to construct the transformation Y2 as
being close to the identity. It is this requirement which imposes the condition (1.3),
or at least a part of it, on oq. In [2], Moser-Poschel studied the case where (1.3)
is satisfied (for a reasonable KJ for all rceZrf\0 except for one. They found that
one could still transform A1+Fί to A2+F2 with F2 small, if one permits a
transformation Y2 which is close, not to the identity, but to an exponential function
eBt. (Of course, Y2 will not be a solution of the linear equation (1.2) in this case,
and A 2 will not be close to A ί f )
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So using this idea one can relax the condition on α x in such a way that one
requires that the inequality in (1.3) holds for all integer vectors neZd\0 except
possibly one. Of course, even this weaker condition is not always fulfilled, but it
is a well known fact that it suffices to require such an inequality for \n\^Nl9

where N1 can be taken to be ~log( — 1, since Fl is analytic and its Fourier
\ p I

coefficients decay exponentially. v 1 '
Hence, we must require that

|2αx - <^ny\^K~1\n\~s, 0< |n| ^N l 9 except possibly one. (1.4)

Now, (1.4) is always fulfilled because if

|2α 1-<π>|<K 1- 1 |πΓ I and |2αx - <m>| <K~1\m\-3

9

with I n I, I HI I ̂ N19 it follows that

But since K{ ~ ε~σ and N1 ~ log I — 1 this is impossible for εl small enough.
\βι/

So this permits us to always solve (1.1). Repeating this procedure gives
eventually a product Y = f] 7, such that

with A constant. But since Y, is close to an exponential eEj\ the convergence of
this product is unsure unless Bj = 0 for all j sufficiently large. This is indeed the
case if the rotation number p is diophantine or rational, and this is the whole
proof of Al. Moreover, even if the product does not always converge uniformly
on Td, it does converge uniformly on compact intervals in R and, hence, gives
a representation of the solution. This provides the information for proving A2. So
the result in A2, we like to stress this, is obtained by a perturbation method which
is not absolutely convergent.

The other results will follow by the same approach but will require a more
detailed description of aί and its dependence on parameters.

Outline of the Paper. In Sect. 2 we prove a basic small divisor lemma and in Sect. 3
an inductive lemma - these are standard in every KAM-approach. The set-up is
chosen with the only aim of getting as simple and uniform estimates as possible.
This has of course a price and the smallness condition obtained is therefore not
to be taken very seriously. In Sect. 4 we prove Al and A2 as easy consequences
of the inductive lemma.

In Sect. 5 we prove Bl. This requires a substantial amount of work, but Bl,
or rather its "only if" part, is essential also for the proof of B2. The Cantor structure
of the spectrum follows from A in the way described in [2], and we only explain
this without giving any details. B2 is proven in Sect. 6, and the generic condition
is that "all gaps are there." More precisely, we show that on any interval
Δ a ]£0, oo [ in which there is a dense set of gaps, there exist solutions as in B2.
The absolute continuity of the upper part of the spectrum is proven in Sects. 7 and
8 following Dinaburg-Sinai.

For the rotation number of (*), or of the matrix solution X(t) of (**), and its
properties we refer to [1]. However, in the proof we must consider rotation numbers
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of other matrices than X(t\ so we describe this concept and some elementary
properties in an Appendix.

2. The Small Divisor Lemma

Let @r be the space of all analytic functions F:Ύd-+gl(2,C) for which

|F|,= sup |F(x)|<oo.
| Imx|<r

I |r is a norm making J*r into a Banach space. Let & \J J>.
r > 0

If F depends on a parameter λeΔ c R, we say that F is C2 in λ if λ-+Fλe&r

is C2. This is almost equivalent to the requirement that λ^>Fλ(x)egl(2,C) is C2

for each x. Clearly the first condition implies the second, and the second implies
that λ^>Fλe&s is C2 for each* 5 < r. We say that F is piecewise C2 in λ on some
set Δ d R if there exist a finite set {λt} in Δ such that F is C2 on 4\{AJ and such

that the right and left limits of dvF, v = 0, 1, 2, d = — , exist at all points λi9 whenever

such a limit makes sense.
For Fe$r we define

where F(n) is the nih Fourier coefficient of F.

Lemma I. Let A = A(λ)esl(2,C) have eigenvalues ±e(λ\ and assume that
\A(λ) — λJ\<3 for some λ = λ(λ). Let Fe&r and assume

Then there exists a unique Ye$ such that

where dω = <V, ω). Y satisfies the estimate

\Y\s^c— ̂ |F|r, s<r.
(r — s)ότ

Moreover, if F,Ae&r are C2 or pw. C2 in λ, then Ye&s also, and

IPyi <? A I/5FIK7* s == c\ , ^-\T\GΓ r
|_(r-s)3'

s = CL(» - s)3t

( 1̂ 2 \ 3
1 1/5

l \3t I 1(r - s)3V

/ K2 N

U-

' l(r

j |2 1 17

-s)3V

ι̂ 2

-s)3t

']'

M^ιiίΊrl

Y(|a2yl||F|r + |δA||3F|r)

for all s < r. 77ze constant c only depends on τ.
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Proof. We write A = DTD* with

e p

O -e

where D is an Hermitian matrix. The condition \A(λ) — λJ\ < 3 gives a bound for
p, and that is the only reason for this condition.

Now, putting Z = D*YD we get

If

then we get the equations

dωw + 2ew = c

dωu = a + pw

dωz = d- pw

dωv — 2ev = b — p(u — z).

These equations can be solved in Fourier series, and this proves the existence of
Z and also its uniqueness under the condition σ(Z) ci σ(G).

The estimates are standard and we get

(r -
s<r,

where the constant only depends on τ. (This estimate is far from optimal.) This
gives the estimate of 7, since \D\ ̂  1.

Suppose now that F and A are C2 in a neighbourhood of λ. It is clear from
the construction that Y is also C2 near λ if e(/l) ̂  0. And the same holds if F and
A are C2 only in a one-sided neighbourhood of λ.

If now e(/ί) = 0 and A and F are C1 at A, then

Using the estimates of the solution of this equation we get that Y is differentiate
at λ. The other cases are treated in the same way, and this shows that if F and A
are C2 or pw. C2 in λ then Y e J*s also. Now, differentiating the equation for 7 gives

= d2F +

from which we easily deduce the estimates.

3. The Inductive Lemma

Let Aes/(2,R). Since tr A = 0, its two eigenvalues coincide up to a sign, and since
A is real they are either both real or both purely imaginary. Hence, the imaginary
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parti of the eigenvalues are = ± iα. Of course, α is defined only up to a sign, but
we shall require that

for some real matrix M with det M > 0. This defines α uniquely, and we shall call
it the rotation number of A (it is the rotation number of t -» etA, see Appendix.) If
A = A(λ) is continuous in λ, then α(A) is also continuous in λ, and if A = A(λ) is
pw. C2 on A, then u(λ) is pw. continuous on A and pw. C2 on ZiXα"1^).

Let {rj} be a decreasing sequence of positive numbers such that rj — rj+ 1 ^2~j—
for each j. Let εj+ x = εj + σ, where 0 < σ < 1, and let

for each 7. It follows that

4σ 41

-
rι(l+σ)

log - 1(2 + 2σ)J' < N
B ~ '

~4τ

for ally, if just εx is small enough.
For example, it suffices that

for some all constant c that only depends on τ and σ. All constants in this paper
will be denoted by c. They will only depend on σ and τ, unless explicitly stated

otherwise, σ is a fixed small number, for example σ ̂  — will satisfy all our needs.

Let now A^)esl(2,R) and Fl(-9λ)e^r be real and pw. C2 in λeΔ. We assume
that tr <F!> = 0, where < > denotes the mean value over Ύd and we also assume

v=l,2,

where, we recall, d = — . Then we have the following lemma.
dλ

Lemma 2. There exists a constant C = C(τ, σ) such that ifs1 < Cr(f4τ/σ} + i) then, for
allj^ 1, there exist Fj+ie&, Yj+1 and Aj+ίesl(2,R), all real and pw. C2 in λ and
with tr(Fj+ίy = Q, verifying

Let a,- be the rotation number of Aj and let /1/m) be a finite union of intervals
such that

{A:|2a,(A)- <m>| <εj} cΛ/mJcz {λ:\2κj(λ)- <m>| <2εJ}
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for 0 < |m| ̂  Nj (see remark below). Let also

and let rj - rj+l = \r 3 if λφΛj(0) and rj - rj+1 = 2~j— ifλeΛj(0). Then we have the

following estimates:

<^W)| <ή'\ v = 0,l,2, λeΛjW; (3.1).+ 1

<*jW J/%+,

<m>
^U ί+1W- i-^rU, **, v = 0,l,2, λeΛj(mk (3.3).H

I flv Λ I <^ P vσ v = 1 2l̂ ,.+ 1|<ε,.+ 1, ^ ί,z ^^ (14)

I**•} +1v^ j I ̂  •'• Î̂ j +1v^vI-^ /' +1 U
-τ - -'j+l

J + I V Λ ; I ^=4^j+ι

Remark 1. The crucial point in the proof is that the sets Λj(m)9 0 < |m| ̂  JV^ are

disjoint. In fact, for each λ there are infinitely many bad numbers - in M, but

there is at most one in the ball |π| ̂  Nj. So there is at most one bad number which
must be taken care of at each step of the iteration.

Remark 2. The components of Λj(m) may be closed, open on half open. For the
proof of the lemma we don't need to specify them more than by the two inclusions
above. For the proof of Theorem A this is all that is needed, but for the proof of
Theorem B and C it will be convenient to specify them somewhat more.

Proof of Lemma 2. So we assume that Aj and Fj satisfy (3.2-4) ,̂ and we prove
the existence of Yj+19 Fj+1 and Aj+l with the required properties. We must
handle the two cases λεΛj(ΰ) and λφΛj(0) separately. But first we shall make sure
that Al satisfies (3.4)^ The fact that (3.3)! makes no sense will be of no importance.

Clearly the first estimate of (3.4)! is fulfilled by assumption, and the second is
trivial unless \A1 \ ̂  8. But this implies that 1 11 1 > 6, since \A1(λ) — λίJ\<2, and
hence |α x | > l l j — 2. Now this gives immediately \A^\ < 210^1.

Case 1. Suppose λeΛ^ϋ). Then

Moreover, by (3.3)Λ and (3.4)*, fc^;, we have \Aj(λ)-~λjJ\ < 3 for 37 = 0 or λi.
(This also holds for Aί9 by assumption.) In order to see this we observe that if

j-1

λe p| Λk(0), then \Aj(λ) -λίJ\<2 + εf 3 + ••• -h ε^ < 3. On the other hand, if
i
-i

λe Π Λ,(0)πΛk(m), m φ 0, then
fc+l

£ < 34JVJe", (3.5)
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by (l4)fc, because λeλk(m) implies that |2αk | ̂  N~τ - 2ε£ ̂  iN~τ, if w ̂  0. (Notice
this lower bound on ock which we have on Λk(m) when m φ 0.)

We let now G(x) be the truncated Fourier series

and we define Y as the solution of

which exists uniquely by Lemma 1. Then we define

These matrices are pw C2 in Ae/l;(0) and irAj+1 =0. Moreover, they satisfy the
equation, so

, > = <tr F,+ 1 > = <tr y;Λ(^ + F,)l}+ 1 > - <tr F Λ^^ >

ω
/C ~r 1

So we only need to consider the estimates.

Estimates. We have

Then by Lemma 1 and (3.4)7 we get

|5 v7| r.+ ι<cεj- ( 2 + 3v)σ]Vf+(v+1)3) + 1, v = 0,1,2

and this gives (3.1)J.+ 1.
In order to prove (3.2) j+ί we first observe that

and that

\(I+Y)-\fl<2.

This gives immediately

lf;+ιU <Φj + 2σNτj+1 +Kf+lή-2°\

If we differentiate the expression for Fj+ί we get

dFJ+ , = - (I + 7)- ̂ yF J+ !+(!+ YΓld(Fj Y - YFj(0) - (F j -G- Fj(0)))

from which we get

l^,+ 1lr,+ 1 <φ] + 2 N]+1 +N]^lε*-5°).

And by a second differentiation,

\d2Fj+1\rj+ί <φ) + 2 JVJ + 1 +]V;°I+1

ej

2-8").

(In all these estimates c is a constant that only depends on σ and τ.)
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The estimates (3.3)j+1 are trivial, as well as the first estimate of (3.4)7 +1.
The second estimate of (3Λ)j+1 is non-trivial only if |A7 +1(>1)| ̂  8 which implies

j
that λe P| Λk(Q), i.e.

Hence \λί\>5. But then |α.+ 1(λ)| ̂  llj-->—. Hence

A,+ 1(λ)

2 2

5

«J+1(λ) ~ IΛΓ
This proves the second estimate of (3.4)̂  in case 1.

Case 2. Suppose now λeΛj(m), m^O, and let

Then

where

(Notice that Gj is defined on Ύd, even if Z is defined only on (2T)</.)

The rotation number of Bj is β} = α^ -- , and it satisfies

Moreover, by (3.4)y we have

Let now G be the truncated Fourier series

(This truncation is not the same as in case 1.) Then we let Y be the unique solution of

and we define

Fj+ ,=(!+ YΓ^GjY - YGj(0) + (Gj -G- G,.(0))].

As in Case 1 all requirements are fulfilled and we only need to consider the estimates.
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Estimates. Notice that

From (3.4); we get

\dvZ\

since r j+ x = |ry. (Here we have used that on Λj(m) we have a lower bound on α,,
which gives us upper bounds on the derivatives do,- and δ2^-, since

The same estimate holds for Z"1.
This implies that

Moreover, by (3.4) .̂ we get

\dvBj\<cN^e-va v=l ,2 .

Since

we get by Lemma 1,

which gives (3.1)7 +1.
In order to prove (3.2)j+1, we first observe that

and that

This implies that
I p v F i ^ -/?u (8 + 5v)τ+l c2-(10 + 3v)<7 , A / (3 + 2v)τ+1 cl +(10-4-v)σ\
\° rj+l\rj+1

 <C^>7 Zj -1-Wj 6j I

which gives (3.2)y+1.
(3.3)j+ί is obvious from the estimate of dvGj above.
In order to prove (3.4)7 +1 we observe that

*L
2«j

so the second estimate is trivial. The only thing that is left is the estimate of dv

We have
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Moreover, we can sharpen the above estimate for dvBf.

\dBj\ < ClN?\dAj\ < c2N?(ε?*l + \dAk + 1\) < c3N^19

where k <j is such that λφΛk(0) and λeΛ^O), k < I <j. And in the same way it
follows that

In order to conclude, we must show that cN?vtεfc~+

vί < εΓ+

v? f°r v = 1, 2. We have
shown in (3.5) that \Aj(λ)\ < 34ΛΓ£ε£. On the other hand

» - 20,1 4- 210,1 < 2εJ + 2\Aj\ < 70JV<ε£, (3.6)

hence,

εf4 ^ 70ε3σ/4. (3.7)

This gives the required estimate and finishes the proof of Lemma 2 in Case 2.

4. Floquet Solutions - Theorem A

We now come to the conclusions of Lemma 2. The conclusions will depend on λ.
Each λ belongs to a unique set n/l^Wj), 0 ̂  \πij\ ^ NJ9 which may be void. (Formula
(3.6) give a necessary condition for this set to be non-void.) It is clear that for all λ

Tj->r0£0

l̂ -o
; -> A pointwise

as j-> oo.
Suppose now λ is such that w, = 0 for all j sufficiently large. Only for such λ

can we conclude that

in I |ro, r0 > 0. For λ not of this type the convergence is unsure and, in fact, often
untrue. However, we clearly have 17/0) — /1 < εj/2 for all), so Y[ Y, (0) is convergent.

But more is true. For each λ the product Y[Yj[ —t 1 converges uniformly on

compact intervals in R. In order to see this we only need to note that

where

= exp A = cos t + s n

2α; J \ 2 / \ 2

If ffi, = 0 then we are done for all ί, and if m^ φ 0 then |2α, — <»ι, > | < 2εJ, which
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imp'lies that \A}\ < 32|α; | JV], by (3.4);. Let nowj1 <j2 < ••• be all indices;' for which
ni φ 0. Then

(formula (3.6)). Hence, for t with tNτ

jkε?k small, we get by (3.5),

k-^tA}
2α;

which shows that the product converges uniformly for ί bounded.
If now Xl is a solution of

X'1(t) = (A1+Fl(ωt))X(t)

then, by Lemma 2, we have a representation

(4.1)

Moreover, if X1 has a rotation number ρ(λ\ then we conclude from this repre-
sentation that

1 °°
PW = Λ Σ <mj> + αW'

2J=1

where α(λ) = limα j (λ). (See the Appendix.)
In order to prove Al we need a lemma. Let

the point with this definition is that the sequence {pj} converges uniformly in λ.

Lemma 3. a) \pj+ 1 — pj\ < cεj/4for allj. In particular, the sequence {PJ} converges
uniformly to the limit p.

00

b) If λε(~}Λj(mj) and p(λ) is diophantίne or rational, then nij = 0 for all j
i

sufficiently large.

Proof. For a) it suffices to show that

for λeΛj(m)9 which follows from (3.3)j+1 by an explicit computation.
For b) suppose

for some N, K9 as s > 0. Suppose that there exist jk arbitrarily large such that
mjk + 0. Hence,
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Then

^ 21 p(λ) - pjk(λ) I + 12θL J k (λ) - < mjk > | < 4εjk.

On the other hand

because ΛΓ? < cW/ ί + 1 by (3.6). Now this implies that

/ / 1 \ 2s

εΓ σ ^ const, log - (2 + 2σ)
V W

for finitely many /c:s which is clearly impossible.

Proof of Al - targe energy. Let £0(s) be defined as in the theorem, with
C(τ, r) = C(τ, σ)r((4τ/σ} + υ for σ = ± say, where C is the constant of Lemma 2. Let
|g|r be arbitrary, and let E> E0(\q\r). Let X be a solution of (**). The equation
(**) gets transformed to

where ^ ^ E ) = EJ and

through the change of variables X1 = Y1

 1X9 where

1 1
1 \-jE JE

X1 has rotation number p(χ/£) = p(£) and

<ε1 = C(τ,σ)r((4τ/σ) + 1), v = 0,l,;

so it follows from Lemma 2 that the solution X of (**) has a representation

', where

Moreover, it follows from Lemma 3 that the product Y = Y\ 7, converges uniformly
in a complex neighbourhood of Td, if p(E) is rational or diophantine.

Proof of Al - small potential Let E0 and C be as above. Suppose |g| r<C(r,τ)
and let EG] -I, + 1[. Now (**) can be written
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,-£ O

Xl has rotation number β(E) = p(E) and

q(x) 0

β! = C(τ, σ)r((4τ/σ) + υ, v - 0,1,2.

Now Al follows again from Lemma 2-3.
If E^ — 1, then we are in the resolvent set (if |g|0< 1) and then Al also

holds.

Proof of A2. Suppose that p(λ) is neither diophantine nor rational, and let
λenΛjlnij). If mj — 0 for j large enough, then X has a representation as in Al, so
X must be q-p. In this case A2 holds of course.

So suppose there exists an infinite sequence 1 5 \̂ <j2 < ••• such that mjk ^0.

Then lim Aj(λ) = 0, by (3.5), so we only need to consider the product f j Yjl — t 1.

Let now t = ̂  + ••• + tk, k ̂  2 with |ί,| ^4πN τ

h for all /. Choose

4π

and ί k _ 1 so that

<*Λ>

4π
some n,K~L ^y

etc. Then we get Zh(ωt) = I (by construction) and, for all jh I ̂  1,

as in (4.1), where

Since

and since
i+Λ2

< εj/2 for all)^y',, it follows that

e<r/4

This gives the first part of A2.
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Let now

463

1
<ί <

1

κ » A > r < « A + I >
, k^2.

Then

j=jh ^

l + \tAj\) 7 = Λ + ι -

(The first estimate is (3.2), the second one is (4.1), and the last two are trivial.)
Therefore

k + i /

π Ό,.,(f,
and since

by (3.5), the product "converges" to 0 as fc-> oo. Since the last term is bounded
by 2 |<m j l >| | ί | , this proves A2.

5. Coexistence of Quasi-Periodic Solutions-Theorem Bl and Cl

For the proof we shall need two lemmas. For later use we shall give a complex
version of the first one even if we in this section only need the real version.

Lemma 4. Suppose A = A(λ)esl(29 C) is pw. C2 on Δ and let ± e(λ) be the eigenvalues.
Then there exists a pw. C2 matrix M = M(λ) on λεΔ\e~\ΰ) such that

= (-ie)J and

\dA\\A\,

Moreover, if A and ( — ie) are both real, then M can be chosen real.

Proof. Let A =
a b

c —a
. Suppose that is bounded. Let

= (ie(λ)Γ1A(λ)V1(λ),

and let M = (F_, F+), where

F_ =
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Since c φ 0, M is invertible, and since A2 = e2!, M conjugates A to ( — ie)J. If we just
observe that έ? 2 =-detΛ, that \V±\2 + \V2\

2 ;> 1 and that |e |^ |Λ | , then the
estimates of dM and <52M follow readily.

Moreover,

c\e\

<-
= \e\

< const.
-

The same argument applies if is bounded. On the other hand, if both

and are small, then the result follows by a perturbation argument.

Let now A(λ)esl(2,R) be C2 in λ in some open set Δ<=R. Assume
A(λ) = λJ + B(λ\ λeΔ, with

\VB(λ)\^η, v = 0,1,2.

Lemma 5. There exists a constant η0 such that for η < ηQ the following hold:
a) det A has exactly one stationary point y. This y is a minimum, \y\<2η and

b) det A has exactly two zeros λ- ^λ + . Moreover \λ±\<3η and

c) the rotation number α(Λ) of A(λ) is monotone and strictly increasing outside
_,/ l + ]. In particular

0

d) 3α ̂  1 — 6η outside

= det A(λ) - λ2. Then it follows thatProof.

If 2λ + df(λ) = 0, then λeΔl=~\-2η,2η\_. Hence, if there is a stationary point
it must lie in Δ±. Since ddctA and has different signs at ± 2η, there is a stationary
point, and since |52det A — 2\ < 2 in Δiί the stationary points is unique, and it is
a minimum.

Clearly —6η2^ det A(y\ and in order to show that it is ^ 0, it suffices to show
that detv4 ^0 somewhere in Δl. But this is obvious, since

^-λ + c -a

and — λ + c(λ) = 0 must have a solution since \c\ < η. This proves a).
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Since the stationary point is unique, there are exactly two zeros, and
Λ2 + /W = 0 implies that they lie in ]-3^,3f/[. In this interval we have
§ ̂  d2 det A ̂  § which implies that

hence,

and the same estimate holds for | A _ -y| too. This gives b).
For λ+ < λ < 1 we have

(2 - lη)(λ -y)^d det A(λ) = } d2 det Ads ̂  (2 + 7ι/)(A - y)
y

and

Hence

= f a det Xώ ̂  -(2 + 7ι/)(A - y)2.
λ+ 2

' 72(2 + Ίη)(λ -y)2'

On the other hand, if \λ\ ̂  1 then

This proves d) and now c) is obvious.
Let A(λ) = A0 + A1(λ-λ+)+— with

Notice that 1^ - 1 1 < η, \Ct + l\<η and all other entries are bounded by 4η in
norm. Then

and

The first equality follows from the fact that det A = 0 at λ+, and the second follows
from the estimate of d det A given in the proof of d).

If a0 = b0 = 0, then

- - y ) £ ( 2

" ° ~

which gives the result using b). And the same holds if a0 = c0 = 0.



466 L. H. Eliasson

So assume α0,b0,c0 are all ^0, and let b0 = xa0 and c0= —α0, where we
x

assume, for simplicity, that x ^ 1. Then δdet A(λ + ) = aQδ(x\ where δ(x) = — xc1 +

for which δ ̂  2 — 5η. This gives-bί — 2al. δ has a unique minimum at

The same estimate holds for c0 since x ̂  1, and for — since δ(x) ̂  (1 — 3η)x. But

δ(x) ^ (2 + 10f/)x so we also have

This proves e).

Corollary 6. IfA^λ) = λJ, then d<*j(λ) ^ Π 0 ~ 6%1/3)
i

Proof. This clearly holds for; = 1 so we shall assume it for k ^j and prove it for

j
If λefl /1/(0), then \dv(A.+ί -Aί)\< 2ε2/3 and the result follows from Lemma

5d).

If Ae , m^O, then
k + l

with

2αt

, v = 0,1,2.

Moreover, |α f c | ^ f Nfc

 τ and C2 on some interval Δ contained in Ak(m\ from which
we immediately get

δχ<ε~(3/2)vσ, v = l , 2 ,

since αfc = ± ̂ /det >4k. And, by induction, we also have ̂  δαk.
By Lemma 4 there exists a C2 matrix M(λ) on 4 such that M~lAkM = akJ

and satisfying

So if B = M~^BM we get

|δ vM|<εΓ 2 v σ, v = l , 2 .

and
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Hence, with Άj+ί =M~lAj+lM we get

467

and we can apply Lemma 5. Hence

if Oy+ t 7^ 0. Multiplying by dak and using the estimate, assumed by induction, gives
the result.

Proof of Theorem Bl - large energy. Suppose p~ 1 ί - J = [A_, λ+], where p is

defined in Sect. 4. Since we have some freedom in defining the sets Λj(m) we shall
choose them in such a way that there exists a decreasing sequence of intervals

= ]<z/, bj[ => such that α,- is continuous on

and

Suppose this holds for k ̂ j and let

+i =» [A_,/l + ] because p = on [ A _ , A + ] and \PJ — p\ < cεj/4 by Lemma

3. Moreover, α,- varies precisely εj over Δj+ί9 so we can choose the sets Λj(m) in
such a way that 4^+1 c /lj(mj) for some m^. Since |p; +! — pj| < cεj/4, also the last
condition is fulfilled.

00

It is now clear that Q Δj = [/l_,/l + ]. Moreover, if αJΓ
1(0)nz!7 = [/l;l,A7

+],then

This follows since So,- = dpj ^ \ on \λ\, fey] and p 3 — -

The same argument applies to λj_.
We now proceed as in the proof of Corollary 6. We assume that mk ̂  0. We

anti-diagonalize Ak by a matrix M, and we let Aj = M~1AJM for j > k. Then

with
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t*
2/3-(l+3v).

So we can apply Lemma 5 to Aj as a function of αfc, and by Lemma 5e) we have

Since | :g 3αfe ^ Nτ

kε^σ on ]αfc, bk[ it follows that

Since we have a j-independent bound for

j , and this implies that

for some constant ck. This proves Bl for large energies.

Proof of Bl - small potential. We have

0 1s

,-λ 0,

with μ|<l.
In this case Corollary 6 still holds with 25α7 instead of d<xj9 and the proof is

the same with the only exception that if λe(^\Λι(0)9 we cannot apply Lemma 5d).

But then 1

\dv(AJ+1-A1)\<2εl13

and

where f(λ) = det Aj+ ^(λ) — λ. Hence,

which is what is needed.
The proof of Bl now works in the same way as before. The only additional

thing we have to say is that if] — 1, λ+ [ is in the lowest gap then | A(A+)| g; 1 — 2εl13.
But this is obvious since in that case \Aj(λ+) — A±(λ+)\< 2εf3 for all;. This proves
Bl for small potentials.

Proof of Cl. In order to prove the Cantor structure of the spectrum we consider

the set Gπ of all potentials q with \q\r < oo such that either p -i q is a gap,

or is contained in ] - oo,£0(klr) + ̂ [ Gn is clearly open. But it is also dense. In
fact, any collapsed gap in ]E0, oo[ can be opened by an arbitrarily small perturba-
tion, as is described in [2].
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Hence Gn is open and dense, so n Gn is generic, and if we let δ go to 0 we
obtain that, generically in ]£OJ°°L "all gaps are there." This implies that the
spectrum is Cantor because p has no other intervals of constancy than the gaps

6. Unbounded Solutions - Theorem B2

Let λen Λj(m) and let 1 ̂  Ί <;2,... be all indices; for which mj φ 0. Let t = 11 +
+ ίk, k ̂  2, with \tt\ ^ 5πNτ

h. Choose

5π

and

4π
some n,

etc. Then we get, as in the first part of the proof of A2, that
ω

Yj+ 1 1 — ί 1 - /

less than εj/2 if; Φj{ and less than cεjι

/4

ι if; =jh I φ k. But for j =jk we get

'ω \ A,
<cεT

This implies that

Hence, it suffices to construct a /len/l^m^ ), mjk ^0, such that the sequence

is unbounded, and this we will do now.
Let Δ! be an open interval. Choose n1 such that

is

Then lαX/lJI ->0 and l^.
and such that

l = δ > 0. Choose now fci so large so Sε^f4 < (5
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Since α f c l and Akί are continuous near λί (this can clearly be achieved), it follows that

for all A in some interval [ A ^ V j ] ^ Δί. Let now j^ be the largest index j ^k1 such
that QLj is continuous on [A l 9 v^. (Such a; must exist unless limα t = 0 on [Λ l5 v^.
But this would imply that p is constant on [A^v^ which is impossible since λί

is the right endpoint of a gap.) Then

on [/l^Vi]. Hence,

on [Λ i, V j ] , and, by the choice of jί9 there exists an mjί90< \mh\ ^ N^ with

for some A in this interval.
But this implies that Λjί(mjl)n^λl9v1l contains a non-void open interval Δ2.

Now we can repeat this construction with a gap E/^,^] in ^2? and find a j2 such
that

22

on some interval [/12, v2], and such that there exists an mJ2,0 < \mJ2\ ^ NJ2 with

for some λ in this interval.
In this way we construct a decreasing sequence of intervals

Δ^Δ^
which contains a point λer^A^m^) such that

'-I= 2'-ι.

^

TΪ

This proves B2.
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7. Solutions for Complex Energies E + ig
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We shall only consider the case with E large, and then we indicate what modifications
are required in order to treat also small E when the potential is small

The equation (**) gets transformed to

X\(t) =

ig) = ^JE + igJ andwhere

through the change of variables X^ = Y1

1X9 where

1 1

, - ^/E + ig ^/E + ig

We have

\A,-^E + igJ\<2

la^^ε^' v = l , 2

if E is large enough, where d = — = ̂ /E — .
<U 3gf

Let NJ and ε; be as in Lemma 2. Let ̂ /Ee f) Λ/(WJ), £ > E0»
 such that α(^£) ̂  0.

j^i
This implies that all mj9 except finitely many, are 0, so we let 1 ̂ jί < ••• <jn be
all the indices for which w7 ± 0 - if no such indices exist we let n = 0. We shall let
fc be the smallest integer ^jn such that

Lemma 7. There exists a constant C = C(τ, σ) such that if εί< Cr^4τ/σ} + 1) then, for
j^ 1, there exist Fj+1, Yj+le&, tr<F< / + 1> = 0, and ̂  +1Gs/(2,C) swc/i ί/iαί

Moreover, Fj+l, Yj+ί9Aj+ί are C2 for \λ\ <εj+1, reα/ w/zen Λ = 0, and their first
derivatives with respect to λ are purely imaginary at λ = 0.

Let βj(^/E + ig} be a continuous choice of the eigenvalue of Aj which we determine

by the condition that Im βj(^jE) = oίj(^/E) - this determination is unique if α7 φ 0.

Let Γj — fj+i = ^?j if Wj Φ 0 ana rj — rj+l = 2~j— if m7 = 0. Then we have the

following estimates.

v = 0,U;

\d"FJ+1\rj.l<eJ+ί,
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2β,
(7.3),

<εV + i ' v = 1,2

This lemma has one different aspect from Lemma 2. In Lemma 2 the whole
construction depends sensitively on the parameter λ = ^/E. Changing λ implies
that the sequence n/l^/w,-) and, hence, all the estimates change. In Lemma 7 the

g
sequence n/l (m. ) does not change when we vary λ — over a small interval

IE
of length ε£+ x. In order to see this, we only have to check certain properties ofβj.

So suppose we have constructed YJ9 FJ9 A 3. We shall verify that

V7*
(7-5),

and that, for | <εf

1
:4

if

if

(7.6),-

Then we can proceed as in the proof of Lemma 2 in order to construct the (j + l)th

step.
ig) = iJE + ig = -- — + ijE + O2(λ\To prove (7.5), we observe that e^

so (7.5)! holds, and we then proceed by induction.
Let / be the largest integer <j for which ml φ 0. Clearly / ̂  k and by (7.3)

B

with \dvB\ < 2εf/3, v = 0, 1. Let M be a matrix such that

I det M Γ 1 ̂  cN}9 I dM \ ̂

and M being real when g = 0 - such a matrix exists by Lemma 4. Then

If now B(0) = 0, then B is small compared with I e, — i—'— I by (7.5),, and

then it is an easy perturbation result to show that ε//2. We
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can therefore assume that B = B(0) is independent of g, and then the result follows

by an explicit computation. In fact, if z = el — i—— and B = ( 1, then
2 \c -a

det Al = { iz
c-b b + c

But if (u + ίv)2 = (x + iy)2 — d2 then clearly v2 ^ y2, and this shows that Re ej ̂
Ree, ̂  0 or Ree, g Ree, ̂  0.

Finally, if there is no such integer / as assumed above, then Aj(^/E) ~ ^/EJ

and oίj(^/E) ~ -V/E and (7.5); is an easy perturbation result.

To prove (7.6); we observe that if |λ| > εj, then j > k and w, = 0, and we are
done by (7.5),. So we can assume that |/l | < εj.

Now

Aj(jE + ig) = Aj(^/E) + iB,λ + B2(λ)λ2

with B! real. Let / be the largest integer <j such that ml Φ 0. Then, by (7.3),

\Bv\^c(N2τε-σ)\ v=l ,2,

and hence

with α real. Since \AS(^/E)\ ^ cε^NJ, it follows that

\a\<cN?\ \b\<cNfτε~2σ.

If now a,- is small, |α, | < ^N7τ say, then nij = 0 and

which implies (7.6);. So let's suppose that
If now 7 ̂  fc, then

α/l

^ [α^l ^ εf NJ.

and

since ε?2N?τ<l.

bλ:

^ cε2σ

+ 1

On the other hand, if j > /c, then

- 2σ

bλ2

^ cε2σ

+ 1 JVfJVf τ ^ -εj,

is still less than εj. Moreover,

aλ
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which implies that

+ ig) - ioίj
aλ

This proves the result since m; = 0 and a is real.

Finally, if there is no such integer / as assumed above, then A / (V/E) ~ V/£J

and oLj(^/E) ~ ̂ /E and (7.6); is an easy perturbation result.

We shall deduce some estimates from Lemma 7, for \λ\ <ε£+1. Let Y= Y[ Yj+ί.
Then j^1

Γ \ίτ 11 J Π

(7.7)

(7.8)|5y|0<^ '-
,-2<τ

,1/2
= 0.

In order to see this, observe that | Y
J+1
1

0
 ̂ c i ϊ j = j t . Hence

which follows just as (3.5) follows from Lemma 2. Now < Nτ

h by (7.4) which
J 1

gives the result. Also |δy7 +1|0 ̂  Nj£]~σ ΐoτ j=jt which implies

Of course, if n = 0, then these estimates are obvious.
Let now ̂  = limA. Then it follows from Lemma 7 that

and

For n ̂  1 we get from (7.10) that

I A ( j E + ig) - A(^E)\ < cε^'N*\λ\,

and from (7.9) that

|det A(^/E + ig) - det A(^/E)\ < cεσ

jnN
τ

jnε7n

σN^\λ\ < ε_Γ"

For n = 0 we get in the same way an estimate by c^/E\λ\. Hence,

(7.9)

(7.10)

(7.11)
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For \λ\<εl+ίmm{l,\θL(y/E)\2} it follows immediately from (7.9) and (7.11) that

<c (7.12)

= 0.

Let now M be a matrix such that

-1

A A dA

e ~ e e

The existence of M follows from Lemma 4, since we can conjugate J to i I
by a fixed non-singular matrix. \™ ~~ *

For \λ\<εl+ίmm{l,\aι(y/E)\2} we have

(7.13)

n = 0.

This follows immediately from (7.10-12).

Let now X= YeAtM. For | A | <εj+ 1min{l,|α(%/£)|2} we have

(7.14)

where the constant ct depends on t.
This follows if we can estimate eAt. If n φ 0 then | A \ < 1 and | d(eAt) \ ̂  elAtl \t\\dA\,

and we are done. If n = 0, then

0

-et M

and, since |e- i^/E\ < 1, we get \eΛ>\ ^e2W. And |θeΛ'| gc(|ί| + l)e |r |.

Remark. In the case of smα// potentials, the equation (**) is

A 'Λί) = Mx(£ + ig) + Fiίωt, £
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>-(E + ig) 0

For \E\ < 1 we have

\A,\<2

q(x) 0

v = l , 2 ,

V = 0,l,2

if |g|Γl is small enough. Here 3 = — , where λ = g.
dλ

Now everything goes true in essentially the same way. Of course, the argument
in no longer ^/E + ig, but simply E + ig. Equation (7.6) remains true, while (7.5)
takes the form

The modification of the proof is very small and concerns only the case when
n = 0 - all other cases being the same.

The estimates (7.7-8) remains true, as well as (7.9), with an obvious modification
for the case n = Q. (7.10-11) remains true. For (7.12) the only difference is that

when n = 0, the estimate is not 1 but - . Also the estimates (7.13-14) are the

same when n φ 0 while they are different if n = 0. If n = 0 then | det M | * ̂  c \ oc(E) \ 1 ,
\£ct9 and \ d X ( t ) \ £ c t ( l + |α(E)Γ2).

8. Absolutely Continuous Spectrum

Let </>eCc°°(R) be real, and define
E + δ

μ(E) = μφ(E)= \im\im- J Im < </>, (J^ - (5 + ig)ΓlΦ>ds.
δ\0 g\Q n -oo

It's a general fact for all self adjoint operators & that μ is right continuous and
increasing, and that it has a discontinuity at E± if and only if E! is an eigenvalue
of JSf . Moreover.

and

the pointwise derivative of μ, for a.e. EeR. (See [13, 14].) Moreover, r is locally
integrablejpy the Fatou lemma.

Since 3? is a Sturm-Liouville operator with C°° coefficients, any eigenfunction
of & is C°° and, hence, an eigenfunction of Jδf (see [12]). By Theorem A no such
eigenfunctions exist for E > £0, so μ(£) must be continuous on ]E0, oo[. (In particular,
we can let δ be 0 in the formulas above.) In this section we shall show that μ is
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absolutely continuous on ]E0, oo[. We shall only do the details for large E - for
a small potential the proof is essentially the same.

The resolvent of & has a representation

y+<r) ί

for any pair of Weyl solutions y±(t), i.e. solutions such that

J|y+(t) | 2Λ< + oo, J \y_(t)\2dt< + ao.
0 — oo

We shall express the resolvent in terms of the Floquet solutions constructed in
Sect. 7.

Let E be such that ^/Ee f| Λ (W ) with αί^/E) Φ 0 - this holds if, for example,

-7'-1 i-rp(E) is diophantine. This implies that W; = 0 for all 7 >jn. Let 7= || y j+1 and
J^l

A = lim AJ9 with Y}, Λ,. given by Lemma 7, and let M be a matrix as in (7.13). If
we take

rf+
where

ig;

then y± is a pair jof Weyl solutions if g Φ 0, by (7.5). Using these solutions we can
define the limit ($£ — E)~iφ(t). Then we get the following results by an application
of the estimates (7.13-14).

Choose k so large so nij = 0 and εJ2Λ^σ ̂  1 for j > k. For

\g\<εσ

k+lmm{l\cί(^/E)\2} and tesuppφ

we have

and

(8.1)

(8.2)

where cφ is a constant that depends on sup|0(ί)| and on supp(φ).
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ί^rom (8.1-2) it follows that dμ is absolutely continuous on the set D = (J Dh

This is so because on Dl the integer^ in the formulas (8.1-2) is uniformly bounded,
so we have uniform convergence

and the limit function is uniformly bounded. (In order to see that this implies the
absolute continuity on Dl one can apply the argument of [3], which we shall use
below in a more delicate situation.)

So the problem is the set of points E for which α(χ/E) = 0. Of course this set
includes the gaps, which should be excluded, as well as the endpoints of the gaps
which we can exclude because there are only countably many such points. So we let

We shall prove

Lemma 8. Let EeS. Then, for any δ < δ0(E), there exists an open interval I = /(£, δ)
containing E such that \I\<δ and

I

where \I\ denotes the Lebesgue measure.

This implies that for any interval Δ

- an excercise - and hence the absolute continuity of dμ since r is locally integrable.
So we are left with the

Proof of Lemma 8. Let E^^eS. This implies that ^JE^ec^A^m^ with mt /O for
infinitely many l:s. Let k and j be two consecutive indices such that mk and mj

both are non-zero, and let k be so large so εfNfτ ^ 1, / ̂  k.

Let Δ be a symmetric interval around ^/E^ of diameter \Δ\ = cφE~ 3/2 &l°N7 4τ. It
follows from (3.7) that if k is large enough - depending on E1 and φ - then εj « \Δ\.
Moreover, if k is large enough - independent of E1 and φ - then \Δ\ < ε£. So we
assume these inequalities.

We shall also assume that αk is continuous on Δ. This can be achieved by choos-
ing the sets Λι(mt\ I < k, appropriately, because if, by induction, α, is continuous
on Δ, then

\ < ε



Floquet Solutions for ID Quasi-Periodic Schrδdinger Equation 479

This implies that the sets /l/(w) can be chosen so that all points in A belongs to
the same component. Hence α z + 1 is continuous on A.

Since \2ak(^/~E[) — <m f c>| < 4ε£ and 2akdak = 3det Ak9 it follows that the image

of Δ under αk is contained in an interval around —— of diameter

Hence, all ^/EeΔ belongs to Δk(mk)9 and if m / mj and <m>e2αfc(4), then |m| > Nj.
In particular, α7 is continuous on Δ. Finally, we get from corollary 6 that the set
of all "gaps" in Δ is of measure

T<+24εJ+ 2 + £ cεj.

Hence, if we let

then |/4\^Ί <cεj. Moreover, on 4' we have that |α| ̂ |Nj τ, because otherwise

we would have that \<Xj(^/E)\ <^NΓτ. But since \<XJ(^/E[)\ ^^N^τ and since α7

varies ^ε^σN74τN^τε~σ <|NΓτ, this is impossible.
Let now

Then |2ί\2iΊ <||2ί| so there must exist a £2

e^' such that

r ( E 2 ) \ Δ \ £ 2 $ r ( s ) d s .
Δ

Now for |0| <£ 1 21 1 we get by (8.2) that

f - - ̂ —ίdμis) = r(E2 + ί^) ̂  r(£2) + 1.
-oo (E2 - s)2 + g2

On the other hand we have for \g\ = \Δ\

r(E2) + U 7 Ί-Vr

2\g\
This implies that

By choosing /c sufficiently large, we can get Δ arbitrarily small. This proves the
lemma.
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Appendix. On Rotation Number

Let Jf:R->G/(2,R) be continuous with X(Q) = I. For any KeR2\0 let

φ(t9V)=-κg(X(t)V)9

i.e.

φ(t29V)-φ(tί9V)=-Im(£dz\
\yz /

where y is the curve X(i)V, t^^t^ t2, in the complex plane. So φ is a continuous
multi-valued function. We shall fix

so that φ becomes a single-valued function, continuous in R x (R2\([0, oo[ x {0})).
Suppose φ(t,V)-φ(t9W) = n2π. This implies that X(t)V=aX(t)W for some

α > 0, i.e. X(t)(V- aW) = 0. Hence V= aW. From this it follows that

\φ(t9V)-φ(t9W)\<π (A.1)

for all K, WeR2\0.
We say that X has rotation number p = px if

f-»oo t

for some, and hence for all, KeR2\0. (A.I) implies that the convergence is uniform
with respect to V.

If X has rotation number p, then

fan » = p.
f-*oo t

which shows that the rotation number does not depend on the values of X over
a finite interval.

So if y:R->G/(2,R) is continuous with 7(0) = /, then we have the following
lemma.

Lemma A.I. Suppose X(t) = Y(t) for t^T. If px exists, then pγ = ρx.

Suppose now that px and pγ exist. Let

M, V) = - arg(y(ί)K), /(ί, F) = - arg(y(ί)jr(ί)F).

Then

/(ί, V) -/(O, K) = - Im(j- dz] = - Im( f -dz] - lm( f -dz)
\ y Z / \ y i ^ / \ y 2 Z /

where

7 = Y(s)X(s)V O^s^t

y2=Y(s)X(t)V O^s^
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Hence,

/(ί, V) - /(O, V) = (φ (ί, V) - φ(Q9 V)) + (ψ(t, X(t)V) - ψ(Q, X(t)V)\

which proves the following lemma.

Lemma A2. // px and ργ exist, then pγx = px + pγ

Let now Aεsl(29R) with purely imaginary eigenvalues ± iα. Then there exists
a real matrix M, detM>0, such that M~lAM = aJ- this defines the sign of
α - and from this we see that eAt has rotation number α. In fact eAt has the same
rotation number as X(t)eaJtX(t)~ \ where X(t) = M for t ̂  1.

In the same way one shows that if A has real eigenvalues then the rotation
number of eAt is 0.

Consider now an equation

c d

where F is continuous, and let φ be a solution of

- φ'(t) = (a(t) - d(t)) cos φ(t) sin <£(ί) - (b(t) + c(ί)) cos2

with 0(0) = φQ. Then

-e-^ = Fe-*J-
A

where T = T(ί) is triangular. Hence, we have a solution X(t) = e*(t)Jy(t), where 7,
being a solution of y = 7T, can be taken to be triangular. From this it follows
that px exists if and only if

exists, and that ρx is precisely this limit. Moreover, if F is q-p, then this limit does
indeed exist as stated in the following lemma for whose proof we refer to [1].

Lemma A.3. Let f:Ύd+1^Rbe continuous, and let ωeR be rationally independent.
if

then

lim11111

exists. Moreover, this limit is independent of φ0 and xeTd.

So if F is q-p, then X has rotation number

lim - = - lim - j(φ) - φ))cos φ(s)sin φ(s) - (b(s) + φ))cos2 φ(s) + b(s)ds
ί-^oo t ί->oo t 0
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which is bounded by

In particular, if Fn goes uniformly to 0 as n-> oo, then pXn-+Q as well.
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