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Abstract. We consider the Monster Module of Frenkel, Lepowsky, and Meurman
as a Z2 orbifold of a bosonic string compactified by the Leech lattice. We show that
the main Conway and Norton Monstrous Moonshine properties, stating that the
Thompson series for each Monster group conjugacy class has a modular
invariance group of genus zero, follow from an orbifold construction based on an
orbifold group composed of Monster group elements. It is shown that a
conjectured vacuum structure for the orbifold twisted sectors is sufficient to specify
the modular group and the genus zero property for each Thompson series. It is also
shown that the Power Map formula of Conway and Norton follows from the same
vacuum structure. Finally, we demonstrate the validity of the vacuum conjectures
for sectors twisted by Leech lattice automorphisms in many cases.

Introduction

One of the most intriguing examples of a conformal field theory (CFT) is the
Monster Module described by Frenkel, Lepowsky, and Meurman [1], They
construct a meromorphic bosonic string theory on which the largest sporadic finite
group M known as the Fischer-Griess Monster [2] acts as a natural automor-
phism with the states at each Virasoro level forming a representation for M. In this
paper we consider the famous Moonshine properties conjectured by Conway and
Norton [3] which relate each conjugacy class of M to a modular group whose
fundamental region is always of genus zero. In a recent paper, Borcherds [4] has
demonstrated that this genus zero property is correct using the theory of
generalised Kac-Moody algebras [5]. In this paper we will show that these
properties can also be understood in terms of orbifolds [6, 7] where the orbifold
group is constructed from Monster group elements. We demonstrate that the
vacuum structure of the corresponding twisted spaces is sufficient to ensure the
genus zero property and the independent Power Map formula of Conway and
Norton.
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We begin in Sect. 2 with a review of the Monster Module construction [1] as a
bosonic string compactified by the Leech lattice which is then Z2 orbifolded [8].
The resulting theory has no dimension 1 (massless) fields and the Monster group
arises as the automorphism group of a closed algebra of dimension 2 fields.
Section 2 also serves to illustrate some general features of orbifold constructions
that we exploit later. In Sect. 3 we describe the main Conway and Norton
Moonshine properties [3]. The section begins with a discussion on the mero-
morphic properties of a function invariant under a modular group with fundamen-
tal region of genus zero. For any such group, a unique invariant function with a
single simple pole, known as a hauptmodul, always exists. The main Moonshine
property is that for each g e M one can define a modular function Tg (known as the
Thompson series which depends only on the conjugacy class of g) which is a
hauptmodul for some genus zero modular group. In Sect. 4 we interpret Tg as an
orbifold contribution and introduce the corresponding g twisted sector. The actual
method of construction of such a sector is not known but we can nevertheless
describe some of the expected relevant properties on physical grounds. We discuss
the origin of the modular invariance group for Tg and show that the singularity
structure of Tg is determined by the vacuum properties of related twisted sectors.
We introduce a set of vacuum conjectures which determine the full modular
invariance group of Tg and explain the genus zero Moonshine properties. In
addition, we demonstrate that the vacuum conjectures imply the Power Map
formula observed by Conway and Norton relating the invariance group of Tg to
that of Tgd for any power d. In Sect. 5 we discuss an important subgroup of M
related to Leech lattice automorphisms for which Tg has a closed form. We discuss
the validity of the vacuum conjectures of Sect. 4 for the strictly Leech lattice
automorphism elements of this subgroup for which a standard twisted sector
construction is possible. Section 6 concludes with a brief description of generalised
Moonshine properties that we expect to follow also from the vacuum conjectures.
We also briefly discuss the connection between the conjectured uniqueness of the
Monster Module and the Moonshine properties. In the Appendix we give a
description of a convenient set of inequivalent parabolic cusp points of the
fundamental region for the basic modular group appearing in the Moonshine
properties.

2. The Monster Module

In this section we review some features of the construction of the two-dimensional
CFT associated with the Monster simple finite group known as the FLM Monster
Module [1]. Most of the language adopted here follows the string theory
exposition of the work of FLM in [8]. We will emphasise the orbifold aspects of
this construction and highlight a few important general features that we will return
to later.

The starting point is to define a Euclidean bosonic closed string compactified to
a 24-dimensional torus T24 [9]. The torus we choose is defined by quotienting R24

with the Leech lattice Λ, the unique even self-dual lattice in 24 dimensions without
vectors of length squared 2 [10,11]. The left-moving bosonic string variables x\z)
obey xi(e2πίz) = xί(z) + 2πβ with z = e2πiw, where Rew and Imw are "space" and
"time" world-sheet coordinates and where βeΛ. The mode expansion for x\z) is

i Y — z~n (2.1)
o n
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with

j- = iδ

A similar expression holds for x\z) the right-moving part of the string. Since A is
even self-dual [11], the 1-loop partition function with world-sheet torus w~ w+ 1

takes the modular invariant form Z(τ)Z(τ), where

β,- Σ f"
βeΛ

with q = e2πiτ and where L0 is the normal ordered Virasoro Hamiltonian operator

Lo = ̂ P2+ Σ«-X-1 (2-4)
2 π =l

The normal ordering constant — C/24 is given by the tachyonic vacuum energy
24 x ^£H= — 1, where C = 24 is the usual central charge. 77 is the Dedekind eta

j_
function η = q24Y[(l—qn) arising from the oscillator modes. ΘΛ is the theta

n

function associated with the Leech lattice A and is a modular form of weight 12
[11, 12]. The Hubert space of states for this theory also factorises into
meromorphic/antimeromorphic (in z) pieces. We may therefore consistently
regard the left-moving string as a meromorphic CFT [8, 13] and ignore the right-
moving part from now on. The Hubert space for this meromorphic CFT has the
following Fock space representation

tf(+) = {α^..α%J/?>}, W ίeZ, βeΛ, (2.5)

where | β> is a highest weight state so that αn| β> = 0 for n > 0 and pl\ βy = β*\ βy [11].
The Fock space is graded by L0 with integer level %β2 + Σni The subscript (+)
denotes the periodicity of states under z^>e2πiz which implies for a typical state
that

e2πiL°\Ψy = \ιpy (2.6)

since L0 generates such a transformation. The integral grading of L0 ensures that
(2.6) is correct.

Returning to the partition function for these states we note that Z(τ) is a
meromorphic and modular invariant function of τ. Z(τ) may be found immediately
in terms of the modular invariant function j(τ)

j(τ) = 4| = 1 + 744 + 1968844 + . . . , (2.7)

where E2(τ) is the Eisenstein modular form of weight 4 [12] corresponding to the Θ
function for the E8 root lattice. The j function is the unique modular invariant
function with a single simple pole at q=0 (up to a constant). This uniqueness
property is discussed further in Sect. 3. It is a generalised version of this property
for other modular groups that is the central issue in Monstrous Moonshine.
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Since Z(τ) also has a simple pole at q = 0, due to the negative vacuum energy for
L0, we find that

Z(τ) = J(τ) + 24, (2.8)

where we define J(τ)=7'(τ) — 744. The constant 24 reflects the existence of only 24
level one states lα1^) in this theory. Since the Leech lattice contains no length
squared 2 vectors only these £7(1) bosonic states contribute.

The next stage of the Monster Module construction is the introduction of a Z2

twist operation g : X1^ — X1 which acts as an automorphism on the states (2.5) of
the theory [1]. We can construct a new CFT corresponding to string propagation
on the quotient of T24 by g. Geometrically, the manifold T24 becomes an orbifold
T24/Z2 which is a manifold except at the conical singularities due to any fixed
points of g [6, 7], In this case, these are labelled by Λ/2A and have multiplicity 224.
The states of this new orbifold or "twisted" theory are composed partly of the g
invariant projection of the original Hubert space H(+) and new twisted states
which must be introduced for modular consistency.

The original Hubert space H(+} can be decomposed into ± 1 eigenstates of g as
follows

^ (2.9a)

ff(-+) = {αV..^ (2.9b)

where defining the projection operator ^ = ̂ (1 + g) we have
Consider now the partition function for the g invariant states H*+)

(2.10)

The first trace is the original partition function Z(τ) of (2.3). The second can be
interpreted as a closed string contribution periodic in the "space" direction but
twisted by g in the "time" direction. We denote this contribution in the standard
way by — Π Calculating this trace from (2.9 b) we have [8]

. (2.11)

Similarly, we can denote the original trace of (2.3) by + Π . Performing the

modular transformation S:τ-» — 1/τ on — Π the space and time boundary
+

conditions are interchanged to give a contribution 4- Π corresponding to states

twisted by g in the space direction but periodic in the time direction. Such a
contribution arises from a new twisted sector with Hubert space H (_ } which is
introduced below. In general, we can consider a Hubert space Hh of states twisted

by some group element h. Then performing the trace TrHh(ggL°) = gΠ , with some

appropriate L0, the boundary conditions transform under a general modular
transformation τ^>(aτ + b)/(cτ + d) to give gdh~b Π for Λ,g commuting (up to
phase factors) [6, 14]. g~cha

To define the twisted Hubert space we consider a closed string field xl(z) on
T24/Z2 with boundary conditions xί(e2πίz) = -x\z) + β\ β*eΛ. The mode expan-
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sion is now

*'(*) = «* + * Σ -z-\ (2.12)

where the oscillator modes obey the same commutation relations given in (2.1).
There is a similar expansion for x{(z) involving the same centre of mass coordinates
ql which take values in the 224-dimensional fixed point space A/2 A of g. Each fixed
point corresponds to one Fock vacuum \qay (a = \ ... 224), where

9l9α> = ίJ«β>, qΛeΛI2Λ. (2.13)

Twisted states are then constructed by acting on these vacua with left and right
creation operators. Since we are interested in meromorphic twisted states only 212

of these Fock vacua are actually employed. These vacua are denoted by |σα>,
a = \ ... 212, and form a 212-dimensional representation space T of a Z2 central
extension of Λ/2Λ. This in turn is induced by a Z2 central extension of A with a
two-cycle ε(α, β) for a,βεA familiar from the vertex construction for the states | /?>
of (2.5). Some of the details of this construction are discussed in Sect. 5.

The twisted Hubert space H(_} is now defined by the Fock space representation

= 1...212, (2.14)

where αj,|0> = 0, n>0. These states are graded by the Virasoro Hamiltonian

L0= Σ «*-,«ί+ί (2.15)
» = i 2

with half integer level i + Σ nί The appropriate normal ordering constant for L0

can be found by zeta function regularisation to be 24 x £ J] (n + \) = \. (In general
we have Σ(n + r) = A(~ l + 6r(l— r)) [7].) The automorphism g also induces a
group operation on H(_} which can be decomposed into + 1 eigenstates as before

Hh = {aflnι ...α!» iί+1|0>®|σβ>}, (2.1 6a)

H(--)={αίllίl ...α
f- J0>®|σβ>}, (2.1 6b)

where 0*H(_} = H+-} and the twisting of a typical state of H(_} is expressed by

ge2πiL«\ψy = \ψy, (2.17)

which is easily verified by noting that the states of H^} (#(!)) have levels in
Z(Z + i).
We may now compute the partition function for H(̂ L, to be

TV_)(4L°) = i( + D + -Π), (2.18)

where we find [8]

+ D=TrH(_)(<7

t°)

2, (2.19a)

(2.19b)
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where the vacuum degeneracy contributes 212. The boundary conditions as-
sociated with these traces (2.11), (2.19) transform amongst themselves under
modular transformation. Therefore, the full partition function is the modular
invariant

Zίw(τ) = i(+D + -D)

D) (2.20)

which gives Zfw(τ) = J(τ) on substitution.
In general, to ensure that (2.20) is correct, we must check the consistency of any

phases that may arise under modular transformations. Specifically, we must ensure
that a modular transformation which fixes boundary conditions leaves the
appropriate trace invariant [14]. Thus + Π (and — Π) must be invariant under

T2 :τ->τ + 2. We find therefore that the stability group of fixing transformations
for — Π is generated by T and ST2S [which generate the modular group /i(2)].

The necessary existence of such a stability group for modular consistency is a
general feature of orbifold constructions. In general, this leads to constraints on
the automorphisms that can be employed to form a modular consistent theory [14,
1 5]. In Sect. 4 we will return to this feature of orbifold constructions. In the present
case it is easy to check that these conditions are satisfied, i.e. the partition functions
+ Π and — Π are T2 invariant since the twisted sector levels are half integrally
graded.

The orbifold theory now constructed is the Monster Module of FLM [1]. The
states of the theory are given by the g invariant Hubert space H^+)®H^L) denoted
as V* by FLM. It is the states of this theory on which the Monster group M has its
action.

One of the motivations of FLM for looking at such a structure was the
observation by McKay and Thompson [16] that the coefficients of the modular
invariant function ;'(τ) are sums of dimensions of representations of M. Thus the
coefficient of q1 in (2.7) is the sum of the trivial and lowest dimensional
representations 196884 = 1 + 196883. Likewise, all higher coefficients of ;(τ) can be
expanded as sums of dimensions of M representations [16]. The only exception is
the constant term 744 of j. By construction the Monster Module has no states of
level 1 and so this exceptional case is excluded. The Monster group M now arises
naturally out of the commutator algebra of the 196884 level 2 operators which
includes the Energy-Momentum operator T(z) = ̂ dx-dx [8]. Taking Fourier
components of these level 2 operators, denoted φl, a symmetric non-associative
cross-bracket operation can be defined as follows:

&x# = i[& + ι,#-ι] + i[#+1,#,-ι]. (2-21)

The purpose of this cross-bracket is to remove any level 3 operators which
necessarily arise in the commutation of two level 2 operators. Thus the cross-
bracket algebra for level 2 operators closes to form the following algebra [1, 8]:

1 m2

φfm x Φi = bί*φk

m+n + -δ»Lm+a+ ^-<5%,+n,0 , (2 22a)

Laxφln=2φi

m+n, (2.22b)

m+n,o, (2 22c)
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where bijk are some coefficients symmetric in j, j and Ln is the Virasoro generator
2Σα-παn+m Equations (2.22b) and (2.22c) are symmetrized versions of the usual
level 2 conformal properties of φ^ and the Virasoro algebra.

The closed algebra (2.22 a) is an affine version of the Griess algebra [2] which
can be recovered by setting m = n = 0. The automorphism group of this algebra was
shown by Griess to be the largest finite simple sporadic group known as the
Fischer-Griess Monster group M [2]. The level 2 operators {φ^} form the lowest
dimensional 196883 adjoint representation of M. The remaining level 2 operator,
L0, is a singlet under M. Therefore, the states of the theory form representations for
M at each level given by L0. This is the basis for the original observations of
McKay and Thompson about the coefficients of j(τ).

For much of the discussion in the following two sections, the explicit form of the
elements of M will not be required. What is important, for our immediate
purposes, is that the states at each level form representations of M. We can,
however, identify here one important element: the involution (order two element) i
under which all untwisted states have eigenvalue +1 and twisted states have
eigenvalue — 1. i can be thought of as a "fermion number" operator. The correct
identification of the centralizer C of i in M (all elements of M that commute with i)
forms a crucial part of the FLM construction. The monster group is characterized
by the fact that C together with another involution σ generate M [2,1]. In Sect. 5
we will consider C in more detail.

3. Hauptmoduls and Monstrous Moonshine

We will now describe the famous Moonshine properties of Conway and Norton
[3] in terms of the Monster Module V* of the last section. In order to ido this we
will return initially to the j modular function of (2.6). We will prove the uniqueness
property of j in sufficiently general terms to be of use in both stating and
understanding Monstrous Moonshine.

The j modular function is a meromorphic function of τ invariant under all
modular transformations τ ->(ατ + b)/(cτ + d),ad — bc = l for α, b,c,de Z, generated
by the full modular group Γ = PSL(2, Z) = SL(2, Z)/{ ± 1}. The τ variable is defined
over the upper half plane H which is in general invariant under the larger class of
Mδbius transformations generated by PSL(2, R) of which Γ is a discrete subgroup.
We may therefore factor H by Γ to obtain the usual fundamental region 3F = H/Γ
conventionally taken as |τ|^l, |Imτ|£Ξ^ as shown in Fig. 1. Adding in the
parabolic cusp point at ioo (g = 0)_and identifying edges under Γ we obtain the
compactified fundamental region !F. This is clearly the Riemann sphere of genus
zero. The modular invariance of j(τ) under Γ means that j is single-valued on &?
(including the elliptic fixed points ρ = ein/3 = STρ and i = Si [17]). Therefore, j
provides a map from & to Cu{ioo}. In fact^this map is an isomorphism and
explicitly realizes the spherical topology of &. To see this, we will introduce a
standard general theorem which will be exploited greatly later on.

Consider a more general situation as follows. Let /i be some subgroup of
PSL(2, R) with fundamental region ̂  We will assume that Γx is commensurable
with Γ, i.e. the index of ΓuΓj in Γ and /i is finite [the dimensions of Γ/(Γu/i) and
^/(ΓuΓj) are finite]. This implies that Γλ is also discrete like Γ. We may compactify
&! by adding in any parabolic cusp points and identifying edges under Γ^ to obtain
a compact Riemann surface ̂  of some genus [17]. (A parabolic cusp point is any
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Imτ

-1/2 1/2 Reτ

Fig. 1. The fundamental region & for the full modular group Γ is equivalent to the Riemann
sphere on identifying edges and adding in the point at infinity

point of Ru{ίoo} which is fixed by an element of 7^.) Consider next some
meromorphic Γx invariant function /(τ). This induces a meromorphic function /(τ)
on &Ί . For a regular point τ of ̂  this is just /(τ) whereas for elliptic and parabolic
fixed points a little more care is required to define a local coordinate patch on ̂
(see [17] for details). We can now state the following general theorem:

Hauptmodul Theorem. Let j^τ) be a meromorphic Γ± invariant_function with
induced function J^τ) on ̂ . Then J^τ) hasa unique simple pole on ̂  if and only if
h :^Ί->Cu{ioo} is an isomorphism, i.e. ̂  is the Riemann sphere of genus zero.

The proof of this theorem relies on the property that the number of zeros equals
the number of poles for a meromorphic function on a compact Riemann surface.
Suppose first that Ji(τ) has a unique simple pole, τ = τao on J^. Then choosing a
contour 7 about the pole but sufficiently small to exclude any zeros we find by
Cauchy's theorem that

-
2πi

(3.1)

Since ̂  is compact, we may also evaluate (3Λ)_as a sum of residues due to the
poles^and zeros of J^τ) outside of y. Therefore, 7\(τ) has a unique zero of order 1
on &Ί.

Consider next any ceC. Then fc=j^— c is JΓi invariant with a unique simple
pole at la, and therefore also vanishes at_some unique point τc, i.e. Ji(τc) = c.
Finally, 7\(τ) is infinite at^ne point τ^ of ̂ . Therefore, j± i^-^CuD'oo} is an
isomorphism and hence ̂  is the Riemann sphere.

Likewise, if J^τ) is an isomorphism then it vanishes at only one point τ0 of ̂ . If
the zero is of order n (implying that the unique pole is of order n also) then
expanding we find

for |τ — τ0| sufficiently small. It is easy to see that Ji(τ) cannot be single valued near
τ0 if n> 1. This follows by noticing that a closed contour about τ0 in ̂  encircles
the origin of the complex plane n times and therefore mus^self-intersect at least
n — 1 times implying multi-valuedness. Therefore, n = 1 and ^(τ) has a unique pole
of order 1.
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The power of this theorem is that we may express any meromorphic Γt

invariant function /(τ) as a rational function of y'^τ):

ΣA/i

where the coefficients al9 bk are chosen such that the residues for the zeros and poles
of /(τ) are matched. The set of all such Γx invariant meromorphic functions is
called a genus zero function field and Γ^ is called a genus zero modular group. The
special function j^τ) is called a hauptmodul or a generator for this genus zero
function field.

As an example of the property (3.3) one can show that any two hauptmoduls
j^j\ for a genus zero group /i must be related by

4/1
(3-4)

for some complex numbers A, B, C, D chosen to give the correct pole and zero for
j\(τ). This relation is a PSL(2, C) transformation on jλ demonstrating the well
known result that the automorphism group of the Riemann sphere is PSL(2, C).

Returning to the case of the j function for Γ, the full modular group, we can see
from Eq.̂ 2.6) that j has a unique simple pole at q = 0. This corresponds to a simple
pole on & since the invariance of j under T ensures that for Reτ = const in ̂ , one
circuit of the contour \q\ = const is executed on ̂ . Therefore, the hauptmodul j(τ)
is the unique Γ invariant function with a pole at q = 0 as earlier stated. To emphasis
the importance of these ideas for Γ we can consider the example of the modular
invariant function /(τ) = (θ* — #3 + θ*)6/η24. This has no poles and vanishes at q = 0
on ̂  and therefore must vanish everywhere giving the Jacobi triple identity.
Likewise, the fact that all Γ modular forms can be expressed as polynomials in the
basic Eisenstein series E2 and E3 follows from the uniqueness of j(τ) [12].

Let us return now to the Z2 orbifold Monster Module V* of Sect. 2 and define
the Thompson series for an element g of M. The states of F" transform under
(reducible) representations of M. Therefore, we may define the following trace:

Tg(τ) = Ύrv>(gqL<>) (3.5)

which is known as the Thompson series for geM [16]. As an example, we can
calculate immediately the series for the involution i defined in Sect. 2,

7;(τ)=Tr/f(t)(^)-TrH(+.)(^)) (3.6)

which on substituting (2.8), (2.12), and (2.19) gives

+ 24. (3.7)
LΆ^J

In general, expanding in q we find

(3.8)

where χ^g) is the character for g in the 196883 representation. Likewise, the higher
coefficients are sums of characters of g in the various representations occurring at



286 M. P. Tuite

each level. For each of the 172 conjugacy classes of M there is such a Thompson
series. Conway and Norton [3] calculated the coefficients for each of these series
up to q10 and formulated their Moonshine properties as a result. They conjectured
that each Thompson series is a hauptmodul for a genus zero modular group Γg

commensurable with Γ, i.e. each Tg(τ) is invariant under some fixing modular
group Γg and that ^g = H/Γg is of genus zero where Tg is the hauptmodul with a
simple pole at q = 0. [All the states of K" are of integer level so that Tg is T invariant.
Therefore, as for the Γ invariant function j(τ\ the pole at q = 0 is of order 1 on ̂ .]
The uniqueness of the hauptmodul allowed Conway and Norton to list all the
modular functions Tg(τ) and to find many non-trivial formulae amongst these
functions.

To describe the Γg groups relevant to the Moonshine properties we must first
define a number of modular groups of interest.

Γ0(N): The group of matrices yeΓ of the form

dety = l, (3.9)
\cj[\ α/

where α, b,c,de Z.
The full structure of the Normalizer group of Γ0(N) in PSL(2,#), ^Γ(JV)

= {ρ e PSL(2, R) | ρΓ0(N)ρ ~1 = Γ0(N)}9 is also required to describe Γg. Here we will
quote from the elegant description of ^Γ(JV) given by Conway and Norton [3].

Let h e Z where h2\N (h2 divides JV) and let N = nh. Then we define the following
sets of matrices.

Γ0(n\h): The group of matrices of the form

det = l , (3.10)

where α,ί?,c,deZ. For h the largest divisor of 24 for which h2\N, Γ0(n\h) forms a
subgroup of ^V(N). The group is generated by the cosets C1 = {ye Γ0(n\h) \a = b = d
= 1 mod/i, c = 0mod/ι} and C2 = {yeΓ0(n|/ι)|α = c = d = l mod/i, b = 0modh} [3].

1 1
Note that each element of Cx (or C2) can be expressed as TΛ:τ-»τ+- (or

respectively STnS) times an element of Γ0(JV).
We\ The set of matrices for a given integer e

ae

cN ι

where a,b,c,deZ. e\\N denotes the property that e\N and the greatest common

( JV\
e,— \ =1. The set We forms a single coset of Γ0(ΛΓ) in JV(N) with

W^ =Γ0(N). It is straightforward to show that (up to scale factors)

VeίW€2 = We2Weι = We3 mod(Γ0(JV)), *3 = -f^L.. (112)



Monstrous Moonshine from Orbifolds 287

The coset We is referred to as an Atkin-Lehner (AL) involution for Γ0(JV). The

simplest example is the Fricke involution WN with coset representative (

which generates τ-» — 1/ΛΓτ. This transformation is already familiar in another
string theory context [18, 19].

we: The set of matrices for a given integer e of the form

b\
ae 7-

en

where α, b, c, d e Z. The set we is called an Atkin-Lehner (AL) involution for Γ0(n\h).
The properties (3.12) are similarly obeyed by we with Γ0(N) replaced by ΓQ(n\h).

^V(N): The Normalizer of Γ0(N) in PSL(2,jR) is generated by adjoining to
Γ0(n\h) all its AL involutions weι,we2,..., where h is the largest divisor of 24 and
h2\N, N = nh.

Γo(n\h) + ei9e2,...: This denotes the group obtained by adjoining to Γ0(n\h) a
particular subset of AL involutions weι, wβ2,.... Clearly, this forms a subgroup

All of the groups defined above are commensurable with the full modular
group Γ. We are now in a position to state the main Moonshine properties
of Conway and Norton [3, 20].

Moonshine Properties. Let g e M of order n.
(a) The Thompson series Tg(τ) is invariant up to a phase of order h under a subgroup
of <W(N) of the form Γ0(n\h) + eί,e2, ..., where h\24, h\n, and N = nh.
(b) The subgroup Γg of these transformations which fixes Tg (and contains Γ0(N)) is
of genus zero where Tg is the hauptmodul with a simple pole at q = 0.

Let us examine how these properties apply to an element of prime order p. Part
(a) tells us that h = 1 (excepting only one class of M with n = 3 and h = 3 [3] which
we exclude from the following remarks). Part (b) tells us that the fixing group Γg

contains Γ0(p) and is contained in Jf($\ However, Jf(p) contains only one non-
trivial element, the Fricke involution Wp:τ^> — l/pτ. ^(p) is therefore found by
adjoining Wp to Γ0(p) which is denoted by Γ0(p) + . Therefore, we find that either
Γg = Γ0(p) or Γ0(p) + . It is well known that Γ0(p) is of genus zero only when (p — 1)|24
for p prime [21]. The corresponding hauptmodul is just

+' <3 '4>
where (p — l)r = 24. Invariance under Γ0(p) is ensured for r an integer. The constant
in (3.14) is chosen so that the q° coefficient is zero. For each p, with (p — 1)|24 there
is indeed a conjugacy class of M, labelled p — , with the Thompson series (3.14).
Recalling our earlier example with the involution element i we obtain (3.7) from
(3.14) for r = 24 and p = 2. In Sect. 5 we shall explicitly reproduce the remaining
Thompson series of this form from Leech lattice automorphisms.

The primes for which Γ0(p) + is of genus zero have been found by Ogg [22] to be
precisely the primes that divide the order of M. These are all primes p with
2 ̂  p ̂  3 1 and p = 41 , 47, 59, 71 . For each of these primes there is a conjugacy class,
labelled p + , whose Thompson series is the hauptmodul for this group. A subset of
these classes with (p + 1)|24 associated with Leech lattice automorphisms will be
explicitly calculated in Sect. 5.
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In general, there are 174 possible discrete subgroups of genus zero which
contain some Γ0(N) and are contained in Γ0(N) + e^ e2,... [3]. There are 171 classes
for M, each of which has a unique Thompson series corresponding to one of these
discrete groups (except for two classes of order 27 which share the same Thompson
series). The remaining 3 genus zero groups (N = 25, 49, 50) correspond to the so-
called "ghost elements" of M [3].

There are many remarkable relationships found by Conway and Norton
between different Thompson series many of which owe their origin to the
hauptmodul property (3.2). In particular, the so-called replication formulae reveal
that all coefficients of any Thompson series Tg can be expressed in terms of the first
five of Tg9 Tg2, Tg4, ... by recursion formulae. Borcherds has recently shown that
these properties can also be deduced from determinant formulae based on
generalised Kac-Moody algebras and hence the hauptmodul properties
follow [4].

Another interesting and important consequence of the hauptmodul property is
the behaviour of Tg under a transformation generated by an element ρ of the
normalizer of Γg in PSL(2, R). The modular function Tf = Tg(ρ(τ)) is meromorphic
on H with a simple pole at ρ " 1(ioo). In addition, 1* is Γg invariant since ρΓgρ ~

1=Γg.
Therefore, by the Hauptmodul Theorem, Tg is also a hauptmodul for Γg. By (3.4) we
know that

CTg

for some complex numbers A, B, C, D. As an example of this, consider the class p —
with (p — 1)|24, which has Thompson series (3.14). The only non-trivial element of

is Wp. Defining φg= Tg— r we find that φg is inverted by Wp:

In general, the normalizer of Γg in PSL(2, R) contains the Fricke involution WN.
Because W$ = 1 mod(Γ0(JV)) we find from (3.15) that either Tg is WN invariant (i.e.
WNeΓg) or is inverted according to

= , WNφΓi9 (3.17)

where φg(τ) = Tg(τ) - Tg(0) and c e C.
Equations (3.16) and (3.17) allow us to determine the phase referred to in part (a)

of the Moonshine properties. Assuming that Tg(τ) is Γ0(N) invariant, it follows from
our remarks about the cosets C1 and C2 that it is sufficient to describe the phase

ι_
associated with the transformations TΛ and STnS. The leading term of Tg(τ) is

always q~l. Hence TΛ can only act invariably up to a phase by

e-2πίlhTg(τ). (3.18)

Suppose that Tg is WN invariant. Then we have

=e-2πί'hTg(τ), WNeΓg, (3.19)
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using (3.18). Alternatively, from (3.17), φg is inverted by WN. Assuming Tg is STnS
invariant up to a phase implies that for /ι=f= 1 we must have 7 (̂0) = 0 and

/ .. \
STnS(Tg(τ)) =

Tg(τ/N)J

= e2πiίhTg(τ), WNφΓg. (3.20)

The phase for any element of Γ0(n\h) is generated by these phases1. The phase
associated with any AL transformation we for Γ0(n\h) is discussed in the next
section.

4. Moonshine from Orbifolds

Having outlined the Moonshine properties in Sect. 3 we will now describe a new
physical interpretation and explanation for this phenomenon. The correct
physical setting turns out to be an orbifold model constructed from the Monster
Module 7" by factoring with a subgroup of M. This was suggested in [8] where it
was observed that the Thompson series Tg(τ) can be interpreted as an orbifold
contribution from untwisted states in F" but twisted in the "time direction" by g.
This suggestion was motivated by Norton's generalised Moonshine formulation
[20] which we will return to briefly in Sect. 6. In the notation of Sect. 2 we have

(4.1)

This contributes to the partition function for an orbifold based on any group
containing g.

As we reviewed in Sect. 2, the modular invariance of an orbifold partition
function requires the introduction of twisted Hubert spaces. Thus an S transfor-
mation on (4.1) interchanges world-sheet space and time boundary conditions to
give

S:gD = lD, (4.2)
1 £

i.e. the partition function for the twisted Hubert space Hg of states periodic in the
space direction up to g. We will assume that the states are graded by some
appropriate Virasoro Hamiltonian L0 (according to the usual assumptions of
CFT). An explicit general construction of Hg is still lacking although we can expect
that generalised Kac-Moody algebras have an important role here [5]. Orbifold
constructions [6, 7] are usually based on an automorphism group of the
embedding space of the string (e.g. the Monster Module itself is a Z2 quotient of
the torus T24 = R24/A). This embedding allows one to construct a twisted Hubert
space in a natural way. In addition, there is a natural automorphism group
induced on this Hubert space. However, in the present case an element g of M is
not in general induced by a geometrical action on the orbifold T24/Z2. Therefore,
the usual route to constructing twisted Hubert spaces cannot be taken. An
important exception to this is the subgroup of M given by Leech lattice
automorphisms which we discuss in Sect. 5.

In [3] and [23] the phases (3.19) and (3.20) appear to have been mistakenly interchanged
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In the absence of a general construction, we will postulate the existence and
properties of Hg that can be expected from physical arguments. Let \EygeHg,
where E is the (energy) level of L0, the Virasoro Hamiltonian for Hg and i labels
states within each level. L0 contains some normal ordering constant giving the
vacuum energy of Hg. We will assume that for each E, the set of states {\Eyg} form a
reducible, unitary representation for C(g) = {h e M \ gh = hg}. The states of Hg will
then contribute to an orbifold based on any abelian subgroup of M containing g.

Suppose that g is of order n. Then the twisting of a typical state \Eyg of Hg is
expressed by

e2ni**ln\Eyg , (4.3)

where gij is shorthand for the appropriate representation of M at level E and
2πφg/n is a phase which can in general arise as discussed below. Note that by acting
with hεM on (4.3) we see that the twisted space Hg is isomorphic to Hg>, where
gf = hgh~1

y i.e. g' is conjugate to g.
The phase in (4.3) is responsible for any global anomalies associated with the

modular stability group of an orbifold partition function discussed previously in
Sect. 2 [14]. This is clear on considering a T transformation on the partition
function ΊrHg(hqL°) for he M

T: h\Σ\ = e2πiφg/nhg~1Π . (4.4)
g g

Assuming that the action of g in Hg is also of order n then transforming by Tn

leaves the boundary conditions fixed but introduces a global phase anomaly e2πiφg.
Therefore, the partition function /iΠ does not have a well-defined phase associated

g
with a given pair of boundary conditions. (Note that for a left-right symmetric
bosonic string such phase anomalies are irrelevant since the opposite phase
appears from the right-hand part. Only in the context of an asymmetric bosonic or
heterotic orbifold do such considerations place constraints on the orbifold
automorphism group [14,15]). This anomalous behaviour can be directly seen in
(4.3) in terms of the levels E. Applying the twisting operation n times we find

nE = φgmodί. (4.5)

When the global phase vanishes (mod 1) we get the usual consistency condition on
the levels of L0 [14, 7,15] i.e. EeZ/n. In general, we can express φg from (4.5) in
terms of the lowest vacuum energy E0 = φjn.

In [14] the phase associated with a modular transformation of an orbifold trace
contribution is discussed. One can show that under a general modular transfor-
mation Tg becomes

/

c

The phase computed in [14] is for a lattice automorphism. We will assume here
that (4.6) is also valid for our orbifold construction.

Let us now consider initially a group element g of order n without any phase
anomaly so that £0 e Z/n. The more general situation will be discussed later on.
The associated Thompson series Tg is therefore Γ0(n) invariant without phases as
follows

. , (4.7)
cn dj i 1 1
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since for (d,n) = l we have Tg=Tgd. This follows from the reality of the
characteristic equation for each unitary representation of g. The invariance of Tg

under Γ0(n) corresponds to part (a) of the Moonshine properties when h = 1 and
N = n.Oΐ the 171 Thompson series, 1 20 are of this form. The remaining series with
h Φ 1 which do have a global phase anomaly are dealt with later on.

Let us now turn to the reasons for any AL invariance of Tg and the hauptmodul
property for the full invariance group Γg = Γ0(n) + el9 e2, . . . as given in part (b) of the
Moonshine properties. We will show that this will follow from the specific nature
of any tachyonic singularities present in the twisted sectors Hgk. Consider Tg(τ) as a
function on the fundamental region 3Fn = H/Γ0(n). The definition (3.5) implies that
Tg can be singular only at the parabolic cusps of ̂  contained in Qu{ΐoo} which
are described in the Appendix. There we state and prove a lemma in which a
convenient set of inequivalent parabolic cusps for Γ0(n) is determined. Consider
next the action of ρeΛ^(n) on &>n. Let τί~τ2 denote the equivalence relation:
τ1 = γτ2 for γ e Γ0(n). Then ρτί ~ ρτ2 so that an automorphism is induced on 3Fn. In
particular, all the parabolic cusps are mapped into each other by ρ. Of particular
importance is the cusp point τe generated by the action of an AL transform We of
Γ0(n) on ϊ'oo :

aβ
τe = We(ico) = — ~ oo , e = 1 ,

Cfϊ

~0, e — n,

, (4.8)

where f=n/e, (e,f) = i. We refer to τe as an AL cusp from now on. From the
Appendix we see that τe of (4.8) is amongst the list given. The full set of AL cusps
{ίoo, 0, τeι, τβ2, . . . } is mapped into itself under any AL transformation for Γ0(ή) by
the closure property (3.12). Thus

This closure property is important in proving AL invariance for Tg. In general, the
complete set of parabolic cusps of 3Fn can be generated by acting on ίoo with the
remaining elements of *V(n).

Physically, we see from (4.6) that the behaviour of Tg at these cusp points is
determined by the presence of tachyonic states in the twisted sectors. Consider any
rational point a/c with (α, c) — 1 . Then we can find integers b, d such that aά—bc — \.
These integers form the components of an element y of Γ which maps τ = /oo to a/c.
Therefore, the behaviour of Tg at a/c is given by the behaviour of the trace over the
twisted sector HgC at τ = ίoo according to (4.6). This is singular when L0 has
negative vacuum energy, i.e. HgC contains a tachyonic state. The behaviour of Tg at
one of the AL cusps τe of (4.8) is therefore determined by the presence of a tachyon
in the sector twisted by gf of order e [which must also present in the sector twisted
by gc/, where (c/, e) = 1]. The behaviour at the remaining cusps, associated with the
other normalizers, is determined by sectors twisted by gk of order ri = n/(n, k\
where (n',fc)Φl. An explicit construction of the twisted sectors would reveal
whether or not the vacuum energy is tachyonic. We will postulate the nature of the
vacuum energy below and confirm these postulates for some elements of M given
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by Leech lattice automorphisms in Sect. 5. Specifying these singularities will allow
us to prove the hauptmodul property for an appropriate fixing group Γg.

Consider next the action of an AL transformation We on Tg(τ). We can relate
this to a twisted sector trace by observing that

<4 ιoa>
<««*

where y e Γ because det We = e. Acting with WeonTg and applying (4.6) we find that
the phase factor is one with

(4.11)

where the right-hand side denotes a trace over Hgcf followed by a rescaling of τ by e.
(This relation is a generalisation of the fact that the Fricke involution Wn:τ
-> — 1/nτ is an S transform followed by a rescaling with n.) Note that the right-hand
side is also Γ0(n) invariant since We is in Ji(γί).

The set of matrices We for a given e form a single coset of Γ0(n) in Jf(n).
Therefore, (4.1 1) is the same for all c, a provided det We = e. This is equivalent to the
condition

(<fe,c/) = l . (4.12)

We can choose for convenience the We coset representative with α = c = l f o r e φ n
and α = 0, c = l for e = n in (4.10). These choices correspond to the AL cusp
representatives in (4.8). Therefore, We acting on Tg is equivalent to a twisted sector
Hgf contribution with τ rescaled by e. This in turn is equivalent to a Hgcf trace
where (c, e) = 1. From (4.12) we note that gcf is of order e so that the unsealed trace
in (4.1 1) should be Te invariant. This is indeed the case since (4.1 1) is T invariant.

The property expressed by (4.11) for AL transformations is unique to these
elements of the ^V(n) in the following sense. If ρ e Jf(rί) can be expressed as a Γ
transformation followed by a general linear transformation (τ-+Aτ + B) then one
can show that the cusp τρ must be an AL cusp. Thus the AL cusps have a special
relation to twisted sector contributions.

The final stage of the argument is to specify the nature of any tachyons in the
twisted sectors and thereby prove the hauptmodul property. We will demonstrate
this initially for Tg a Γ0(p) invariant for p prime. The fundamental region ^p has
only two inequivalent cusps at ioo and 0 which are interchanged by the unique
normaliser Wp. Applying (4.11) we find

Wp:Tg(τ) = ln(pτ). (4.13)
o

As discussed in Sect. 3 part (b) of the Moonshine properties implies that either (a)
Tg(τ) is inverted by Wp in the sense of (3.17) or (b) Tg(τ) is Wp invariant. Expanding
(4.13) in q we find this implies

1 D(pτ) = Tg(Q) + cq+...9 W p φ Γ g , (4.14a)
o

= -+0+..., WpeΓg, (4.14b)
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where c is the constant in (3.17). Therefore, the twisted sector Hg either has (a) non-
negative vacuum energy E0 or (b) negative vacuum energy E0=—ί/p with
degeneracy 1. The second singular case corresponds to a tachyon in Hg. We now
show that these vacuum energy conditions are sufficient to ensure that Tg is a
hauptmodul for either (a) Γ0(p) or (b) Γ0(p) + . For case (a) this is immediate since
Tg(τ) is regular at the cusp τ = 0. Therefore, Tg is Γ0(p) invariant with a unique simple
pole at q = 0. Applying the Hauptmodul Theorem of Sect. 2 implies that Tg is a
hauptmodul for Γ0(p).

Consider now case (b) where Hg contains a tachyon of energy — \/p. Then by
(4.14b) we have Tg(Wpτ) = q~ΐ +... and so the function

ψ(τ)=Tg(τ)-Tg(Wp(τ)) (4.15)

is regular at both τ = 0 and τ = zoo. The vacuum energy and degeneracy must be as
given to ensure this. The function ψ is Γ0(p) invariant defining a holomorphic
function on 2?p and therefore must be constant. Acting with Wp again shows that
ψ = Q. Therefore, Tg(τ) is invariant under Γ0(p) + . The cusps at 0 and zoo are
identified under Wp and so Tg(τ) has a unique simple pole on H/Γ0(p) + . By the
Hauptmodul Theorem we again find that Tg is a hauptmodul for Γ0(p) + .

These arguments easily generalise to the case of Tg a Γ0(n) invariant for n not
prime. We must specify the vacuum energy of each twisted sector Hgk to reproduce
the Moonshine properties as follows:

Vacuum Conjectures. Suppose that Hg has no global phase anomalies so that Tg is
Γ0(n) invariant with g of order n. Let n' = n/(n, k) denote the order of gk.

I. The vacuum energy E0 for Hgk is non-negative for (n', fe) φ 1. // (n', k) = 1 then E0

is either (a) non-negative or (b) negative (tachyonic) with energy —\/ri and
degeneracy one.
II. (Closure) Let e±\\n and e2 \\ n. If both sectors Hgfί and Hg/2 are tachyonic then the
sector Hgf3 is also tachyonic where e3 = e1e2/(eί,e2)

2 and f^ = n/e3.

We now show that these properties are sufficient to ensure that Tg is a
hauptmodul for an appropriate group Γg. Applying I of the Vacuum Conjectures
to (4.11) we find that either (a) Tg(τ) is regular at the AL cusp τe or (b) Tg(We(τ))
~q~ί + .... These conditions coincide with Norton's observation that τe is a
singularity of Tg(τ) if and only if Tgf(τ) is invariant under the Fricke involution
τ-> — 1/eτ [20]. The closure condition II is required to give invariance under more
than one AL transformation. Thus if Tg is singular at τeι and τ it is also singular at
τβ3. In general, the singularities of Tg are given by {τeι,τβ2,...} a subset of all AL
cusps which closes under the corresponding AL transformations We, W62,...
by (4.9).

We may now repeat the argument above for n = p. Suppose that Tg is singular at
τeι and consider ψ(τ)=Tg(τ)—Tg(Weι(τ)). Clearly, ψ is regular at τ = zoo and τeι by
I (a) of the Vacuum Conjectures. Likewise, for any other singular AL cusp τβ2 we
have Weι(τe2) = τβ3 which by II is also a singular cusp. Therefore, ψ(τ) is regular also
at τβ2. Notice that both the degeneracy and order of the poles must be as given to
ensure this. Hence \p is holomorphic on ̂ n and is therefore a constant. Applying
Weι again to ψ shows that ψ = 0 and so Tg(τ) is Weι invariant. This is similarly true
for any other singular AL cusp. Therefore, Tg(τ) is invariant under
Γg = Γ0(ή) -\-el9e2,...if it is singular at {τeι, τe2,...}. This concurs with part (a) of the
Moonshine properties for h = 1, N = n. The associated fundamental region 2F has
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at least one cusp at ioo which is identified with {τβl, τβ2,...} under the correspond-
ing AL transformations. Tg has a unique simple pole at this cusp and therefore, Tg is
a hauptmodul for the genus zero group Γ0(n) + el9e29... by the Hauptmodul
Theorem in agreement with part (b) of the Moonshine properties as required.

Let us return to the remaining Thompson series for which the twisted sector Hg

has a global phase anomaly as in (4.3). These series are expected to be invariant up
to a phase of order h under ΓQ(n\h) + el9e29... with h\24,h\n according to the
Moonshine properties. We find it necessary to introduce further assumptions to
reproduce this result. We will assume that a global phase anomaly can only occur

when Tg is invariant under 7T as in (3.18). Therefore, only every hth level of V*
contributes. We will also assume that h\n and Λ|24. Lastly, we will assume that the

global phase anomaly for Hg isφg=- for some integer /. Therefore, from (4.4) we

have

(4.16)
1 1

The assumption that h\24 is not unreasonable when one considers that the normal
ordering constant for L0 is typically — C/24 for a twisted space associated with a
lattice automorphism for integral central change C. From (4.6) it is also clear that
Tg is Γ0(N) invariant without any phases for N = nh. Altogether, with the above
assumptions we see that Tg is Γ0(n\h) invariant up to phases of order h. The
invariance group without phases contained in this will be denoted by Γg [which
contains Γ0(AΓ)].

We will now reinterpret Tg(τ) as an orbifold contribution arising from a theory
defined on a new world-sheet torus: w~w + l ~ w + τ', where τ' = hτ. On this new
torus we may apply the methods employed above to obtain AL invariance and the

hauptmodul property. Since Tg(τ) is T/Γ invariant up to a phase e~2πt/h only the
states at level E = kh — l contribute for k = 0,1,2,.... Denoting these states by \kry\
we find that

e2πίLQ\kfy\=e-2πilh\kfy\, (4.17)

where L'0 = L0/Λ. We may thus regard \kry\ as an untwisted state with a global
phase anomaly e~2πί/h and with Virasoro Hamiltonian L'0. The transformation

(4.17) represents the periodicity of \k'y\ under T:τ'-*τ' + l, i.e. under T/Γ.
Referring to Fig. 2 we can see that this corresponds to a modular transformation

/ h τ / h τ + 1 / h τ + 2

92 τ /

.// rr /
//V

Fig. 2. The world sheet torus is determined by the lattice generated by 1 and τ. The new lattice
generated by 1 and τ' is invariant under τ' = /ιτ->τ' + l
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on a new torus w ~ w -I- 1 ~ w + τ'. In addition, the boundary condition in the space
direction is now gh for a boundary condition of g on the original torus. Therefore,
the trace Tg(τ) is equivalent to a trace of gh over \ky\ with L'0 as above on the new
torus:

= gΛD'(τ^W), (4.18)

where the prime denotes the new torus trace. Applying (4.16) we find that Tgh(τ') is

S'T'hS' invariant up to the phase e

2πillh. In general, Tgh is Γ0 ( - 1 invariant up to
phases. \"/

On the primed torus the sector twisted by gh has a global phase anomaly
φ'gh = l/h. From (4.5) we see that the levels E' of L'0 in this sector therefore obey
£'=(/ + hk)/n for k e Z. Each state of L'0 corresponds to a state on the original torus
with L0 = ΛLo and level

E = hE' = (l + hk)-. (4.19)
w

Therefore, from (4.5), since gh is of order n/h, these twisted states have no global
phase anomaly on the original torus. This observation will allow us to apply the
Vacuum Conjectures to sectors twisted by gh and related sectors. This will be
sufficient to prove that T9 is a hauptmodul for an appropriate fixing group Γg.

Consider the action of an AL transformation we of Γ0(n\h) as in (3.13) on Tg(τ).
Then τ' = Λτ becomes

= WM, (4.20)

Cγ(hτ) + de
n

where W'e is an AL transformation for Γ0 1 - 1 . Now we can apply the decompo-

sition (4.10) to W'e to find that

τ'), (4.21)

where f=n/eh, (e,f) = l and eiφ is some phase of order h that depends on the
components of we. The trace is over a sector twisted by ghcf = gncie of order e with

(de, cf) = ί as before in (4.12). Since W'e is in the normaliser of Γ0 ( - I we expect

invariance up to phase under T which is consistent with the order of the twisting
being e. Likewise, \vee^(N) and Tg is Γ0(N) invariant so that we expect T= T'h

invariance without a phase. This confirms that eiφ is of order h.
We may now apply a similar argument as given previously. Any singular

behaviour of Tg at the AL cusp we(ιoo) is due to the presence of a tachyon in the
primed torus sector twisted by gn/e [and therefore also gnc/e for (c,e) = l]. From
(4.21) it is clear that Tθ can only be we invariant up to a phase if the vacuum energy
for the primed torus sector twisted by gn/e is — I /eh. Therefore, from (4.19) we see
that the sector twisted by gn/e on the original torus contains a tachyon of energy
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— ί/e. This concurs with the Vacuum Conjectures applied to gh, which we have
argued has no global phase anomaly on the original torus, where we consider the
sector twisted by (gh)n/eh = gn/e of order e with e\\n/h. The singularities of Tg are
therefore supplied also by the Vacuum Conjectures via (4.19) and (4.21). We now
show that Tg is a hauptmodul for some appropriate group.

It is convenient to consider the modular function

V9(τ) = [Γ9(τ/ft)]A. (4.22)

This is Γ0 ί - 1 invariant without phases. Applying the Vacuum Conjectures for gh

we have that either (a) ψg(We(τ)) = c +... or (b) ψg(We(τ)) = q~* +..., where Weisa

Γ01 - 1 AL transformation. We may then argue that ψg is We invariant for every

singular AL cusp of Tg(τ) as before. However, the in variance group for ψg is exactly
that for the hauptmodul Tgh(τ) because the singularities arise from the same twisted
sectors. Since they both have a simple pole at q = 0 we have

7χτ) + c (4.23)

for some constant c. This is the so-called Harmonic Formula of Conway and
Norton [3] which they derive from the Power Map Formula discussed below.

The invariance of ψg above implies that Γ0(n|/ι) + β1,e2,... is the invariance
group of Tg up to phases of order h. This corresponds to part (a) of the Moonshine
properties for h φ 1. The invariance group Γg of Tg is a subgroup of this generated
by 1% [where Γ0(JV)£/^'£Γ0(n|/z)] and any AL transformation we which leaves Tg

invariant. From (3.13) we know that we is a single coset for Γ0(n\h) but not for Γg.

Thus for y e Γ01 - 1 we can define w'e = wey such that w^ and we act on Tg with a

different phase, e.g. choose y = Tk/h for fe = 0,1,2,.... Nevertheless, the correspond-
ing We action on ψg in (4.22) is independent of y. Likewise, the singular cusp of Tg

associated with we is unique as the choice of y = Tk/h indicates. We may therefore
choose a representative, denoted by we, from the set of matrices we which has no
phase. Then Tg(τ) is invariant under Γg given by adjoining to Γg the appropriate AL
transformations weι, wβ2,.... As before, Tg is only singular at the corresponding AL
cusps which are now identified under Γg so that Tg is a hauptmodul for the genus
zero group Γg.

The Vacuum Conjectures can be further exploited to prove the Power Map
Formula of Conway and Norton [3]. This result does not follow from the
Moonshine properties but is an independent empirical observation.

Power Map Formula. Suppose Tg is invariant up to phases under Γ0(n\h) + eί9 e2,....
Then for any d, Tgd is invariant up to phases under Γo(n'\h') + eΊ9e

f2,...9 where
ri = n/(n,d), h' = h/(h,d) and e\,e'2,... are the divisors of n'/h amongst the numbers
eι,e29....

Let us prove this initially for Tg without a global phase anomaly so that
h = h' = l above. The general result will then follow from the Harmonic Formula
(4.23). Consider g' = gd of order n' = n/(n, d). Then Tg, is Γ0(n') invariant since no
global phase anomaly occurs for any gk sector. If Ύg, is We> invariant (e1 \\ n' || )then the
vacuum energy is — ί/e' for the sector twisted by (g')MΊe> = (gn/eY of order e', where
d' = d/(n,d) and (d',e') = \. But Tg is singular only at its AL cusps by the Vacuum
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Conjectures and so the sector twisted by (gn/e')d> can only be tachyonic provided
e'\\n by (4.6). Therefore, We is an AL symmetry of Tg also. On the other hand, if We

is an AL symmetry for Tg then the sector twisted by (gn/e)c of order e, (c, e) = 1, has
vacuum energy — i/e. This sector can only influence the behaviour of Tg, provided
e\rΐ (and hence e\\ n' implying that Tg> is We invariant). If e)(ri then (e, d) φ 1 and so
(g')k = gdk cannot be of order e for any k. Therefore, no modular transformation of
Tg can introduce this tachyonic sector and hence Tg, cannot be We invariant. To
summarise, we find that if Tg is Γ0(n) + el9e29... invariant then Tgd is
ΓQ(ri) + e'ί9 e'2,... invariant where e\9 e'2,... are the divisors of n' = n/(n9 d) amongst
el9e2,.... This corresponds to the Power Map Formula for h = h' = l.

The general result now follows by using the Harmonic Formula (4.23). We
apply the global phase anomaly free Power Map Formula to Tgh with power
d' = d/(d,h). Then Tgd>h is Γ0(m) + e\9e'29... invariant where

(4.24)

with n' = n/(n, h) and h' = h/(h, d) and where e'ί9 e'2,... are the divisors of m amongst
el9 e2,.... The relation (4.24) follows from the identity (n, d) = (h, d)(n//ι, d'). Finally,
noting that gd h = (gd)h and applying the Harmonic Formula (4.23) we find that Tgd

is invariant up to phases under ΓQ(ri\h') + e\,e'2,... as claimed.

5. Leech Lattice Automorphisms

In the last section we derived the Moonshine properties for a Thompson series Tg

by assuming the Vacuum Conjectures for the associated twisted spaces. In this
section we will describe the construction of such spaces for a subgroup of M based
on Leech lattice automorphisms and demonstrate the validity of the Vacuum
Conjectures in many such cases.

We begin by returning to the untwisted Hubert space H(+) of (2.5). The highest
weight state |/?>, βeA can be constructed by introducing the vertex operator
V(β,z) as follows [1,11]

V(β,z)=:eiβ χ^:c(β), (5.1 a)

|/?> = 7(AO)|0>, (5.1 b)

where c(β) is an element of the central extension λ of A by { ± 1} which is required
to ensure the associativity of the vertex operator algebra. The coefficients c( β) obey
the cocycle conditions

c(α)c(jβ) = ε(α,j8)c(α + j8),

ε(α,/OH-l)α^(jM).

Consider a an element of the automorphism group of the Leech lattice known
as the Con way group 0, i.e. ά'.A^Λ and αα άβ = α β for all α, β e A. Each such
automorphism induces a natural automorphism on H(+) by

ά:\βy^\άβy (5.3)
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with the remaining Fock states (2.5) transforming in an obvious way. This
transformation preserves L0 and hence the states at each level transform amongst
themselves.

From the point of view of the vertex operator (5.1 a) there is a larger class of
related automorphisms available. These are the automorphisms of A, denoted by
C0, that preserves (5.2). C0 is a central extension by Z?.4 of 0 denoted by
C0 = 224( 0). (This situation is familiar for a Lie algebra of rank / where the group
of Weyl reflections Wis extended by Z1

2 to form the discrete automorphism group
Z1

2(W) [24]). For aeC0 we have [1, 20]

) , (5.4a)

, (5.4b)

where αe O is associated with a and where fa(β) is a Z2 central extension of a
obeying /α(α + /0=/α(α)+/α(β). It is useful to realise/α(α) as follows. Let {e(r)} be a
basis for A and {e(s)} a dual basis with ^(r) β(s) = ̂ . Then for α = αre

(r) we have
/α(α) = αrm

r with wr=/fl(e(r))eZ2. Defining the lattice vector m = wre(r) we have for
any α e A

fM = e^'m. (5.5)

The set of inequivalent choices of m for a given a is given by A/2A of dimension 224

giving C0 = 224( 0). The transformation (5.3) then corresponds to the trivial
extension w = 0.

We turn now to the Monster Module V* and describe the role played by such
automorphisms. We first describe the automorphism group CQ of the full set of
states H(+)φH(-) where no mixing between untwisted and twisted sectors occurs.
A Z2 quotient of C0 then provides the appropriate group for V*.

The automorphism group C0 for ίί(+) induces an automorphism group on H (_ }

of (2.14) as follows. Recall that the vacuum states of #<_) are associated with the
fixed points A/2 A of g: x -> — x. Let K = (c(2α) \ α 6 A} which is a subgroup of λ
isomorphic to 2Λ [1,20]. From (5.5) we have /α(2α) = 1 so Kis also invariant under
C0. Therefore, C0 induces an automorphism group on Λ/K^2ί

+

+24 the "extra
special" group of order 225 [1, 2]. This automorphism group has a unique
212-dimensional representation acting on a vector space denoted by T. The
vacuum states {|σα>} of f/ (_ } introduced in Sect. 2 form a set of basis vectors for T.
The representation acting on T is in fact a projective representation of C0 with a
two-fold covering [1, 20] where defining

<?0 = {(α,ατ)eC0|ατ:T-^Γ} (5.6)

we have C0 = £?/{/, ± Iτ] where J(/Γ) is the identity of C0(T). The group £0 is then
the automorphism group of H(+)©£Γ(_) where no mixing between untwisted and
twisted states occurs, i.e. all elements of C0 commute with i = (I, —Iτ) which is the
"fermion number" introduced in Sect. 2.

Consider next the g invariant projection F* of H(+)@H(-) and notice that the
element ( —/, —Iτ) has eigenvalue +1 for all states of F" from (2.9 a) and (2.16 a).
Therefore, the automorphism group of V* that commutes with i is

C = eo/{±(/,/r)} = 21

+

+24(.l), (5.7)

where 1 = 0/{ +1} is the Conway simple group. The group C is the centraliser of i
in M. The correct identification of C with 2++ 24( 1) is a crucial part of the Monster
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group construction since Griess has shown that C together with only one other
involution element σ generates all of M [2]. FLM [1] constructed σ (which mixes
H(+) and #<->) from a triality symmetry [25] inherent in the Monster Module
construction to show that V* has M as its automorphism group.

FLM have also shown how to compute the Thompson series Tg for any g e C.
Let g = (α, aτ) e C corresponding to + (α, aτ) e C0. We will define the basic modular
functions that arise in calculating Tg(τ). The matrix a e 0 associated with a has
characteristic polynomial

det(x - 5) =Π (**-!)"*, (5-8)
k\n

where £ kak = 24 and where each ak is a (not necessarily positive) integer with a of
order n. For any such α we can define the generalised eta function

. (5.9)
k|ιι

Likewise, we can define the theta function for a

Θa(τ)= Σ I"*'2, (5-10)
βeAa

where An = { β e A \ άβ = β} is the invariant lattice for a of dimension d=^ak, the
number of unit eigenvalues of (5.8). We may also define a modified theta function
for a by

= £ eW-y2/2, (5.11)
βeΛz

where m\\ is the projection of m in (5.5) parallel to Λn, i.e. defining
0>n = (\+ά+...+άn~l)/n we have W|,=^aw and β m = β m](\ for βeΛδ.

We may now compute the Thompson series for g by expanding the partition
function as

(5.12)

where the right-hand side corresponds to traces over H(+) and H(_y Each of these
traces can be separately computed from the Fock spaces (2.5) and (2.14) to obtain
the closed form [1]

where Tr(±αr) is a trace over the representation space T.
As described in Sect. 4, we expect Tg(τ) to be Γ0(n) invariant up to a global phase.

Notice that we can also consider the first trace of (5.12) as a new Thompson series

for the untwisted sector H(+} which we denote by 7^+) = αΠ . Naively, it would

appear that 7^(+) is also Γ0(n) invariant up to a phase. However, it is necessary to
check that in the sector twisted by α, the automorphism a induced by a is also of
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order n. This is in general not the case as we shall see below. To understand this
point it is useful to consider the modular properties of ηQ and &a before describing
the twisted sector construction.

Suppose that h\k for all αfc + 0 then ηa is 7T invariant up to a phase e2πi/h with
h\n,h\24. Under 5 we find

Π Wτ/fc)Γ% (5.14)
k\n

where

D=γ[kαk. (5.15)
k\n

The modular function (5.14) is co variant under Tn up to a phase e~2πinE°, where

which follows directly from the leading behaviour q E° of the product of eta
functions. These properties are clearly reproducing some of the features of the
global phase anomaly φg = nE0 of (4.3) for vacuum energy E0. In particular, we
note that φg = l/h' for integers ί,Λ' where Λ'|24. At this stage h and h' are not yet
related.

Consider next the theta functions Θn and Θ'α. In many cases these are actually
equivalent. Thus for n odd we have /fl(β) = 0mod2 for all βeΛn and Θa = Θ'α.
Alternatively, if n is even and α = b2,beC0 then fα(β)=fb(β)±fb(β) = 0mod2 for
β e AQ, bβ= ±β and again Θa = Θ'α. In general, the modular properties of Θ'α are as
follows. If h\β2/2 for all βeAQ then Θ'α is T1/h invariant. Under S we have

(-ιτ)d/2

3X-lΛ)=L-β;*(τ) (5.17)

using Poisson resummation [11, 10], where Vn is the lattice volume \Λ$/Λa\
1/2 and

6̂ * is the modified theta function for the dual lattice A$

®;*(τ)= Σ q(β*+m»l2}2/2. (5.18)
0*e/l|

The dual lattice is in fact equivalent to the parallel projection of A with
A$=A\\=έPaA [15]. Thus (5.18) is invariant under W||-»W|[ +2/?(( for $\\εΛ\\
confirming that the inequivalent choices for m are given by A/2A. In general, the
norm of β \\eA\\ obeys

nj8f=0mod2, nodd, (5.19a)

nj? j j=0modl, neven, (5.19b)

which follows from the fact that nβ\\ =n^βeAa.
Consider now the cases for which m n = 0 and so Θa = Θ'α. Considering (5.14) and

(5.17) we find the S transform of Ta

(+i to be

q +•••• (5 20)

Then (5.19) implies that Ta

(+) is ST"S invariant for n odd but ST2"S invariant for n
even (up to a phase e2πi"E° and e4πίnE°, respectively). This latter property reflects the
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fact that in general, the automorphism a induced by a on the sector twisted by α,
can be of order 2n leading to a Z/2n grading rather than the naively expected Z/n
grading [26,15]. Fortunately, for Leech lattice automorphisms, this problem does
not arise for the following reasons. For n even, in general, we have using β - άk - β
= β άn-k βthat [15]

nβ]=β b βmod2, (5.21)

where δ~= απ/2 is of order 2. The Conway group contains three conjugacy classes of
order 2 [23]. However, two of these classes are members of the same conjugacy
class in M which leads, according to [3], to two independent ST2S invariant
Thompson series. Hence (5.21) implies that nβ\ = 0 mod2 and therefore, Ta

(+) is
STnS invariant up to the phase e2πίnE° for all n. Similarly, the sum of remaining
three traces of (5.12) is STnS invariant up to a phase with — άQ separately
invariant for n even. +

The situation for m\\ φO is more complicated. Then we find that nβ\\ - m\\ eZ so
that &a is ST2nS covariant up to the phase eπίnmϊ\/4. Therefore, the sector twisted by
a has Z/2n grading. This implies that the induced automorphism a in this sector is
of order 2n in general. Nevertheless, the combination of traces in (5.14) is STnS
invariant up to phase which presumably results from a transformation of the form

+
= eίφS[ - D] = Λθ (5.22)

a —

for some phase eiφ and similarly for the trace — a\Σ\.

Let us restrict ourselves from now on to the case where m \\ = 0 and construct the
a twisted sector [6,27,26]. The starting point is to consider the mode expansion for
x\z) satisfying the twisted boundary condition xl(z) = άijxj(e2πιz) + βί, βeΛ as in
(2.12). (For W H Φ O this geometrical approach of quotienting T24 by a lattice
automorphism is no longer valid and some different method of construction is

required.) It is convenient to express α in a diagonal basis with a = ( * }, where
\° a/.

Id is the d-dimensional identity matrix and fe = diag(e2πlΓd+1, ...,e2πιr24) for
0 < nri < n. Defining the projections of x by x \\ = 0*nx and xτ = (1 — 0>Q)x we obtain
the mode expansion

X| l =q\\ — ip\\ lnz-M Σ ~z~n•> i=l,...,d, (5.23a)
neZ n

at
xl

τ = ql

τ + i Σ — z ", ί = d + l,...,24, (5.23b)
neZ + ri n

where q\\, p\\, and αM obey the usual commutation relations (2.1). The vector qτ

denotes any fixed point of T24 under a. The mode expansion obeys the a twisting
condition provided

where Λ? = {βeΛ \ 0*aβ = Q} is the set of lattice vectors perpendicular to Λn. The
set of inequivalent fixed points qτ is determined by the coset Aa/(l — b)Λτ, where
A τ = (1 — &a)Λ [15]. In addition, just as A \\ = Λ$ so A τ=Λa

τ*. It is straightforward
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to show also that A%/An = Al*/Al so that the lattice volume Vn is given by
\Aτ/AZ\ί/2. Therefore, the number of fixed points na of a is [15]

fe)=-, (5.25)
Va

where extracting a factor of (x — l)d from (5.9) we obtain det(l — b) = f] k°k = D of
(5.15). The na fixed points determine the vacuum states \qτy for the left and right
moving theory. The left moving sector is expected from (5.20) to have a vacuum
degeneracy of Πa/2 = Dif2/Va which is always an integer [15, 26]. Thus there must
exist a set of left moving vacuum states {|σ^>} for r = 1,2,..., na

/2. The full twisted
Hubert space is then constructed as a Fock space by acting with αj, on the highest
weight states |/J||>®|σr)> β\\ εA \\ generalising (2.24). The states are graded by the
Virasoro Hamiltonian L0=p2/2 + χαLπαi + E0, where E0 is the normal ordering

constant - ]JΓ £ (n + r^ which provides the vacuum energy. By zeta function
2 f n

regularisation or otherwise we find [7]

E0=-l + i fJrXl-r ,) . (5.26)

This sum can be performed using the parametrisation (5.8) to obtain

E0=-l + 2 Σ%"Σ i(1-ΐ) = -1 + 4 Σ «*(*-£) (5-27)
4 k\n j = l k\ K/ 24 k\n \ k/

which agrees with (5.16) on using £fcαfc = 24. We may now compute the twisted
sector partition function 1Π to obtain the expected result (5.20).

α
Let us next discuss the validity of the Vacuum Conjectures for the sectors

twisted by άr. We will consider 7^(+) for ά e - 0 and show that 7^(+) is a hauptmodul
for an appropriate modular group given some specific properties of the parameters
αk and the invariant lattice Aa. The remaining terms of (5.12) then sum to form the
same hauptmodul differing only by a constant. It was originally proposed by
Con way and Norton [3] that 7^(+) is a hauptmodul for all αe 0. However, this
conjecture turns out to be false in some cases 2. The specific reason for this failure in
these cases is not known to us.

Consider the parameters αk of (5.8) and suppose that for some h we have that h\k
L n

for all αk φ 0. Then ηQ is T~h invariant up to a phase e2πi/h. Let e τ with /= n/eh and
lϊ

decompose k uniquely for αk Φ 0 as follows

k=hkekf,

2 In [20] it is stated that the first counter-example was found by Koike and that all counter-
examples have been found by K. Harada and collaborator
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where (ke, kf) = l. The action of the associated AL transformation we of (3.13) on ηn

can now be computed using

( e \
) = y(h—kfτ\,

(5-29)
ake bk

cn/ehkf de/kj'

where y e Γ. Therefore, ηa is transformed into itself (up to phases and cτ 4- d factors)
if the parameters ak obey for all k

ahkekf = ah(eike)kf' (5.30)

On the other hand, ηn is inverted by we if

f' (5.31)

This second relation implies that d = 0 so that Λa = 0 and T£+} = l/ηQ in this case.
We can now restate Conway and Norton's original conjecture about 7^+) as

follows: For most conjugacy classes of 0 in M, a representative a can be chosen for

each e - such that either (5.30) or (5.31) is obeyed.h
Notice that the we inversion property is stronger than the general Moonshine

properties. However, in general, within each conjugacy class of 0 in M there are a
number of conjugacy classes of 0 in itself, each of which has the same Thompson
series up to a constant. The claim is that for some representative choice of ά within
these classes, T£+) is we inverted for an appropriate constant. This claim is
strengthened by the observation that all Thompson series listed in Table 3 of [3],
which are not invariant under at least one AL transformation, have the form
T£+) = \/ηa corresponding to d = Q.

Assuming that (5.30) or (5.31) is true for a choice of ά, we can immediately
calculate E0 from (5.16) by choosing e = n/h, f= 1. Then αk = ± αk, for k = nh/k and

1 ~ " - 1 (5.32)

which agrees with the vacuum energy of Sect. 4 for a global phase anomaly e ± 2πi/h.
We may also calculate the vacuum energy for powers of ά. Let b = άr which is of

order ri = n/(n, r) and which has characteristic equation parameters

bk>= Σ (M%, (5.33)
k = k'(k,r)

where k'\nf. If (n, r) = 1 then bk = αk and the same vacuum energy results. Choosing
r = hwQ obtain bk = hαhk> for all k'\ri, ri = n/h and vacuum energy E'0 = + \/ri. This
agrees with the discussion on the modified torus construction in Sect. 4, i.e. the
sector twisted by gh of order ri is without a global phase anomaly. It is therefore
necessary to only consider ά with h = 1 from now on.

Suppose next that h = 1 and 5= άr with (ri, r) = 1, i.e. ri = e, where e \\ n and r = cf
with f=n/e, (c,e) = l. Then we find that (k,r) = kf and bk,= ±be/k> according to
(5.30) or (5.31). Thus the Έ sector vacuum energy is +l/e in agreement with the
Vacuum Conjectures. Likewise, one can show that for (ri, r) Φ1, (5.30) can never be
satisfied and therefore, the F sector cannot be tachyonic. The correct tachyonic
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singularity is therefore provided by (5.30) in each case. The residue of this
singularity giving the vacuum degeneracy n\12 is discussed below.

We can also demonstrate the closure property of the Vacuum Conjectures from
the symmetry relation (5.30). Thus if (5.30) is obeyed for e^\\n and e2\\n then ak

obeys (5.30) for e3 = e1e2/(eί,e2)
2. This can be checked directly by applying (5.30)

for e^ followed by e2 and showing that the resulting symmetry relation is that for
e3. Alternatively, We3 = WeίWβ2 preserves ηn covariantly and so (5.30) is obeyed
for e3.

Let us turn now to the vacuum degeneracy n^/2 = Dΐ/2/Vΰ. For a tachyonic
twisted sector with h = 1 we expect (5.30) to be obeyed for e = n to obtain (5.32).
Substituting into (5.15) we obtain D = nd/2 in these cases. Therefore, the tachyon is
unique (na = l) provided the invariant lattice volume obeys

Va = nd/4. (5.34)

If d = 0 then this is trivially true and T£ + } = ί/ηQ is Wn invariant (but is inverted by
some We). For rfφO, (5.34) is a non-trivial condition on AΛ. The pole residues are
now correctly specified by (5.34) and therefore, 7]f+) is a hauptmodul for an
appropriate fixing group Γ0(n) + eί9e29... If ?a(+) is invariant under all AL
involutions then (5.30) is obeyed for all e\\n, h — \ and θaφl. In particular, Wn

invariance implies that Θ$ (m) = 6>a(τ). Therefore, ΛΛ must be ]/n self-dual, i.e.
ΛQ = ]/nΛ$ for which (5.34) is naturally satisfied. This is a non-trivial property of
such invariant sublattices of the Leech lattice.

Finally, let us consider as an example, the form oϊT++} for a of prime order p. All
prime divisors of the Conway group 0 satisfy (p ± 1)|24 [23] which corresponds to
Wp invariance (inversion) as follows. Suppose that d = 0 and so a has no unit
eigenvalues. Then the characteristic polynomial (5.8) is completely determined
with ap= — a1 = r9 where (p — l)r = 24. Therefore, (5.31) is obeyed for Λ = l, e = p
giving Tl+) = (η(τ)/η(pτ))r which is inverted by Wp and is the hauptmodul for Γ0(p)
as stated in (3.14).

If dφO then applying (5.30) for e=p gives ap = aί = s with (p + l)s = 24. Then

7j +) = ΘQ/(η(τ)η(pτ))s is a hauptmodul for Γ0(p) + , where ΛQ is a 2s-dimensional J/p
self-dual lattice. For p = 2 we have Θa = (θ3θ4)

8 + 2~4θ2

6 [18] whereas for p>2 a
more suitable closed form can be computed from the Γ0(p) invariant sum of the
three remaining traces in (5.14). Then we find

(,35)
V?(τ/2) \p(τ)

with ψ(τ) = (η(τ)η(pτ))/η(2τ)η(2pτ))s and where Tr(±ΛΓ) = ±2S is found by Γ0(p)
invariance. It is easy to check that (5.35) is Γ0(p) + invariant for (p + l)s = 24 with a
unique pole at q = 0 and is therefore a hauptmodul for Γ0(p) + .

6. General Remarks and Conclusions

We have discussed the relationship between the Moonshine properties and an
orbifold construction based on Monster group elements. We have shown that the
correct vacuum structure for the corresponding twisted sectors guarantees the
hauptmodul property for any Thompson series and the Power Law Formula
observed by Conway and Norton. We will now briefly discuss a number of other
features of this orbifold construction that we will expand on elsewhere [28].
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In [8] it was noted that the remarks of Norton in the appendix of [20] about
Generalised Moonshine also fit into an orbifold picture very naturally. Gen-
eralised Moonshine refers to the hauptmodul properties of a generalised
Thompson series T(gl5g2) given by the orbifold contribution

ngι,g2)(τ) = gιΠ, (6.1)
82

where gί9 g2 are two elements of M that commute. Then, as stated in [20], T(g1? g2)
is unchanged under simultaneous conjugation of gx and g2. In addition, T(g1?g2)
transforms in the expected way under a modular transformation
τ-+(aτ + b)/(cτ + d) with Γ(g1? g2)-> T^g^5, gΓ°g2). We can also give the modular
invariance group for T(gl5g2) as follows. Let n1(n2) be the order of gχ(g2) and let
hί(h2) be the corresponding divisor that describes the global phase anomaly for the
sector twisted by g^). Then T(gι,g2) is T"2 invariant up to a phase e±2πί'h2 and
STnιS invariant up to a phase e± 2πί/hl. These phases are determined by the vacuum
energy for the sector twisted by g2 and g l s respectively. In general, we expect
T(g1,g2) to be invariant up to phases under

/Imodn2 Omodn

Finally, any singular behaviour of Γ(gl5g2) at a rational cusp point a/c is again
determined by the presence of a tachyon in the sector twisted by gΓcg5 The
hauptmodul property for some appropriate group is then expected to follow from
a similar argument as before.

In all our considerations thus far we have not examined the nature of the
Monster partition function but have only concentrated on particular trace
contributions to the full theory. Let us consider the example of the orbifold found
by quotienting with respect to a Zp subgroup of M generated by an element g of
prime order p. The full modular invariant partition function Zorb(τ) for this theory
is given by [6, 7]

Z0*(τ)=-n "ϊVπ. (6.2)
P ι.*=o gi

With p prime we can determine all of these traces from the Thompson series for g

since Γ9(τ) = T9,(τ) for 1=1,2,...,p-ί which implies that gkΠ = TkS(Tg(τ)) and so
g'

Zorb(τ)= ~p J(τ)+ ^-(l + "ΣO Γ*s) Γ9(τ), (6.3)

where J(τ) is the modular invariant partition function 1Π for the Monster Module

V*. The remaining terms sum to form a modular invariant function with leading

coefficient (p — l)/p for the q ~1 pole and therefore the sum gives J(τ) + C for
some constant C according to the Hauptmodul Theorem again. P

Suppose that the Thompson series Tg is inverted by the Fricke involution Wp.
Then the g twisted space has no tachyon and Tg is given by (3.14), where (p —1)|24
and g corresponds to a Leech lattice automorphism without any fixed points. We
then find that the partition function (6.3) becomes Zorb(τ) = J(τ) + 24, where the
constant is given by C = (p — l)r = 24. Thus the partition function coincides with
that of the original theory defined on T24 = R24/Λ. On the other hand, if the
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Thompson series is invariant under Wp (so that the g twisted space contains a
unique tachyon of energy — ί/p) then (6.3) becomes Zorb(τ) = J(τ), i.e. the partition
function is unchanged by this orbifolding procedure.

FLM have conjectured that the Monster Module is the unique (bosonic) CFT
with light-cone central charge 24 (giving the tachyon of mass — 1) without massless
states [1]. This characterisation is analogous to the unique determination of the
Leech lattice as the only even self-dual lattice in 24 dimensions without any norm 2
vectors. On the basis of the prime ordered examples above and this conjecture we
therefore make the following three suggestions (in an increasing order of
speculation):

(a) The Monster Module can be alternatively constructed from the original
untwisted theory on T24 = R24/Λ by Zp orbifolding with respect to prime ordered
Leech lattice automorphisms without any fixed points. The resulting partition
function is easily computed from the untwisted Thompson series 7^(+) as above to
give J(τ). A further Zp orbifolding of this theory then returns us to the untwisted
theory on Γ24 again explaining our result above.
(b) Orbifolding the Monster Module either returns the same Monster Module
theory or brings us back to the original untwisted theory again (at least for prime
ordered automorphisms). Whether this property can be extended to all orbifold-
ings of the Monster Module is now under investigation.
(c) Given that (b) is true for all orbifoldings, we are led to conjecture that the
Moonshine properties are in fact due to the uniqueness of the Monster Module, i.e.
the constraints placed on a Thompson series by (b) are sufficient to ensure the
Vacuum Conjectures and hence the Moonshine properties follow. This would
certainly offer the most satisfactory explanation for Monstrous Moonshine.

Apart from these more general considerations, the most immediate unanswered
question is how do we construct the twisted sector associated with a general
Monster group element in order to verify the Vacuum Conjectures? The most
promising starting point is surely a vertex operator approach beginning with a
centrally extended lattice automorphism as discussed in Sect. 5 (which does not
appear to be known) before considering a general Monster element. The theory of
generalised Kac-Moody algebras can be expected to play a central role here [5].

In conclusion, we would like to remark that, according to the uniqueness
conjecture of FLM above, the Monster Module is the unique string theory
without any massless states and therefore possesses no gauge or gravitational
symmetry. We can speculate that this theory describes the state of the early
universe before some phase transition sets in producing the necessary gauge
bosons, graviton, etc. Leaving such a possibility aside, it is somewhat ironic that
the string theory with the least degree of physical content has such an interesting
mathematical one.

Appendix. The Parabolic Cusps Points of 2FN

In this appendix we will discuss the inequivalent parabolic cusps OΪ^N =
In general, every rational point is a parabolic cusp point of some copy of 3F# in H.
The following lemma describes a convenient set of inequivalent cusps [29].

Lemma. Let r/S be a rational number with (r,S) = l. For a given N define

k = (N,S)9 N = kn, S = ks. (A.I)
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Then under Γ0(N) we have

^~oo, k = N9 (A.2a)

-0, fc = l, (A.2b)

, (A.2c)

0</</c, (/,/c) = l and / is a solution of

lmodm = rsmodm, m=(n,k). (A.3)

The proof of this lemma is as follows. If k = N then (r, Ns) = 1 implies that for

some b,dεZ we have rd—Nsb = ί. Therefore, y=\ A T JeΓ0(AΓ) and 7(00)
\Ns a)

= r/Ns as in (A.2a).

If k φ 1 then for y = ( A τ , I e Γ0(JV) we have y(r/fcs) = r'//cs' for r' = αr + bks and

s' = ncr + ds with (r',s'fc) = l. It follows that

r's' mod m = rs mod m ( A.4)

for m = (ft, fc). We will now construct y such that s' = 1 and r' = / with 0 ̂  / < fc, i.e.
α, fc, c, d obey

(A.5a)

kb=-r + ld. (A.5b)

If fc = 1 then (A.5) is satisfied for / = 0 giving (A.2b). If fcφ 1 then we will show
that (A.5b) can always be solved. We begin by noting that (nr, s) = 1 which implies
that there exists c,d such that cnr+ds = i. If c0,d0 are solutions of this then the
general solution is c = c0+js, d=d0—jnr for any integer j. We will show that d
satisfies

Id mod k = r mod k (A.6)

for some 0</<fc so that (A.5b) can be solved for b.
Let k=pq with (ft,p) = 1 and (ft,g)Φ 1, where p is maximal in the sense that all

prime divisors of q divide ft. Since (r,fc) = l and (ft,p) = l we have that (wr, p) = l.
Therefore, (ftr) mod/? takes on all possible values for 0^7 </? — !. In particular,
choose j such that jftr modp = (d0 — 1) modp, i.e. d = 1 modp for d = d0 —jnr which
implies that (d, p) = l.

We also know that (d, n) = 1 implying that (d, q) = l. Thus (d, k) = ί for the choice
of d above. Therefore, Wmodfe takes on all possible values in {1, ...,/c— 1} for
0</<fc. In particular, choose / such that (A.6) is satisfied implying that (/,fc)= 1.
Hence we can solve (A.5 b) for b giving y e Γ0(N) with y(r/ks) = l/k with / as in (A.3).
This concludes the proof.

The inequivalent cusps of &N are therefore determined by all k\N and all
0</<fc satisfying (A.3). We will illustrate this with a number of examples.

N prime: If N is prime then k = ίorN giving only two inequivalent cusps oo and 0
of (A.2a) and (A.2b) as is well known.
AL cusps : 1ϊe\\N [i.e. (e, /) = 1 for /= N/e] then for k =f we have m = 1 and (A.3)
implies that r/fs ~ l/f ~\/f for all 0 < / < k. Such a cusp point is defined in Sect. 4 as
the Atkin-Lehner cusp for the AL transformation We.



308 M. P. Tuite

As an example of a general situation we can calculate the inequivalent cusps for
N = 36. The divisors of N are fc = (l, 2, 3, 4, 6, 9, 12, 18, 36) with corresponding
values of m = (l, 2, 3,1,6,1,3,2,1). There are 12 inequivalent cusps determined by
(A.2) and (A.3) as follows

0,t {if U {if U {A, AJ.lfe oo (A.7)

respectively where 0, ̂ , and ̂  are the AL cusps for e = 1,9,4. Likewise, the action of
the elements of */Γ(36) on the cusps can be computed. Thus the Fricke involution
W36:τ->-l/36τ acts as follows: (O îiiiMoo,^,^,^,!) where in parti-
cular ^~T2^T2 (m = 3, -I = 5mod3), f->-2Π2-~A (™ = 3, -1.2=lmod3)
and £-> — £~f (m = 6, —1 = 5 mod6). Therefore, Γ0(36)4- 36 has 6 cusps.
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