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Abstract. Asymptotic scaling behavior, characteristic of the inertial range, is
obtained for a fractal stochastic system proposed as a model for turbulent transport.

1. Introduction

The determination of the statistical behavior of a fluid from the statistical properties
of a random velocity field is important in the study of tracer flow in heterogeneous
porous media, ground water ecology, and fully developed turbulence. In earlier
work [4, 9], the asymptotic scaling exponents were obtained for the motion of a
fluid determined by a convection-diffusion equation

Tt+1(3,t) VT=μΔT, Γ(0, x) = Γ0(x), (1.1)

with μ = 0. Here T is a physical quantity, v is a random velocity field, and μ is the
molecular diffusion coefficient. The purpose of this paper is to relate these exponents
to the similar but in some cases distinct exponents of [1], obtained for the equation

Tt + v(x, t)Ty = μΔT, Γ(0, x, y) = T0(x, y). (1.2)

Our results are either independent of cutoffs, (i.e. infrared finite) and thus are
properties of the self similar, or inertial, regime, or else the cutoff cannot be removed,
because the inertial range scaling behavior is infrared divergent. In the infrared
divergent case, the cutoff dependence of the scaling exponents is exhibited explicitly.
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The scaling exponents depend on an arbitrary parameter which characterizes the
rate of cutoff removal as the scaling limit is taken. As this parameter is taken to
infinity, one obtains rapid removal of the long distance cutoff, i.e. inertial range
scaling. In the infrared divergent case, the scaling exponent tends to infinity as well.
We conclude that in the infrared divergent case, the inertial range scaling behavior
is infinite, and any scaling relation with finite exponents has an intrinsic dependence
on the cutoffs which introduce a new parameter into the asymptotic behavior. For
a unique value of this parameter, we recover the results of [1]. The purpose of [1]
is to study the coupling between the energy containing region and the inertial region.
In [1] scaling limits occur on the same length scale as the (long distance, or small
momentum) cutoff. In keeping with our inertial range scaling point of view, we do
not scale the initial data while taking the asymptotic limit. Thus our scaling laws
apply to all solutions of (1.2), and not just to asymptotically low wave number ones.
Additional references for the study of (1.1) can be traced from [2,3,5,6]. The relation
of our work to the fractal analysis of ground water data [8] will be presented
separately. For tracer flow in porous media, T is the saturation value and v is
determined by the random permeability field. We assume μ ̂  0 and that the velocity
field v(x, ί) in (1.2) is a translation invariant Gaussian random field with a mean
value of zero.

In the infrared divergent case, we find it convenient to include a time dependence
in the infrared cutoff. This convention is not required for the existence of the scaling
limits and does not affect the exponents themselves, but is utilized to achieve
consistency between the asymptotic scaling exponents and the scaling behavior of
the asymptotic equations. The time scale in the infrared cutoff appears in a dimen-
sionless form t/tc. Here tc is a characteristic time scale, for simplicity set to one.

II. Asymptotic Scaling Exponents

We define the asymptotic scaling exponents of a function F(x, y, i). Let / and g be
functions which are monotonically increasing in the asymptotic regime, and let
φ = χ/f(t) and φ = y/g(t). Suppose that in the limit, x, y, t -> oo, with φ and ψ fixed,
F(x, y, t) approaches an asymptotic form F*(φ, φ) φ 0. We then call f(t) and g(t) the
scaling of x and y in this asymptotic regime. We introduce scaled variables
x' = σx,y' = δy and t' = p2t. Then the limit x,y,ί-»oo is equivalent to the limit
σ,(5,p->0 (with x',y' and t' fixed). We consider σ and δ to be functions of p. The
asymptotic scaling behavior of x and y is determined from

1 d\nσ(p) 1 d\nδ(p)
yx = -hm — and y =-hm— . (2.1)

2p-o dlnp y 2p->o dlnp

In the asymptotic regime x and y scale as tjx and tyy respectively. When the scaling
exponent equals 1/2, the diffusion is normal. Any other value corresponds to
anomalous diffusion.

Since (1.2) is linear and v is independent of y, the solution of (1.2) can be expressed
as

T(t, x, y) = ̂ eiyξp(t, x, η, ξ)T0(η, ξ)dηdξ, (2.2)
2π
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where Γ0 is the Fourier transform of T0 and p is determined by

pt + iξv(x9 t)p = - μξ2p + μpxx, p(0, x, η9 ξ) = eixη. (2.3)

The solution of (2.3) is given by the Feynmann-Kac formula [7]

ί * 1
p(ί, x, η, ξ) = exp(ixη — μξ2t)E< exp [iη^/2μβ(t) + iξJv(x + ^/2μβ(s\ t — s)ds~\ >,

( o J

(2.4)

where £{•} denotes the integral over Weiner measure, and β(t) is a Brownian path
at time ί, normalized so that /?(0) = 0. Here Γ(ί, x) is the solution of (1.1) for a
particular realization of the random velocity v. Let < Γ(ί, x)> denote the ensemble
average of Γ(ί, x) over all possible realization of v. An exact expression for < T> can
be constructed from (2.2) and (2.4) [1], which we express in terms of scaled variables,

-2,-2 22,
p2 σ δj I \p2 σ δ

where

* 4>-p2 σ δj \ \p2 σ δj / 2π \ p2 J

σ ξz δt ll ί /2μt t
£<!exp| i-η^/2μtβ(l) ^rίί^M (β(sι)~β(s2)\~ϊ(sι ~S2Ϊ

p 2 p4 oo V P P
^[t
^ds2 LdSlds2>dηdξ = jjexp lixη + iyξ - μξ2N(δ, p, ί)] T0((Π/, δξ)

(2.5)

R = <v(x, ί)v(0,0)> is the velocity correlation function, and

N(δ, p, t) = ̂  A(δ, p, t, β) = ̂ }]R(^(β(s1) - β(s2))9 ^(s, - s2)}dSlds2.
P 2p 4oo \ P p2 J

(2.6)

Here we have suppressed all primes on the variables ί, x, y, η and ξ in (2.5) and (2.6).

We will apply (2.1) to determine the scaling behavior of T.
We do not scale the initial data T0, when expressed in the original variables and

when regarded as the L1 density of a measure. Thus our initial data is

(*' Λ
^σ"1^"1^ —,- }dx'dy'

\ P δj

or, dropping primes, σ"1^"1!^! -,- \dxdy. In Fourier space, the initial data is
\σ δj

f0(η,ξ)=f0(ση',δξ')
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or, dropping primes, fQ(ση, δξ). This unsealed data, in the scaling limit, converges
to a (5-function in x -space and to a constant in Fourier space. Alternately, data
scaled in the original variables can be used as in [1], to produce unsealed data in
the new variables. Except for the scaling of T0 and the allowance of the distinct
scaling behavior for x and y variables, (2.5) and (2.6) coincide with the formula (3.13)
of [1]. N(δ, p, t) gives the scaling behavior due to molecular diffusion and A(δ, p, ί, β)
gives the scaling behavior due to the velocity correlation. Equations (2.5) and (2.6)
show that σ = p, (i.e. x % f 1 / 2) while there are two possible scalings for δ (i.e. for y)
in the asymptotic regime depending on whether or not A(δ, p, ί, •) dominates in the
limit p -» 0. If A(δ, p, ί, •) dominates, then the scaling behavior of y is determined by
A(δ,p, ί, •) and the diffusion in the y direction is anomalous. Otherwise δ = p
(y «ί i/2) and the diffusion is normal in the y direction. The diffusion in the x
direction is always normal.

Lemma 2.1. If under the scaling δ(p) = p\ the limit lim A(δ, p, ί, β) exists and is finite
p->0

and independent of β, then limA(δ,p, t,β) = λtτ, where λ is a constant independent of
p->Q

p, <5, β and t.

Proof. From (2.6) we have

δ2 Γ l / t \ 2 ~ τ l ι / /2ΰt t \ Ί
A(δ,p,t,β) = —ή -( - J J Λ V-AoJίs,)-/Ks2)λ-(Sl -s2) )ds1ds2 .

P l_2\p 2 / oo V P P J J

(2.7)

The expression in [•] is independent of δ. According to our assumption, it is finite
and independent of β in the limit'p -»0. Since t and p appear as the form of t/p2 in
A, [•] is also independent of t in the limit p -*0. Let

I/ t \ 2 ~ τ l i / /2ut t
- - f JK *-^(β(Sl) - j8(s2)),

P-o2\p 2 / oo V P P
λ = lim- - f JK *-(β(Sl) - j8(s2)),-(Sl - 52) <Ms2, (2.8)

2

then the asymptotic limit of (2.7) is lim ,4(<5, p, ί, )9) = >lίτ when δ = pτ.
p^O

Theorem 2.2. If under the scaling δ(p) = pτ with τ>l, | A(δ, p, ί, jS) | is bounded by a

β-independent constant for all β, and the limit lim A(δ, p, ί, /?) exists and is finite and
P-*o

independent of β, then the asymptotic form of (2.5) is given by

T(t, x, y) - lim f(± -Λ = I4μλtl + 2^] - 1/2 exp Γ - ~ - - - 1 T0(0, 0), (2.9)
2 [_ 4μt 2p2

 σ δ

and the asymptotic effective equation for f is given by

(2.10)

where λ is defined by (2.8) and yy = τ/2 is the asymptotic exponent of Tfor the vari-
able y.

Proof. Since 1 < τ, we have lim N(δ = pτ, p, t) = 0. | A(δ, p, ί, β)\ is bounded from the
P-+O

assumption. From Lemma 2.1, A(δ,p,t,β) converges pointwise to λtτ in the limit
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σ -* 0 with the scaling δ = pτ. Therefore, applying the dominated convergence
theorem, with the scaling σ = p and δ = p\ (2.5) converges to

_-μtη2 - λf'f 2]T0(0, ΰtfηdξ
2n

4μt "«-' (2 u)

By applying the derivative with respect to t to (2.11), we obtain

ft = μ Txx + τλtτ ~1 Tyy. (2.12)

From (2.1), we have γx = 1/2 and γy = τ/2. A substitution of τ = 2γy in (2.11) and
(2.12) leads to (2.9) and (2.10).

We comment that the scalings satisfied by the asymptotic effective equation
(2.12) agree with the scalings (2.1) which defines the asymptotic limits.

A) The Stationary Fractal Random Velocity Field

Theorem 2.3. Let
kh

R(x,t) = c J eikx\k\ί~εdk = 2c J cos(kx)kl~εdk for —oo<ε<oo, (2.13)
kι^\k\^kh kι

be the covariance for the fractal stationary random velocity field (cf. [1]), where c and
ε are constants, and k1 and kh are cut-offs for small and large values of\k\ respectively.
Then the scaling exponents are given by

yx = -, and yv = max <-,- + -, 1 + -(ε - 2) > for - oo < ε < oo, 1 ̂  α.
2 y [ 2 2 4 4 J

(2.14)

Here α characterizes the rate of infrared removal, k{ = fc0ί~
α/2pα.

Remark. When Theorem 2.2 applies, we evaluate λ in closed form.

Proof. For ε < 0, we set σ = δ = p. Then the mean field analysis given in [1] for the
normal diffusion regime applies here also, Consider the regime 0 < ε < 2, in which

the diffusion in the y direction is anomalous. In (2.5), the factor exp i-η^/2μtβ(l)
LP J

is bounded in magnitude and it converges to exp [iη^/ΐμtβ(\)~\ with the scaling σ = p

for fixed β. Therefore, exp i-η~/2μtβ(l) - ξ2A(δ,p, t,β) will converge under the
L P J
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scaling σ = p and δ = δ(p) if A(δ, p, f, β) converges for fixed β under the scaling
δ = £(p). The proof for the convergence and the scaling behavior of the later
expression is given in [1], for δ = p(ε+2)/2. Thus (2.5) converges under the scaling
σ = p and δ = p(ε + 2)/2 and from (2.1) we have proved Theorem 2.3 for ε < 2. For
ε < 2, the infrared cut-off kt can be removed while for 0 < ε, the ultraviolet cut-off
kh can be removed.

We show next that for 2 ̂  ε, the ^-scaling exponent yy depends on the approach
of /c, to zero and thus is infrared divergent. Let fc/ approach zero at a rate pα with
α ̂  1. We set kt = /c0ί~

α/2pα. Here we have included the factor ί~α/2. In the infrared
divergent cases, this factor is necessary to achieve the consistency between the
scalings determined from p, δ and σ and the scalings determined from ί, x, and y
variables of the asymptotic effective equation given by (2.12). This factor does not
eifect the existence of the scaling limits. By changing to the variable k' = /αα/2p~α,
we have

£2Λ

A(δ, p, t, β) = c 4+ f j J cos |χ/5μίr * V ' Iflsi) - /^P'Dfc'1 'edk'dSlds2.
P O O k o

(2.15)

Here we have removed the ultraviolet cutoff.
We consider 2 < ε first, With the scaling δ = p*4^-2*)/2, we have

\A(δ,p,t,ft\ Z cf[4+"(ε-2>1/2/c2-ε/(ε - 2),

and /4((5, p, t, β) converges pointwise to

lira A(δ,p,t,β) = cί<ε+2>'2Jί J cos [VWfei) - β(s2)\k'W\1 -*dk'dSlds2

when α = 1 or to

lim A(δ, p, ί, β) = ct[4 + α(ε - 2)1/2/cε

0-
 2/(ε - 2)

p-+0

when 1 <α (for fixed β) in the limit ρ->0. Applying the dominated convergence
theorem, the asymptotic scaling limits of (2.5) exist and the scaling exponents are
given by (2.14). Notice that lim yy = oo for 2 < ε and when α = 1 the scalings have

α-»oo

the same functional form as for the regime 0 < ε < 2.
For α = 1 the asymptotic diffusion is non-local. 1 < α the asymptotic diffusion

is local. The asymptotic solution and the asymptotic effective equation are given by
Theorem 2.2, (2.9) and (2.10), with yy = [4 + α(ε - 2)]/4 and λ = ck2~ε/(ε - 2) for
2 < ε and 1 < α.

In [1], kt approaches to zero as k{ — k0δ for 2 < ε. This gives the relation α = 2yy.
Using (2.14), we have γy = α/2 = 2/(4 — ε) for 2 < ε. Therefore, we have recovered the
result of [1] with this specific choice of α. Such scaling is possible only for ε < 4,
since this choice of α is negative when 4 < ε.

Now we consider the case ε = 2. In this case, (2.15) can be written as

,52,2 1 1 _
A(δ, p, t,β)=- c—ttcil^2μtΓ*'2p*- 1 \β(Sl) - β(s2)\kQ\dslds2.

p oo
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00

Here ci(x) = - J t~l cos (t)dt is the cosine integral and
X

x/2

\ci(x)\ = \C + ln(x)-2 J r i sm2(t)dt\ ^ C + 1 + 3|ln(x)|,
o

where C is the Euler constant. When α = 1, we choose the scaling δ = p2

9 then

2 oo

and

t o o J J

Since

EJΠlln^!)-^))!^^ j< oo (2.16)
loo J

we have E[A(t, β)~] < oo. For α = 1, with the scaling δ = ρ2,A(δ,p,t,β) converges
pointwise to

limΛ(δ,p,ί,jS) = -Ct2]]cί\:^2μ\β(s1)-β(s2)\k() ]dsίds2.
P~"° 00

Applying the dominated convergence theorem, the scaling limit exists and scaling
exponents satisfy (2.14).

Similarly, for 1 < α, we choose δ = p2\lnp\~1/2 for p ^ p0 < 1. Then

|Λ(<5,p,ί,j5)|^I(ί,^

+ 3\\\ln(β(sJ-β(s2))\ds,ds2
00

From (2.16), we have £[I(ί, j8)] < oo. With the scaling δ = p2 |lnpΓ1 / 2,Λ(<5,p,ί, β)
converges to cί2(α—1) pointwise in the limit p->0. Applying the dominated
convergence theorem the scaling limit exists and the scaling exponents are the same
as the α = 1 case. Following the same procedure as in the proof of Theorem 2.2, one
can show that the asymptotic solution and the asymptotic effective equation are
given by (2.9) and (2.10) with yy = 1 and λ = c(α - 1) for ε = 2 and 1 < α. We have
completed the proof of Theorem 2.3.

B) The Time Dependent Fractal Random Velocity Field

Theorem 2.4. Let

kh

Λ(x,ί) = 2cjcos(/cx)e~αfcz | ί |/c1-εd/c for -oo <ε< oo,0<z, (2.17)
kι

be the covariance for the time dependent fractal random velocity field (cf. [7]), where
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α, c, ε and z are constants. Then the scaling exponents are y% = | and

max <-,- + -, 1 + -(ε — 2) >, for — oo<ε<oo,2^z, l<α, (2.180)

for - oo < ε < 2,0 < z < 2, (2.18b)

for2 ^ ε < oo,0 < z < 2,1 < α. (2.18c)

max <; -, 1 H

1 ε-2
2 + α~T~"

The parameters kh kh and α are defined in Theorem 2.3.

Remark. There are five regimes in which γy assumes distinct functional forms, as
shown in Fig. 1 and Table 1. The infrared cut-off can be removed in the regimes
Rh RH and R^ while the ultraviolet cut-off can be removed in the regimes Rii9 Riih Riv,
and Rv. The scaling of y in the regimes Riv and Rv is infrared divergent. Thus yy is
infinite, or it depends on the rate α at which fcj approaches zero. The scaling (2.18a)
for 2 < z coincides with the scaling of the stationary random velocity field given by
(2.14).

Proof. Using (2. 17), (2.6) becomes

cos
00 kι

\

Sl) - β(s2)\k
/

•exp -akz-^\s1-s2\\k1-εdkdsίds2. (2.19)

In the regime Ri9 we set σ = δ = p. Then the scaling exponents in Rt follow the

Fig. 1. Regimes for the asymptotic scaling exponent yy of T in the y direction, with the time
dependent fractal velocity correlation function given by (2.17). There are five regimes in which yy

assumes distinct functional forms as indicated in the figure. The regime Rh with yy = 1/2,
corresponds to normal diffusion, while the diffusion in the other four regimes in anomalous. The
asymptotic scaling exponent of T in the x direction is normal, i.e. γx - 1/2
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mean field analysis of [1] in this regime. The result of scaling in the regime RH follow
from a proof similar to the one given for the stationary random velocity field in the
regime 0 < ε < 2. Namely, the proof for the convergence and the scaling behavior
in regime II of [1] can be applied to (2.5) in Rih under the scalings σ = p and
δ = p<£+ 2>/2, which gives yx = 1/2 and yy = (2 + ε)/4.

For regime Riih we set /cf = /c0ί~
1/2p2/z»and change to the variable k' = kt1/zp~2lz.

Then (2.19) can be expressed as

S2Λ2Z + e - 2 ) / z ι i J f c

''Λ = C (4z + 2ε-4)/zίί ί C°
P O O f c o

where fcj, = kht
1/zp-2/z. Since

lim
*o->0'Λί,-*oo pV**^** ' O O f c o

52t(2z + β-2)/zk ί l

lim c ' , A W fa-1*'1-'"'
Jko-O.kfc-00 p(4ϊ + 2β-4)/ϊ

ko

<
^ lim c

2 — ε — 2z 2 — ε — z z

:,z), (2.20)(4z + 2ε-4)/z

when ε < 2, z < 2, and 2 < ε + z, the cut-offs can be removed. Here cίίf(ε, z) =
a(e-2)/z / 2 _ g _ 2 z \ °°

c - Γ\ - 1, Γ( ) is the gamma function and Γ(p,x)= \tp~1e~tdt is the
z \ z J

incomplete gamma function. The last equality of (2.20) is obtained from the
expansion

forp*0,-l,-2,... . (2.21)
n = 0 n\(p

We emphasize that we have removed the cut-offs before taking the limit p -> 0. Since
the infrared cut-off has been removed in the regime Riii9 the time dependent lower
cutoff kl = k0t~

llzp2/z is chosen for convenience rather than necessity. With the
scaling (5 = p(2z+£-2)/z, \A(δ9p,t,β)\ is bounded by cfl,(ε,z)ί(2z+ε-2)/z, and with the
cutoffs removed, A(δ,p,t,β) converges pointwise to ciiί(ε,z)t(2z+ε~2}/2, in the limit
p -+ 0. Therefore, from the dominated convergence theorem and Theorem 2.2, under
the scaling σ = p and δ = p(2 z + ε~2)/z

? the asymptotic expression for (2.5) and the
asymptotic effective equation are given by (2.9) and (2.10) with

ε — 2 a(ε~2)lz /2 — ε — 2z
yy = 1+ — — and λ = cih{ε9 z) = c - Γ92z z \ z

when ε < 2, z < 2, and 2 < ε + z.
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For the regimes, Riv and Rv, the proofs are similar to the proof for the stationary
case in the regime 2 < ε. Namely we set kt = fc0ί~

α/2pα for 1 g α, and change to
the variable k' = kt*/2ρ~Λ. Then (2.19) becomes

ε- 2)]/2 1 1 αo

A(δ, p, t,β) = c ^ j - f Π ̂ s [ J2jάt-«2p - 1 \β(Sί) -
P O O f c o

expl-ak'zp*z-2t(2-*z)/2\s-sf\']k'1-Edk'ds1ds2.

We have
*2 Λ4 + α(ε- 2)]/2

/>4 + "(ε-2) δδio

2f[4 + α(ε-2)]/2

= Ĉ

2-ε-z 2-ε-2z

for2<ε, andO<z, (2.22)

where q = at(2~xz>/2ρ*z~2. In the limit />-»0, there are three possible limits for
q:q-+Q,q->a or q->ao depending on the value of α. We examine the scaling
behavior of (2.22) for each of these possibilities.

When 2/z < α, lim q = 0. Then from (2.21), (2.22) becomes

s2J4 + α(

\A(δ,p,t,β)\ίc 4+g(e_2) -- e_[l + θta)]. (2.23)

^/ o ^

Therefore, under the scaling δ = p(4~ 2α+αε>/2, | χ(δ, p, t, j8)| is bounded and A(δ, p, t, jS)
converges pointwise to

lim A(δ, p, ί, j?) = c _^o_l ίK+α(ε- 2)]/2 when maχ { ι?

 21 < α? (2.24)
p^o 2ε — 4 ( z j

or to

lim 4(<J, p, ί, β) = ct(ε + 2)/2 JJ f cos [^/2/il^ι) ~ β(s2)\kf^k/1-εdkfdslds2
P^Q OOko

when α= l,z>2.

Therefore, applying the dominated convergence theorem, (2.5) converges under the
scaling σ - p and δ = p^+^~2^2

9 which gives yx = 1/2 and yy = [4 4- α(ε - 2)]/4 for
2/z < α. Similarly, when α = 2/z, q = a. Under the scaling 5 = p(2z + ε ~ 2)/z, A((5, p, ί, j?)
is bounded and converges pointwise to

, Γ (fl^fcp)2-1

L 2-ε-;
Iim/l(δ,p,ί,jϊ) = ct2(αί)(8~2)/2,P->O L 2 —ε —z 2 —ε —2z

when z < 2 (2.25)
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or to

lim A(δ,p9 ί, β) = cί(ε+2)/2 JJ J cos l^/2μ \ β(Sl) - β(s2)\k'-]e-ak'zk'1 -εdk'dslds2

P->° OOΛo

when z = 2.

Therefore, (2.5) converges under the scaling σ = p and δ = p(2z+ε~2^z

9 and yx = 1/2
and yy = [2z + ε - 2]/2z for α = 2/z.

Now let α < 2/z, (this is possible only in Rv since 1 < α), lim q = oo. From the
p^O

expansion

for x->oo,M = 1,2,...,

(2.22) becomes

Therefore, under the scaling δ = p[2+α(ε+z-2)]/2,|Λ(<5,p,ί,β)| is bounded and
,4(c5, p, ί, /?) converges pointwise to

lim A(δ, p, t,β) = ca~1 —^ ί[α(ε+z"2) + 23/2 when 1 < α < 2/z. (2.27)
P^O ε - f z —2

Applying the dominated convergence theorem, the limit p->0 of (2.5) exists for the
scaling σ = p and δ = p[2+α<ε+z-2)]/2. The scaling exponents are given by yx = 1/2
and yy = [2 + α(ε + z - 2)]/4 for 1 < α < 2/z.

In the regime Kίt;, the diffusion is non-local when α = 1 while the diffusion is
local for 1 < α. The diffusion in Rv is local. From Theorem 2.2 with (2.8), (2.24), (2.25)
and (2.27), we have (2.9) and (2.10) for the asymptotic solution and the asymptotic
effective equation for Riv and Rv with λ = c/c2~ε/(2ε - 4), when max {1,2/z} < α; and
λ = cαfc2~ε~Y(ε + z - 2), when 1 < α < 2/z; and

λ = cβ< -2>/«Γίβl/'U(2"I")/' ίallZk«](2~ε~2Z)/Z l

z + ε-2 2z + ε-2 z

2
when 1 < α = -.

z
We have completed the proof of Theorem 2.4. If we set α = 1 (α = 2/z) in Riv(Rv),

then yy takes the same functional form as in RH (Rm).
The scalings of the local asymptotic effective equation derived here agree with

scaling given by (2.18a)-(2.18c). In the limit α-> oo,yy-> oo also, which defines the
inertial range (cut-off independent limit) scaling for regimes Riv and Rv.

By setting kt = k0δ, in regimes Riv and Rv, we recover the scaling behavior in
regime III and the portion of II with 2 < ε of [1]. Setting α = 2yy in (2.18a) and
(2.18c), we have yy = α/2 = 2/(4 — ε). This scaling is only valid in the regime
4 — 2z ̂  ε < 4 due to the condition 0 < α and 2/z ̂  α. Similarly, setting α = 2yy in
(2.18c), we have yy = α/2 = l/(4 — ε — z), which is only valid in the regime ε < 4 — 2z
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due to the condition α < 2/z. The boundary between regimes II and III of [1] for
2 < ε is determined by α = 2/z, i.e. ε = 4 — 2z. Our scaling in the portion with
ε < 4 — 2z of the regime Riu does not agree with the scaling of the portion with ε < 2
of the regime II of [1]. This discrepancy is due to the fact that in order to obtain
inertial range scaling, we have removed the infrared cut-off in that regime. For the
infrared divergent case, we obtain the inertial range scaling yx=l/2 and 7^=00,
and a one parameter family of finite noninertial range scalings, one of which agrees
with [1].
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