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Abstract. Sharp bounds on the number N(r) of the scattering poles in the disc \z\ ^ r
for a large class of compactly supported perturbations (not necessarily selfadjoint)
of the Laplacian in R", n ̂  3, odd, are obtained. In particular, in the elliptic case the
estimate N(r) ^ Crn + C is proved.

1. Introduction and Statement of Results

Using the complex scaling method, Sjόstrand and Zworski [9] have recently
obtained some sharp bounds on the number of the scattering poles for a large class
of selfadjoint compactly supported perturbations of the Laplacian. This method
allows to characterize the scattering poles as eigenvalues of another unbounded
operator (in another Hubert space) which, however, is not selfadjoint. This in turn
leads to some difficulties when one tries to study its discrete spectrum. To
overcome them Sjόstrand and Zworski developed a heavy machinery based in
particular on an application of the spectral calculus for selfadjoint operators.

The purpose of this work is to extend the results in [9] for a class of non-
selfadjoint compactly supported perturbations of the Laplacian and in particular
to give a simpler proof of the bounds obtained in [9]. Let us now introduce the
notations and make our assumptions. Let G be a linear unbounded closed
operator in a complex Hubert space H with domain Q)(G). We suppose that there
exists a ρ0 > 0 so that the Hubert space H admits the orthogonal decomposition
H = H'®L2(R"\Bρol where £ ρ o = {xeIRM: |x|^ρ0}, n^3 is odd. If χeC$QRη is
equal to 1 in a neighbourhood of Bρo and u e H is written asu = u1 + u2 with w^ff,
u2 eL2(R"\Bρo), we define χu eH by χu = ux + χu2. Similarly, if χe CJ(RW) is equal
to zero in a neighbourhood of Bρo and to 1 outside a compact domain in 1R", we
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define χu by χu = χu2eL2(Rn\Bρo). We make the following assumptions:

For any χ e C^fJR") equal to zero in a neighbourhood of Bρo and
to 1 outside a compact domain in R" and any u e 2$(G\ we have
χu e &(G)nH2(TRn\Bρo) and Gχu = — Aχu, A being the Laplacian
inR". (1.1)

For any χγ e C°°(RΠ) as in (1.1), any χ2 e CJ(RΠ) such that χ2 = 1
in a neighbourhood of Bρo and χχ=0 on suppχ2 and any

we have χ1Gχ2u = 0. (1.2)

Instead of selfadjointness of G we require the following much weaker assumption:

The resolvent set of G is not empty. (1.3)

It follows easily from this assumption that there exists zoe<L with Imz0 > 0 and an
open neighbourhood Λc{ze<t: Imz>0} of z0 so that the resolvent R(z)
= (G-z2)~ιe £(H,H) is well defined and holomorphic in A. 2{X9 Y) denotes the
space of all linear bounded operators acting from X into Y. To introduce the
scattering poles associated to the operator G we need the following assumption:

There exists a function χ e C^(R") equal to 1 in a neighbourhood
of Bρo so that the operator χR(z0) is compact as an operator in
2(H,H). (1.4)

We shall show in Sect. 3 that in fact χR(z0) is compact for any other function
χe Q(RΠ) equal to 1 in a neighbourhood of Bρo. Now fix a function χe Q?(RΠ)
equal to 1 in a neighbourhood of Bρo and consider the cutoff resolvent Rχ{z)
= χR{z)χ for zeΛ.As shown in Sect. 3 (see also [9]), under the above assumptions,
Rχ(z) admits a meromorphic continuation from A to the entire complex plane (C.
The poles of this continuation are known as scattering poles or resonances. As we
shall show in Sect. 3, the poles of Rχ(z\ as well as their multiplicities, do not depend
on the function χ, provided χ = 1 in a neighbourhood of Bρo. Let {z3) be the poles of
Rχ(z) repeated according to multiplicity and set

When the operator G is selfadjoint, it is shown in [9] that

N(r)^CΦ(Cr) for r ^ l , (1.5)

where C>0 is a constant, and Φ(ί)eC[l, oo) is an increasing function such that
Φ(ί)^ίπfor ί^ l and

\tv{S{h2G)χ)\ £ C,Φ(C,/h), C, > 0, (1.6)

Vft, 0 < M l , V^eC^(R), with some function χeC^(Rπ) equal to 1 in a
neighbourhood of Bρo. Moreover, Φ(t) is assumed to satisfy Φ(θt)^CΘδΦ(t) for
O<0^1, θ ί ^ l , with some C, δ>0. In fact, it is easy to see that the function Φ(t)
can be taken to be of the same growth as the counting function of the eigenvalues
of a selfadjoint operator with compact resolvent. Indeed, take a ρ > ρ0 and denote
by G the restriction of G on the Hubert space H = H'®L2(Bρ\Bρo) with domain

@(G) = {u = Ul+u2: Ule®(G)nH'9 u2eH2{BQ\Bρo\ u^dBe = 0}.

Clearly, G is selfadjoint, provided so is G, and by the assumption (1.4) it is easy to
see that the resolvent (G — ZQ)'1 is a compact operator. Let {λ}) be the eigenvalues
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of G repeated according to multiplicity and set JV(λ)=#{λJ : |/y^A2}. If
Φ(t) e C[ί, oo) is an increasing function such that N(λ) ^ Φ(λ) for λ ̂  1, then it is easy
to see that (1.6) holds with Φ(t) = Φ(t). Thus, the estimate (1.5) shows that the
growth of the counting function of the resonances of G is at most as the growth of
the counting function of the eigenvalues of G. The advantage of such a conclusion
is that for many important examples the counting function N(λ) is easily estimated
from above for large λ. Indeed, let G be a second order differential operator of the
form

G= - Φ Γ ( Σxι(gij)x) .Σ

in Rπ or in an exterior domain with Dirichlet or Neumann boundary conditions,
which in additional to the above assumptions satisfies the hypoelliptic estimates

\\u\\s+2εSCs(\\Gu\\s+\\u\\s), Vs^O, Vue@(G), GueHs, (1.7)

with some ε, 0 < ε g 1, where || \\s denotes the norm in the usual Sobolev space Hs. It
is not hard to see that (1.7) implies (1.4) as well as the estimate N(λ) ^ Cλn/ε for λ ̂  1.
Hence, in this case (1.6) is fulfilled with Φ(t) = tn/ε and by (1.5) one has

N(r)^Crnlε + C (1.8)

with some constant C > 0. Note that in the elliptic case (ε = l)(l .8) also follows from
the analysis in [14]. Such a bound was first proved by Melrose [5] for the
Laplacian in an exterior domain with Dirichlet or Robin boundary conditions,
and by Zworski [17] for the Schrόdinger operator — A + V(x) with a potential

In the present work we obtain bounds similar to (1.5) when G is not selfadjoint.
As a consequence, for such operators we get (1.8), provided (1.7) is fulfilled. The first
difficulty in doing such a generalization is how to replace the assumption (1.6) by a
similar one making sense when G is not selfadjoint. This is done as follows. Given a
compact operator A, denote by μ3{A) the characteristic values of A, i.e. the
eigenvalues of (A*A)lί2, repeated according to multiplicity and ordered to form a
nonincreasing sequence. The assumption analogous to (1.6) is:

There exists an increasing function /(ί)eC[l,oo) such that
0<f(t)Stίfn, Vί^l, and μj(χR(z0))^C2f(jΓ2, Vj, for some
function χe C^R") equal to 1 in a neighbourhood of Bρo and a
constant C>0 depending on χ. (1.9)

We shall show in Sect. 3 that if the estimate in (1.9) holds for one function χ, it holds
for any other function χ e C^(RW) equal to 1 in a neighbourhood of Bρo with a
constant C = Cχ>0.

We also need the following assumption:

There exist constants C, <5>0, 5 < 1/2, so that

f(θή^Cθδf(t) for 0 ^ 1 , ί ^ l . (1.10)
An important example of a function f(t) satisfying the above assumptions is
f{t) = tίfp with p ̂  n. Denote by φ(t) the function defined by φ{f(ή) = ί, Vί ^ 1. Since
f(t) is a continuous increasing function, φ(t) is a well defined continuous increasing
function, too. Moreover, it is easy to see that f{t)^Ltlln implies φ(t)^tn. When
f(t) = t1/p with p ̂  n, we have φ(t) = tp. Now we are ready to state our main result.
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Theorem 1. Assume (1.1)-(1 4), (1.9), and (1.10) fulfilled. Then the number N(r) of the
scattering poles associated to the operator G satisfies the bound

N(r)^Cφ(Cr) for r ^ l (1.11)

with some constant C > 0.

When G is selfadjoint it is easy to see that the functions Φ(t) and φ(t) can be
taken to be equivalent for ί> 1. So, the bounds obtained in [9] follows from the
above theorem.

When G satisfies (1.7), it is easy to see that (1.9) holds with f(t) = tίlP, where
p = n/ε. Thus, as a consequence of the above theorem we have the following

Theorem 2. Let G satisfy the assumptions (1.1)-(1 3) and (1.7). Then the number N(r)
of the scattering poles associated to the operator G satisfies a bound of the
form (1.8).

Note that for non-self adjoint operators this result is new even in the elliptic case
(ε = l).

It is worth noticing that it may happen to have hypoelliptic differential
operators satisfying (1.7) for which the corresponding counting function N(r) of
scattering poles satisfies much better bounds than (1.8). Examples for such
operators come from the work [7], where asymptotics of the counting function of
the eigenvalues of selfadjoint pseudodifferential operators (with positive principal
symbol and double characteristics) on compact manifolds are obtained. Under
some natural assumptions, these operators are hypoelliptic with loss of 1
derivative [i.e. they satisfy (1.7) with ε = l/2]. Although in [7] manifolds without
boundary are considered only, the results apply to operators like G (which in this
case is a second order differential operator on BQ with Dirichlet boundary
condition) since it is elliptic (equal to — Δ) in a neighbourhood of the boundary
dBQ. In [7J three types of operators with respect to the behaviour of the counting
function N(λ) of eigenvalues are distinguished (we consider here only second order
differential operators): (i) N(λ) = O(λn); (ii) N(λ) = 0(λnlogλ); (iii) N(λ) = O(λp) with
some p,n<p^2n. We refer to [7] for the details. Thus, by Theorem 1, in quite a lot
of cases one has bounds for the counting function N(r) of scattering poles much
better than the bound O(r2n) given by (1.8). All this can be well illustrated by the
following particular example suggested to the author by Zworski (also, see [9]):

G = - (d2

Xl + dX2(l - ζ(x)(l - xi))dX2 + d2

X3),

where ζ(x) e C^(R3) is a real-valued function such that 0 ̂  ζ ̂  1, ζ = 0 for |x| ;> 1/2,
ζ = 1 for |x| ^ 1/3. In this case n = 3, ε = 1/2, and G is the restriction of the operator G
on the ball Bγ = {x eR 3 : |x| ^ 1} with Dirichlet boundary condition. By Theorem 2
we have N(r) = 0{r6). However, the operator G turns out to be of type (ii) above, so
by Theorem 1 one obtains the sharper bound N(r) = O(r3 log r).

The idea of the proof of (1.11) is to find an entire family K(z) of compact
operators so that the poles of Rχ{z\ with multiplicity, are among the poles of
(1—K(z))"1 and given any r > l , K(z) admits the decomposition K(z)
= Kr(z) + Kr(z), where Kr(z) is an entire family of trace class operators and || J?r(z)||
^ 1/2 for \z\^r. Thus we obtain that the scattering poles of Rχ(z) in \z\ gr, with
multiplicity, are among the poles of (1 —(1 — Kr(z))~ίKr(z))~ί, and hence among
the zeros of the function
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which is well defined and holomorphic in \z\^r. Now, according to Jensen's
inequality, to prove (1.11) it suffices to show that

\hr(z)\^exp(Cφ(Cr)) for \z\£r.

2. Preliminaries

Denote by Go the selfadjoint realization of the Laplacian — Δ in the Hubert space
H 0 = L2(Rw) and let R0(z) denote the outgoing resolvent of Go which is by
definition the operator with kernel E(x — y z), where E(x;z) is the outgoing
fundamental solution of the operator — A— z2. As is well known, the kernel of
#0(2) is given in terms of HankeΓs functions by

R0(z)(x,};) = (i/4)(z/2π|x-3;|f-2>/2HίM

1)_2)/2(z|x-3;|). (2.1)

It is easy to see that R0{z) = (G0 — z2)~1e2{H0,H0) for Imz>0. Moreover, if Qx

and Q2 are differential operators of orders pγ and p2, respectively, with coefficients
of class CQQR"), then Q1R0(z)Q2 forms an entire family of pseudodifferential
operators of order px +p2 — 2. If we additionally assume that

suppβ1nsupp<22 = 0, (2 2)

then 61^0(^)62 takes values in the pseudodifferential operators of order —00.
Here suppβ,- denotes the union of the supports of the coefficients of Qy

Let now Qi and Q2 be differential operators of orders p t and p 2, respectively,
with coefficients of class C^(JRn) so that 0^/? 1 +p 2 ^2. Then, the following
estimates are well known:

, Vze€, (2.3)

for Imz^O, (2.4)

where || || denotes the norm in 2(H0, Ho) and <z> = (|z|2 + l)1/2.
It is not hard to see that the above estimates remain valid for operators Q1 and

Q2 of greater orders p± and p2 if they satisfy (2.2). Using this, for such operators we
shall show that

2w/", V;\ Imz^O, (2.5)

for any integer m^ 1 with a constant Cm>0 independent of z and j . Before doing
this, let us recall the following well known inequalities:

{μ{AB),μJiBA)}£μJίA)\\B\\, Vj, (2.6)

μ}{A + B)^ μh(A) + μh(B), V j , (2.7)

where j2~U/2']9 [α] being the integer part of a.
Let Ω be a ball in Rw such that suppβi CΩ and denote by ΛΩ the selfadjoint

realization of the Laplacian in the Hubert space L2(Ω) with Dirichlet boundary
condition. In view of (2.6), we have

for any integer m^ 1. Since (l—A)τnQ1 is a differential operator of order 2m-\-p1

with coefficients of class (^(R/1) whose support does not intersect suppβ2, (2.5)
follows from the above estimate, (2.4) and the following well known estimate:

Γ 2 m / ", Vj.
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by 1. Fix a function χ e CQQR") equal to 1 in a neighbourhood of Bρo. We shall carry
out the meromorphic continuation of Rχ(z) in a way similar to that one in [9].
Clearly, for any z e C w e have

1 = (G-z2)tf(z0) + (z 2 -z 2 )R(z 0 ). (3.6)

Choose functions χu χ2 e CJ)(]R'') such that χί = 1 in a neighbourhood of Bβ0, χ2 = l
on suppχx and χ = 1 on suppχ2. Set Q(z)=(ί—χ1)R0(z)(i — χ2) for Imz>0. In view
of the assumption (1.1) we have

(G - z2)Q(z)=(-Δ- z2)Q(z) = 1 - χ2 - Q^m - χ2) (3.7)

for Imz>0, where Qt = {χί,Δ'\. Combining (3.6) and (3.7) yields

1 = (G - z2)(R(z0)+(z2 - z2)β(z)K(z0))

+(z 2 - zgXe^oizXl - χ2)R(z0) + χ2R(z0))

for Imz > 0, which in turn implies

R(z)(i -(z 2-z 2)(ρ 1 i? 0(z)(l -χ2)R(z0) + χ2R(z0)))

= i?(zo)+(z2-z2)ρ(z)l?(Z o)

for zeΛ. Multiplying both sides of this identity by χ, since Qγ = χQι and χ2 = χχ2,
we get

i?z(z)(l-K(z)) = JRχ(z0) + A:1(z)) for zeΛ, (3.8)

where

K(z)=(z2 - zDiQ.R^il - χ2)R(z0)χ + χ2R(z0)χ),

K1(z) = (z 2 -z 2 )( l -Xi)xRo(z)(i -χ2)R(z0)χ.

By (3.1) applied with χ1 replaced by χ2, we have

(1 - χ2)R(z0)χ = R0(z0)(l - χ2)χ + R0(z0)Q2R(z0)χ, (3.9)

where Q2 = ίχ2, Λ\ Using this we can write the operators K(z) and K^z) in the
form

K(z) = K2(z)K3 + (z2 - zl)χ2Aχ,

K1(z) = K^(z)K3,

for zeΛ, where

= (ί-χi)(χRo(z)η-χRo(zo)η),

η e CQ(ΈC) being such that η = 1 on supp(l — χ2)χ and η=0 on suppχj. Let us now
see that

K3e2(H,H). (3.11)

Using (3.9) applied with 1 — χ2 replaced by η, we get

Now this representation implies (3.11) since Q2R0(z0), Q2Ro(zo)ίrl, A] e 2(H0, Ho).
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3. Meromorphic Continuation of the Cutoff Resolvent

At the beginning of this section we shall show that if the assumptions (1.4) and (1.9)
hold for some function χx e C^(RΠ) equal to 1 in a neighbourhood of £ρ o, they hold
for any other function χ2 e C^fR") with this property. Fix χ2 and choose a function
χ e C^(RW) so that χ = 1 in a neighbourhood of suppχxusuppχ2- Clearly, it suffices
to prove the desired result with χ. Choose a function χx e C^fJRJ1) such that χx = 1 in
a neighbourhood of Bρo and χί = 1 on suppj^. In view of the assumptions (1.1) and
(1.2) we have

) , (3.1)

where Q = \_Δ,χι~\ is the commutator of A and χί. By (3.1) we easily obtain

«(*o) = Z i Z i W + Ko(*o)(l" Zi) + Λo(^o)βZi^o) (3-2)

Multiplying (3.2) by χ on the left, we get

χR(z0) = xaiRizo) + Z*o(*o)(l - Zi) + X^oi^QXiR^o) (3.3)

Now, since χR0(z0) is a compact operator and χRo(zo)Q e 2(H0, Ho\ by (3.3) we
conclude that χR(z0) is a compact operator, provided so is χ1R(z0). Moreover, by
(3.3) combined with (2.6) and (2.7), we have

μfχR(z0)) S C(μJ2(χίR(z0)) + μJ2(χRo(zo))). (3.4)

On the other hand, it is well known that

This together with (3.4) and (1.10) yield

provided (1.9) is fulfilled with χx, which establishes (1.9) for χ. Thus we have proved
the independence of the assumptions (1.4) and (1.9) on the choice of the cutoff
function χ.

Now we shall show that the resonances, with their multiplicities, do not depend
on the choice of χ, provided χ = 1 in a neighbourhood of Bρo. To this end, assume
that Rχι(z) admits a meromorphic continuation from A to the entire C for some
function χx e C^(RW) equal to 1 in a neighbourhood of Bρo. Let χλ and χ be as above
and make use of (3.3) with z0 replaced by an arbitrary zeΛ. Multiplying (3.3) by χ
on the right we get

Rχ(z) = χ.R^z) + χR0{z)χ{\ -χ±) + χR0(z)QRχi(z)χ (3.5)

for any zeΛ. Since χR0{z)χ and χR0(z)Q form entire families with values in
2(H0, Ho\ by (3.5) we deduce that Rχ(z) admits a meromorphic continuation to the
entire C, provided so does Rχι(z\ and the poles of this continuation, with
multiplicity, are among the poles of Rχi(z). On the other hand, the identity Rχi{z)
= XiRχ{z)χ1 shows that the poles of Rχι(z), with multiplicity, are among the poles
of Rχ(z). Hence the poles of Rχ(z) and Rχi(z), with multiplicity, coincide. Thus, we
have proved the desired independence of the resonances on the cutoff function χ.

Turn to obtaining the meromorphic continuation of the cutoff resolvent. In
what follows all cutoff functions will be positive real-valued ones upper bounded
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As mentioned in Sect. 2, K2(z) and K4(z) form entire families of compact
operators in 2(H,H). Thus, since by the assumption (1.4) the operator A is
compact, we conclude that the operators K(z) and K^z) extend analytically to the
entire complex plane C with values in the compact operators in 2(H, H). Since
K(zo) = 09 by the analytic Fredholm theorem (1 — -K(z))""1 forms a meromorphic
2(H, iί)-valued function on C. Thus, by (3.8), we obtain the desired meromorphic
continuation of Rχ(z). Moreover, it is easy to see that the poles of Rχ(z\ with
multiplicity, are among the poles of (1 — K(z))~ι.

4. Proof of Theorem 1

In what follows || || will denote the norm in &(H,H). Since the operator A is
compact, it is well known that given any integer k ̂  1 there exists an operator Ak of
rank k— 1 so that

μk(A)=\\A-Ak\\ (4.1)

and

U (ATS
for jZk ( > )

(for example, see [1]). Fix a parameter r > l and denote by kr the least integer
^ φ(2Cr), where C is the constant in the assumption (1.9). Then, by (4.1) and (1.9),
we have

\\A-AJ ^C2f(krΓ
2ϊC2f(φ(2CrT2 = {2rΓ2. (4.3)

Set T(z) = (z2-z2

o)χ2(A-Akr)χ. By (4.3), for \z\£r, we have

if r^r0, where r o >O is a constant depending on |zo | only. Hence, the operator
(1 — T(z))~1 is well defined and holomorphic in \z\^r and

||(1 -T{z)Yι|| ^2 for \z\^r. (4.4)

Now, in view of (3.10), we can write

1-K(z) = (l-T(z))(l-S(z)) for |z|gr, (4.5)

where

S(z) = (1 - T(z)) ~ \K2(z)K3 + (z2 - z2

0)χ2Akrχ).

Since supp<21nsuppf/ = 0, as mentioned in Sect. 2, K2(z) forms an entire family of
trace class operators. Hence, S(z) is well defined and holomorphic in \z\^r with
values in the trace class operators in 2(H, H). Thus, by (4.5) we conclude that the
poles of (1—X(z))"1 in |z |^r, with multiplicity, coincide with the poles of
(1 — S(z))"1, and hence, introducing the function

/zr(z) = det(l-S(z)),

defined and holomorphic in \z\ ^ r, we have that the scattering poles in \z\ ^ r, with
multiplicity, are among the zeros of hr(z). Now (1.11) follows from Jensen's
inequality and the following
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Lemma 1. There exists a constant C > 0 independent of r so that

\hr(z)\Sexp(Cφ(Cr)) for \z\£r. (4.6)

Indeed, by Jensen's inequality (see [10]) we have

N(z0, r/2)SC1 sup log|/φ)l - Cx log|/φo)l, (4.7)

where N(zθ9 r/2) is the number of the zeros of hr(z\ with multiplicity, in the disc
\z — zo\ ^ r/2, Cι > 0 is independent of r. Since K(z0) = 0, we have S(z0) = 0 and hence
hr(z0) = l. Now (1.11) easily follows from (4.6) and (4.7).

Proof of Lemma ί. By (2.6), (2.7), and (4.4), for | z |^r , we obtain

μβ(z)) ^ CμJ2(K2(z)) + Cr2μJ2(Λkr), Vj, (4.8)

with a constant C > 0 independent of z, r, and . In view of (2.3) and (4.4) we also
have

μ/S(z))£ ||S(z)|| ^exp(Cr), V;, | z | ^ r , (4.9)

with a new constant C > 0 independent of 7, z, and r. Now, using WeyΓs convexity
estimate together with (4.8) and (4.9), we obtain

Π
7 = 1

.Π(

Π

= ec>

eCr
= eCrF1(z)F2, for | z | g r . (4.10)

We shall first estimate F2. By (4.2) and (1.9), we have

(4.11)

On the other hand, using the assumption (1.10) we get

mm m

j=l ~ 1 1
m

j s~2δds^C(ί - 2 5 ) - 1 m / ( m ) " 2 . (4.12)
1
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By (4.11) and (4.12), we deduce

) (4.13)

with constant C > 0 independent of r.
Now we are going to estimate Fx(z) for Imz ̂  0. By (2.4) applied with p1 = 1 and

p2 = 0, we have

μj{K2(z))^ \\K2(z)\\£C, V/, Imz^O, (4.14)

with a constant C>0 independent of z and j . On the other hand, applying (2.5)
with m = (n +1)/2, pγ = 1 and p 2 = 0 yields

π + V"(π+1)/π, Vj, Imz^O, (4.15)

with another constant C > 0 independent of z and j . Now, by (4.14) and (4.15), for
Imz^O, we have

S( Π CΛexpf Σ 2Cμ{K2{z)))

^exp(CXz>π) expfC"<z>π+1 Σ Γ ( w + 1 ) / ή (4.16)
V J^wn J

On the other hand, we have

Σ Γ ( π + 1 ) / W ^ ]j~in+1)/Hdj = ns-1/n. (4.17)

By (4.16) and (4.17), we deduce

for |z |^r, Imz^O, (4.18)

with a constant C > 0 independent of z and r.
It remains to estimate Fγ(z) for Imz^O, |z|^r. Then, as above, we have

n

ύeCrγ\{\+ Cμj(K2( - z)) + Cμ}{K2{z) -K2{- z))f

Sec' ft (l+Cμ/IC^-z^l+Cμ/K^-^ί-z)))*
7 = 1

= ̂  ft (l+Cμ/X2(-z)))4 ft (1+Cμ/L(z)))4

7 = 1 7 = 1

= ^F3(z)F4(z), (4.19)
where L(z) = K2(z) — K2( — z) = Q1(R0(z) — Ro( — z))η. We have already seen above
that

F3(z)^exp(C;<z>")^exp(C'O for \z\^r. (4.20)

To estimate F4(z), observe that it follows easily from (2.1) that the kernel of
R0(z)-R0(-z) is given by

(i/2)(2π)~n+ίzn~2 J exp(iz(x-y,w})dw, x
§n-l
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where S"" 1 denotes the unit sphere in IRΛ Using this representation, in the same
way as in [14], one can obtain that

«/(»-i) for j}>C(zyn~ι, Vze<D, (4.21)

with a constant C > 0 independent of j and z. Also, it is easy to see that

μ,<L(z)) ̂  ||L(z)|| ^ exp(C<z», V;, Vz e C, (4.22)

with a constant C > 0 independent of j and z. Now, using (4.21) and (4.22) we get

F4(zU Π (1 + Cμ/L(z)))4exp( Σ 4CμβJίz)ϊ\

^exp(CXz>")^exp(Cr"), for |z |^r, (4.23)

with a constant C > 0 independent of z and r. Thus, by (4.18H4.20) and (4.23) we
deduce

F^z^expίCr") for \z\£r, (4.24)

with some constant C>0 independent of z and r. Now (4.6) follows from (4.10),
(4.13), and (4.24) at once. This completes the proof of Lemma 1.
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