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Abstract. The approach of formal differential geometry to the topological
invariants which can be localized is developed. The universal space and universal
characteristic forms are constructed. They give rise to primary and secondary
characteristic forms.

Introduction

This paper is a continuation of the works [9-13] and develops the approach of
the formal differential geometry. This approach asserts the following. First of all,
many of the important topological invariants of a manifold may be localized, i.e.,
they may be obtained in the following way. Take a finite set of fields Γl9...9Γn

on a smooth manifold; by a field we mean a differential geometric object having
the prescribed transformation law under the action of the certain transformation
group (for example, Riemannian metrics, connections in the given vector bundle,
automorphisms of the bundle, various tensors etc.). Construct from the components
of these fields and their derivatives some differential form in such a way that it
should be covariant under the group of coordinate changes. The space of these
forms with the covariance condition has the natural grading and differential.
Indeed, the de Rham differential of such a form is again a form constructed
covariantly from the fields and their derivatives. So we obtain the cohomological
complex which we denote by Ω*(Γl9...,Γn). For example, if we have one field
Γ = (gik) which is the Riemannian metric, then the form £ RaβRβa> where R is the

curvature tensor is an example of a cocycle lying in Ω*{Γ). Let us maintain that
Σ RaβRβ(X depending on gik and their derivatives is regarded as one cocycle - though,
of course, it yields a four-form on any Riemannian manifold. The natural question
arises, to find the cohomology of the complex Ω*(Γ 1,...,ΓM). This cohomology
is extremely important. Any cohomology class provides a non-trivial way of
constructing covariantly (functorially) a closed form starting from the set of fields



74 I. M. Gelfand and B. L. Tsygan

of a given nature. (By the trivial way of constructing we mean the following:
construct covariantly any form, and then take its differential.) For example, consider
the complex Ω*(gik), where (gik) is the Riemannian metric. By the suggestion of
the first author, the cohomology of this complex had been computed in the middle
of the 50's by A. A. Abramov. He had proved that the cohomology ring of the
complex Ω*(gik) is the free commutative algebra generated by the Pontryagin
classes.

Let ω be a cocycle of the complex Ω*(Γl9..., Γn). Consider a smooth manifold
Y together with the two different sets of fields (Γ19..., Γ'n) and (Γ\9..., Γ;') of a
given type. The cocycle ω allows the construction of two closed forms ω(Γ'19..., Γ'n)
and ω(Γ'[9...9Γ'n) on Y. It is not hard to show that the difference
ω ( Γ ; , . . . , Γ ; ) - ω ( Γ ' ; , . . . , Γ ; ' ) is exact if the sets (Γ19...9ΓH) and {Γ\9...,Γ»n)
belong to the same homotopy type. Thus, the cohomology class of the form
ω{Γ\,...,Γ'n) provides the topological invariant of the manifold Y and the
homotopy class of n-tuples (Γ'19..., Γ'n).

This idea has some resemblance with the idea of ghosts in theoretical physics.
Indeed, the topological invariant does not depend on a choice of the concrete
fields, but using these fields which play the role of ghosts is very important because
it allows to localize the invariant.

The topological invariants which may be obtained by the described procedure
are: the characteristic classes of the vector bundles (i.e., the Chern character of
K°\ the characteristic classes of the automorphisms of vector bundles (i.e., the
Chern character of Kι\ in particular, the index of the pseudodifferential elliptic
operators, the Chern character of higher K theory, the determinants of certain
elliptic operators (Burglelea, Friedlander, Kappeller [2]). Note that for such an
invariant one may start the procedure of localization from different sets of fields
Γ[s. For example, the characteristic classes of vector bundles may be obtained
as the cohomology classes of the closed forms constructed from one of the following
data: a metric in a bundle, a connection, a superconnection (in sense of Quillen,
[16]), a smooth map putting in correspondence to any point of the manifold a
formal coordinate system in the bundle at this point, etc. One may also consider
all the possible closed differential forms which may be constructed covariantly
from the components of the two connections in a bundle. In all these cases, the
set of invariants which may be obtained from this procedure (i.e., the cohomology
of the complex Ω*) is probably the same - the Chern (or Pontryagin) classes.
Nevertheless, the local expressions themselves, and also the corresponding
secondary characteristic classes (see below), are of great interest for all these cases.
Similarly, the Chern character for K1 may be obtained by the procedure described
above starting from the following data: a function on a manifold with values in
GLn (i.e., an automorphism of the trivial vector bundle), an automorphism of a
vector bundle and a connection in this bundle, a superconnection of Quillen, etc.

We have already mentioned above that for a cocycle ω of the complex
Ω*(Γu...,Γn) and for the two different choices of the fields Γ\9...9Γn and
Γ'[,..., Γ"n the difference ω(Γ\,..., Γn) - ω{Γ[,..., Γ"n) is exact if (Γ\,..., Γ'H) and
(Γ"19...9Γ'ή) are in the same homotopy class. Moreover, one may construct
canonically the differential form η such that ω(Γ'19...9Γ'n) — ω(Γ'[9...,Γ'Jι) = dη.
This form η may depend only on Γ\,...,Γ'n,Γ\,...,Γ"n (in the case of metrics,
connections or Quillen superconnections in a finite dimensional bundle) but may
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also depend on a path connecting (Γ'ί9...9Γ'n) and (Γ'[,...yΓD (in the case of
automorphism of a vector bundle or Quillen superconnections in an infinite
dimensional bundle). The form η is called the secondary form.

One may construct also the higher secondary forms. Having three different
sets of data ( r ; , . . . ,/^) ,^ ' ; , . . . ,/^) and (Γ;",..., Γ;") one may construct the
form ζ (possibly depending on some supplementary data) such that dζ =
η(Γί9...9ΓH, Γ19...9Γn)-η(Γί9...9Γn9Γί9...9ΓH) + η(Γ19...9Γn; Γ19...,Γn)

and so on.
All these secondary forms are very important. There is a nontrivial interplay

between characteristic classes and secondary forms for various sets of initial fields
Γ[s giving rise to various topological invariants; also, the secondary forms give
rise to the functional integrals which may be important for the field theory. For
example, the first secondary form for the cocycle ^K^-R^ discussed above is
known as the famous Chern-Simons form.

The secondary forms for the Ponΐryagin classes had been introduced by
Gabrielov, Gelfand and Losik in [10], the Chern-Simons form had been introduced
independently in [4].

In this paper, continuing the work [10], we show that all these secondary forms
and the relations between them may be obtained from one universal construction.
Assume that the topological invariant under consideration may be obtained as
described above with certain differential geometric objects, or fields (i.e., functions,
forms, automorphisms, connections, etc.). We introduce a new differential manifold
whose points are jets of such fields. This manifold is infinite dimensional and has
the natural structure of a fibre bundle over the original manifold (one may associate
to a jet at a point this point itself). There are two canonical structures on such a
manifold of jets.

On the one hand, on the space of jets of fields of a given nature there is the
universal field of the same nature (i.e., the natural function on the space of jets of
functions, etc.). This field is the result of evaluation: we put in correspondence to
a jet of a field its value at the origin. On the other hand, the space of jets of fields
(which is a fibre bundle, as mentioned above) carries the natural flat connection,
i.e., the integrable system of horizontal tangent subspaces which is covariant with
respect to the natural group of transformations. This system provides the local
structure of direct product and thus the decomposition of the de Rham complex
of the manifold of jets. So, the de Rham differential on this manifold is the sum
of the two differentials - the horizontal one and the vertical one.

Furthermore, having the universal space of jets with the universal field on it,
one may construct the canonical form (see above) according to this field. Since
the de Rham complex admits the decomposition, this universal form is represented
by the collection of its homogeneous components. These components are the
universal secondary classes. Since the universal form is closed, we obtain several
identities concerning these classes. Among them are the invariance of the
characteristic form under the choice of fields and higher relations among secondary
classes.
We consider the following examples:

1. The field is the connection in a bundle over a manifold (maybe it would be
more correct to include the bundle itself into the set of fields); the form constructed
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from these fields is the invariant polynomial of the curvature; the corresponding
topological invariants are the Chern classes. In this case, our approach was
developed in [10], it was applied to the combinatorial construction of the first
Pontryagin class. The first of the secondary forms was introduced independently
by Chern and Simons [4]. We recall this construction in Sects. 1,4.
2. The fields are the connection in a bundle and the fibrewise automorphism of
this bundle. The topological invariant is the Chern character of the corresponding
element of K1. In Sect. 2 we define a corresponding characteristic form; in Sect. 5
we develop the approach outlined above.
3. The field is the Quillen superconnection on a Z2-graded vector bundle; the
form is the Quillen character form ([16]); the topological invariant is the Chern
character of the bundle or the Chern character of the index of the family. We
describe the corresponding construction in Sects. 3,6.

Note that a secondary form for one problem may be a primary form for another
problem. We discuss this phenomenon in the last two paragraphs. In Sect. 8, we
assume that a connection V in a vector bundle and an automorphism σ of this
bundle are given. Then one may construct another connection Vσ which is the
result of the action on σ on V. Since the characteristic forms are invariant under
the coordinate changes, clearly the connections V and Vσ have the same
characteristic forms. Thus, the secondary characteristic forms for the pair of V
and Vσ are closed. We show that these forms are the "primary" forms from Sect. 2
(see the Introduction). This illustrates the well known fact that Chern character
for K1 is the transgressed Chern character for K°. As another example of the same
phenomenon, we recall in our language the Connes-Moscovici construction of
the Chern character of Fredholm modules [5]. We show that the corresponding
Chern character forms are secondary forms for the canonical superconnection on
the universal space of jets of superconnections where the underlying manifold is
a point. Along the same lines, one may also develop a similar approach to
characteristic classes in higher K theory. We will discuss this in our next work.
We hope that this approach will be useful in attempts to give a combinatorial
description of the index of an elliptic operator. Note also that the secondary forms
of the examples above are useful in topological field theory, WZW theory and
matrix models [7,18,19].

1. Chern Classes of the Vector Bundles

Let Y be a smooth manifold, n = dim Y; let £ be a complex vector bundle of
rankΛf over Y. One may define the Chern classes of E as follows (cf. [14]). Let V
be a connection in E. Let R be the curvature of V. This is a two-form on Y with
values in End(E).

In coordinates, let ex(y),..., eN(y) be a basis in the fiber £ of £ which depends
smoothly on a point y of an open neighborhood U of Y. Then connection V is
given by a matrix valued one-form ω = (ωij.)1<i>J <iV

 o n ^ ^ ^ ( Λ ^ίvW *s

another basis and e\ = Σgij(y)eh then the form ω' corresponding to this basis is
given by the gauge transformation:

ω' = dg'g~1+gωg~ί;
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the curvature form R is given by

R = dω + ω2.

It is easy to see that in coordinates corresponding to the basis ef

ί9...,e'N the form
Rf is given by

R' = gRg-\

Now, let P be a homogeneous polynomial of degree m on the Lie algebra
gl(N,<£) which is invariant under the adjoint action of GL(N,(£). Put

This is a well defined 2m-form on Y.

Example 1. Let Xegl(N,<C)9P(X) = — tvXm. The form cP(E,W) is denoted by
γγι\

ch m (£, V). In coordinates, if R = (K l7),

chm(£,V) = — Y R. . Λ R . . Λ Λ R . . .

00

The element Σ c h

m ( £ , V) of ί2* is called the Chern character form of V and is
m = o

denoted by ch(£,V).

Example 2. For any subset / of {1,..., N} and for any Xegl(N,C) denote by \Xj\
the minor dQt(xij)iJeI. Define a polynomial P by

P(X)= Σ l*/l-

The form cP(£, V) is denoted by cm(E, V). In coordinates,

Theorem 1. (cf. [14]). For any homogeneous invariant polynomial P on gl(N,(E) and
for any connection V in the fibre bundle E, the form cP(E,V) is closed. For any two
connections V, V in E, the difference cP(E, V) — cP(E, V) is exact.

Thus, the cohomology class of the form cP(£, V) does not depend on V. This
class is denoted by cP(E)eH2m(Y,(C). If P is as in Example 1, the class cP(E) is

00

denoted by chw(£); the class Σ chm(E) is denoted by ch(£) and is called the Chern
m = 0

character of E. If P is as in Example 2, the class cP(E) is denoted by cm(E) and is
called the mth Chern class of E.

If E is a real bundle, then, as it is well known, c 2 / c + 1 ( £ ® C ) = 0; the class
c2k(E®(£) is denoted by pk(E) and called the kih Pontryagin class of E. It is an
element of//4/c(y,R).



78 I. M. Gelfand and B. L. Tsygan

2, Chern Character for Kι

Let Y be a smooth rc-dimensional manifold and E a complex vector bundle of
rank N over Y. Let σeΓ(Y, Aut(£)) be a smooth section of the bundle of fibrewise
automorphisms of E. In coordinates, if ̂ (y),. . . , eN(y) is a smooth basis as in Sect. 1,
then σ is represented by an invertible matrix (σij)ί <^d<N; if e\{y\..., ^(.y) is another
smooth basis, e\ = Σgtjep then the matrix corresponding to this new basis is given
by σ' = gσg~λ. As it is well known from [1], an element σ determines an element
[σ] of the group Kι(Y) and the elements chw([σ]) of the spaces H2m~ ι(X, <C). The
aim of this section is to give the explicit representation of these elements by the
closed forms on Y.

First, note that if the bundle E is trivial, E=Yx CN, the element σ is simply
a smooth map Y-+GL(N,<E) and the cohomology class of chm[σ] is given by the
closed form (cf. [14]),

chm(σ)= \ ; t r ^ σ σ" 1 ) 2 " 1 - 1 ;
2 m - 1 ( 2 r n - l ) ϋ

to prove an analogous statement in general, we need some auxiliary definitions.

1. The Polynomials P. Let C{x,y,z} be the free associative algebra with three
generators. Let

be the quotient of si by the two-sided ideal generated by xz,zy,y2,z2; let si0 be
the vector subspace in si generated by the elements ab — ba, where a,b,e<8?. Put
stf = stflstf0. It is easy to see that any element of si is congruent modulo s/0 to
a linear combination of the elements y, z and xh(yz)jι xίk(yz)jk, i.e., is representable
by an element βy-\-yz + f(x, yz\ where / is an element of the free algebra C{x, u}.
Moreover, such an element belongs to s/0 iff β = y = 0 and / belongs to the linear
subspace of C{x,w} generated by the element ab — ba,a,be<C{x,u}. So, one may
put in correspondence to an element g of si the element g of (C{x,u}/<αfo — bd).

Put

ί-lΓ"1

pm(χ, u) = — v ^ (χ + y + zΓ> m ^ L

2w- 1(2m-l)ϋ

For example,

Pί(x,u) = x;

2. The Character Forms. Let V be a connection in the bundle £, R its curvature
form; let Vt be the connection in the bundle End(£) induced by V. In coordinates,
if V is represented by a matrix ω (cf. Sect. 1) and /eΓ(Y, End(£)) is represented
by a matrix (f.j) then V x/ = df + [ω, / ] . Let σ be as in the beginning of Sect. 2.

Theorem 2.1. For αnj; m ̂  1, the form
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is closed. Its cohomology class does not depend on a choice of V and is equal to
chm([σ]).

Proof. Let E be another bundle, such that E © E = Y x C M for some M. Let e
be the projection onto E along £'. Let σ = σE © 0 be the endomorphism of the
trivial vector bundle Y x C M . One has chm([σ]) = ch m ([σ £ © 1£,]) = chm(σ + 1 - e).
One has also ede e = (1 — e)de(l — e) = 0; eσ = σe = σ; using these identities
we have dσ-σ~1 =d(eσe+ 1— e)(eσ~ίe + l—e) = e'dσ-σ~1e + e(σ — l)de(l —e) +

Denote the last three summands in the last sum by x9y,z. Consider the
connection e-d e in the bundle E (compare with [4]). It is easy to see that
yz = e(σ - 1)R(1 - σ~ι)e (because R = edede). Using the fact that tτ(eΆ-(l-e)) =
tr((l — e)-B-e) = 0 for any A and B, we see that for the special case of the connection
Vchm(σ£© 1£, = chm(£, V,σ). In particular, chm(£, V,σ) is closed.

Now, it is not hard to show that, at least locally, any connection V can be
represented as above: V = e-d e9 where E®E=Yx<£N and e : £ © £ ' - > £ is
projection. This shows that the forms chm(£,V,σ) are always closed. From this,
and from the results of Sect. 6, it follows that the cohomology class of chm(e, V, σ)
does not depend on V (and on σ, within a given homotopy class). Thus, this class
is always equal to chm([σ]).

Example 1. Assume that the bundle E is trivialized over the open subset U of Y
and, moreover, that σ is diagonalized over this subset. Then V is represented by
the matrix ω = (ω.j) of 1-forms and σ is represented by the diagonal matrix with
the diagonal terms λ1(y),...,λN(y). Then

7=1 Λ/

Σ - dωH

3. Chern Character Forms for Superconnections

In this paragraph we follow Quillen [16]. Let Y be a smooth manifold and E a
Έ2 -graded vector bundle over Y. This means that E = E@E\ where E9E" are
the vector bundles. The spaces Ω*(E) and ί2*(End E) have the natural Z2-gradings:
for ωeΩk

γ and yeΓ{Y,E) (respectively Γ(Y,EnάE) we put p(ω®y) = (-l)k+piy\
where p denotes the parity. For ωeΩy,ωfeΩι

γ,γ,γfeΓ(Y?E) (respectively
Γ(Y,EndE)) put also (ω®y)'(ω'®y') = (— l)ι'piy)(ωω'®yyf); this operation turns
ΩY(EndE) to be a Z2-graded algebra and ΩY(E) a Έ2-graded module over
ΩY{EnάE).

Let V be an even connection in the bundle E. Let X be an odd element of the
space Γ(Y,ΈndE). This element determines the operator of left multiplication in
the module Ω*(E). We denote this operator by the same letter X. A superconnection
in the Έ2 -bundle E is by definition an operator

V + X:Ω*(E)-+Ω*{E).
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Here V is the covariant derivative. In coordinates, if ye Y runs over an open subset
U on which the bundle E is trivial, if e\{y\...,e'N,(y) and e"1{y\...,e'χ,,,...,e'χ,.(y)
are the bases of E and £", then the operator V is given by

d + ω"

and the operator X is given by

where X' = ( x ' Λ W f J k ^ and X" = (xkk^^N

It is easy to see [16] that the operator (V + X) is the operator of multiplication
by an element Rs = R + WtX + X2eΩ*(End(E)). Here R = R' 0 R" is the curvature
form of V; Vi is the induced connection in End(£), as in Sect. 1; in coordinates,
VXX is given by the matrix of 1-forms

0 dX" + ω'X" - X"ω"

dX' + ω"X' - X'W

and X2 is given by the matrix of functions

0

X"X'

0

0

X'X"

Now we are ready to recall Quillen's definition of the Chern character form.
00 J

For an element x of Ω*(Enά(E)) put exp(x) = ^] — x"; it may be shown (cf. [16])

that this gives a well defined element of Ω*(Έnd(E)).
Let ε in Ωy(End(E)) act on E+ by multiplication by one and on E_ by

multiplication by minus one. For any element ω in ί2*(End(£)), put t r s ω = trεω;
this is an element of ί2*.

Definition. The Chern character form of the super connection V + X is the element

ch(£, V + X) = tr s exp(# 2 + V1X + X2).

Theorem 3.1. (cf. [16]). The Chern character form ch(£,V + X) is closed', for
any two super connections Vί+X1 and V2 + ^2 t n e difference ch(£, V1-\-Xί) —

2 + X 2) is exact.

Example 1. Let X = 0. Then

ch(£, V) = ch(F, V) - ch(£", V"),

where the Chern character forms in the right-hand side are those of Sect. 1.

Example 2. Assume that E is not a finite dimensional but rather a Hubert vector
bundle over Y, assume that Xo is Fredholm and skew self adjoint. Thus, it is of

the form I
X \
—- J; if Y is the point, then

ch(0 + Xo) = e~XoXo - e~xoXo = index Xo
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(by the McKean-Singer formula) If Y is not a point the Chern character form
may be defined under some restrictions on V, X; its cohomology class is the Chern
character of the index of the family Xo lying in K°(Y).

Let us give more explicit formulas for the Chern character forms. One has
00

In coordinates,

n = 0
oX'X"

0

dXf + ω"Xf - X'ω"

e'1

+ co X — X CO

0

ytnX"X'\

0

0
etnx'X" I

Of course, ch(£, V + X) is the sum of homogeneous components. Denote the
homogeneous component belonging to Ω\k by chΛ(£, V + A").

The problem of computing character forms of superconnections may be
generalized in such a way. Let A be a graph. Consider a family of representations
of A parameterized by a smooth manifold Y. This means a family of vector bundles
Eλ for any vertex λ of A and a family of endomorphisms Eλ -+ £ μ for any arrow
λ-*μ in /I. How can one write down local invariants of such families? The
construction of Quillen provides the answer for the graph

We hope to return to this question later.

4. Variational Complex for Connections

Here we recall the constructions and facts from [10]. Let Y be a differentiable
manifold and E a vector bundle over Y. Our first goal is to construct the space
of oo-jets of connections in E.

Let F(E) be the set of pairs (y,ω), where y belongs to Y and ω in an oo-jet of
a connection in E at y. More precisely, in coordinates, let U = R" be an open
subset such that E\U is trivialized; let eυ

ι{y\...,eυ

N{y) be the pointwise basis of
E,yeY. Pick a coordinate system (y1,...,/1) in U. Let Ω1 be the standard space
of one-forms in variables y 1,...,/ 1 whose coefficients are the power series in
y1,...,/1. Then, for any yeU, the coordinate system gives the isomorphisms

j e t ^ ί β ^ A β 1 ) ; μt™(ΩlJ(><)glN)::>Ω1®glN. Denote these isomorphisms by φyU.

Put F(E\U)=U x (Ω1
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Now, consider the covering of Y by such open sets U that ί/^R 1 1 and E\U
are trivialized; pick the coordinate systems in the sets U; let eY(y) = YJg^(y)eυ

j(y\
where yeUnV; denote oo-jet of guv at y by gυv; for yeUnV and for
ωeΩι®glN(<£) put

ΦUV = ΨyA

By definition

where for any U, V and for any yeUn V^ωeΩ1 ® glN,(y9ω)u~(y> Φuv(ω))v-
Denote by π the canonical projection F(E) -> Y.
It is clear that F(E) is a projective limit of the finite dimensional manifolds.

Thus, one may consider the de Rham complex Ω*(F(E)). Our next goal is to give
the canonical decomposition of this complex into horizontal and vertical parts,
as mentioned in the Introduction.

To do this, we shall introduce the canonical integrable system of tangent
subspaces of F{E). Note first that any connection Θ in E on an open subset of Y
gives a local section of the bundle F(E)eY; an element of the fiber over y
corresponding to Θ is the jet of Θ dX the point y. For any ye Y and any connection
Θ in an open neighborhood of y, let Θ be the jet of Θ at y; define the space Ky Θ

as the subspace tangent to the local section of F{E) -* Y determined by Θ.

Proposition 4.1.

a) The subspace VyΘ depends only on the jet Θ of Θ.
b) The restriction of π^:T(y ^)F(E)^TyY on VyΘ is an isomorphism. Thus, Vyθ

is horizontal.
c) The system {(Vy,&'-y, Θ)eF(E)} is the integrable distribution.

Proof All the statements are local in y. So, one may check them in coordinates.
Under the isomorphism

we assume that y1,..., yn are coordinates in U and y — (y\,..., y"0); let (y, ω)eF(E\U);

ω= Θ, where Θ is a g/^-valued form on U; Θ = Σ Θιdy\ ω = Σ — daΘi(y — yoYdγ,

where α are multi-indices; so, the space V θ has the basis ( d/dyk;Y -(daΘi)
V ΛΛ α! ^y

(3; — )^o)α^2 I, fe = 1,..., n; but these vectors are equal to ( d/dyk; Y —}-(y — yofdy1

J \ V «.i 3 /
if ω = Σω*(y — yo)

adyi ). This shows that the spaces Vy Θ are horizontal and depend

only on ω = (9. Moreover, the operators

dωa

Dk:ω = Σω*(y — y0Ydyι\-^Σ—^(y — yoYdy1

commute with each other; thus, the Frobenius integrability condition holds.
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Now, let π, as before, be the projection F(E) -• Y; let π* be the induced map of
tangent bundles. We call a tangent vector η to F(E) vertical if π^η = 0; we call it
Virvrί^rvntαi if M C Ϊ / f/~vt* cntYiα /«) Put

tangent bundles. We call a tangent ve
horizontal if ηeVy Θϊov some Θ. Put

if ηί9..., ηso are horizontal, τ/so + 1 ? . . . , jys+ί are vertical and soφs}.
The integrability of our horizontal system gives the decomposition

Ω'(F(E))= 0 ΩS'(F(E));
s + t = r

if d is the de Rham differential in Ω*{F(E)), then J = </ + δ;d:ΩStt^Ωs+u;δ:Ω^^
Ωs't+1.

Now we are going to construct the canonical connection in the vector bundle
π*£ on F(E) which is the pullback of E to the space F(E). In coordinates, assume
that we have an open subset U <= Y and the basis e^y) as above. Then
F(E\ U) = π~1J;1U^Ux (frgiglx); construct a glN valued form on F(E\ U) as
follows. Let (y,ω)eU x (fr(g)glN) and ^eT ( y ω )F(£|C/); then π^ηeTyY; put

ώ(f/) = ω(πJ|tιy).

We get ώ G/2 : (F(£ | [/)) ® ^/N. It is easy to see that the following statement holds.

Lemma. Let {U} be an open covering of Y such that U->RΛ and E\U is trivialized.
Then the collection of the forms ώ on F(E\ U) gives a well defined connection in π * £
on F(E).

Let RE be the curvature form of the connection ω; RE = (d + δ)ώ 4- ώ 2 . For any
^/^-invariant homogeneous polynomial P on the algebra glN{<£) put

cP = P(RE,...,RE)eΩ2m(F(E)).

From the above discussion one obtains immediately the following

Theorem 4.1. (cf. [10]). The form cP is closed under the differential d + δ and
invariant under the group of automorphisms of E.

The theorem implies several identities. For example, let P(X) = trX2. Then
one has:

dtτRl = 0; δtrR2

E= -2dtτ(RE'ώ); δtv(RE-δω)= -trd(δω)2.

The first identity implies that the Chern character of any connection is closed; the
second one implies that the cohomology class of this form does not depend on a
connection.

5. Variational Complex for Automorphisms

Let Y be a smooth manifold and E a vector bundle on Y. Put Ω° = (C[ [ j ^ , . . . , yn~\ ] ;

G(E) = {(y,σ)\yeY; is an oo—jet of an automorphism of E at y}.
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In coordinates, if U is a coordinate neighborhood on which E is trivialized then
G(E\'U)= UxGLN(Ω°l where GLN(Ω°) is the space of elements σ£Ω°®glN{<L)

such that σ(0)eGLN. As before, one easily constructs the horizontal integrable
system of tangent subspaces and thus the decomposition

Ωr(G(E))= © Ωst(G(E));

Now, let K(E) = F(E) x G(E) be the fiber product over Y. This is the space

whose elements are the triples (y, ω, σ), where w is a jet of a connection at y and
σ is a jet of an automorphism of E at y.

Obviously, there is the canonical element σ of Γ(G(E\ Aut π* E); σ(y, σ)(e) = σ(e),
where e e £ r Via pullback, we get the connection ώ and the automorphism σ on
the space K(E).

Theorem 5.1. The Chern character forms

are closed forms on K(E) with respect to the differential d + δ. They are invariant
under the group of automorphisms of E.

6. Variational Complex for Superconnections

Let Y be a smooth manifold and E = E' © £" - %2 graded vector bundle over Y.
Let FS{E) be the space of pairs (y,ω), where yeY and ω is an oo-jet of a
superconnection in E at y. In coordinates, let U be an open subset of Y as above;
let Ω° be the space of power series in the formal variables y1,..., / ; let ΛP = rkE\
N" = rkE"; then

FS(E\U)=U x (fl

The global construction is the straightforward generalization of Sect. 4. We have
S p

the projection FS(E) —• Y and also the projection FS(E) —• F(E).

Just the same constructions as before show that there exists the canonical
integrable system of tangent subspaces horizontal with respect to π. This system
gives the decompositions

Ωr(Fs(E))= 0

Proceeding as in Sect. 4, we get the following

Theorem 6.1. There exists the canonical superconnection in the vector bundle π s *£
on FS(E). Its Chern character form ch(ώ + X) is closed under the differential d + δ
and invariant under the group of automorphisms of E.
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7. Secondary Characteristic Forms

Let, as above, Y be a smooth manifold, E - a vector bundle over Y. Denote by ξ
the space of connections in E and G - t h e group 7"(Y,Aut£) of fibrewise
automorphisms of E. In Sect. 3, we constructed the Chern character forms
chk(£, V)eί2f for any Veξ and the forms chfc(£, V, σ)eΩ2k"1 for any (V, σ)eξ x G.
In this section, for any smooth family φ of elements of ξ x G which is parametrized
by an /-dimensional manifold M, we shall construct the secondary characteristic
form ch[(E,φ)eΩ2k~1~ι; similarly, for any smooth /-dimensional family φ of
elements of ξ we will construct the forms ch[(£, φ)eΩ2k~ι. If / = 0 and the family
φ consists of the single element, these forms ch[(£, φ) are the Chern character
forms. If / = 1 and φ is a path connecting the points (V0,σ0) and (V^σJ, then
dchk

i(E,φ) = chk(E,Vo,σo) — chk(E,V1,σ1). We will establish similar identities for
the higher forms.

Recall from Sects. 4-6 that if F(E) is the variational complex for connections
and G(E) is the variational complex for automorphisms, then F(E) and G(E) are
the fibrations over Y; denote by K(E) = F(E) x G(E) their fiber product over Y,

i.e., the space whose points are the triples (y,ω,σ), where yeY,ω is a jet of a
connection in E at the point y and σ is a jet of an automorphism of i^at the point
y. We denote by π the obvious projection K(E) = F(E) x G(E) -• Y, by V and σ - the

universal connection in the bundle π*£ and the universal automorphism of π*£

respectively; the differential form chfc = chfc(π*£; V,σ) belongs to Ω2k~1(K(E)) =

F(E) x G(E); one has the decomposition chfc = ]Γch^ where c\ϊι

keΩ2k~ι~uι.
γ i

Similarly, chkeΩ2k(F(E)) is the universal Chern character form on the variational
complex of connections.

Now let M be an /-dimensional manifold with boundary and φ:M—•£ be the
smooth map. Construct a form ch[(£,φ)eΩ 2 k~ ι as follows. Consider the map
φ:M x Y^F(E), where for meM and yeY,

φ(m, y) = {y,jeίy φ(m))eF(E).

Consider the pullback φ*ch fc = ^]φ*ch^ of the universal Chern character form
s

on F(E). This is the form on MxY\ it is clear that φ*ch£ belongs to
Ω2k-\Y)®ΩS{M) for any s. Put

ch[(E;φ)= Jφ*ch s

f c eί2^- ' .
M

Similarly, let φ:M -* ξ x G be a smooth map, where again M is an /-dimensional
manifold with boundary. Define the map φ:M x Y^F(E) x G(E) by

and

ch[(E;φ)=
M

Also, let E = E ®E" be a Z2-graded bundle, FS{E) - the variational complex for
superconnections in £, ξs - the space of superconnections in E. Let τ:M -• ξs be a
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smooth map, / = d i m M ; define τ : M x Y-+FS(E) by

and

chι

k(E;φ)= $ τ*diι

keΩlk-1.
M

These definitions and the fact that (d + δ) chfc = 0 imply immediately the following

Theorem 7.1. (i) Let M be an l-dimensional manifold with boundary dM\ let SC(E)
be either ξ or G or ξs; let φ:M-•#"(£) be a smooth map. Then (i) if M is
the point and <p(M) = V (respectively (V,σ), respectively (V + X), then chk(E,φ) =
chk(£, V respectively chk(£, V,σ) respectively chk(E9 V + X))).

(ii) One has
ti1 ι

Now let us give the explicit formulas for the secondary characteristic forms. We
denote by Δι the standard simplex {(ί0,..., tι):ti ^ 0, £ ί f = 1}. Consider the case of
connections. Consider the connections VO, ..,VZ in the vector bundle E over the
smooth manifold Y. Assume that in coordinates they are represented by the matrices
ωo,...,ωι. Define the map φ:Δι-^ξ; (ίo,...,ίj)h->i7ί iω ί. Let chι

k(E,ω0,...,ωt) =
ch[(£, φ). Then

= ωλ - ω o ;

l j( + A2)

±(AX + A2f + ±ωo{Ax + A2) + ̂ (

^ i A2 - ^2^! ) ) , i4f. = ω f - ω o ;

ch*(£,ωo,...,ω f c) = -

chi(£,ωo,...,ω/) = 0, Z>fc.

These secondary forms give rise to the actions which are the generalizations of the
Chern-Simons action from [18]. Let Y be a smooth variety of dimension 2k. Fix a
connection ω 0 . Assume that we work in coordinates in which ω0 is represented by
zero matrix. Put

Z = fexp(2πimf J - J — t r ί ^
\ y o ( κ - l ) !

Here m is an integer. This is an invariant of the manifold Y.
Now, let Y be a smooth manifold, ω o , . . . ,ω z - the connections in the vector

bundle E over Y; let G = Γ(Y, Aut E) and σ:Λι -> G - a smooth map. We write

ch£(E,ω0,...,ω,) = ch[{E,φ\ωo,...,ωι)x σ),

where, as above, φ(ω o,...,ω /):(ί o,...,ί z)ι->5]ί iω i . We remind the reader that we
denote by Pk certain polynomials in two noncommutative variables which have
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been defined in paragraph 2. One has:

ch[( jE,ω o , . . . ,ω l ,σ)=f

φtdω, + dt ω, + (Z^.) 2)(l - σ

In particular:

is the Chern character for K1;

chl{E,ω09ωί9σ{ή)

(dσ + -^dt + [ί(ω x - ω 0 ) + ω 0 ,σ] ) σ " x ; ( σ - l ) ( Λ ( ω ! - ω 0 )
\ at )

0 + td(ωί - ω0) + (ω 0 + t(ωt - ω o )) 2 )( l -σ'1)).

Being written in such a way, this expression depends on a choice of a path σ(t).
However, for two paths σί(t),σ2(t) connecting σ0 and σ l 9 the difference
ch^(£, ω 0 , ω l 9 σ^t)) — ch^(£, ω 0 , ω l 5 σo(ί)) is the closed form representing an integral
cohomology class. Thus, one may define the following invariant of an even-
dimensional manifold. Consider a smooth manifold of dimension 2k —2 and a
vector bundle E over Y. Fix a connection ω 0 in E. Put

Z = JDΛDσexp 2π/m Jch£(E,ωo,i4>σ(
V y

For fe = 2, this integral appears in the WZW model.

Now, consider the case of superconnections. As before, Δι = {(ί0,..., ί|):ίf ^ 0,
X ίj = 1} is the standard complex; having the superconnections Vo 4- Xo, ...,Vι

we define τ:Δι->ξs (where ξs is the space of superconnections in the bundle

E = E'®E") which sends (ί 0,. . .,ί z) to £^(V, + Xf)
 W e w r i t e ch[(£,V0 + ̂ 0 ) ,

o
V; + Xj) = ch[(£, φ(V0 + Xo,..., Vz + Xz)). Assume that the connections are
represented by the matrices ω t. One has

j £ trs J
Δι n = 0 O^so,...,sn^° \ \ 0

Σ Λίωf + Σ ί^ω, + ( Σ ίiω; Y + Σdti x, + Σ<tXih +
0 0 \ 0 /
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+ (1 -t)X0-] +{tdωγ + ( 1 - ί ) ί / ω 0 ) 2 ) . exp(s p _ 1 ( ίX 1 + ( 1 -t)X0)
2)

= tr((dX" + ω'X" - Xnω")(X"X')~1{ex"x'~'))

- iτ{{dXf + ω"X' - X'ω'WX'Ύ^e*'*" - 1)).

Now, let Y be a smooth manifold and E = E ®E" a Z 2 -graded vector bundle
over Y. Assume that dim Y = 2k - 1. Fix a superconnection ω 0 + 0. One may define
the integral (meZ)

Z = f exp ( 2πim J ch*(£, ω0 + 0, Ax + X J J

This is an invariant of the manifold Y.

8. The Relation Between Secondary Forms and Primary Forms

Let Y be a smooth manifold, E a vector bundle over Y. Let σ be an element of
Γ(Y,AutE). Let V is a connection in E. Then Vσ is another connection in E; it is
obtained by changing coordinates in E by means of σ. In coordinates, if V = d + ω
is covariant derivative with respect to V, then Vσ = σ(d + ω)σ~1 —d — dσ σ~ι +
σωσ~ι is the co variant derivative with respect to Vσ. Since the characteristic forms
chw are Γ ( 7 , A u t £ ) - invariant, we have chw(E,V) = chw(£,Vσ). Thus, the
secondary form ch^(£; V, Vσ) is a closed (2m — 1) - form on Ϋ.

Theorem 8.1. ch^(£; V, Vσ) = - chm(£; V, σ).

Proof. Let us assume first that the bundle E and the connection V are trivial.
Then V = d; Vσ = d - dσ-σ~x; denote - dσ-σ~x by A; then dA + A2 = 0. We have

1 i
ch^(£;V,Vσ) = — $

m\ o

i

1

2m-χ{2rn-\)\\

This proves the theorem for the special case of trivial bundle and trivial
connection. The general case follows as in the proof of Theorem 2.1.

Theorem 8.1 illustrates the well known topological fact that the Chern character
for K1 is the transgressed Chern character for K° (or the homotopy equivalence
ΩBGL((£) ^ GL(<E)). In the next paragraph we shall discuss a more recent and
nontrivial example of the same phenomenon.
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9. Chern Character of Fredholm Modules and Secondary Forms
on the Space of Jets of Superconnections

In this paragraph, we follow essentially Connes and Moscovici [5]. The manifold
Y will be now a point. We modify our construction and consider a Hubert Z2

graded vector bundle over Y, i.e., a Z2-graded Hubert space E = £ + © £ _ ; a
superconnection in E will be a skew selfadjoint operator X:E-^E which is odd
and Fredholm.

Let A be a unital involutive algebra over C and let pe[ l , oo). A p-summable
Fredholm module over A is the followng:

i) a Hubert space E = E+@E_ together with an involutive even homomorphism
p\A-*L(E\ where L(E) is the space of bounded operators;
ii) a skew selfadjoint invertible odd unbounded operator D on E such that
[£,/Φ)] is bounded for any aeA and tr(((D" 1 )(D- 1 )*) | l / 2 )< oo.

Assume that (£,D,p) is a p-summable Fredholm module over A. Note that the
space FS(E) of jets of superconnections coincides with the space of
superconnections themselves (because Y is a point). Let FS

D(E) be the subspace of
operators D' = D + A, where A is bounded odd and D' satisfies ii). Let D be the
canonical superconnection on FS

D(E) - the restriction of that on FS(E).
Connes and Moscovici showed that:

1. the Chern character forms chm(E,tD) are well defined on FS

D for any t > 0;
2. lim chπ(£, tD) = 0 if In > p;

t-*o

3. lim chn(£, tD) = 0;
f-*OO

4. the secondary form ch*(£;0, tD) is well defined for ί > 0 . Moreover,
lim ch*(£;0, tD) exists and is a closed (2n — 1) - form on FS

D(E).
t-*oo

Here the path between 0 and tD is assumed to be the line segment. The space
FS

D is equipped with the manifold structure coming from the operator norm of
A,Df = D + A.
5. Let u be a unitary element of A, i.e., uu* = u*u= 1. Then yu(D) = p(u)Dρ(u*)
is in FS

D(E). Let U(A) be the group of unitary elements. If we equip A with the
norm | | α | | D = ||p(α)|| + ||[/>,p(α)]||, then U(A)^FS

D(E) is a smooth map.

Pushing back the form lim ch^(E;0,ίD), we get a closed (2n-l)-form on U(A).
ί-»OO

Moreover, it is invariant under left action of U(A) because the Chern character
forms are invariant under coordinate changes.

We can also pass from A to the matrix algebra MN(A) replacing E by E (x) <CN, D
by D®1(CN, ets.; thus, finally we get an invariant closed form on the group

N

The cohomology of the de Rham complex of such forms is well known from
[15,17]. Recall only that there is the canonical map from kth cohomology to the
cyclic cohomology group HCk~1{A).

Thus, the construction above for each Fredholm module over A provides a
family of cyclic cohomology classes in HC2n+1(A\n^p/2. As shown by Connes
and Moscovici, these classes are the Chern characters from [4].
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We have a strong hope that this interpretation of the Chern character of
Fredholm modules, combined with the techniques of [10] and of [8], can be helpful
for combinatorial construction of index of elliptic operators.

References

1. Atiyah, M: K-Theory. New York: W. A. Benjamin 1967
2. Burghelea, D., Friedlander, L.: Determinants of some elliptic differential operators. Commun.

Math. Phys. 138, 1-18 (1991)
3. Berezin, F. A., Retakh, V. S.: A method of computing characteristic classes of vector bundles.

Rep. Math. Phys. 18, 363-379 (1980)
4. Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math., Ser. 2,

99, 48-69 (1974)
5. Connes, A.: Non commutative differential geometry. Publ. Math. I.H.E.S. 62 (1962)
6. Connes, A., Moscovici, H.: Transgression of the Chern character for families and cyclic

homology. prepr. I.H.E.S. M/86/33 (1986)
7. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun.

Math. Phys. 129, 393 (1990)
8. Feigin, B., Tsygan, B.: Riemann-Roch theorem and Lie algebra cohomology. In: Proceedings

of 2nd Winter School at Srni, Rend. Math. Palermo (1989)
9. Fuks, D. B., Gelfand, I. M., Kazhdan, D.: Actions of infinite dimensional Lie algebras. In:

Gelfand, I. M. (ed.). Collected Papers, vol. 3, pp. 349-353. Berlin, Heidelberg, New York:
Springer 1987

10. Gabrielov, A. M., Gelfand, I. M., Losik, M. V.: Combinatorial Computation of Characteristic
Classes, I, II. In: Gelfand, I. M. (ed.). Collected Papers, vol. 3, pp. 407-436. Berlin, Heidelberg,
New York: Springer 1987

11. ,: A local combinatorial formula for the first class of Pontryagin. Ibid.
437-440

12. Gelfand, I. M.: Cohomology of infinite dimensional Lie algebras. Some Questions of Integral
Geometry, Report at the International Congress of Mathematicians, Nice, France (1970)

13. Gelfand, I. M., Losik, M. V.: Computing characteristic classes of combinatorial vector bundles,
in: Gelfand, I. M. (ed.). Collected Papers, vol. 3, pp. 454-486. Berlin, Heidelberg, New York:
Springer 1987

14. Karoubi, M.: X-theory. An introduction. Grundlehren, vol. 226. Berlin, Heidelberg,
New York: Springer 1978

15. Loday, J. L., Quillen, D.: Cyclic Homology and the Lie Algebra of Matrices. Commun.
Math. Helv. 59 (4), 565-591 (1985)

16. Quillen, D.: Superconnections and Chern character. Topology 24, (1) 89-95 (1985)
17. Tsygan, B.: Homology of matrix Lie algebras and Hochschild homology. Uspekhi Mat. Nauk

t. 38, 217-218 (1983)
18. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353-386 (1988)
19. ,: Quantum field theory and the Jones polynomial. Commun. Math.

Phys. 121, 351-399 (1989)

Communicated by A. Jaffe




