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Abstract. We study the geometry of high genus curves of rapidity variables in
chiral Potts model. In terms of symmetries, we characterize these Rieman surfaces
and derive their period matrices. By the theory of prime forms, the temperature-
like parameter is expressed by hyperelliptic theta functions.

Introduction

Nowadays much attention is paid to the exactly solvable models of statistical
mechanics. The integrable TV-state chiral Potts model is the first solvable model
where the Boltzmann weights lie on a complex curve of genus greater than one. It
contains the natural generalization of Ising model and many of the remarkable
properties known for the Ising model (N = 2) can be extended to the cases N^3
(see refs. [1,5,8,15] and references therein). This model gives the solution of Yang-
Baxter equation (or the star-triangle equation) which has a very simple product
form for the Boltzmann weights
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The "rapidity" variables /?, q are represented by the ratio of 4-vectors [a, b, c, d]
satisfying

kaN + k'cN = dN,

kbN + k'dN=c\
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with
k2 + k'2 = U k'2*0,l.

These equations describe a complex curve of genus TV3 — 2N2 + 1 as the
intersection of two "Fermat surfaces" in P 3 , or as the fiber product of two Fermat
curves over the rational curve. It has a group of automorphisms of order 4 TV3 and
the quotient of some N2 automorphisms gives a genus (TV— 1) hyperelliptic curve
which is represented by

WNy. tN = i l ~

(The integer TV shall always be assumed to be ^ 3 unless otherwise specified.) The
transfer matrix T(u) of the classical statistical mechanical model now depends on
the variables lying on Riemann surface WNik>, and it satisfies the commutating
relation for different w, u'. However this is not sufficient to solve the eigenvalue
problem of the quantum chiral Potts spin chain associated to T{u). One needs a
functional equation for the transfer matrix T(u) which was obtained by [1, 2,11,
13]. For the superintegrable case, when the "vertical rapidity" p has a special
value, some simplifications occur and the eigenvalue problem for T(u) are solved
in [1,2,9]. For the general case, one can explicitly solve the functional equation for
the largest eigenvalue in the large-lattice limit [10,11], and compute the spectrum
of low-lying excitations to discuss the phenomena of level crossing transition to a
new ground state [16] from the physical consideration. Here no uniformizing
substitutions are used to obtain all those results. It is the belief that these results
should be Abelian integrals over the Riemann surface. One difficulty is that it
lacks the "different property" as in the eight-vertex model solved by Baxter, where
the uniformizing parametrization leads to the elliptic functions. However in [6, 7],
the significance of the Abelian functions was indicated in the computation of
single-spin expectation values of the general chiral Potts TV-state model. Hence the
theory of prime form of hyperelliptic curves [17] is expected to immerse into the
computation of the interesting physical quantities.

This note deals with two mathematical problems arisen from the above
rational family WΉ%W of hyperelliptic curves. In this paper, we shall call WNtW a
chiral Potts TV-state curve, or simply a CP TV-curve. The first problem is to give a
geometrical characterization of this family of CP TV-curves among the hyperellip-
tic curves and compare them with the case of elliptic curves. The other is to
describe the relationship between the symmetries of a CP TV-curve and its
Jacobian, in particular how the general prime form of Riemann surfaces can be
applied to the expression of k! in terms of the period of WNtk, which was obtained
by Baxter in [6].

First we note that WNΛ, for TV = 2 is the algebraic form of an elliptic curve with
a spin 1/2 structure. As an 1-dimension complex torus, the fixed part of the
canonical involution θ of an elliptic curve E consists of 4 elements. It is in one-one
correspondence with the branched loci S under the natural projection from E to
IP1 ( = E/(θ}). The order 2 translation of is corresponding to the spin 1/2 structure
induces an automorphism of P 1 , and its orbits in S form a partition of it with each
member having 2 elements. Such partition of S naturally leads to the algebraic
expression of WNtk, for TV = 2, also in the same process to the general TV ̂  3. The
original Boltzmann weights a, b, c, d are closely connected to the elements in S.
The derivation and their relationship will be given in Sect. 2 and 4. In Sect. 1, we
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discuss the parametrization of these partitions of S for a subset S of P 1 with 4
elements. The formulation is guided by the intent of finding the geometrical
meaning of the relations between different variables which appeared in the
physical literatures [1,6,10]. In Sect. 3, we shall derive the original "product
Fermat" curve of the variable [a, b, c, d] from the curve WΉΛ, and the other two
related ones, WNtik>/k9 WNtk. In Sect. 5, we shall discuss the uniformizing
parametrization of a chiral Potts TV-state curve. The special form of the period
obtained by Baxter [6] is discussed from the geometrical point of view, that is how
does it reflect the symmetries of the Riemann surface. We apply the theory of
prime form to obtain the explicit expression of the parameter k' in terms of the
hyperelliptic theta functions.

I am much indebted to Prof. B. M. McCoy for the invaluable help for learning
the integrable chiral Potts model. Through my collaboration with him, we found
the mathematical structure involved in this subject revealed a surprising similarity
from the physical and mathematical considerations. This strongly indicates the
promising role of complex geometry on exactly solvable models. It is in this belief
that this note began with. I also wish to thank Prof. R. J. Baxter for his beautiful
preprint [6], in which the relation between Boltzmann weights and hyperelliptic
theta functions are found via the classical work of Sonya Kowalevski [14]. One of
the purposes of this paper is to understand the qualitative feature of the identities
of different quantities in [6] from the symmetries of "rapidity" curves. I am most
grateful to Prof. F. Hirzebruch for his kind invitation and the hospitality of Max-
Planck-Institut fur Mathematik where this work was completed.

1. Parametrization of 4 Points in P 1

Let E be a 1-torus (= 1-dimension complex torus), Γbe the subgroup of Aut (is)
consisting of all translations of E, i.e. the automorphisms ta\ E-+E, x—>x + a,
XEE. T is isomorphic to E. Denote T(2) = the 2-torsion subgroup of T.

Let θ: E -• E be an involution with 4 fixed points.

Lemma 1. Γ(2) = {teT\tθ = θt).

Proof. Write E = (C/L, and σ: [z] -> [ — z + c] for some lattice L, and ce(C. Then
the conclusion follows easily from the definition of 71 q.e.d.

Denote H = (T(2) x <#»/<#>. Identifying E/(θ) with P1,77can be considered
as a subgroup of Aut (P1) through its action on E/(θ}. The branched locus S of
the double cover

Ψ(=ΨΘ):E^E/<Θ> = Ψ1 (1)

forms a 77-orbit with 4 elements. As any two such involutions θ of E are conjugate
by a translation, the subset S of P 1 is uniquely determined up to the action of
Aut (P1)- It is well-known that every 1-torus can be obtained as a double cover of
P 1 with 4 branched points, hence we have the one-one correspondence between
the following sets:

{isomorphic class of 1-torus} «-* {S\S a P 1 , | 5 | = 4}/Aut(Px). (2)

Definition. For a subset S of P 1 consisting of 4 elements, a partition of S with 2
elements in each of its member is called a (2,2)-ρartition of S.
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We are going to characterize the data of S with a (2,2)-partition. First we notice
that the above group H is determined by the set S via (i) of the following lemma.

Lemma 2. (i) For each subset S ofψ1 with \S\ = 4, there exists an unique subgroup
H o/AutfT1) such that H ~ (Z/2Z)2 and S = a H-orbit.
(ii) Let Hbea subgroup of Aat (P1) with H ~ (Z/2Z)2. Then (IP1)'1, h eH - {id.},
are mutually disjoint.

Proof (i) Let H be a subgroup of Aut (P1) satisfying the condition. The
orbits in S forms a (2,2)-partition of S for a given non-trivial element h oΐH. Then
h is uniquely determined by its values on S. Since S has exact three (2,2)-partitions,
His unique. It remains to show that for any (2,2)-partition of S, there always exists
an automorphism h of P 1 such that the </z>-orbits in S form the given (2,2)-
partition. By conjugating some element in Aut(P1), we may assume
S = {0, oo, 1, α} and the partition = {0, oo} u {1, α}. Then h is defined by z -> α/z,

C
(ii) If H has a common fixed point x in P 1 , the homomorphism which assigns

each element of H to its differential at x is an injective map. Since the linear
transformation group of the tangent at x is isomorphic to (C*, H is cyclic. This
contradicts the assumption of the structure of H. q.e.d.

Proposition 1. {isomorphic class of(E, t)\E: 1-torus, te Γ(2)-{id.}} is in one-one
correspondence with each of the following sets:
(i) {(S with a (292)-partitioή) | ̂  c= IP1- | ^ | = 4}/Aut(P1).

(ii) {π: P 1 -• P 1 , a degree 2 morphism with critical value not equal to 0, oo}/ ~, here
πi - π2 iff for some f f e Aut (P1) with f({0,oo}) = {0,oo},

(iii) {(ρ9p) \peJP1 — {GO}9 ρ: a degree 2 endomorphism ofψ1 with critical value not
equal to p, oo}/^, here Qι~Q2 iff for some f geAut(P 1) with g(p)=p,

pi 8 ) pi

Proof For S c P 1 with | S\ = 4, let E be the corresponding 1-torus of (2). The
group H in Lemma 2 (i) corresponding to the set S can be identified with
(Γ(2) x <σ»/<σ>. For / in Γ(2)-{id.}, let h be the coset of t in H. Then the </z>-
orbits in S forms a (2,2)-partition of S. In this way we define a map from
{isomorphism class of (E, t)\te Γ(2)-{id.}} to (i), which is bijective by Lemma2.

For the above automorphism h of P 1 , the degree 2 morphism
π:Ψ1^>Ψ1/(h) = Ψ1 has the critical points disjoint with S. By a suitable
coordinate of P 1 , we may assume that S = π - 1({0, oo}). In this way, we have the
one-one correspondence between (i) and (ii).
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The projection

can be considered as a degree 2 endomorphism of IP1. The //-orbit S corresponds
to a point of P1/// = P 1 , which equals to oo by a suitable coordinate of P1///. The
fixed point set of h corresponds to another //-orbit/?. Then/? is not equal to oo and
the critical values of ρ can not be/? or oo. This gives the correspondence between
(ii) and (iii). q.e.d.

Then by (2), the following correspondence can easily be obtained.

Proposition 2. [isomorphic class ofl-torus} is in one-one correspondence with each
of the following sets:
(i) {S\S<zV^\S\ = 4}/AvAφ1).

(ii) {π: P 1 -> P 1 degree 2 morphism with critical value not equal to 0, oo}/ ̂ , here
πx ~ π2 ifffor some f in Aut(P1), / ' sends πfx {0, oo} to π2

 1 {0, oo}.
(iii) {(ρ,p)\peΦ1 — {oo}, ρ: a degree 2 morphism ofψ1 onto itself with critical
value not equal to /?,oo}/~, here (£h,/?i) ^ (Q2^Pi) iff there exists some g in
AutίP1) such that g(oo) = oo, and g({pl9 critical values of QX}) — {/?2, critical
values ofρ2}.

We are going to parametrize the data in Proposition 1 and 2. The following easy
lemma is useful for our derivation, and its proof is omitted.

Lemma 3. For 4 distinct elements x, y, z, w in IP1, there exists an automorphism g of
Ψ1 withg(x) = 0,g(y) = oo,g(z) = a,g(w) = α~Λ for some ain(C — {0, ±\}.And(x
is unique up to sign.

Define

π α . l f > F , / i > π α ( / i ) = 2
1 — Oί

here α is a constant in C-{0, ± 1},

Γ1

S C

j / = C - {0, ± 1}/ ==, here oc = βiΐΐa2 = β±2.

Proposition 3. si is in one-one correspondence with the data in Proposition 1. In
fact, for an element [α] of si determined by a complex number α, the elements
(ii), (iii) in Proposition 1 corresponding to [α] are as follows:

(i) the class of {0, oo, α, α~A} vwYA ίήe partition {0, oo} u {α, α ~ 1 } .

(ii) / te /

(m) me

By Lemma 3, every element in (i) of Proposition 1 is represented by
{0, oo, α, α"1} with the partition {0,oo} u {α, α"1} for some αeC — {0, ±1}. This
corresponds to an element of (ii) in Proposition 1, which is represented by
τ r : P 1 ^ P 1 . Choose the coordinate λ of I f c P 1 ) such that π - 1(oo) = {0,oo},
π " 1 ^ ) = {^α"1}. Then π is equivalent to πα. Since the critical values of πα are

, , 1 , the element in Proposition 1 (iii) is represented by (ρ,/?) with
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- i / \ m Ϊ -u \ fl — α 1 + α ) . . + + / l + α 2 \
ρ (oo) = |0,oo), ρ (p) = <- , >. So ρ is equivalent to I ρθ9- j )• ^

remains to show that if ί ρ 0 , Ί) ^s equivalent to ί ρ 0 , - — ^ y ) » t h e n [α] = [/?],

i.e.̂ ff2 = α ± 2 . L e t / g be the elements o f A u t ί P 1 ) with/ρ 0 = ρ og, andg(oo) = oo,

ψ )} = (0,0)} and/({I, -1}) = {1,-1}, hence/

is defined by /(() = ±ζ±1. Therefore g is defined by g(ζ) = ±ζ, which implies
β2 = (x±2. q.e.d.

Lemma 4. .For α subset S ofΊP1 with 4 elements, let H be the subgroup of Aut (IP1)
associated to S in Lemma 2, andΦ'.Ψ1 -• P 1 / ^ £e ίλe natural projection. Then the
following data are in one-one correspondence:

{(2,2) - partition of S) <-+ // - {id.} <-> {critical value of Φ}

w/ϊΛ ί/ze relation Δ = the (h}-orbits decomposition of S, (Ψ1)*1 = Φ " 1 ^ ) .

Proof For a critical value c of Φ, Φ - 1 (c) is the fixed point set of a non-trival
element of H, and vice versa. Then the conclusion follows immediately from
Lemma 2. q.e.d.

With the same convention as in [1,6,10], we shall always denote k the solution
of the equation

k2 + k'2=\

for a given k'e<D — {0, ±1}, and λ(orλj) the coordinate of the domain of πα.

Proposition 4. (i) For [kf] e J / , the elements of s$ having the same image as [k'\ in

[ ik'l
-j- .

(ii) For S = {0, oo,^',/:'" 1}, ί/ze elements in (i) of Proposition 1 corresponding to
the above three elements of &/ are as follows:

[k1] «-> S with the partition {0, oo} u {k\ k' ~ *} ,

[ ik'Ί
— Uw> 5 vwY/z ^ partition {0, fe'"x} u {oo, it'} ,

[k]«~> *S vwϊ/j ίfe partition {0, fc'} u {oo, £ ' ~ x } .

(iii) Lei £, Cx, C2 ̂ ^ ίAe coordinates of the domains ofρ0 in (iii) of Proposition 3 such
that:

2

£o 51 77T) with the coordinate ζ,
1 K )

[ ik'~\
— Uw>(ρ0, 1 —2k'2) with the coordinate ζί,

[k] <—> ρ 0 , - — y j I w/ί/z ίAe coordinate ζ2 .\ 1 — /c /
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Then ζ, ζt, ζ2 are related by

ζ2 + ζ;-2=-^j

Proof. In this proof, we shall always denote k' an element in (C — {0, ±1},
S = {0, oo, k', k' ~1}, H = the order 4 subgroup of Aut (IP1) associated to 5 in (i) of
Lemma 2, ζ, ζl9 ζ2= the three coordinates for IP1 in the above (iii) of this
proposition. Let A, A1? A2 be the non-trivial elements of H such that the
correspondence in Lemma 4 are as follows:

Identify the projection P 1 ->PV<A> w i t h πk'> ^/(hy^Ψ1/!! with ρ 0 , and Φ:
2

i/z/with ρ o π f e , . Then {critical values of Φ} = j + 1 , , / 2 [ » and A, Ai, A2

are defined by l l - / c J

h?(λ) =

The correspondence between the critical values of Φ and the elements of//— {id.}
in Lemma 4 is described as follows:

k '2

Let [α] be an element of srf having the same image as [kr] in Proposition 2, and
\ _j_ y^/2\ / \ 2

d
\ j ŷ  \ j α

assume [α] Φ [A:']. Then ρ 0 , - — r ^ and ρ 0 , 2 are equivalent under the
V 1 — K I \ 1 — oc j

relation ~ in (iii) of Proposition 2, i.e. for some g in Aut(Px), g(oo) = (oo),

^\) ' ± l j By (iii) of Proposition 1, we may assume
Jι-k'2'^ΊJ U-<

72") = ± 1 Then the g is uniquely determined by the value of 1. When

k'2\ ,4Λ Λ l + α 2 \ / . l + « 2 \ , 4 Λ . .
ττ2 >f(ί) = l>i 2 o r — l>i 2 ><?(—!) = — 1 or 1 respectively.

It follows g(η) = ±(k2η — k'2) which implies α2 = ., 2 or 2 , hence

-77 . In this cases, the (2,2)-partition of 5 is given by the (A^-orbits. When

— k2

α 2 = 2 ? w e h a v e

hence
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W h e n ( ^ ( I ^ T ) , S O ) ) = (1, -l)or(-l,l),the(2,2)-partitionofSisgiven

by the </22>-orbitsandg(?/) = ±(k2η — l)/k'2. This implies α2 = k~2 or A:2, hence
[α] = [k]. When α2 = k2, we have

hence

This completes the proof of this proposition, q.e.d.

Remark.
(i) By Proposition 1 (ii), there is an automorphism / ' of P 1 which sends

{ ( U ' - ^ u l o o , ^ } to {0,oo} u |_/A.,/^.J. In fact, / ' is defined by

And the / ' sending {0,fc'} u {oo,^"1} to {0,oo} u {k.k'1} is defined by

(ii) By introducing the variables w, φ9 φ

-ζ = e2i\ -ζ^e2^, ζ2 = e2it

the relations of (iii) in the above proposition are equivalent to

sin φ = +k sin u, k' sin φ = +ik cos u,

which are the relations of the parameters for "/?-variables" in [1,5,6,10]. The
variables eiu, eίφ, eίφ (as Im(w), Im(φ), lm(φ), Im(φ)->oo) can be considered as
the local coordinates of the 2-torsion points of the elliptic curve corresponding to
[k] in Proposition 2.

2. Chiral Potts N-State Curves

The algebraic curve where the "rapidity" variables of chiral Potts TV-state model
^ 3) lie is defined as follows:

Definition. The chiral Potts TV-state curve (N^. 3) is a genus (N—ί) hyperelliptic
curve W with an order N automorphism having exactly 4 fixed points. And we
shall call W a CP TV-curve.

The order TV automorphism of W in the above definition shall always be
denoted by θ (= θw), and the hyperelliptic involution be denoted by σ (= σw). By
the uniqueness of the hyperelliptic involution, θ commutes with σ. First we note
that the following properties hold for CP TV-curves.

(I) <#> acts freely onW- W\ and W/(θ} - IP1.

Let g0 be the genus of W/(θ). By the Hurwitz theorem for the projection from
W to W/(θ>, 4-2TV = T V ( 2 - 2 g o ) - 4 ( T V - l ) - * , here * = the sum of
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ramification contribution of x e W — Wθ. Hence 0 = 2Ng0 + * , and g0 = * = 0.
Then the conclusion follows immediately.

(II) Wθ is disjoint with Wσ.

By the commutativity of θ and σ, Wθ is stable under σ. Hence | Wθ n Wσ\ = 2
or 4 when it is non-zero. As (θ) acts freely on Wσ — Wθ, the order of Wσ — Wθ,
(= 27V - 2 or 27V - 4), is divisible by TV. By TV ̂  3, this is only possible for TV = 4,
and I W°nWσ\ = \ W°\ = 4. By Hurwitz's Theorem, the sum of all the ramifi-
cation contribution of elements in W for the projection W^ W\(β, σ} (=Ψι) equal
to 20, which is greater than the contribution from the 4 elements in Wθ. This gives
a contradiction because the ramification contribution of each element in Wθ is 7.
Therefore WθnWσ = 0.

Now we are going to describe the algebraic form of CP TV-curves. Let Ψ9 ψ, 77, π
be the morphisms defined by the following commutative diagram:

^ P 1 = W/

π

<θ>

(3)

Let S be the branched locus of Ψ9 and h be the automorphism of Ψ1(= W/(θ})
induced by σ. By the above (II), the orbits of the automorphism of W/(θ) induced
by σ form a (2,2)-partition of S. By Proposition 3, for some coordinate λ of P 1 and
somefc'eCC — {0, ±1}, S = {0, oo} u{fc', k'~1}, andπ = πv. Choose the coordi-
nate t of Ψί(= W/(σ}) such that ψ is defined by t-~>> tN. Then Wis isomorphic to

^...(L^zίΏ. (4)

In terms of the coordinate (t, λ)9 θ and σ are defined by

σ: (/,/0->(/,/ί~ *), here ω = e2κilN.

Since the branched locus of 77 is equal to

WNtk. is also birationally equivalent to the curve in <C2 defined by the equation:

w2 = i r -

The above coordinates A, w are related by
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For the rest of this note, (t, λ) and (t, w) shall always denote the above coordinates
for the curve WNtW. In terms of the coordinate (t, w), θ and σ are defined by

θ: (t, w)-~>(ω/, w),

σ\ (ί, w)-~>(ί, — w).

Let ι(= IWN k) be the order 2 automorphism of WNik. defined by

which is the same as

by the equality

\_ fλ-λ'1 _ k*_ \\ _ \-k'λ
2\ tN k'tN+k + W~ k'-λ '

Then θi = ιθ~ι, and (θ, ι} ^ the subgroup DN of AutfΊP1) with the binary
dihedral group DN as its double cover. Now we can described all the symmetries of
a CP TV-curve.

Proposition 5. For a CP N-curve W, Aut (W) = <σ, θ, i> ~ (Z/2Z) xΈ^.and (θ}
is the unique order N cyclic subgroup o/Aut (W) generated by an automorphism with
non-empty fixed point set.

Proof. Since σ commutes with any automorphism of W, the group Aut (W)/(σ)
acts on IP1 (= JV/(σ}) and preserves the branched locus (6). It is not hard to see
(θ,ι) ~ Aut(PΓ)<σ> - D^, hence Aut(W) - (Z/2Z) xl)^. For an order N
automorphism φ of Wwith non-empty fixed part Wφ, write φ = σmfθ\ for some
integers 0 ̂ m,n ^1,0 ̂ j S(N— 1). We need to showm = n = 0. Since i ^'isof
order 2, n has to be 0. If φ = σ θ\j is greater than 0. The image of the fixed point
set of φ under the projection Π in (3) is contained in the fixed part of the
automorphism of W/(σ} induced by θj. Hence Wφ is contained in Wθ, then also in
Wσ. But the fixed parts of θ and σ are disjoint. This contradicts the assumption of
the non-emptyness of the fixed point set of φ. Therefore j = 0, and

q.e.d.

Corollary. The morphism Ψ: W ̂  P 1 is the unique (up to isomorphism) order N
cyclic covering of W over P 1 with exactly 4 distinct critical values.

Proof. Let φ be an order N automorphism of W such that the projection
W-> W/(φ) = P 1 has exactly 4 critical values. By Hurwitz's Theorem, | Wφ\ = 4.
Hence (φ) = <#> by the above proposition, and the conclusion follows
immediately, q.e.d.

Corollary. The curves WNf0L and WNfβ are isomorphic as Riemann surfaces if and
only if[(x] = \β]in s/.
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Proof. Let φ be the biregular isomorphism from WNtΛ to WNyβ. Then

φ~ι σWN p φ = OWN α (by the uniqueness of hyperelliptic involution),

φ ~ 1 ΘWN β φ = ΘWN α (by the above Corollary).

Hence the diagrams (3) for the curves WNtΛ and WNtβ are equivalent through the
morphisms induced by φ. This is equivalent to [α] = [β] in si because the (2,2)-
partition of the branched locus of Ψ for WNfOl and WNtβ are equivalent in the
relation of Proposition 1 (i). q.e.d.

3. Three Related Chiral Potts TV-Curves

We continue to study the CP TV-curves. By the Corollary of Proposition 5, the CP
TV-curves are parametrized by si. For a given k'e<£ — {0, +1}, the elements [k']9

\-r- , [k] of si are related in the sense that they determine the same 1-torus in

Proposition 2 by the result of Proposition 4. For a given &ΈC — {0, +1}, we are
going to study the relation between the three CP TV-curves WNΛ>, WNΛkΊk, WNΛ.
The curve WNtk> is defined by the coordinate (/, λ) of (4). By (ii) of Proposition 3, we
have

WNΛkΊk^Wr:

and the automorphisms σ, i for Wr are defined by

(10)

Similarly, WNιk^ W,:

with the automorphisms

n -it n (t k ' ~ λ \

(12)
'1 1\
h'λj

In this section, we shall write W = WN k,. The morphisms Ψ9 Ψr, Ψx from W9 Wr,
W{ to P 1 in (3) are now defined by Ψ(t9λ) = λ, Ψr(tr9λ) = A, Ψt(tl9λ) = λ.
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Denote the fiber product WxΨιWroϊΨ and iPr by iTr:

W Q Wr (13)

and #" r is defined by

(\-k'λ)(\~k'λ-ί)
1 " k2

t^ = - — f 1 , for (/, /r,

The automorphisms έ^ ,̂ ^^ r of W, Wr induce the automorphisms (9, Θr of #^
which are described by

θr:(t9tr9λ)~+(t9ωtr9λ).

Then the group <<9, Θr> isomorphic to (Έ/NZ)2, and acts freely on Ψ*r outside the
4 critical points of the projection from iVγ to the 1-plane, which has the branched
locus {0, oo, A:', k''1}. Consider the quotients:

Then Vί, F 2 are TV-sheet cover of the A-plane P 1 branched at {k\ 0} and Ir—, oo >
respectively with the following coordinates: *- ^

' tN

Consider the degree 2 cover of the (— )-plane,

r-p1,

The fiber product of x-plane with Vx over the (— j-plane is reducible with two

rational curves as its irreducible components. They are described by

~ k

Let X be the component

χN = ί-k'λ ( X j i ) 6 c 2 . (14)
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X is a TV-fold cover of the /l-plane P 1 branched at {k\ 0}. With the same discussion

for V2, we have a TV-fold cover Y of the /l-plane P 1 branched at ]p-, oo > which is
defined by ^

There are the morphisms from the fiber product of X and Y over the A-plane into
W, Wr with the following commutative diagram:

W Ό Wr (16)

IP1 /

which are described by:

(x,y,λ)

(xy,λ) = (t,λ) (tr,λ) = (^,λ

λ

Similarly by replacing the above Wr by Wx, we have the rational curves X', Y' with
the degree TV morphisms over the A-plane:

X'-*Ψ\ x'-^λ, with χ'N = -Ξ-—,

Y'-^Ψ1, y'™>λ, with y'N = j- , (y'2 = ttι),

and also the diagram:

Wx O W (18)

Ψ \ / Ψ

defined by

\ i/

λ

The coordinates of X, X' and Y, Y' are related by:
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It follows that under the base change

P ^ P 1 ' μ~+λ = μN

9 (19)
we have

i χ F p ; ^ r χ p l p j , r i * r P j

In fact, these are the Fermat curves in P 2 :

P ; , kaN + k'cN

here [α, c, d], [b, c9 d] are the homogenous coordinates of F 2 , which are related with
x9 y9 x'9 yf, μ by

M> χ / = ^ ' Z ^ " 1 - (20)

Consider the fiber product of X and ?) over the //-plane

aB = Sx P A ?) ( = ( z χ P i y ) χ p i P ί ) .

Then 2C is is a curve of genus A^3 — IN2 + 1, defined by

which is also equal to

a ΐ N

= N f o r [a9b9c9d\eΨ3. (22)
k'a + b = kc

Then the curves W, Wr,Wu X, X'9 7, Y' are the quotients of £B by various order N2

subgroups of Aut(2B) which are described as follows:

\ [a9b9c,d] —> [ωa9b9ωc9d] / '

7=2B
\ [a, b, c, d] ~̂> [a, b,c,cod] /

ι9 b, c, d] —> [α, ωb, c9 cot
Define

3:2B^2B, [a9b9c9d\~+[b9a9d9c]9

3/.* 2C -• 2B, [α,*, c, d\~+[ω*d9ωc,b9ω*a], (23)

9ΐ: 2C -> 2B, [a9b9c,d\~+[ωa9b9ωc,d],

©: 2B -> 2B, [α, έ, c, d]->[ωα, ω6, c, rf],

X: 2C -^ 2B, [a9b9c9d\-~>[a,ωb9ωc,d\.
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Then it is easy to see

the order of %&,% = N,

theorderof3,3/>3r = 2,

and

913/ = 3/«"S s ^ a®-1 13 3 1

9*3/3 = 33/, ©3r3i = 3*3,, 2:3,3 = 33,.

Hence <9ί, ®, 2,3,3r > 3*) *s a group of automorphisms of $B, and is also equal to
<3> 3r»3/> I t c a n be shown that the quotients of 2B by various normal subgroups
of <3,3r>3/> also give the curves Xxψl Y, X'xψl Γ, W, Wr9 Wx\

(25)

By Hurwitz's Theorem, ΪB is the 7V2-fold unramified cover of W, JVr, Wx. This
implies that with the morphisms in (16) (or (18)), Zxpi Γ(or J!Γ'xPi Y' respec-
tively) is the TV-fold unramified cover of W, Wr (or W, Wι respectively). (We have
demonstrated here that the curves W9 Wr, Wx can be constructed from the Fermat
curves X and ?). In fact, that is how the CP TV-curves had originally been derived in
the physical literature [1,12]. The variables, a, b, c,dare the Boltzmann weights of
the statistical model.)

The automorphism group <3>3r*3i> of 2B induces the groups of automor-
phisms of W, Wr, Wx. In fact, these are the group of all automorphisms for JV9 Wr9

Wι by the following result.

Proposition 6. (i) Under the canonical homomorphism <3,3r -> 3i) "^ Aut (W)9

3™*<7w> S r ^ ^ ^ ί Zι~+θwιwσw.

(ii) Under the canonical homomorphism <3> % -> 3i) ~* Aut (H^),

%~+σwr> 3 ^ ^ Γ > 3ι^θWriWrσWr.

(iii) Under the canonical homomorphism <3>3r>3i)

Proof. By (16), (18), (19), (20), (21), t = ̂ , tr = ψ t^ψ λ = (~\\
\—k'λ

(5), (8), (10), (12). q.e.d.

^ ψ ψ
—k'λ ίb\N

p—Y = — I -) . Then the results follows from the the definition of 3,3r > 3^ a n ( i
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When TV is even, WNik,/(θN/2} is the 1-torus, and it is the double cover of Ψ1

branched at {0, oo.k'.k''1}. By Proposition4, the 1-tori determined by WNtk>,
WNjk>/k, WNΛ are isomorphic. Hence we have the following diagram:

WNtk WNik> WNjk>ιk

1 — torus

P 1

4. TV-Torsion Line Bundles of Chiral Potts TV-Curves

As before, W = WNjk'9 2B = the fiber product of Fermat curves with the
homogeneous coordinate [a,b,c,d] defined in (21), 9Ϊ, S, ϊ , 3> % = the
automorphisms of 2B in (23). Let u, u', v, v' be the elements in W whose λ-values
arc 0, oo, k\ k'~ι respectively, and

be the unramified JV2-fold cover in (25). By (14), (15), (16), (19), (20), the divisors
for the sections a, b, c, d in 933 are

div(β) = p*(v), div(Z>) = p*(v'), div (c) = p* (u')> div(ί/) = p*(u).

For (m,n)e(Z/NZ)2, let κ{mn): <!Σ,9ί>-> C * be the character with

*<„,»)(£) = ωm, *<„,,„)(*) = ω" Then

is a line bundle over W, and its associated ^-shea f is denoted by J5f(mn).

Proposition 7. (i) p ί | ί ^ a B = 0 ^ ( w , n ) .
(m,n)e(Z/NZ)2

(ii) jSf(lf0) = Θw[v'~u], ^(o,i) =0w[v-u], ^(i, i) = OwW~«]•

Proof. For an open set t/ of W, any function/of p ~x (C/) can be uniquely written
as / = ^ ./(W,W), where /(m<fI) is an eigenfunction of <£, 9ΐ> with eigenvalue

(m,/j)

^ ( w n ). Hence we obtain (i).

With the homogeneous coordinate [α, b, c, J] of 2B, the divisors of the rational
functions a/d, b/d, c/d of 2B equal to p* (v — u), p* (v' — u), p* (u' - u) respectively.
Since the rational function ajdφjd, c/d) corresponds to a meromorphic section of
^(o,i) (^i,o)> ^(1,1) respectively) over W, (ii) follows immediately, q.e.d.

By the same argument, we have the similar conclusions for the curves Wr, Wx.

Propositions. Let

p r:2B^^(=2B/< s,s>)
and
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be the unramified N2-fold covers in (25). Let ur, u'r\r, \'r, (u/? uj, v/5 vj), be the
elements of Wr, (Wx respectively), such that as the divisors σ/2B,

di v (a) = p * (vΓ), div (b) = p * « ) , di v (c) = p* (y'r), div (d) = p * (ur),

= pz*(uί), div(i) = Pl*(vz), div(c) = pf(vί), div(rf) = p^u,) .

n) = ίΛe Θw-sheaf associated the character <S,£> -> (C*,

~ ^ ^ Θw-sheaf associated to the character <9t, S ) -• (C*,

(m,n)e(Z/NZ)2 (m,n)e(Z/NZ)2

(ii) Oi βr the curves Wr, Wl9 we have

co — (0 W li 1 (P ίO Γv 11 1 (f (0 \\Λ' Π 1
-^1(1,0) — % i l V I UzJ> ^1(0,1) ~ UWιiΎl U/J? -^1(1,1) — (yWιlUl~Ul\'

5. Jacobian Variety of a Chiral Potts iV-Curve

Let r be an element in <C-[0, ± 1}, ω = e2πilN, g = N- 1. Assume that

and denote
ί-ΛllN

1 + r
1 - r

1 + r

1 -/•

here 0 <; 5 = arg( ) < 2π. In this

section, we shall denote

Ψ, ψ, 77, π = the morphisms of (3) for PF,

{#, σ, i} = the generators of Aut(W) in Proposition 5.

W is a genus g CP TV-curve defined by the coordinate (t, λ) of (4), or (t, w) of (7).
Denote

Jac(PF) = the Jacobian variety of W.

The critical points of 77 are the elements b. , b' , l^j<*N, of W with

^0>j) = ω ~ J ί ^ : j and 77(b}) = ω~Jl|— H We also denote o - b ^ ,
o' = VN. The critical points of ^are the elements p, p', q, q' of H^with the Λ.-values
0, oo, r, r~1 respectively. Then p and q are on the "same sheet" of the covering of
77. (Here we consider W as the double cover over the /-plane with cuts on the

• /I -r\i/N ./I +Λ 1 / i V

segments from ωJ to ω J , 1 < / < N. The value of the

coordinate w determine the "sheet" of W) We are going to describe Jac(H/) using
the data of {b7?b}|l ^j^N}, and then {p,p', q?q

;}.
It is well-known that the abelian differentials of first kind for W has the

following expression:
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Lemma 5. Γ(W,ΩX) = the (C-space consisting of

p (t) — , p(t) = a polynomial of degree S (N — 2).

Denote φOL = t*~x — for 1 ^ a ^ g. Then {φa, 1 ̂ α ^ g } forms a base of
Γ(W,Ωx)\vith W

= afφa9 σ*(φj = -φa9 ι*(φa) = -φN.a. (26)

By a path in W we shall always mean an oriented one. It is easy to see the
following lemma holds.

Lemma 6. For a path y in W, J φa = ωam J φa.
θm(γ) y

We shall denote

I*.

Let A and B be the cr-invariant 1-cycles on PFsuch that by the morphism ΠyA
n—r\1/N /1+Λ 1 / Λ Γ

lies over the segment from to , and B lies over a path from

ω

I to ί j

l + r \ 1 / Λ r

to I j with A intersecting B only at o having the intersection)

number I(A,B) = 1. Define

j = θ~j(A), Bj = θ~j(B) for integer;.

C « = Σ BJ
 f o r 1 ^ α ^ £

B } are homologous to zero.Then ^ + N = v4j? ^ J + ] V = i^ , and

(The cycles ^4α, Ba, Cα are shown in Fig. 1.)
The intersection numbers of the cycles Aa, Ba, Cα, 1 ^ α ̂  g, are given by

= 0,

= 0, except I(Aa,Ba) = 1, = - 1 .

Hence

Let

φ = 0, I(Aa,Cβ) = δ«β.

\ \ ( (27)
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r: real

0εlR.

Fig. 1. The curves homologous to Aj, Bj, Ci for N = 5

By Lemma 6,

\ φ r . . . , S
Ai A

\φr..., Sφ) = V.βΌ

Hence

c,

I \( \

bg

J
Zl—

Ag

Γb'g
\

< V - N

I
Λ

Curves on
upper sheet
Curves on
lower sheet

heτek'xβ= ^ ω " m α =/e π i / i V (ω- α / i

Let φ j , . . . , φg the base of Γ(W, Ω1) defined by

/ΦΛ
(28)
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then

Here

. πγs i n i

. πβγ / 2

Xy'

with χy = f .
Lf . \

The above ω yl2χγ for W = WNJk,/k is equal to the y^ in [6].
Ly 1

Hence the period of the Jacobian of W is equal to τ = fτ = ( τ ^ ) ^ ^ ^ and

Jac(W) = the torus <Eg/(Zg + τZ9).

For a fixed base point * of W, we have the canonical embedding of W into
Jac(W):

W->Jac(W)
(29)

The period of Jac (W) is related to the elements b̂  , bj by the following proposition.

Proposition 8. For 1 ^ β ^ g, fe/

τ^ = ίΛe )ffth co/wm^2 of(τaβ),

eβ = the βth element of the standard base ofΈ9.

Denote \ = \ £ eβ.

(i) For an element w of W9 let [s], [z] be the images ofvr under the maps (29) for
* = o, o' respectively. Then [s — j] = [z],
(ii) Under the map (29) for * = o',

Γ 1 !

L L α^(/3-l) -I

for lίβSg-
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Proof. Let oo' be the path from o to o' along the curve A. Then

625

1 _
oo' — σ(oo')

ί

- Σ

Hence

- [x*] - Cί •] -
So we obtain (i), hence the first correspondence of (ii). Let b ^ b , , (byb}),
l ^ y ^ N , be the path from Vj-ί to bj(bj to b} respectively) along Bj (/Ir-
respectively). Let o b^ , o'bβ , 1 ̂  ^ ^ g, be the curves from o' to b^, b^ defined by

Σ

Then

Φ = o τ/s - 7
o'bβ

2 Tβ 2

Hence we obtain (ii). q.e.d.

We are going to express the period of Jac(H/) in terms of the data {p, p', q, q'}
Define

1 1

£ =
1

N

Σ

Σ
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Consider the following paths in W\
oq' (o'q) = the path from o (o' respectively) to q' with t-values in the segment

/\ -frλ1/* ((\ —r\llN \

from ( j I ί — — I respectively j to 0,

po = ϊ (-o 'q ' ) ,

pp7 = po - <τ(po), pq' = po + oq'.

pq = po + σ (oq), p'q' = σ (pq)

(Then above paths are shown in Fig. 2.) Then

^<7'"1(p/Q/) — θj{p'q[) is homologous to — AN^j9

Lemma 7. J φ = —ε, J φ = ρ + ε9 § φ = ρ, J φ = ε.
p'q' PP^ p ^ pq

Proof. For 0 ^j ^ N — 1, we have

θJ(p'q') Θ

P P '
Σ

(j - 1) ^ m £ 0

ί here Co= Σ Bm which is homologous to 0 j .

By Lemma 6,

0= Σ>.> [(ffl' r 1 ^ ! / 1 l_φ]=N_j_φ+ J φ,

o= y
β-J'ίpp7") J

= N]_φ- I φ - I Φ,
PP' Σ Cj Σ itlAγyχ

which imply the first two equalities, then the rest follows immediately, q.e.d.

Proposition 9. Under the map (29) for * = o,

- l 11 1 Γ l 1 Ί

- 2 J ' P L2 ρ 2 ε J'
Γ - l 1 1 , Γ l 1 1

q ^ > IT ρ + 2 £\' q ^ L2 Q ~ 2 ε\'
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P Δ

Curves on upper sheet x Points on upper sheet

Curves on lower sheet Δ Points on lower sheet

Fig. 2. The paths pq, pq', pp' for N = 5, r = eίθ(θe1R)

Proof. We have

po-σ(po) pp '

— 1 1
= -y- ρ - 2 ε

? (by Lemma 7).

Hence we obtain the value of p of the map (29) for * = o. The other values of this
map follow from Lemma 7 and the following identities:

q.e.d.

Lemma 8. For a path γ in W,

ί Φ = (rβfi)fφ,
y)
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here

raβ = 0 except r{β + 1)β = 1 (1 ύβύg\ rag = - 1 (1 ^ α £g).

Proof. By Lemma 6, we have

Hγ)

y

which implies the result, q.e.d.
The period of Jac(JF) is expressed by the vector ρ via the following

proposition.

Proposition 10. Define ρ0 = 0. Then for α,/? = 1, . . . g,

Qa= QN-a>

τ*β = Q* + Qβ~ Q\*-β\

Proof It is easy to see that — i (A) is homologous to A. Hence the /α's in (27) have
the relation:

/« = /*-. for l ^ α ^ g . (30)

By the definition of the paths,

— i (pq') is homologous to pq'.

Hence

Q=j_Φ=- ]_Φ=-±ι*(Φ)
pq' ί(pq') pq'

pq '

pq'
1 (δ^y1 (δaβla) (δaiN.a)) (Co'**) ρ (by (30))

1 (<5α(W_α)) {ω~"») (δMN.a))
2 ρ = (<5α(N_α)) ρ,

which implies ρa = ρN-x.
We have
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Hence

j Φ = i Φ - \_Φ
Cβ pq ' G-P(pq')

= Q ~ (ray)β Q > (by Lemma 7),

which implies

τ*β = Q* + QN-P ~ Q\a-β\ = Q* + Qβ~ Q\Λ-β\ Φ e d

Remark. In [6], the ρα's are solved from the expression of τaβ, and described by

sin2

s i n i
\Nj[ω y / 2 / •

Then the identities in the above proposition can be verified through the explicit
expressions of ρα and τα/?. The proof we give here indicates these identities follow
from the symmetries of the CP TV-curve W.

By the uniformizing coordinate

s=ί i

the hyperelliptic theta function of Jac(JF) is

and by Proposition 10 it can also be written as

Θ(s)= X exp llniymsΛ- £ mjnβρβ\-πi £ mΛρla_β{mβ

Then Θ (s) satisfies the quasi-periodicity and evenness relations

θ(s + m) = θ(s), for meZ9,
i ( s ) 9 for ί^β^g

The theta function 9 with rational characteristics δ, v of Q9 are defined by

with the quasi-periodicity relation

(,τ), for
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We are going to describe the prime form of the Riemann surface W. Consider the

divisor D = £ bβ. Then the canonical bundle of W equals to C0w[2D]. By

Riemann-Roch Theorem and Lemma5, |D\ = a single divisor D. By the general
theory of prime forms of Riemann surfaces (see e.g. [17]) implies the existence of a

non-singular, odd, theta characteristic # _ , δ, ve(^Z)g/Zg, such that

9 . μ =0o , . " _ _ ^ . (31)
l_v J \^. / (w or w = bβ, tor some z s p s g

Then
ό

c = i Σ < 9 - ^
is the unique holomorphic 1-form with (Q = 2Z>. So j/C is the section of ΘW[D]
and the prime form is given by

£ ( w 0 , w) = !U , for w0, wε W. (32)

For a fixed point w0 of W,E(γ/0,γ/) defines a global section of CV[w0] of the
Riemann surface W. Therefore

£(p',w),.„, »['.](/

corresponds to a section of <P̂  [p' — p]. Consider the function of C 9 :

f(s) =

By Proposition 9, ' =f(s(yf))9 here ^(w) = j 0. By the quasi-periodicity

property of i9 _ , we have

f(s + m) =f(s),

f(s + τm) = e2πitm(β+ε)f(s), for se<Ce,meZe.

Since

{^' Σ U+ Σ t
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the function

631

α = 1

1 1

satisfies the relation

for ί e C ^ w e F ; here -^ = Σ ^ The restriction of fv. on W [via (29) for

* = o] can be regarded as a section in Γ(W, <V(p' — p)) with the divisor
div(fp,p) = p' — p. Similarly, the functions of C^ defined by

~δ
v

rδ~

v

(

V

1

' 2β

1
Q

2

2 ε ' τ J
i c τ \

2 C ' 7

satisfy the relations

for ^eC g , meZ9. The restrictions of/q p , /q, p on W are the section in
W ( q - p ) ) , f W « » r ( q ' - p ) ) respectively, with div (/qtP) = q - p ,

) = q' — p. Note that the phase factors in the quasi-periodicity relations
°ffp',P»fq,p> fqr,p a r e Λe A^th roots of unity. These functions are closely connected
to the variables a, b, c, d of the 7V2-cover 2B of ί^in Sect. 4. Since the Nth power of
Λ'.p' fq,p>fq',p gi γ e s the rational function on W, the situation is much simpler for
the purpose of the expression of the parameter r of W.

Consider first the case when r equals to k'. As before, let 2B be the curve defined
in (21) with the homogeneous coordinates α, b, c, d. The above p, p', q, q' are now
the u,u',v,v' in Proposition 7. As the rational functions of W, / / u , X^u,

N N N

J equal to C

^ up to some constants, i.e.
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aN:bN:cN:dN = Ae2πiΣ

a

s" S^[s + l^ρ -~ε,τ

.ΛπiΣsa

here s is the uniformizing coordinate of elements of W, and A, B, C are constants.
The hyperelliptic involution σ of W induces the automorphism 3 of 2B [defined in
(23)], which corresponds the map of (E?,s™> — s. The relations

aN\ bN fcN\ dN

3*W
imply 5 = 4̂C, C2 = 1. For s1 = the origin, it corresponds to the element o of W

with the coordinate (ί, λ) [defined in (4)] = ( ί f ^ p ) , - 1 ) . By (19) (20), the
constants A, B, C must satisfy \\l fc / /

^ = J?, C = 1.

By (21), we have the relation

— 1 1
Substituting s = -~-(? + »ε, by (31) we obtain

(33)

k'
When r = iη-9 the CP A -̂curve is the curve Wr of (9) in Sect. 3. Its hyperelliptic

involution is induced by the automorphism % of 2B by Proposition 6 (ii). Let τr be
the period for Wr. By Proposition 8,

- ~ C r - ^

with Br = ArCr, (Br)
2 = —1. By the definition of the element o of Wr9 together

with the description of the function / ' in the remark (i) of Proposition 4, the λ-
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value of o equals to k' + ik. By the relations (17) (20),
Br = {-\γi By (22),

Are
2πi 5*β

, hence

Hence

(34)

For the case r = k, let τ? be the period of WNΛ(~ Wx in (11)). Similarly, we have

and

hence

(35)

Using the identities obtained by Sonya Kowalevski [14], Baxter found the explicit
expression of the above δ, v, and they are given by

1
(36)

(The above θ _ (s, τ) is the function Θ {s} x of [6].) Therefore we have obtained the

following conclusion.

Theorem. Let τ,τr,τι be the period for the CP N-curves WNtk>,WNtίkΊk,WNψk

k'
respectively. Then the relations between k\ iη-, k and τ, τr,τι are given by (33),
(34), (35) and (36). k
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