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Abstract. We consider 2D gravity coupled to c ^ l conformal matter in the
conformal gauge. The Liouville system is represented by a free scalar field, φL, with
background charge such that the BRST operator imposing reparametrization
invariance is nilpotent. We compute the cohomology of this BRST charge on the
product of the Fock space of φL with those of the ghosts and one other free scalar
field, φM, representing the matter system. From this calculation the physical states
of the full theory are determined. For the c < 1 case the further projection from the
Fock space of φM to the irreducible representation, using Felder's resolution,
reproduces the results of Lian and Zuckerman.

1. Introduction

Matrix model techniques appear to give a great deal of information on discretized
gravity coupled to cM ^ 1 matter in two dimensions. To put these insights to use it
is clearly necessary to understand the continuum theory, and thus the Liouville
dynamics to which it reduces in the chiral gauge [1,2], and conformal gauge [3,4].
Upon gauge fixing, the continuum theory factorizes into matter, Liouville, and
ghost sectors coupled by the BRST constraint imposing diffeomorphism inva-
riance. Indeed in the same way the relevance of Liouville dynamics to string theory
was already well understood [5], and several groups went on to study the Liou-
ville theory in detail [6-9]. From the work in [8-10], and as is consistent with
semiclassical calculations [11-14], free field techniques may be used to advantage
in the Liouville theory. Further, the free field description of minimal matter
theories is well developed [15-17]. Application of these techniques to the full
theory requires at least the description of the physical spectrum, and construction
of the correlators of physical operators (see e.g. [18-25] for some recent
developments). In this paper we discuss the former.
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The physical states are identified with nontrivial cohomology classes of the
BRST operator, d. We will explicitly compute this cohomology for a free boson of
cM = l, the "D = l string," and for the minimal models of cM<\. In the latter
problem we employ the free field resolution [17], and thus both problems reduce
to calculation of cohomology in a complex consisting of Fock spaces. The main
technical result of this paper is the computation of this cohomology summarized in
Theorem 3.3. It may be applied directly to obtain the physical states for the case
cM = l, and we find that they occur for at most three ghost numbers. For ghost
number zero such states are known [24,26], they occur at conformal weights
corresponding to singular vectors in the matter Fock space. For cM<l, upon
imposing the projection implied by Felder's resolution [17], we reproduce
precisely the results of [27]; i.e. there is an infinite set of physical states at different
ghost numbers, appearing at the conformal weights where singular vectors arise in
the Verma modules built on the matter primary states.

Our computation of the BRST cohomology on Fock spaces has its roots in the
analogous problem for the critical string [28-35]. However, apart from similarities
between the two computations which we indicate in the text, there is an important
difference due to the presence of background charges. In particular, this novel
feature is responsible for the absence of the so-called "vanishing theorem" [30-32],
i.e. in Fock spaces with special discrete values of the momenta there are nontrivial
cohomology states at different ghost numbers. We develop a rather simple and
systematic method for computing this cohomology which exploits the presence of
a grading of the Fock space in addition to that by the ghost number. One can
view this either as a streamlined approach to the Kugo-Ojima quartets [36, 28],
or a simple case of a spectral sequence analogous to the one discussed in more
advanced analyses of the critical string theory [34, 35] or the BRST cohomology
in general [30, 37]. For the sake of simplicity we decided not to introduce any
machinery of homological algebra, and try to give elementary and explicit proofs.

The cM = ί case has been recently discussed in [26]. They used methods
developed in [33,38], but found that the general case could not be analyzed this
way. Thus our work for this case can be thought of as the "more complete
classification of BRST cohomology" asked for in that paper.

It is interesting that the complications discussed above can be circumvented for
cM< 1 - where the matter sector is taken to be the (p,p') minimal model [39] with
the representation of the Virasoro algebra in the fundamental range 1 ̂ m^p — 1,
lfgm'^p' — 1 [40] - provided one chooses a suitable free field resolution. We
should note that this case has already been discussed as a problem of Fock space
cohomology - albeit in chiral gauge - in [41] (see also [42,43]). The results
obtained there were not quite complete, as evidenced later by the work of [27]. As
we will see this is precisely because the projection required by the Felder resolution
was not enforced.

A complete analysis of the cM < 1 minimal model case has been given by Lian
and Zuckerman [27], who first classified the BRST cohomology of the Verma
modules (and their irreducible quotients), and then use these results to determine
which Feigin-Fuchs modules of the Liouville sector afford the nontrivial
cohomology. Our rederivation of their results is motivated by the desire to remain
within the framework of Fock spaces, providing a discussion we believe to be more
accessible to a physicist for this problem.

The paper is presented as follows. In Sect. 2 we gather the definitions of the basic
objects we use, and recall the concept of relative cohomology of the BRST
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operator, d. We go on to compute this on the product of Fock space modules in
Sect. 3, and obtain from these results the total cohomology of d in Sect. 4. The
previous two sections, together with Appendix A, constitute the technical part of
the paper. In particular, Appendix A gives a straightforward and detailed
explanation of how such calculations are done. The following two sections, 5 and 6,
contain our applications; namely, the results indicated above for cM ^ 1 matter. In
Appendix B we have collected a few facts about Schur polynomials which are
useful for Sect. 5. We end with a couple of comments, and outlook for further work.

2. Notations and Conventions

For an arbitrary Virasoro module "Γ, the constraint T(z)~0 can be implemented
by the BRST operator

acting on the tensor product module i^0 J^G, where 3FQ is the Fock space of the
spin (2,-1) fcoghosts, and TG(z) is the corresponding stress energy tensor. The
BRST operator d is nilpotent provided the central charge of if is equal to 26 [28,
29,44,30], in which case we can study its cohomology. We will refer to the latter as
the BRST cohomology of if [44,30].

In this paper we will mainly be concerned with the case in which if is the
product of two Fock spaces of free scalar fields with background charges, one
corresponding to conformal matter and the other representing the Liouville field
of 2D quantum gravity. For both the Liouville and the matter sector we will take
the following convention for the stress energy tensor:

T(z)= -i:dφ(z)dφ(z): +iQd2φ(z), (2.2)

where the scalar field has two-point function

<φ(z)φ(w))=-ln(z-w). (2.3)

The central charge is given by

c = l - 1 2 β 2 . (2.4)

We will denote the Fock space built on the vacuum state \p} with momentum p by
). The conformal dimension of the corresponding Virasoro representation is

(2.5)

In terms of modes idφ(z)= £ anz~n~1, p = α0,
neΈ

K=\ Σ : α m α B _ m : - ( n + l)ραπ, (2.6)
meZ

where

[αm,αJ=m(5m+M>o. (2.7)

In the remainder we will distinguish between the Liouville and matter fields by
writing superscripts L and M respectively. Further, throughout the paper we are
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using the normal ordering of operators with respect to the SL(2, R) vacuum. The
BRST operator d written in terms of modes is then

i)-i Σ (m-n):c-mc_nbm+n:. (2.8)
m,«eZ

Requiring that the total central charge adds up to zero gives1

2=_2 ( 2 9 )

For convenience we will denote the (physical) vacuum of the Fock space ^(pM, pL)
M M L L G M L

by

IP M

? P L > = IPM>M®IPL>L®^IIO>G, (2.10)

and normalize the ghost number (gh) such that \pM, pL} has ghost number zero and
d has ghost number one.

The structure of the BRST operator (2.8) is similar to that in the usual bosonic
string [28-30], in particular we can decompose it with respect to the ghost zero
modes as follows:

(2.11)

where

^ L G M= Σ n:c.ncn:,

(2.12)

^ = Σ c_n(LM

n+LL

n)-- Σ (m-n):c.mc.nbm+n:.
nΦO Z m.nΦO

m + nΦO

The nilpotency of d is equivalent to the following set of identities:

32 = L0M, [£L o ] = [£M] = [L o ,M]=0. (2.13)

Since Lo = {b0, d} it is clear, by the same reasoning as for the bosonic string
[30-32], that the cohomology of d must be contained in the zero eigenspace of Lo.
In fact it is convenient to reduce this subspace further by restricting to the states
which are annihilated by the antighost zero mode b0. On this space, which we
denote #o(PM> PL\ the restriction of d coincides with <?, and the cohomology states
ψ satisfying

Loφ = 0, boψ = 0, (2.14)

correspond to the so-called relative cohomology of d [30], the computation of
which will be the subject of the next section. We will return to the absolute, i.e. full,
cohomology of d later.

3. The Relative Cohomology of d on ^M{p

The basic tool in computing the relative cohomology of d is a suitable grading of
the Fock space J^(pM, pL\ which allows to reduce the problem to that of studying
the cohomology of a simpler operator. The basic results on cohomology of such
complexes are briefly discussed in Appendix A.

1 Note that in our conventions both pL and QL are purely imaginary
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It is convenient to first introduce "lightcone-like" linear combinations of the
scalar fields [28, 41] with the modes

P± =]/l((j>M-QM)±iipL-QL)),

, n + 0.

The nonvanishing commutation relations are

[«*,?*] = *, lo£9of] = mδm+ntO. (3.2)

Furthermore we define a set of generalized momentum variables

P ± (n) = ]/i((pM ~ (n + l)βM) ± i(pL - (n + l)βL)). (3.3)

In particular, p± =P±(0). In terms of these operators we have

L0=p+p-+L0=p+p-+ Σ ( : α ί A - : + n : c _ Λ 0 + l , (3.4)
nΦO

and

ί = Σ c_M(αw-p+(n) + απ

+p-(n))
nΦO

+ Σ : c _ n ( α ί m α - + B + K w - n ) c _ m i ) m + B ) : . (3.5)
B,mΦO

m + nΦO

We introduced here L o to denote the level operator for the oscillators {αlπ, α ί π ,
b_ π , c_n}, n > 0 , with respect to the physical vacuum.

From (3.4) we see that #o(PM> PL) (recall that this is the subspace annihilated by
L o and b0) is nontrivial provided p + p ~ takes a nonpositive integer value, and is
always finite-dimensional. For the special case p+p~ = 0 , ^0{pM,pL) consists of a
single state, the vacuum, which is the relative cohomology state.

In general to compute the cohomology of i o n ̂ 0(pM, p ) we must consider two
cases:

I. Either P+(«)4=0 or P"(n)φO for all neZ, nή=0;
II. There exist r,seZ such that P+(r) = 0 and P~(s) = 0.

Case I. We may suppose P+(n) =t= 0 for all n φ 0. The other case, P~(ri) φ 0, can be
analyzed similarly. The Fock space #"(pM, pL) can be decomposed into a direct sum
of subspaces of definite degree. We define the degree (deg) of the vacuum state
\pM,pL} to be zero and assign the following degree to the oscillators;

απ

+) = d e g ( c π ) = + l ,
(3.6)

l

The decomposition of Z into components of definite degree is [compare (A.2) in
Appendix A]

(3-7)

where

wΦO

* i = Σ :c_ n(αίmα-+ π + i(m-n)c_ r ai)m + n):, (3.8)
n,mΦ0

m + πΦO

<?2= Σ P - ( » ) C - . « » + ,
nΦO
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satisfy, when acting on

(3.9)

Our strategy now is to compute first the cohomology of <?0 and then use the
results of Appendix A to determine the relative cohomology of d. Note that ct0 is
nilpotent on the entire Fock space, and moreover [ ί 0 , Lo] = {<?0, b0} = 0. Thus one
can as well first compute the cohomology of cl0 on !F(pM, pL) and afterwards
restrict it to the subspace of the relative cohomology.

Lemma 3.1. Suppose P+(ή) + 0 for all n + 0, then

[C if n = 0

if n * 0 '

where the nontrivial cohomology is represented by |pM,pL>. This state survives the
projection onto the Lo = 0 subspace iff p+p~ = 0.

Proof Define an operator

K= π Σ o - p ^ α ί Λ (3-10)

Then one easily checks that K satisfies

{30,K} = L0, (3.11)

i.e. it is a contracting homotopy operator for ct0. This shows in particular that any
^0-closed state of nonzero level is ^-exact. •

Case II. Suppose there exist integers r, s=t=O such that P+(r) = 0 and P~(s) = 0. It
follows that

(3 12)
i ( p L - β t ) = i ( ( r - s ) ρ M + i ( r + s ) ρ i ) ,

hence

( 3 1 3 )

P-(n) = ]/i(QM-iQL)(s-ή).

In particular

0)=-r5, (3.14)
from which we conclude that there exist states with Lo = 0 only if rs > 0. From (2.9)
we find QMφ±iQL which shows that P+(n) + 0 for nή=r, and P~(n)φO for

Lemma 3.2. Let P+(r) = P ~ (s) = 0 /or some integers r,s + 0,rs> 0. 77ie cohomology
of ct0 on ^0(pM, pL) is nontrivial for precisely two ghost numbers and, depending on
the sign of r and s, is represented by the states:
(i) forr,s>0,

(oc+.rγ\pM,pLy and c _ r ( α ί r Γ ^ Z ) ; (3.15)
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(ii) for r,s<0,

( α - Γ V , P L > and ^ T s ~ Ί / Λ p L > . (3.16)

Proof. To prove (i) consider Kr= £ -—r-—<xtnbn. Then Lo r = {2θ9KΛ is the
n Φ O . r " (Π)

level operator for all the oscillators except αΐ r and^c_r with which it commutes. It
also commutes with ct0. Thus the cohomology of <i0 must be contained within the
subspace spanned by the states in (3.15). One verifies by inspection that these states
are indeed nontrivial cohomology states. The proof of (ii) is analogous? D

Lemmas 3.1 and 3.2 completely classify the nontrivial cohomology of cl0. We
observe that this cohomology, for each ghost number in which it is nontrivial,
occurs for precisely one degree. Thus we can use the general result of Theorem A.3
in Appendix A to conclude that there is a one to one correspondence between the
cohomology states of ct0 and the relative cohomology of d. We can summarize our
computation of the relative cohomology as follows:

Theorem 3.3. We distinguish three different cases in which the H{*lx(^(pM,pL\d) is
nontrivial

i) // P + (r)#0 or P~(s)ή=0 for all r,seZ, r,sφθ, and p+p~=0 then

ii) // there exist r,seZ+ such that P+(r) = O and P (s) = 0 then

f C for n = O , l ,
[0 otherwise.

iii) // there exist r,seZ_ such that P+(r) = 0 and P~(s) = 0 then

f C for n = 0 , - l ,

otherwise.

Jn a// oί/zer cases Hί*e

)

1(J
ΣΓ(pM,Jp

L),ίί) = 0.

At this stage it is worth comparing to the analogous result for the critical
bosonic string [28-35], for which the generic situation is case/ and the relative
cohomology states can be built using purely transverse oscillators. The only
exception is when the momentum is zero, which is the precursor to the cases ii) and
iii) in Theorem 3.3. However, since Lo = 0 this is just a vacuum state, and can be
treated easily as a special case.

The characterization of the relative cohomology in Theorem 3.3 is rather
abstract and for specific applications it may be desirable to construct explicit
representatives of these cohomology classes. In case i) the relative cohomology is
clearly generated by the vacuum state \pM,pL}. In the remaining two cases the
proof of Theorem A.3 provides a general - although probably not the most

2 It might appear that the above analysis also holds for P+(r) = 0 and P (n) Φ 0, Vn e Έ. However
one easily checks that the equation L o = 0 cannot be satisfied for the nontrivial ct0 states, so that
there is no contradiction with the calculation in /
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efficient - procedure for computing these representatives. We will now briefly
summarize this method by specifying it to the present situation.

Let ψ0 be the So cohomology state listed in Lemma 3.2 corresponding to
particular r,s, and n from case ii) or iii). Then ^ψo is <?0-closed, i.e. we have
^ 1 t p 0 = —CIQΨI. TO construct ψί we first note that KrS^0 is an eigenstate of L o r

with a nonzero eigenvalue, and we take

(3.17)

We then proceed by induction. Having constructed ψ0, ψi,...,ψk we define

l ) . (3.18)

A more detailed analysis shows that all the steps are well defined and that the
procedure terminates after a finite number of steps. One then verifies that the state
ψ = ψo + ψ1 + . . . is the desired representative of the relative cohomology class.

In case ii) this construction simplifies dramatically because Z2 annihilates ψ0

and, subsequently, also ψί9 ψ2, etc. Introduce an operator

Γ r=I-0,VMi (3.19)

Then we verify that {Tr)
nψ0 is well defined for n>0 and vanishes for n>rs. The

result of the calculation above can be summarized by

Lemma 3.4. The relative cohomology state in case ii) of Theorem 3.3 is given by

^ 0 , (3.20)

where, depending on the ghost number, ψ0 is one of the states in (3.15). For ghost
number zero we can take

Jo

4. The Absolute Cohomology of d on ^M(pM)®^

In general the relative and absolute cohomologies are related via a long exact
cohomology sequence [30]. In the present case, given the relative cohomology
obtained in the previous section, the computation of the full cohomology of d on
J2rM(pM)(x)#'L(pL)(g)J*rG is straightforward and we will keep our discussion
elementary. First we prove a technical lemma

Lemma 4.1. // Loψ = boψ = 0 then ctψ = O implies that Mψ = Sχ, for some χ in

&O(PM,PL)

Proof Using (2.12) and (2.13) we deduce that ctMψ = 0 and gh(<ίMφ) = gh(ΐ/;) + 3
while by Theorem 3.3 a nontrivial relative cohomology can occur in at most two
subsequent ghost numbers. •

Theorem 4.2.

, pL), d)ecofl£r υ W , P% d). (4.1)
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Proof. Each ψ in the relative cohomology gives rise to two d-closed elements, the
first, ψr, being xp itself and the second Ψπ = coψ — X> where χe^0(pM,pL) satisfies
Mψ = aχ. By Lemma 4.1 such a y always exists. Next, we will show that xpI and ψπ

are not d-exact when xp is not α-exact. Indeed, suppose first that xp = dφ, where
φ = φo + coφ1 with Loφo = Loφί=0 and boφo = boφί=0. Then Sφo — Mφί=ψ
and clφ1 = O. From the latter equation and the difference of two between the ghost
numbers oϊψ and ψ1 ? we find Φi=ctχu which substituted into the first equations
yields a contradiction. In the case of the second state we would find similarly the
contradiction xp = — Zφv

We must still show that the resulting d-cohomology does not depend on
the choice of xp and χ. For xpx this is clear. If χ-*χ + aφ then xpu-ϊψjj + dφ,
since boφ = Loφ = 0. For xp = clφ we simply have xpπ = d( — coφ). This proves that
Hίtl(^(pM

9p
L),d) contains the right-hand side of (4.1).

Now let xp = xp0 + coxpu ψι e ^0(pM, pL), represent a nontrivial cohomology class
of d. Using Lemma 4.1 we deduce from dxp = O that

Ψ = (ψo-Xi) + foi+<Wi)> hi=Mψl9 (4.2)

where ί?(t/>0 — χ j = 0. This corresponds to the decomposition of ψ according to the
right-hand side of (4.1), with ψo — Xι and ψ1 representing relative cohomology
classes which depend only on the cohomology class of ψ. Indeed, if ψ^>ψ + dφ,
φ = φo + coφί then ψ0 — χx ->ψ0 — χx + ̂ φ 0 and ψi ->V>i — ί φ i Finally, by the first
part of the proof they cannot be simultaneously trivial. •

From the discussion below Theorem 3.3, it is clear that for the critical bosonic
string the relative cohomology states are annihilated by M, and the result is as
above with χ = 0 [30-32].

5. 2D-Gravity Coupled to c = l Matter

In this section we will specialize the result of the previous sections to the case
cM = 1, i.e. the one-dimensional noncritical string. Note that in general all cases in
Theorem 3.3 can arise, and thus physical states will appear in three different ghost
numbers, —1, 0, and 1. We will derive explicit expressions for a certain set of
physical states and compare the results to those recently obtained in [26] (see also
[45]). Some useful background material on Schur polynomials Sk(x) is collected in
Appendix B.

In the following we will take QM = 0 and QL = i]/ϊ.3 The equations P+(r) = 0
= P~(s) for r,seZ in this case read [see (3.12)]

PM = ~ ]/i(r - s), ί(pL -QL)=~ ]/ί(r + s). (5.1)

Define

η(pL) = signi(pL-QL)9 (5.2)

The choice of square root for QL is not essential here
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such that cases (i) and (ii) in Lemma 3.2 correspond to η(pL)<0 and η(pL)>0,
respectively. We note that this distinction also shows up in the structure of the
Liouville-Fock space !FL(pL) at cL = 25. Specifically, it turns out that J*L(pL) is of
type ///+(-) for η(pL)<0 and of type ///+( + ) for η(pL)>0, in the notation of
Feigin and Fuchs [15]. In the case ///+(—) the null vectors in the Verma module
M(A(pL)) of highest weight Λ(pL) never vanish identically when expressed in terms
of oscillators, i.e. there exists an isomorphism M(A(pL))^^L(pL), while in the case
///+(+) all null vectors in M(A(pL)) vanish identically when expressed in
oscillators [15] (see also [26]).

We will now show that in the case η(pL) < 0 it is easy to give explicit expressions
for the ghost number zero nontrivial cohomology states.

Theorem 5.1. Suppose P+(r) = 0 = P (s) for some r,seZ+, i.e. pM= —|/ϊ(r —
ί(pL-QL)= - l/ ϊ(r + 4 then the state (Sr(atj/j))s \pM,pL} spans H?J(^(pM,pL),d).

Proof. The theorem follows as a direct application of the results in Lemma 3.4. We
will, however, present a more elementary proof below.

Let us write Xj=octj/j for j ^ l , and thus identify aj with -— forj'^1. From
j

Lemma B.l(i) it follows that, up to terms vanishing on |pM,pL> and commuting
with c_π and αίπ,

[4S r (x)]= Σ cn-^-P+(r

= 'ϊ : 1 c_wP+(n)S r_π(x),

l2l9SAx)}= ^ Σ [Σ^ c.nU~n)Xj_n A
(5.3)

r - l

while

[4S r(x)] = 0. (5.4)

It now follows from P+(n)= —(r — ή) [see (3.13)], and Lemma B.l(ii) of Appendix
B, that the state (Sr(octj/j))s\pM,pLy is indeed in Kerd. The term of lowest degree is
proportional to (αΐr)

s|pM,pL> which, in view of Lemma 3.2, proves its
nontriviality. •

The proof above also shows that for P+(r) = 0 = P"(s), r, seZ+, explicit
expressions for representatives of Hi

rll(^'(pM,pL),d) can be found in the form

(5.5)

where the ... stand for terms of (deg)^2, independent of s.
As a corollary we will rederive the result of [26], proved by different means

(using results of [38, 33]), that for η(pL)<0 the space H^x{^{pM,pL\ d) is spanned
by states of the form |φ>M®|PL>L®cil0>G> where |φ>M is a singular vector in the
matter Fock space module ^M(pM). This type of physical states were first
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discovered in [24] (in the matrix model in [46]) and are sometimes referred to as
"Polyakov states." To be able to formulate the result we recall

Theorem 5.2 [47, 48]. Consider the c = 1 Fock space ^(p). We have
1 m^

i) ^(p) is irreducible iff ~P2+~r for a

ii) // ^P2 = - j - for some meZ then for all keZ+ such that m + fc^O there are

singular vectors

\m, k} = Sk+m,k+m t+w(j/2tt-/j) \p= -m/j/2>
k

(i.e. rectangular Young tableaux) of weight \{m + 2k)2.

We now have
Corollary 5.3. Suppose that pM and pL are as in Theorem 5.ί, then the following state
spans H<£!(^(pM,pL),d)

L>. (5.6)

Proof First observe that, as a consequence of Theorem 5.2, the state (5.6) is BRST
closed. For pM= —]/ϊ(r—s), r, seΈ, the Fock space #XpM) decomposes into a
direct sum of irreducible Virasoro modules [15],

s))= Θ UUs-r+2k)2,ί), (5.7)
fc = m a x ( O , r —s)

corresponding to the singular vectors in Theorem 5.2. To verify that the state (5.6)
is not BRST exact we may restrict to any submodule of ^(pM) which contains this
state. In particular we may take

k = r

in which the state (5.6) is the vacuum state! A simple computation using Eq.(3.3)
shows that ^{pM\pL) falls into category i) of Theorem (3.3), since P+(n) = n and
P~(ri) = (r + s) — n. Thus the nontrivial cohomology in this case is precisely the
vacuum state, which by construction is exactly the state (5.6), and the corollary has
been proven. •

For the opposite case, r, s < 0, although the general procedure to construct the
cohomology states as outlined in Sect. 3 may be applied, the result does not seem to
have as succinct a presentation.

6. 2D-Gravity Coupled to c < 1 Minimal Models

As the next application of the results in Sect. 3 and 4, we will rederive the
classification of the space of physical states, as recently presented by Lian and
Zuckerman [27], for 2D gravity coupled to a cM < 1 minimal model. In this case
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the matter system has central charge cM = c(p,p') = ί — 6 :—, and is repre-
PP

sented by a set of irreducible highest weight modules L(A(m, rri)) [40] with con-
formal dimensions given by

Here p and pf are relatively prime positive integers, p'>p, whilst m and rri are
positive integers satisfying l ^ m ^ p —1, l ^ m ' ^ p ' — 1, mp'^m'p. To ensure the
vanishing of the total central charge we take4

iQL= te2, AL = Δ{]ft= ~pL(pL-2QL), (6.2)

where the momentum pL is pure imaginary and otherwise arbitrary.
The computation of the BRST cohomology on L(zl(m,m'))®#'L(pL) can be

reduced to that of a product of Fock spaces using the free field resolution of
L(A(m,m')) [15,17] which we will now briefly discuss.

Introduce a scalar field with a background charge

c++α_), (6.3)

where, as usual, α+=|/p'/p and α_ = — γp/p'. Just as there is an isomorphism
between the highest weight representations L(A(m,m')) and L(A(p — m,p' — m')\
there are also two complexes (^|w)(m, rri), d!) and (#!w)(m, m'), d') of Fock spaces
of this scalar field which provide a resolution of L(A(m, m')). To describe these
we introduce for arbitrary IJ'eZ the two sets of momenta {/̂ (Z,/'), neZ}
and {p^ftΓX weZ}, where

α_) if n is even,'

^±l/ϊ((-/±(n±ί)p)α++/ /α_) if " is odd,

(6.4)

and the corresponding sets of conformal dimensions

^(l,l')-2QM). (6.5)

Note that for n = 0, p ( ί } (^ W) and p^Cw*m0 = P+}(P~™>P'~mf) are exactly those
two momenta corresponding to the same conformal dimension A(m, rri). Then the
following result is due to Felder[17].

Theorem 6.1. Let m,m'eZ such that l ^ m ^ p — 1 , 1 ^ rn'^p' — l ,mp r ^ rri p. There
exist (two-sided) resolutions (^{!l\m,mf),df) and (&ril\m9m')9d') of the irreducible
module L(A(m,mf)\ i.e.

ϊKm, m'\ d') s δn,0L(A(m, m')), (6.6)

where

(m, m')), n e Z , (6.7)

4 Again, the sign in QL, and in QM later on, is irrelevant
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and the differential df: βr{+Xm,m')-+βr(+ + 1)(m,m') is given in terms of appropriately
integrated products of the screening operator s+(z) = exp(i]/2α+0)(z).

For convenience we collect in the following lemma several elementary facts
which follow directly from the definitions above.

Lemma 6.2.
(i) For 1 ̂ m ^ p — 1 and l^m'^p' — l,the sets of momenta {p(+(m, m'), neΈ} and
{p{^{m,m% neΈ} are disjoint.
(ii) FornJJ'eΈ,

ttXlJ)=p*+1%-l'), (6.8)

A^(lJ) = A^n\l,Γ). (6.9)

Following [27] we set Emmip,pf) = {l-A^(m,mf), neΈ} and for A = \
-A%\m, m') define d(A) = \n\. Recall (5.2), η(pL) = sign(ί(pL - QL)\ The main result of
Lian and Zuckerman on the space of physical states of for 2D-gravity coupled to a
c<\ minimal model is [27, Theorem3].

Theorem6.3. Let m,m!eΈ such that l ^ m ^ p — 1, l^m'^p' — 1, mp'^m'p, then
a) H%x{L{A{m,mf))®&L(pL)®&G,d)*0 iff A(pL)eEmM(p,p').

b) For A(pL)eEmfm,(p,p>%

dimH^{L(A(m9 m'))®^L(pL)®^G, d) = δHf

c)

Proof. Note that for given pL we can always choose a resolution (corresponding to
the + or — sign in Theorem 6.1) of L(A(m,m')) such that for all the Fock spaces
^n\m,m')®^\pL)®^G, neΈ, the equations P » = 0 = P » [see (3.12)]
cannot be simultaneously satisfied for r,seΈ,rs> 0, i.e. we are in Case I of Sect. 3.
Indeed, for the choice of background charges (6.2) and (6.3), these equations read

(6.10)

. (6.11)

Now (6.10) determines r and s up to r^r + tp and s-^s — tp\ where t is an arbitrary
integer. In (6.11) this corresponds to p{+\m,mf)-^p{+±2t\m,mf). Therefore using
Lemma 6.2(i) we can always choose the resolution which does not contain these
particular matter momenta. By Theorem 3.3 the relative BRST cohomology of
<F{n)(m,m')®!FL(pL) will be either trivial or one-dimensional.

Consider the tensor product of Fock spaces J^(m, m')® !FL(pL)® &G in which df

acts on the first factor while the BRST operator d is defined as in (2.8). It is evident
that the differential d' commutes with d because, by construction, d! commutes with
the generators of the matter Virasoro algebra and does not contain Liouville or
ghost oscillators. Thus we may now form a double complex

(#Xm, m')®^L{pL)®^G, d, df)

graded by the ghost number and the order in Felder's complex. Moreover, if we
restrict to the subcomplex of the relative cohomology then both gradings are
bounded from above and below. Since both the cohomology of d and of d' on the
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relative complex are nontrivial in at most one dimension, we can use a standard
result on the cohomology of a double complex5 to conclude that

G, d% d)
G, d\ d').

Since by Theorem 6.1

L(A(m m'))®^L{pL)®^G d) 1

, d'\d),

the left-hand side of (6.12) is precisely the quantity we wish to compute. Further,
the right-hand side of (6.12) is exactly the problem we studied in Sect. 3, and the
results there suffice to complete proof, as we now see.

Recall the result of Theorem 3.3 that

#ίeiWV, m')®^L(pL)®^G, d)

is nonvanishing iϊϊp{n)+p(n)~ = 0. In fact, using (2.9), this condition is equivalent to
A(pL)eEmfm,(p,p'). For A(pL) = \-A{n)(m,m') we must have [see, (6.5) and (6.9)]

if ^ L » ° ' ^ ° or ^)< 0 >*<°> ί614)
if η(pL)>0,n<0 or η(pL)<0n^0 { V

Then (6.14) and Lemma 6.2(i) imply that, depending on the case, pL and
p("+1)(rn,m') or p^'^im^m'), respectively, generate solutions to (6.10) and (6.11).
Thus (6.12) holds for precisely one resolution. The nontrivial cohomology occurs
when the matter Fock space has the momentum given in (6.14) and is generated by
the vacuum state which clearly survives upon taking the d'-cohomology. The order
of this state in the Felder's complex is η(pL)d(A(pL)\ which by (6.12) translates
into the same ghost number in the BRST cohomology of L(A{m,m!))®^L{pL).

The proof of the part c) of the theorem is exactly the same as in Sect. 4. •

7. Conclusions

In this paper we have presented, with various degrees of explicitness, the physical
states of 2D-gravity coupled to cM ^ 1 conformal matter. The technical result
required was the computation of the BRST cohomology on products of Fock
spaces, and we gave a complete analysis for the cases which arose.

It should be noted that, although we have used the conformal gauge
description, the results can be derived equally well in the chiral gauge. There the
Liouville theory is effectively replaced by an sl(2) current algebra [1], which again
has a free field description in terms of a βγ system and a scalar field with
background charge [52-54]. The BRST operator in this case may be written
[42,43] d = dτ + dj, where d\ = dj = {dτ, dj) = 0. Here d3 is of the form uέβ," where
d, S is an additional ghost system, and dτ is just as in (2.1), where T includes all of

See [49] for the mathematical background and [50] or [51] for an elementary review
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the β, γ, φ, έ, S, and matter contributions. Thus the calculation is again reduced to a
Fock space problem, exactly as studied in [41]. The same arguments as in our
paper will give the full result. In fact it may be observed that d3 is effecting a
"Hamiltonian reduction" from the current algebra to the Liouville system [50,
55,56].

The major assumption in applying this work is really that the Liouville system
may be represented by a free field with background charge. Although this
treatment is supported by the evidence we have cited, it is still at the level of an
ansatz.

It is very important to study further the consequences of this assumption in
light of our results. As stated in the introduction, this leads in particular to the
construction of correlators of physical operators. Indeed, there is a growing
literature on the computation of correlators for these models, and comparison to
the results of matrix model calculations [18-25]. We expect that the careful
application of free field techniques will be a useful tool in clarifying these problems.

Acknowledgements. We thank the Aspen Center for Physics for an inspiring environment at the
beginning of this work, and J. Cohn for discussions.

Appendix A. Cohomology of a Filtered Complex

In this Appendix we derive some basic results on the cohomology of filtered
complexes which have been used in Sect. 3. They can be obtained by a standard
computation using the general formalism of spectral sequences associated with a
finite filtration (see e.g. [49]). However, we found it rather useful, and perhaps more
accessible, to follow the elementary approach presented here.

Consider a complex(V,d), where <g=Qf#n) and the differential d:^(w)->^(w+1).
n

We assume that there is an additional gradation, such that for each order n,

<#»>= 0 <j#>. (A.1)
fceZ

We will refer to the integer k as the degree, and denote the projection onto the
subspace of degree k by ( )fc. Complexes discussed in the main part of the paper
have the property that both the set of orders and the set of degrees for which ^ π ) is
nontrivial are finite. However, in the discussion below it is sufficient to require a
weaker property; namely, that for each order the range of degrees for which ^ π ) are
nontrivial is bounded. Furthermore, we assume that the decomposition of d with
respect to the gradation by the degree is of the form

d = do + d1 + ...dN = do + d>9 (A.2)

where

d , : ^ ^ 1 * , (A.3)

and N is some fixed nonnegative integer. Clearly, d2 = 0 implies

Σ dtdj=O9 fc = 0,...,2iV, (A.4)
ij
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and in particular

4 = 0. (A.5)

Thus we can consider another complex (^, d0), with the same underlying space #
and d0 as the differential. Note that (^, d0) is in fact a direct sum of complexes
labelled by the degree, and therefore its cohomology is much easier to investigate -
indeed for the examples discussed in this paper it can be computed precisely. This
observation may be put to practical use once we know sufficient relations between
the cohomologies of both complexes. In the following we construct such relations.

Lemma A.l. // Hin)(<g,do) = 0, then Hin)(%,d) = 0.

Proof. Let ψ = ψk + ψk+! + ... + ψp, xpiE^\n\ represent a nontrivial cohomology
class of d, where p is the maximal degree at order n. Then dψ = 0 implies doψk = 0
and thus ψk — doχk, where χ k G ^ π ) . Consider ψf = ψ — dχk which is cohomologous
to ψ. Clearly the first term in the decomposition of ψ' has degree at least fc + 1.
Proceeding by induction we construct elements χk, ...,χp such that
ψ — d(χk + . . . + χp\ which proves the Lemma. •

In fact we have proven a stronger result

Lemma A.2. We can always choose representative ψ = \pk+ ...+ψp of a non-
trivial cohomology class in H{n\%>,d) such that the lowest degree term ψk in ψ
represents a nontrivial cohomology class in Hin\^, d0).

In the cases we are interested in this paper there is the further simplification that
for each n the cohomology Hin)(^k,d0) is nontrivial for at most one k = k(ή). This
allows us to characterize completely the cohomology of d in terms of the
cohomology of d0.

Theorem A.3. // for each n, Hin)(<#k, d0) + 0 for at most one degree k, then Hw(<ίf, d0)
and E^^β.ά) are isomorphic.

Proof First we prove that each element in H{n)(^,d0) gives rise to an element in
H(n)(^,d). Take ψk representing a nontrivial element in H(n)(^,d0). Then
dψk = d>ψk has the lowest degree at least fc+1. Using (A.4) we verify that
do(d>ψk)k+1 =0, thus (d> v>*)*+1 =d0Zft+1 τ h e n d(Ψk-Xk+i) has terms of degree at
least fc + 2, and, using once more (A.4), we find do(d(ψk—χk+ί))k+2 = 0. In this
manner we construct in finite number of steps a set of elements χk+1, ...,χp, of
degree k + 1 , . . . , p, respectively, such that ψ = ψk—χk+x —... — χp is closed under d.
Denote the correction term χk+x + . . . + χp in ψ by χ>, i.e. ψ = ψk — χ>. Clearly χ> is
not uniquely specified by this construction, since at each step there is an ambiguity
of adding terms that are d0 exact. Let ψ' = ψk — χ'> be another extension of ψk to a
d-closed element, where the lowest degree in χ> is greater than k. Since d(ψ — ψ')
= d(χ'>— χ>) = 0, and there is no d0 cohomology in degrees greater than fc, a
calculation similar to the one in the proof of Lemma A.I shows that χf>—χ>=dφ
which in turn implies that xp and ψ' correspond to the same cohomology class of d.
Moreover, iίψk = doφk is d0 exact then we can take ψ = dφk as the extension. To
summarize we have shown that each element in Hin)(^,d0) extends to a unique
element in H{n)(V9 d).
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Next we must show the opposite; namely, that each element in H
projects onto a unique element in i/(π)(#, d0). Using Lemma A.2 we see that each
representative ψ = ψk + χ>, deg(χ>) > k, of a nontrivial cohomology class of d gives
rise to a cohomology class of d0 represented by ψk. The latter should not depend on
the choice of ψ, or, equivalently, if ψ = dφ then ψk must be d0 exact. Indeed, let
ψ = dφ, where φ = φι + ...φk + φ>9l<±k, and 0> denotes the sum of components
with degree greater than k. By inspecting the degrees present in ψ we obtain

Σ drfj=O, (A.6)

Σ diφ-ψ,. (A.7)

i + j-k

The first equation in (A.6) is doφt = 0 so that (/>/ = d0Xf Substituting this into the
next equations and using (A.4) we find </>i+i=doχi+1+d1χί. By induction we
prove that there exist χb...,χk_1 such that

Φm= Σ dtχj9 m = /,...,fc-l. (A.8)
i + j = m

Using (A.8) and (A.4) we can rewrite (A.7) as follows

ψk= Σ diΦj
i+j = k

= doφk+ Σ Σ dtdmχn
iOj

+ ' + Σ * m +

i >O,m,n
i+m+n=k

K- Σ dk
— n Xn I *

Since the two maps constructed above are clearly inverse of each other, the
theorem has been proved. D

One should note that the above proof provides, at least in principle, an explicit
construction of representatives of the cohomology of d starting with the
cohomology of d0. This construction is completely straightforward, except for the
computation of the coboundaries of d0 when we determine the corrections χ. In the
cases of interest the latter can usually be achieved using a suitable contracting
homotopy operator [49].

For completeness, we may rephrase the result of Theorem A.3 in the language of
a spectral sequence as follows. Introduce a filtration J f = 0 c€k of the complex

k^p
{%>, d) by the degree. The first term of the spectral sequence [49] associated with this
filtration is

Under the assumptions of Theorem A.3 we verify that this sequence collapses after
the first term which yields
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Appendix B. Schur Polynomials

The elementary Schur polynomials Sk(x) are defined through their generating
function

Σ Sk(x)zk=exp ( Σ * Λ (B.I)

For convenience we put Sk(x) = 0 for k<0. More explicitly we have

s*M- Σ fVfV (B.2)

To any partition (Young tableaux) λ = {λ1^.λ2^...} is associated a Schur
polynomial

Sλltλ2Jx) = det(Sλi+j-i(x))iJ. (B.3)

For later use we list some properties of Schur polynomials

Lemma B.I.

i)

-S-Sk(x)=Sk-Ax), (B.4)
dxj J

ϋ)

m_Σ+ i (m-j)xm-jSk-m(x)-(k-j)Sk-j(x)=O, (B.5)

iii)

Sk(x + y)= ΣoSj(x)Sk-j(y). (B.6)

Proof. All the statements are proved through the generating function technique.
As an illustration we will give the proof of ii). We have

d

= Σ Σ kxkSt(x)zf+l= Σ ( Σ (m-j)xm-jSk_m(x))zk-J. Π
fcM 1^0 k^j \m = j+ί
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