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Abstract. We prove that all the non-negative Lyapunov exponents of difference
Schrόdinger equation

-yn+l+Qnyn-yn-l=Q> -OO<tt<+OO

are strictly positive. Here yn e Rm and Qn is a symmetric mxm matrix whose off-
diagonal elements do not depend on n, and the diagonal elements are quasi-
periodic functions

with all fι non-constant analytic functions, λ sufficiently large, and α any irrational
number.

1. Introduction and Formulation of Results

In this paper we shall study the Lyapunov exponents of the difference equation:

- ^ - 1 = 0, - o o < n < + o o , (1)

where yn e Rm and Qn is a symmetric mxm matrix whose off-diagonal elements do
not depend on n, and the diagonal elements are quasi-periodic functions

with fj{z) non-constant analytic on s/ = {z \ r < \z\ < 1/r}, taking values in [ — 1,1]
for \z\ = 1, λ is a (large) parameter called coupling constant, E is the energy, and α is
any irrational number. Without loss of generality we shall assume that
max sup/f(z) = 1 and min inf/ f(z)=—1.

ί^i^m |z| = l l^i^m \z\ = 1
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Equation (1) becomes equivalent to the finite-difference Schrodinger equation
when the off-diagonal elements are chosen properly. For example, the case
qtj= — 1 for \i—j\ = 1 and go = 0 for \i—j\ > 1 corresponds to Schrodinger operator
on the strip Έ x {1, ...,m}. Equation (1) can be written in the form

and, thus, the asymptotic behavior of the solutions of Eq. (1) is determined by the
asymptotic behavior of the product S(ή): = Λn...Aί.

Various problems in solid-state physics give rise to different classes of matrices
Qn. These classes are characterized by the level of randomness. The case of
independent random Qn was studied in [GM1, GM2], where it was shown that
under certain algebraic conditions on the support of the corresponding measure in
the space of symmetric matrices all the Lyapunov exponents are different and,
therefore, the smallest non-negative exponent is, in fact, positive. When Qn's are
non-deterministic at least some of the Lyapunov exponents are strictly positive
[K, S, KS]. On the other hand, if Qπ's form a periodic sequence, it is easy to show
that the "interesting" Lyapunov exponents vanish.

The case of quasi-periodic potentials exhibits mixed behavior. If the coupling
constant λ is small and α is poorly approximated by rationals, it is known [BLT]
that at least on part of the spectrum the Lyapunov exponent is zero when m = 1.
When λ is large and m = 1 the Lyapunov exponent is positive [Si, CS, FSW, SS].

Until now, quasi-periodic potentials have been studied only for m = 1 [Si, CS,
FSW]. Here we study the case of m> 1 and large λ. We do not assume that α is
diophantine, only that it is irrational. We shall prove that all non-negative
Lyapunov exponents are positive, and, consequently, the Green's function of H
decays exponentially for almost every energy E. The method we use is an extension
of the one used in [SS] which grew out of the analysis of the work of Herman [H].

To describe our result let us consider the following decomposition of S(n):

S(n)=U(ή)D(n)V(ή),

where U,VeO{n\ and D(n) = diag(4π), ...,41) with dί^d2^...^d2m>0. Since
ΛneSp(m,R) for all n, we have dk = d2~Jι-k+ί. The kth Lyapunov exponent yk is
defined by

yk: = lim -\ogdk{n). (3)

Clearly, yk = — y2m-k+i, and yx ^ y2 ^ . . ^ ym ^ 0. Existence of the limit in (3) for
almost every θ and its independence of θ are guaranteed by the Subadditive
Ergodic Theorem [Ki] and ergodicity of the underlying dynamical system

We shall prove the following

Theorem. Forfj as above, there exists λ0 such that for all λ>λ0 and all E, there exists
a set Ω(E)C[0,1] of Lebesque measure 1, such that

ym(E) = ym(E,θ)>0, VθeΩ(E).

This, together with Oseledec's Multiplicative Ergodic Theorem [O, GM2]
implies existence of m solutions of Eq. (1), which decay exponentially as n-> + oo
and grow exponentially as w-> — oo, and m other solutions of Eq. (1), which decay
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exponentially as n-+ — oo and grow exponentially as n-> + oo. These 2m solutions
are linearly independent and form a basis of all solutions of Eq. (1). There are two
important consequences of this fact.

1. The spectrum of the operator H defined by the left-hand side of Eq. (1) is
singular.
2. The Green's function of H decays exponentially for almost every energy E.

Remarks. We should point out that the spectrum of H can actually be purely
singular continuous if α is a Liouville number [CFKS].

The requirement that λ is large cannot be avoided, for when λ is small (and
m = l) KAM theory is applicable and there is absolutely continuous spectrum
[BLT].

The reader will see that we very strongly use the non-triviality of /j's in our
proof. This condition is necessary, for there are examples in which the presence of
constant f/s leads to appearance of zero Lyapunov exponents.

2. Plan of the Proof
m m— 1

We shall obtain a lower bound on ym by estimating £ γt and £ γt. Without loss of
1 1

generality we can assume that Eeσ(H), for otherwise Green's function decays
exponentially and, consequently, ym > 0.

Proposition 1. For Eeσ(H\

Y
1

where c is the norm of the off-diagonal part of Qo.

Proposition 2. For Eeσ{H\

Σ
1

Proof of Theorem. Combining Propositions 1 and 2, we have
m m— 1

7m=Σ7i- Σ 7^1og>l +const>0
1 1

for λ sufficiently large. We note that the constant above depends on m, the
functions fh and c.

3. Proofs of the Propositions

Proof of Proposition 1. We first note that

\ γt= lim - \ logdffi)^ lim -(m-ί)logdϊ(n)= lim -(m
1 «-*oo n l n-^oo n n-κχ> W

(6)
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Now, || Q || ̂  max \λft — E\ + c, where c is the norm of the off-diagonal part of Q(ή).

Since Eeσ(H)C[-λ-c9

Consequently,

" l y^(m-l)(logA +const). Q (7)
1

m

Proof of Proposition 2. To estimate £ yt from below we note the following. Let π be
1

any m-dimensional plane in R2m and let {vu...9υm} be its basis. Then

2ΣVι* Km -lo g |G(S(φ 1 ? . . . ,S(φ m ) | , (8)
l n-^oo n

where G(xu ...,xm) is, by definition, Gram's determinant of the vectors xί9 ...,xm.
Direct investigation of the right-hand side of (8) is rather difficult because it is hard
to follow the evolution of the vectors S(ή)Vι since the diagonal elements of Q(ή) can
be small. We are going to avoid this problem with the help of the following
extension of Jensen's formula [SS].

Lemma 1. Let g be meromorphίc on the annulus J / : = {Z: r<\z\<\). Then

ίlog|g(β2«'β)|<ίβ=Jlog|g(re

2«'β)|dfl+Σlog|pί|
0 0

where pt and r,- are the poles and the roots of g in stf, and

g g ^ 7 J
\z\=r 2πi \z\=r g

In our case, g(z) = G(S(ri)vί, . . . ,S(φJ. We recall that S(ή) is a function of z,
because our potential depends on z.

Since G is analytic on si and |r7 | ̂  1 for all j , Jensen's formula leads to the
following inequality:

J log|G|d0^ J log|G|dβ+(log-)ArgG. (10)
|z| = l \z\=r \ rj\z\=r

In order to estimate each of the terms on the right-hand side of (10) we are going to
choose re(0,1) so that the diagonal elements qni(z) of Qn satisfy

\ f i ) \ 0 9 (11)
\z\=r

where δo>0 depends on the functions fi only. To see that such <50 exists we note
that since /f's are non-constant and analytic, for each ceR there exist r(c) and δ(c)
so that

\fi(z)-c\>δ(c)>0 for \z\ = r(c) and i = l,...,m

and the union of the ranges of values of f is compact.
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Lemma 2. An(z) for \z\ = r preserve the set 3F of m-dimensional planes spanned by
vectors of the form

x

where xeRm and the operator φ:Rm^Rm satisfies \\φ\\^2/(λδ0).

Proof For any n,

({Qn-Φ)

Therefore, if φn+i={Qn-φnV
ί it follows from (11) that

I I ^ - M I I ^ T E ^ χ τ < T Γ

λδo-c-\\φn\\ λδ0

for λ>λ0 for some large λ0. Π

Let π 0 be the plane spanned by the vectors of the form

o)eR '
where {eu..., em} form the standard basis of Rm and let πn = An... Aγπ0 for n ^ 1.

For any matrix A and plane π, the dilation coefficient

G{Avί,...,Avm)
G(A, π): = —— r—

G(vl9...9vJ

is independent of the choice of the spanning vectors vί9...9vm. Consequently,

GiS(ri)ei,...,S(n)em)= f [ G ( ^ , ^ _ J . (13)

Remark. For v{ e <Cm we define

where
m

(Vi,Vj)= Σ^ϊή (14)Σ
with v\ being the components of the vectors v{. We note that (14) is not actually a
scalar product, but defining ( , ) in this way makes the function G(A, π) analytic in
z. We shall make essential use of this fact.

Lemma3. // \\φo\\^2/(λδo), then

Proof. By Lemma 2, || φt\\ ̂  2/(λδ0) for all i>0. Let el9..., em be the standard basis.
Then the 2m-dimensional vectors



512 I. Ya. Goldsheid and E. Sorets

span^_ l 5 and the dilation coefficient

G(vu...,vm)
Now,

It follows that

Since G(vl9..., vm) = 1 + 0(/Γ*), Lemma 3 is proved. •

Lemma 4.

- J log\G(S(ή)e1,...,S(ή)eJ^2m\ogλδ0
n \z\=r

Proof. Lemma 3, Ineq. (11), and Eq. (13) imply

'(rήβi,...,S(n)em)(z)\^n(2mlogAί0 + 0[ τ ] ). Π

Lemma 5.

AτgG(S(ή)eι,...,S(n)em) < const n.
\z\=r

Proof. By Lemma 3, Eq. (13), and Rouche's theorem
n m

ArgG= Σ Σ Arg(λfk-E)2 = O(mn). •
\z\=r i=l k=l \z\=r
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