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Abstract. We prove that the moduli space of flat SI/(2) connections on a Riemann
surface has a real polarization, that is, a foliation by Lagrangian subvarieties. This
polarization may provide an alternative quantization of the Chern-Simons gauge
theory in higher genus, in line with the results of [11] for genus one.

I. Introduction

Let Σ9 be a 2-manifold of genus g. The space Pg of conjugacy classes of repre-
sentations p .π^Σ^-tG, where G is a compact lie group, is an algebraic variety
containing an open set Sfg which is a symplectic manifold. The symplectic form
α̂  is the Chern class of a line bundle $£ -* Sfg which extends to a line bundle
& -*&g. The line bundle ^-^^g is endowed with a canonical connection and
hermitian metric. Furthermore, a choice of a metric on Σβ endows £fg with a
complex structure making the symplectic form ω Kahler and _the line bundle !£
holomorphic. Thus, ignoring for a moment the singularities of Sfg, we have arrived
at the natural setting for quantization; namely, we have been given a symplectic
manifold ^ , a line bundle !£ -> Sfg with connection of curvature ω, and a polariza-
tion of the sheaf of local sections of if -><̂ V

Recent developments have emphasized the importance of this system in relation
to the theory of representations of loop groups, conformal field theory, and
3-dimensional topological quantum field theory. For example, the quantization of
the above system in g = 1 can be naturally associated to the Weyl-Kac characters
of the integrable representations of the Kac-Moody lie algebra G associated to
G; while this quantization for general g yields a projectively flat bundle over moduli
space associated to the conformal field theory of G current algebra.

The main motivation for our study of this system is however related to
Chern-Simons gauge theory and the topological field theory related to it [12].
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This topological field theory is supposed to assign to every 2-manifold Σβ a vector
space Jf(Σβ), and to every 3-manifold M a vector v(M)e J f (dM) in the vector space
corresponding to its boundary. The construction of the vector space is given by
quantizing the system corresponding to S£-±£fg as described above. This
construction can be shown to be well-defined and nearly independent of the
polarization. But it sheds no light on the construction of the vectors corresponding
to three-manifolds.

One hint is however provided by the following. Consider the subspace LM c 9f

g

of representations of πγ(Σ9)^>G which extend to representations of πι(M)->G
under the natural inclusion. Then LM = LMn£fg is an isotropic subspace of £fg,
i e > ω\hM — 0 Furthermore, if M is a handlebody with boundary Σ9, then LM is
in fact Lagrangian (or, maximal isotropic). If we could produce an element of
jff(Σ) given a Lagrangian subspace, the above axiom would be verified in the case
where the 3-manifold M is produced by such a Heegaard splitting; this would be
an important step in constructing a topological field theory.

Lagrangian submanifolds however are not easily associated with the holo-
morphic sections of a line bundle, which arise when a system of this type is
quantized in a Kahler polarization. They do occur naturally in the context of real
polarizations, which are foliations of the given symplectic manifold by Lagrangian
subspaces. The question we shall attempt to answer in this paper is the following:
is there a foliation of 9*g by Lagrangian submanifolds so that LM occurs as a leaf?
If we could answer this in the affirmative, the next step would be to quantize the
system in this polarization. We may then expect to assign an element of the
quantum Hubert space to the leaf LM. We will address this issue in [7].

In this paper we construct such a foliation, where the three manifold with
boundary M is the handlebody bounding Σ9. Since any three manifold can be
formed by gluing two handlebodies along their boundaries, the construction in
this case_might be expected to suffice. Our main result is as follows. Let G = SU(2),
and let Sfg, 9g, 5£, ω be as above.

Theorem. There exists a map 3P :&?

g^>Έ^9~2> whosefibres {^~1{x)}xelm3?aregene-
rically Lagrangian', that is, ω |^_ ι(x)n&g = 0, andjor xelm 3F generic, dim J^~ γ(x) =
1/2 dim (Sfg). The subspace LM is a leaf of the corresponding foliation.

Note that we do not claim that the leaves &~ 1(x) are manifolds. This is in fact
false, even in the case 0 = 1, where Sfg s S2 is a smooth manifold. The failure of
the leaves to be smooth manifolds is of importance in quantization, as described
in a companion paper [11]. However, we note that in genus g > 2 the generic leaf
of the foliation above does not intersect the singularities of the variety £fg.
Therefore, away from the singularities, we obtain a foliation of a smooth (though
noncompact) manifold by Lagrangian subvarieties, and we see that Sfg is generically
fibred by Lagrangian tori. An explicit description of this fibration will appear in [6].

Finally, a comment about some previous work is in order. In [5], Hitchin
showed that the cotangent bundle of the moduli space Sfg could be foliated by
submanifolds which were Lagrangian with respect to the natural symplectic
structure on T*Sfr In fact this was done in two different ways. The leaves of one
of Hitchin's foliations intersects $fg at points; the other contains S?g as a leaf.
Neither of them therefore produces a foliation of Sfq itself.
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A closer relation to our theorem is found in the work of Goldman [3]. The
leaves of our foliation are given as intersections of inverse images of some real
valued functions on £fr The proof that these leaves are isotropic boils down to
demonstrating that the Poisson brackets of these functions are zero. We do this
in Lemma 3.6 below. Goldman's work contains a formula for Poisson brackets
of such functions which can be used to give an alternative proof of this result.

II. Definition of the Foliation ,Ψ

In this section we shall construct a base 5 g c R 3 r 3 and a map^:«^->2^ whose
inverse image sets {^r~1(x):xeβg} will be the leaves of our foliation. We recall
first the definition of the space if g in terms of the fundamental group of the surface;
we will define the map & using this description.

Now the space ϊfg is defined as the space of conjugacy classes of representations
p:πι(Σβ)-*SU(2). More explicitly, we denote by Rg the space of all representations
of πι(Σ) in SU(2); the group SUJ2) acts on Rg by conjugation, and ifg is then the
quotient Rg/SU(2). The space ifg contains a large open cell ifg corresponding to
irreducible representations of π^Σ9) in SU(2), which is a smooth manifold. The
space ifg is in fact a symplectic manifold. We recall here the construction of the
symplectic form ω on ifg\ the proofs may be found, e.g., in Atiyah-Bott [2].

The symplectic form ω is most conveniently described in terms of an alternative
definition of ifg, given by gauge fields. Let T9 = Σ9 x 51/(2) be the trivial SU(2)
bundle over Σβ, and let si be the space of (smooth) connections on T9. We may
identify si with the affine space Ω1(Σ9)®^n(2) of su(2)-valued one forms on Σ9.
On si there acts the group <3 = Maps (2^,5(7(2)) of (smooth) gauge transforma-
tions, which preserves the submanifold siF a si of flat connections.

Any flat connection on T9 defines a monodromy representation of the funda-
mental group of the surface Σ. For any simple closed oriented curve C in Σ9

9 and
any two points x and y on C, we write holx_>y%4) for the holonomy of the
connection A, along C, from x to y. Choose a set of curves ξi9i=l9...92g based
at * whose equivalence classes generate nx(Σ9),

Proposition 2.1. Let r:jiF -+Rg be given by

r{A) = f J
Then f.sip^Rg descends to a homeomorphism r:s/F/&-*&f

g.

On the other hand, we have a ^-invariant two-form on si¥ defined as follows.
The tangent space Ts/\Λ may be identified with the space Ω1(Σ9)®^n(2) of
su (2)-valued one-forms on Σ9\ we may therefore define a two form ώ on si by

ώ Λ ^ Ή t t J φΛψ' (2.1)

ϊorψ9ψ'eΩ1(Σ9)®m(2).
Now s/F is defined as a subspace of si. The subspace Ts/^\Acz Tsi\A for

Aes/F can be identified with the space of su(2)-valued one forms φ satisfying the
condition

0 = dAψ = dψ + lA,ψ} (2.2)
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In any event, we may define a two-form, also denoted ώ, on s/F9 by pulling back
the two-form from &f. We then have the following result.

Proposition 2.2. The two form ώ on srf¥ descends to a two form ω on ^g which
turns 9>

g into a symplectic manifold.

We now turn to describing the map # \ To do this we will choose some dis-
tinguished curves in Σ9 and study the holonomy about these curves of connections
represented by points in Sfg. This will provide us with some functions on Sfg.

The curves in question are obtained as follows. Let D denote the three-hold
sphere; this is a space homeomorphic to the subset

of the complex plane. The Riemann surface Σ9 may be written as the union of
2g — 2 copies of D; with their boundaries identified pairwise. We thus obtain 3g — 3
simple closed curves in Σ9 by considering the boundary circles of the three-holed
spheres. Let us denote these disjoint curves by Ch and orient them arbitrarily.

In order to view these curves as elements of the fundamental group, we must
choose some base points. So choose a base point xeΣβ, and choose also points
XiβCi for all i = 1,..., 3g — 3. Choose an arc αf connecting x to xf for each i. Using
these basepoints and arcs, the curves Cί = α."1*C/*α I. give rise to equivalence
classes [C^eπ^Σ9).

Suppose we are given a representation peRg; then p is a map piπ^Σ9)-^SU(2).
We now define a map β^.Rg^JR39'3 by setting

= {trp([C 1]),...,trp([C 3 ί 7_3])}. (2.3)

We let Bg denote the image of # \ Since the trace of an SU(2) matrix is invariant
under conjugation, we have the following lemma which defines the map
constructing our foliation.

Lemma 2.3. The map &\Rg^>Bg descends to a map ^\^g^Bg.

In terms of connections, we may describe the map !F as the map which assigns
to any flat connection the traces of the holonomies of that connections about the
curves C{.

We now state more carefully the main result of our paper. The fibres of the
map !F will all be isotropic, meaning that the restriction of ω to &~\x)Γi£fg

will vanish for all xeBg. However the fibres will have maximal dimension only
generically. For our purpose we restrict our attention to the fibres !F~ι(x) lying
above points

Theorem 2.4. LettF'.&g -» Bg be the map defined in Lemma 2.3 above. Let xelnt Bg.
(i) The dimension of the space ^~ί(x)n^g is \ά\m^g = 3# - 3.

(ii) The spaces ^Γ~1(x)n^g are isotropic; i.e.,

(iii) Consider the point p = (2,..., 2)eBg. Then the leaf & ~ ί(p) c Sfq is the image
under r of those flat connections on Σg which extend to flat connections on the
handlebody H bounding Σ; that is, in the notation of the introduction
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Proof. To verify part (iii) note that any flat connection on Σ extending to a flat
connection on H must have trivial holonomy on all the curves Ct; likewise any
connection with this property will extend to H as a flat connection. Unwinding
the definition of & shows that the points of &~x(p) are exactly those with trivial
holonomy along all the curves Cf. Note that although pφlntBg, the fibre &r~1(p)
is in fact Lagrangian.

As for parts (i) and (ii), we distinguish two cases.

Case I. g = 1. In this case the spaces 3F~ 1(x) are one dimensional, hence of necessity
isotropic. Since dim Sfγ = 2, they are Lagrangian.

Case II. g^2. The dimension of the fibre #" - 1 (x) is 3g — 3 since the dimension
of £Pg is 6g — 6 while I n t l ^ is a (nonempty) open subset of R 3 f f ~ 3 . It remains to
prove isotropy; this is the result of Proposition 3.7.

III. Isotropy of the Leaves !F ι(x)

In this section we complete the proof of Theorem 2.4 by proving the isotropy of
the fibres &r~ί(x) of the map !F for genus g ^ 2. Our method will be as follows.
We consider the components of the m a p # " : ^ ^ R 3 f l l " 3 , as functions / I: e^-»]R.
We now consider the Hamiltonian vector fields Vfi of these functions, defined by

for weTSrβ\x.
Isotropy of the leaves of the foliation would follow if we could show that

ωx(Vfi, Vfj) = 0 for all xe^g. To do this we show in Sect. 3.1 that we may lift the
computation of the Poisson bracketsj^,/,} = ω(Vfi, Vfj) to the computation of
the Poisson brackets of functions {/»,/,} on s/F; we also obtain explicit expressions
for the Hamiltonian vector fields of these functions. We use these expressions in
Sect. 3.2 to show that the leaves are indeed isotropic.

3:1. The Hamiltonian Vector Fields Vfi. In this section we develop explicit expres-
sions for the Hamiltonian vector fields Vfi. These are most easily obtained by
constructing functions/ί ^ - ^ I R which descend to the functions f>x under the identi-
fication yg = stffjy. We may define such functions as follows.

Recall we have been given a collection Cf of closed curves on Σ9. Define
U^'.^W. by

X ί M ) . (3.1)

We further simplify the computation oίω{Vfi, Vf.) by converting it to a computa-
tion on the affine space stf. We do this by choosing an extension of the functions
fi to smooth real valued functions on all of s/. Now of course one way to do this
is to extend the definition (3.1) of the functions ft directly to «s/. This however will
yield Hamiltonian vector fields which will be distributional su(2)-valued one forms.
The reason for this is that the functions /• are given, in terms of the gauge field
A, by traces of the holonomy of A about a collection of simple closed curves in
Σ9. They therefore depend on the values of A in a one-dimensional submanifold
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of Σ9. This will cause the associated Hamiltonian vector fields to be distributional
su(2)-valued one-forms.

In order to get around this problem, we define in this section different extensions
fi of the functions fh obtained by "smearing" the loops about which we take the
holonomy. If A is a flat connection, the trace of the holonomy of A about a curve
is invariant, not only under homotopy with fixed base point (which preserves the
holonomy itself), but also under free homotopy. We may thus smear the functions
fi by integrating over a collar about the appropriate curve, thus obtaining functions
fi which coincide with /• on the space of flat connections but which will give rise
to Hamiltonian vector fields represented by_ smooth su(2)-valued one forms.

In addition, we may vary the functions /f by free homotopy of the collar, thus
allowing us, in the next section, to choose disjoint collars, which will simplify the
proof of isotropy. In this section we begin by computing the Hamiltonian vector
fields Vf. on s/F, and exhibiting them explicitly as smooth, su(2)-valued one forms.

We begin by recalling the following property of the holonomy of a flat connection
on a principal bundle.

Lemma 3.1. Let C, C be simple closed oriented curves based at *, *', respectively.
Suppose C and C are freely homotopic. Then if A is a flat connection on Σ9,

Now in terms of the curves Ch the functions f are given by the holonomies

i = 1,..., 3# - 3.

Now recall that the curves Cf were freely homotopic to the based curves Cf.
Then, by Lemma 3.1,

fi(A) = trhol^JA) (3.2)

where ^eCi is arbitrary.^
We now 'smear' the ft. Let Tf => C, be a tubular neighborhood of C ί ( chosen

with a diffeomorphism φc.T^iO, 1] x S1 such that ^({0} x S1) = Q. Let
Ci(y) = Φ[ 1({y} x S1)- Then C, and C;()>) are freely homotopic for each y. Let

1

^ ^ (3.3)

Now let χeC°°([0,1]) satisfy

(i) X^O,
(ii)

(Hi) )χ{x)dx = \. (3.4)
0

Then, by (3.3), for Aes/F

fi(A) = ϊχ(y)dytr holc

x^Xi{y)(A). (3.5)

We will use (3.5) to produce an explicit formula for the Hamiltonian vector
fields Vft.
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Now recall that if (M, ω) is a symplectic manifold, and/: M ->R, the Hamiltonian
vector field Vf associated to / is defined by

for any tangent vector weTMx. Motivated by this we have the following.

Definition 3.2. Letf: <s/ -»R fee a function withfi\stfF = /•. The Hamiltonian vector
field Vf. associated to / is the distributional su(2)-valued one form defined by

^(F/-,w) = (d//Uw)
for weTs/\A.

In other words, we take Vf. to be the distributional su(2)-valued one form dual
to the su(2)-valued current Ξ defined by

for any su(2)-valued one form α.
Suppose that Aes/F and weTstf\A; then ώA(Vf.,w) is independent of the choice

of extension/. We show now that Vf. may be taken to be smooth, and in Lemma 3.5
that dA Vf. = 0. Thus Vf. descends to a tangent vector field Vfi on S?q independent
of the extension/.

Let xsCiiy). We define ίfyx)eSl/(2) c 8I(2) by

Ui

y(x) = ho\c

x^(A) (3.6)

and let C/j,(x)esu(2) cz gl(2) be given by

Let iy:Ci(y) -• Σ9 denote the inclusion. We extend/ to si by the function/ given by

ft(A) = f χ(y)dytτ holc

x^Xiiy)(A). (3.7)
o

Lemma 3.3. Let weTsΐ\A, Aes/F. Then
1

0 Ci(y)

Proof. We have

ε-*O

= lim ε " * j χ{y)dy[ti holc

xf^Xi{y)(A + εw) - tr hoi™

ε ^ υ o coo
1

• IxMdyjdxttUfaWlwKx).
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Corollary 3.4. The distributional vector field Vj. may be represented by a smooth
one form (also denoted V/,) so that supp(F^) c Tt.

Proof. Let px\[0,1] x S1 -•[(), 1], p2:[0,1] x S ^ S 1 denote the projections. We
define

VfM) = χ(pΛs)yΦ*(PΪ(dt))®ui

Pίis)(s\ SET,

= 0 sφTh

where at denotes the standard one form on [0,1]. It is clear that Vj. is smooth
and that

3.2. Isotropy of the Leaves. We now complete the proof of Theorem 2.4. We begin
by showing that, as expected for Hamiltonian vector fields of gauge invariant
functions, the vector fields Vj. descend to Sfr

Lemma 3.5. The vector fields Vj. are tangent to stf¥\ that is, dAVj. = 0.

Proof. We must show that

for any φeC°{Σ9)® su(2).
But by Lemma 3.3,

tifdAVftφ =
Σ

Σ

= -ttjχ(y)dy § dxU'y{x)i*(dAφ)
0 Ct(y)

§ dx{i*d U'y)

We claim i*d..M)L/; = O.

To see this, let xeCj(y), and write

Then ί*A = {P^'H^dP^ while

Ui

y(x) = (Pi

y(x)Γ1Ui

y(0)Pi

y(x).

Hence

so that i*dUy H- [i*A, Uy~\ = 0 as needed.

Lemma 3.6. The symplectic form ώ vanishes on the span of the vector fields Vj.\
we have ώA(Vf., Vf.) = 0.

Proof. For i =j, this is immediate. Suppose i Φj. Since dAVj. = 0, ώA(Vji9 Vj) =

ώA(Vj.9 V-X for any two extensions fpf) of/). Now since the curves Cf were chosen



Real Polarization of Moduli Space of Flat Connections 433

as boundary curves of three-holed spheres joined together to form Σ9, we may

choose the curves Cf and C} to be disjoint; likewise the neighbourhoods Tf and

Tj may be chosen disjoint. For the corresponding fhfj9 we then have supp Vj. a Ti9

supp Vfj a Tj9 so that ώΛ(Vfi9 Vfj) = tr f Vft A VJ. = 0.
Σ

Combining Lemmas 3.5 and 3.6, we have the following result.

Proposition 3.7. The leaves &r~ί(x) satisfy
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