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Abstract. On the basis of the previously proposed action principle describing the
theory space of 2D gravity in less than one-dimension, we develop a systematic
canonical formalism for studying the properties of the string equation in the phase
space of the cosmological constant and its canonical conjugate, the puncture
operator. The string equation is written in a manifestly invariant form under the
group of regular canonical transformations in the phase space of generalized
coordinate and momentum. As a consequence, the geometrical origin of the
generalized Virasoro condition on the partition function (or more precisely, the
t-function) is understood to be the symmetry under the regular area-preserving
diffefomorphisms (w, , ., symmetry) in the deformed phase space. The deformed
canonical formalism can be regarded as a quantization of a classical canonical
formalism describing the sphere limit of the theory.

1. Introduction

The recent development [1, 2] of a non-perturbative theory of random surfaces on
the basis of the matrix models has provided us a new possibility in studying
systems with strongly fluctuating geometries and topologies, without relying upon
the intrinsically perturbative world-sheet picture. At present, however, it is not
clear whether the matrix models are merely toy models with accidental solvability,
or may turn out to exhibit properties of more universal nature which survive in (or
are generalized to) realistic quantum gravity and string theories.

It seems therefore important to identify the possible universal framework in
which the results of the double scaling limit can be naturally embedded and
interpreted. In previous works [3, 4], we have proposed a new action principle
which describes the structure of the theory space of 2D gravity, at least, in less-
than-one dimension, and studied its symmetry properties. In particular, the
Virasoro condition [ 5] on the t-function has been understood as a consequence of
a conformal symmetry of the action principle.
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In a previous paper [4], although the explicit derivation has been demonstrated
only in the 1-matrix model, it was conjectured that the basic symmetry of the
theory is in general a w, symmetry, namely, the group of area-preserving
diffeomorphisms in the (deformed) phase space of the cosmological constant! and
its conjugate, the puncture operator.

Subsequently, there appeared a paper by Fukuma, Kawai, and Nakayama [6]
in which they independently arrived at the w, , ., structure using the formalism of
the universal Grassmann manifold to the KP hierarchy in their endeavor for
proving a conjecture about the derivation of the higher Virasoro conditions on the
t-functions.

The purpose of the present paper is to generalize the results of the previous
works [3,4] by materializing the above conjecture, and to develop a new
systematic method for studying the properties of the string equation and the
associated 7-function. Our approach is directly developed in the phase space,
relying upon the symmetries of the action principle, and does not use the language
of the universal Grassmann manifold. Thus our work is complementary to [6],
and may hopefully be useful for clarifying the geometrical origin of the w, .
structure and trying further generalizations.

In Sect. 2, we fix our notations and reformulate the action principle and its
symmetries as a basis toward non-perturbative canonical formalism, emphasizing
the notion of the phase space of the cosmological constant and its conjugate. In
Sect. 3, we present a general systematic way of solving the variational equation of
the action principle by the method of canonical transformations. Then, the w, ,
symmetry of the string equation is exhibited as a consequence of a gauge symmetry
of the action principle which expresses the invariance of the theory under regular
canonical transformations. In Sect. 4, we derive the generalized Virasoro con-
dition on the z-function using the formalism of Sect. 3. Section 5 is devoted to brief
discussions on two topics which are relevant to our deformed canonical formalism.
The first is the “classical” limit and the second is the “dual” transformation
interchanging the generalized coordinate and momentum, which includes as a
special case the interchange of p and ¢ in the so-called (p, ¢) minimal model coupled
with gravity. In the final section, we conclude this paper with some remarks.

2. Action Principle
2.1. The Phase Space Representation of the Algebra of psd Operators

The base space of our canonical formalism is the two-dimensional space of the
cosmological constant x and its conjugate k. To reproduce the string equation in
this phase space, we have to assume that the algebra of functions in the phase space
is “deformed.”

To any function f(x,k) defined on the phase space which has a Laurent
expansion in k, we associate a pseudo-differential (psd) operator (or, often called
micro-local differential operator) f such that

[ k=3 fix)k' & f=3 fi(x)D', (2.)

! In nonunitary models, the terminology “cosmological constant” may not be appropriate.
Instead, we should say the phase space of the most relevant coupling constant and its conjugate
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where D =d/dx. The algebra of psd operators is essentially defined by D'D/=D'*J

and D™ !f= Y (—1))f®D~'~1. We often use a decomposition of a function f(x, k)
given by 7!

e k=1 (x, )+ f-(x,k), 22
fbek)= % Sk, 2.3
f-tel= ¥ flk', 24

and also the operation of taking the adjoint defined by
f=1*=Y(=D)f{x). 2.5)

The (noncommutative but associative) algebra of the products of functions, f
and g, denoted as (f° g)(x, k) in the phase space, is defined to be isomorphic to the
operator algebra of the corresponding psd operators:

(f °2)(x, k) = f(x, k) exp(5,F,)g(x, k)
! !
fo = LD

Thus our deformed algebra of functions on the phase space is nothing but a version
of the Wigner representation of the algebra of psd operators. The Poisson bracket
isdefined by { f, g} =f o g—go f o [f, g1 =fg—gf. For example, the cosmological
constant x and the conjugate k satisfy {k, x} =1 which is equivalent to [D,x] =1
and means that k is regarded as the eigenvalue of the puncture operator.

The invariant volume integral in the phase is defined to be

Sp f= [ dx [dkf(x, k), (2.6)

where [dk= §% with the contour being taken around k= oo, and the x-integral is

assumed to contain a sufficiently large region of the real axis but be closed in the
complex x-plane, such that the total derivative with respect to x can always be
regarded as zero. It is easy to check that Sp(f-g)=Sp(g°f). Thus the Sp
operation is invariant under arbitrary canonical transformations defined by the
above Poisson bracket.

In the following, we mainly use the simpler notations of psd operators and their
algebra than geometrically more appealing phase space notations. Since it is
completely straightforward to convert between these languages, there should not
arise any confusion. The reason why we put emphasis on the phase space
formulation here is that assimilation of new canonical formalism developed below
may be facilitated by knowing such a geometrical picture behind the abstract psd
operator notations. (See also the mathematical literature, €.g., [7] and references
therein.)

In Sect. 5, we will discuss the “classical” limit of the formalism, corresponding
to the non-deformed Poisson structure, which gives the sphere limit of the theory
and may help our understanding of the geometrical structure.
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2.2. Universal Action Principle

In this subsection, the “universal” action principle first proposed in [ 3] and further
studied in [4] is presented in a generalized form. The universal action governs the
structure of the theory space, in contrast with the (p, g) action [8, 3] describing the
solution points. The basic ingredients of the dynamics are the bare generalized
coordinate Q(x, k) and the “hamiltonian” H = H(x, k)= Y h{x)k’. The action is the
invariant volume integral of the haniiltonian in the phase space,

o/ =SpH, 2.7
with the constraint,
(e HQef)_=0. (2.8)

We call Q=e~H#Qe" the dressed generalized coordinate.

At present, the physical interpretation of the condition (2.8) is not clear in our
phase space language. But as a fact, it requires that the dressed generalized
coordinate Q must be regular at k=0. Presumably this should be interpreted as a
sort of smoothness requirement at short distances. Note that k is essentially the
measure of the volume of the surfaces.

The action (2.7) can be motivated from the matrix model [9] before taking the
double scaling limit. The canonical transformation e” corresponds to the change
of an arbitrary fixed basis of polynomial wave functions for the N-fermion systems,
describing the matrix model of finite N, to the basis formed by the orthonormal
polynomials with respect to the potential. The partition function of the matrix
model is then given by the squared determinant of the transformation matrix.
Thus the action (2.7) corresponds to the effective action of the matrix model apart
from a factor 2.

Now to take into account the constraint, we introduce a lagrange multiplier,
P(x,k)=P_(x, k) and formulate the action principle as

o =Sp(Pe™HQ,eH — H). (2.9)

The dynamical variables which are subject to variation are the Laurent coefficients
of the functions H and P, while the choice of the generalized coordinate Q, specifies
the subspace of the theory space of 2D gravity. For example, the choice Q,=k?
corresponds to the one-matrix model, and the higher power of k to two-(and
more)matrix models.

The variational equations of the action (2.9) are

[P,Q]=1, (2.10)
Q=e"HQ,e", 2.11)
Q-=0. (2.12)

Thus the lagrange multiplier P is nothing but the dressed generalized momentum
which is canonically conjugate to Q. The equivalence of these equations with the
string equations for the appropriate choices of the bare generalized coordinate will
be proven in the next section.

In the rest of the present section, we discuss the symmetry properties of the
action principle. There exist two kinds of symmetries which are both of infinite
dimension. In the following we denote e # by K for notational simplicity.
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(i) Global KP-flow symmetry:
SpK=—(Ke(D)K™)_K, 2.13)
oxpP=[(Ke(D)K 1), P], (2.14)

where &(D) [=8(D)+] is an arbitrary differential operator with constant coeffi-
cients, g(D)= Z g;D".
(ii) Canomcal gauge symmetry:
0.K=—-GK, (2.15)
6.P=[P,G]. (2.16)
where G (=G ) is an arbitrary differential operator, G= _;0 g{x)D".

Let us discuss the consequences of these symmetries. Firstly, by using the
canonical gauge symmetry (ii), we can eliminate the positive power part of the

hamiltonian and hence reduce the form of H to H=H_= Y hy(x)D". This is
i<0
because any psd operator of positive order can be decomposed into the form

<1+ y aiDi> exp Y b;,D~". This is proven by first considering a psd operator
i=1 iz1

F= Y f.D'finite order N. We can recursively determine the coefficients a; and b,
isN

in terms of f. Then let N—oco. Thus we can write exp—H=(1+A4,) exp—H

with A, Z a,D', A=H_. Making a finite canonical transformation

P->(1+4 )P(1 +A,)"" and using SpH =SpH we obtain
o =Sp(PKQ,K ™! +1logK), 2.17)

where K =exp —H.

Furthermore, when Q, is assumed to be of finite positive order (=g) with
constant highest order coefficient, Q, can be reduced to a monomial differential
operator DY since there is a psd J of the form Z j{x)D" such that

Qo =exp(—J)D%expJ, apart from an overall normahzatlon The psd operator J
can be absorbed into a redefinition of H which only changes the action by a
nondynamical constant. Unless otherwise stated, we will assume below that the
above redefinition is performed so that H=H _ and dQ,/dx=0.

A more important implication of the canonical gauge symmetry is that the
variational equations are invariant under arbitrary regular canonical trans-
formations. Here by regular, we mean that they are generated by differential
operators G=G,

0[P,Q]=0, (3.P)-=(P,G])-=0, (6.9)-=([Q,G])-=0. (218)

In particular, we can choose the set {w=— Q""" 'P"1;i>1,n+i—120} asa
basis for G,

G= Y e, 2.19)
i +i 20



628 T. Yoneya

The w{”’s constitute a quantized version of the closed algebra [10] of the regular
area-preserving difffomorphisms in the phase space of the generalized coordinate
and momentum (without central extension),

Wi Wi 1=((j— Dm— (= Dmwi 3™ 2+ ..., (2.20)

where (...) indicates the lower order terms corresponding to the quantum effect.

We call this algebra w, ., algebra since it includes the case i=1 [11]. The

conformal transformation Q—Q +¢,0"*?, from which the Virasoro condition on

the t-function is derived, as discussed in the previous paper [4], is a special case of
0

(219) with i=2, G=— Y ¢,Q"*'P.

=

Now let us turn to the global KP-flow symmetry. Since the variational
equations are invariant under the flow by the evolution equations of the KP
hierarchy, the solution space can be parametrized by an infinite number of the KP
time parameters x, (r=2), such that

0

o [L.Q], (2:21)

oP

o =L P, 2.22)
L=(KD'K™Y,. (2.23)

Here in reducing the equation for Q to the form (2.21), we have assumed that the
generalized coordinate Q is a psd operator with constant coefficients. In later
discussions, we will mainly assume this for simplicity.

The most important consequence of the KP-flow symmetry is that there exists a
function, called the t-function [12], associated with the eigenfunction of the
dressed generalized coordinate Q. Namely, the action of the “wave operator”
K =epx —H on a “plane” wave function can be represented in the following form,

V(k)t(x)

Kexp ,io xhe= =0, (2.24)
K* lexp— g‘o x,k"= %, (2.25)
V(k)=exp ( §: x,k') k%exp < - E kr" 6,)
r=0 r=1
= texp(k):, .27)
Vi(k)=:exp — p(k):. (2.28)

Here we have introduced an auxiliary zero-mode variable x, with the assumption
that 0,t=0, and defined a field operator ¢(k) in the k-space,

P(k)=x,+a,logk— ¥ k—o:,, (2.29)
r¥0 T
0,=0, (r=0), (2.30)

a_,=rx, (r>0). (2.31)
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The KP-flow equations d,K=—(KD'K~!)_K (r=2) are then equivalent to
Hirota’s bilinear equation (see [12]) for the 7-function,

[dk(V(R)r(x) (V' (kye(x) =0, (2.32)

where {x,} and {x,} are two arbitrary sets of the KP time parameters.

The importance of the t-function lies in the fact that it is interpreted as the
partition function of 2D gravity. In terms of the matrix model, the z-function is
known to be the square root of the partition function. This is consistent with the
meaning of the operator K in the matrix model as explained in the beginning of
this subsection. For a related discussion of the t-function from a different
viewpoint, see [13]. As in the previous paper [4], the bilinear equation will play
crucial roles in our discussions on the symmetry properties of the t-function in
later sections.

3. Bilinear String Equation
3.1. Solving the Variational Equation by Canonical Transformation

In this section, we discuss the general solution to the variational equations
(2.10)~(2.12) of the action principle in the case where Q,, is a general psd operator
with constant coefficients,

o=a(D). (3.1)
We assume that «(D) is invertible as D =D(Q,).

Let us start from considering the general solution for the “bare” momentum
P,=K ™ 'PK satisfying,

[Po, Qo] =1. (3-2)
It is given by
1/ 1 1
o=~ 3y >y 90 >

d . . .
where o'(D)= Ea(D) and B(D) is an arbitrary psd operator with constant

coefficients and, for later convenience, we have chosen the symmetric ordering for
the first term. This shows that the most general solution for the dressed momentum
must take the form,

P=KP,K™!, (34

with the condition,
P_=(KP,K™1)_=0. (3.5
From the discussion of the previous section, we can parametrize the constant

operator B(D) in terms of an infinite number of the time variables (namely, the
coupling constants) of the KP flow symmetry, which are denoted by x, (r=2,
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x, =x). This is done by requiring that

opP -
o —[KD'K™Y),,P.], (3.6)
oP_
o, =0, 3.7
for 0,K= —(KD'K~!)_K. After some calculations, (3.6) leads to
( aﬁ(D)* ) =[P,,KD'’K™'],. (3.8)
6x "

Using the inversion of the function o(D) and the commutation relation [P, Q] =1,
this is reduced to

( a’;‘f)* )+=—r(KD'"‘D'(Qo)K_‘)+- (39)

Thus, choosing the origins for the variables x,’s appropriately, we can set
B(D) .=~ ¥ rx(D""'D'(Qo))+, (3.10)
r=q

where g is the order of Q,. Note that the order of D"~'D'(Q,) is r—q which
determines the range of the summation over r. Similarly, (3.7) leads to

a13(D) -1 1
( ~ )_ <KD WK )_. (3.11)

Since o'(D)D’'(Q,) =1, (3.9) and (3.11) are mutually consistent and show that we can
generally set

BD)=— ¥ D' 'w(D)"", (3.12)
r=2

apart from the ambiguity of adding the negative power part of a constant psd
operator of the form Z ¢, D°d'(D)~! Z cs 1+4D%/q for the case o(D)= D“)

This ambiguity can be ehmlnated by a redeﬁmtlon of the operator K, utilizing the
degree of freedom of right multiplication of an arbitrary operator with constant
coefficients to K, which does not affect the action principle. Indeed, an infini-

tesimal redefinition K—-K ( 1+é,logD+ Y e_,D™") induces the change
r=1

O0Py=¢,D 7 a'(D)" '+ Y re_ D" '¢/(D)" 1. Although the contribution of the
r=1

logarithmic term of the constant operator in the right multiplication does induce a
non-integrable change of the action, it only affects the ambiguity of adding a
constant to the action and a change of the normalization of the wave function.

We found that the general solution to the bare generalized momentum
parametrized by the KP flow is given by

1 )
Po==5 ¥ rixx(D)” 1Dty (D)D" x,), (3.13)
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up to the addition of an irrelevant constant psd operator. The dressed generalized
momentum and coordinate are (q=2)

P=KP,K '=— Y rx(KD"™'w/(D)'KY),, (3.14)
r=gq
Q=KQ,K™'=(K«(D)K™'),, (3.15)
with the conditions

P_=(KP,K 1)_=0, (3.16)

0_=(KQ,K~1)_=0. (3.17)

For (D)= D4, (3.14) gives
1= L
P=—1 3 tame(07). (3.18)

which is the form first proposed by Douglas [2]. We emphasize that although (3.5)
implies an infinite number of differential equations, they are equivalent with
[P,Q]=1 which contains g—1 differential equations for g—1 independent
coefficients of the operator K satisfying Q _ =0. The origin of the extra differential
equations is the w,, ., symmetry as a consequence of the canonical gauge
symmetry.

What we have shown is that the string equation as the variational equation to
our action principle is reduced to two operator conditions (3.16) and (3.17), which
are manifestly invariant under the general regular canonical gauge transforma-
tions (2.19). Since an arbitrary polynomial in P and Q satisfies the same condition
as a consequence of these two conditions, it is convenient to express this situation
in the following form:

(KP(Qo, P))K™1)- =0, (3.19)
for any polynomial 2 of Q, and P,,.

3.2. Bilinear Form of the String Equation

Let us now rewrite the string equation as the condition on the t-function, i.e., the
partition function of 2D gravity. The operator equations of the type (3.19) can in
general be rewritten as the bilinear conditions on the z-function, using the formula

(PQ¥)—_,=(—1)"[dk(Pe™)0,"H(Qe™) (nz1), (3.20)

which was discussed in the appendix of the previous paper [4] following [12]. This
formula is valid for any two psd operator P and Q.
For arbitrary two polynomials satisfying # =2, 2,, (3.19) is thus equivalent to

[ dk(K2,(Qo, Po)e™)(K*™125(Qo, Po)*e™**)=0. (3:21)

Furthermore, since the solution is parametrized by the KP-flow equation, the
above equation is actually generalized to,

jdk(Kgqeﬂxv“)(K*ﬁlg';e¢<x’»k>)=0, (3.22)
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where &(x, k)= Y x.k" and &(x',k)= Y xk". This is because the KP equations
1mp1y r=0 r=0

3 K200 Pei =(KD'K ™), KP,(Qo P™™™, (329
and hence,
[dk(0 ... 0rK P, e*W)(K* ~ 1 PFef =) =0, (3.24)
which proves (3.22). Then in terms of the t-function, this equation reads
§ dk(P\(Po, Qo)V(K)T(x)(Py(Po, Qo)*V (K)2(x) =0, (3.2)
where Q(k), Po(k), Q&(k), P¥(k), defined by, respectively,
Qoe*=Qo(k)e*, Pyet=Py(k)e*, (3.26)
Qe *=Qqk)*e %, P¥e *=Py(k)e ¢, (3.27)
are independent of the parameters x,’s and are given by
Qo(k)=a(k)=Qo(k)*, (3.28)
Po(k)=— (a’(k)‘ ld‘dzg - 225:;) = —P,(k)*. (3.29)

In (3.25), the tilde over 2;, 2, indicates that the orderings of the operators Q,, P,
are reversed from the original ones of #;, #,. These are the most general bilinear
forms of the string equation and contain the whole information on the partition
function of 2D gravity coupled with (p, g) matter fields. In the previous paper [4],
some special cases of them are utilized in a more intricate way.

4. Canonical Symmetry of the Partition Function

In this section, as a first application of our canonical formalism, we derive the
linear conditions, which is equivalent with the Schwinger-Dyson equation, on the t
function coming from the canonical gauge symmetry, generalizing a result of the
previous paper [4].

In the representation (3.25) of the string equation, the canonical gauge
transformation generated by (2.19) can be interpreted to act on the z-function as

t(x)—>1(x)+ d,1(x), 4.1)

k .
dalx)= X 8ni§%N (VWP V(R)r(x), 4.2)

nz—it+1,iz
W) =Po(k)' "1 Qo(kf" 71 (121, n+i—120). @3)

Here the normal symbol N(...) is defined with respect to the short-distance
singularity of the product of the vertex operators:

NV (000 V (k) = lim (V*(u)@(k) V(k)— O(K) ;i—k> . 4.4)

The generators (4.3) satisfy the w, , , algebra (2.20).
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Let us first prove the above statement. Using the commutation relations,?

[WO, V(k)]=wd(k)V(K), (45)
[WO, Vk)] = —wd(ky*V(K), (4.6)

where
Wo= §j—7’;N(V*(k)wg)(k)V(k)): “7

and the relations between the operator equations (3.16), (3.17), and the bilinear
equations for the t-function as discussed in the previous section, it is easy to see
that the transformation (4.2) induces the following change of the string equation:

0{KP(Qo, P)K™)_=[G,2(Q, P)]- =0, (4.8)

where G is given by (2.19) and in deriving the first equality we have used the string
equation (KZ(Q,, P,)K ~!)_ =0 for the polynomial 2. Thus, comparing (4.8) with
(2.18), the action of the canonical gauge transformation to the z-function is given
by (4.2) in the space of the solutions of the variational equation, as claimed above.

The result (4.8) shows that if there exists a general solution to the t-function,
then t+d,7 also satisfies the same property. Next we prove that this is actually
equivalent to a stronger statement that

WOT=0 (n=—i+1,i=1). 4.9)

For i=1, (4.9) is obviously satisfied since they are nothing but the reduction
conditions of the KP hierarchy which are equivalent to the constraint
(KQoK~1)_=0 in the action principle. For example, if Q,=kq%,

dk

W= o NV (k)k"V (k) (4.10)
dk | _do(k)
= Jnma_"* 7
$ i k Ik 4.11)
=0y - 4.12)
For i=2, (4.7) are the Virasoro generators. In particular,
dk _,d o'k
@) _ ¢ % t ()1 — — %
W §2ni N < Vi(k) <oz (k) T (k)2> V(k)> 4.13)
_1odk o (de(R))?
=3 () @14

On the other hand, using the KP equation in the component form J,K
= —(KD'K ') _K, we find that the string equation (KP,K ~')_ =0 is equivalent
to

(WA (k) — (V)W 2t)=0. 4.15)

It is easy to show, using an inductive argument with respect to the pole residues in
k, that the general solution of (4.15) is

Wr=c1, (4.16)

2 Note that the vertex operators are the bosonized forms of the free fermions
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where ¢ is a numerical constant independent of x, (r = 1). Combining this property
and the canonical gauge symmetry of the t-function, namely, that t+4J,t also
satisfies (4.15), we have [W@), W9t =(n+i—1)W 1=0 which proves (4.9).

In [6], the w, , ., condition on the t-function has been derived by using the
universal Grassmannian representation for the t-function. The merits of our
derivation based upon the action principle are that it clarifies the geometrical
origin of the condition and, hopefully, that without using directly the Grass-
mannian language, it might be generalized to 2D gravity with more general
matter systems than minimal conformal models and the associated massive
theories. Since a detailed discussion about the further reduction of the w,, .
condition to the w, condition in the case a(D)= D? has already been given in [6], we
do not elaborate in that direction in the present paper.

5. Further Applications
5.1. Classical Limit

As we have emphasized in Sect. 2, the algebra of functions in the phase space of our
canonical formalism is deformed. To clarify the nature of the deformation, it is
useful to introduce explicitly the deformation parameter which we denote 1. The
correspondence with the algebra of psd operators now becomes as follows:

(f° 9)(x, k) = f(x, k) exp(29,3,)g(x, k)
! !
fg = T fx)AD)g{x)(ADY.
iJ
With this redefinition, all of the foregoing formalism are valid as they stand. In this

subsection, the product symbol o should always be understood in the above sense.
The Poisson bracket is defined by

(g = g —g). 1)

Thus a finite canonical transformation of a function f generated by H is

Ho oH Ho Ho 1 (Ho\?
f—exp (—T> fexp (7), where exp <_T>=1—T+§ (A) +....

The string equation is now {P,Q}=1.
The limit -0 defines the classical phase space in which {f,g},-,
of dg of og , . L
=== - and a finite canonical transformation is given by

lim exp(—H </)f exp(c H/2)=f ~{H, }s=0+(1/D{H, {H.f Hs=0+ ... Then

we naturally come to a question of what is the classical theory of the action
principle. We shall demonstrate that it describes the 2D quantum gravity on the

sphere, as it should be.
Let us study the operator string equation with a(k)=k? and K=exp —H /4,

(KP,K~Y)_ =(KQoK~!)_=0. (5.2)
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Taking the limit A—0, we obtain

((x + E(x, k))(k+ F(x, k))! ~9+ i rx(k+ F(x, k))"") =0, (5.3)

(k+ F(x, k)L =0. (5.4)

Here we defined the functions E and F, expressing the effects of the classical
canonical transformation,

k+F(x, k)= /llin(l)exp(— %)kexp<°f>, (5.5)

x+ E(x, k)= }11_1};1) exp<— %)xexp( Of) (5.6)

We can expand them as F(x, k)= § f- k™% E(x, k)= § e_{x)k™%
i=1 i=2

To avoid inessential complications we specialize to the case g=2. The solution
to the constraint equation (5.4) is then easily found to be

F=k((1+f_ k=92 —1). (5.7)
Substituting (5.7) into (5.3) and taking the residue with respect to k, we obtain the
equation for f_,,
. r <2n 2-|- 1)
n;O Cn+1)x2,+1(2f-1) WTA2) =0. (5.8)

Since f_,; =dh_,/dx, the second derivative of the free energy, this is nothing but
the Landau-Ginzburg equation derived from the one-matrix model in the large
N-limit. Vanishing of the higher residue terms in (5.3) is guaranteed by the
canonical structure of the formalism. It is not difficult to check this explicitly. For
instance, the k™2 term of (5.3) reads
2n+1
()

(n+10)!T(1)2)

which is derived from (5.8) by multiplying df_ ;/dx and integrating with respect to
x. Similarly, for general g, the first g — 1 coefficients of the classical string equation,
iin?) (K°PyoK™1)_=0, give the Landau-Ginzburg equations after solving the

~(1/2) 3, @0+ 10y (f- 1! +hy=0,  (59)

constraint equations, and the vanishing of the higher coefficients are the
consequences of them.

The fact that the sphere limit is formulated as the classical action formalism
corresponding to our deformed canonical formalism is interesting from the
viewpoint of constructing a general framework for nonperturbative string theory.
This suggests an entirely new possibility of setting up the quantum theory of
random geometry with the fluctuations of topology, other than the string field
theory and its quantization. In [4], we have explored a different possibility of
quantizing directly the Landau-Ginzburg theory by regarding f_, as the



636 T. Yoneya

dynamical variable to be quantized. However, it turned out that such an approach
led to an extremely complicated representation of the partition function, in sharp
contrast with 1D gravity, i.e., particle theory [14].

5.2. Dual Transformation

In solving the variational equations we developed a nonsymmetrical treatment of
generalized coordinate and momentum, in spite of the fact that the equations
(KPoK™ Y _=(KQo,K~')_=0 are manifestly symmetric with respect to the
coordinate and momentum. In our formalism, it is however straightforward to
interchange the roles of the coordinate and momentum by a canonical trans-
formation, which we refer to as “dual” transformation.® In this final sub-
section, we briefly discuss the properties of the dual transformation.

Let us take the massive (p, q) theory described by
1 P S
Po=o- ¥ (i+q)(x+sD'+Dx;4,), (5.10)
2q i=—gq+1
Qo=D", (5.11)

and consider transforming them to the (g, p) theory described by interchanging the
representations of P, and Q, such that

5 d = i i
Py= _'2_ z (i+p)(xi+pD +Dxi+p)s (512)

D i=-p+1
0,=D". (5.13)

2 2 . T
We set x,,,= _+iq’ Xprg=— ;_—:L for notational simplicity. From the general

discussion of Sect. 3.1, it is guaranteed that there exists a transformation U
satisfying

P,=UQ,U"", (5.19)

Q,=UP,U !, (5.15)
in the form

U= Y u_D". (5.16)

0

Note that the operator U is not analytic with respect to P, and Q, and, hence, that
it in general does change the t-function.

The operator U is unique apart from a normalization factor which is
independent of x and determines the relations among the set of the parameters
{x,} and {X,}. From the canonical commutation relation [(,, P,]=1, we must
have 0%,/0x =4, . By inspecting the relation (5.14), we see that the first coefficient
ugy in U can be set to be

i

+q—1
Ug=EXp— p—lil—xp+q_1x1, (5.17)

3 The problem of interchanging p and g in the (p,q) model has been previously discussed by
Kawai [15] using a different method in the Schwinger-Dyson approach
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and that u_, obeys

u—1+Txp+q—l'-l

p+q—2

(p+q—1)(p—1) )

xp+q—2u0> ’
(5.18)

and similar equations for the higher coefficients. It is straightforward but tedious
to recursively solve u;’s from (5.14), and substituting back to (5.15), to determine
X’s in terms of x,’s. Since this is not very illuminating, we only mention
a few simple general properties; (1) u_;s take the form (polynomial of
x,’s) x exp(—(p+q—1)X,4+,-1X,/pq) apart from an over-all normalization
which is independent of x;. (2) In particular, at the critical point where x,=0
for 2sr=<p+q—1, u_;=0. 3) X,=x+ filX,14-1>Xpsg-2--» % +1), Where f,
(1=r=p+q—2) are polynomials and f,,,_, =0.

The canonical transformation U leads to the following transformation of the
dressing operator K,

1 "
- (E(p—l)uo+

K—-R=uj'KU. (5.19)

In general, the t-function corresponding to K or K for the non-critical theories
(namely, “massive” theories) defined around the (p,q) or (g,p) critical points,
respectively, are different. At the critical points, the above property (2) indicates
that the t-functions in both representations are mutually identical as the functions
of x,, since K_;=—0,logt=K_,=—4,log#, as it should be. However, the
definition of the scaling operators are different according to (p,q) or (q,p)
representations. Hence the partition functions are in general different except at the
critical points. In particular, in the (p, g) representation, the scaling operators O,
corresponding to the coupling constants x,, (n=1,2, ...) do not exist since 0,,7=0,
while, in the (g, p) representation, the ones 5,,Lcorresponding to X,, do not since
0,p,t=0. This and property (3) imply that O,, (O,,) are composite operators
consisting of the products of the operators in the set {O,4,_15--s Ongr1)
({0p+q— 100> Onp+ 1})

Finally, we note an indication that our dual transformation may indeed be
interpreted as a dual transformation in the world-sheed picture. It is well known
that the (p,q) minimal conformal models are embedded in a free scalar field
theory* (with indefinite metric) compactified in a cirle. In the normalization,

{P(z1,2,)P(z,5,2,)) ~ —2log|z, —z,]|, the radius of the circle is R=2]/q/—p. Note

that here z, Z are the world-sheet coordinates which are nothing to do with k. The

primary states with conformal weights h,,=((rp—sq)*> —(p—q)»)/4pq (1 £r=<q—1,

1<s<p—1) correspond to the insertion of external lines with zero-mode

momentum r (in the unit of R™!) and winding number s. The left (right) moving
SR r SR

momentum is given by p,= % + S5 \Po=g — 7) . Thus the interchange p < g

induces transformations R < 2/R and (r, s) <> (s, 7), namely, the interchange of the
roles of momentum and winding number. It is an interesting problem to find a
direct connection between these dual transformations. To achieve this, we need
more precise knowledge about the nature of the free-field representation in 2D
gravity.

4 See, e.g., [16] and the references therein



638 T. Yoneya

6. Concluding Remarks

In this work, we have tried to develop a canonical formalism for non-perturbative
2D gravity based on the action principle. We believe that this formulation clarifies
some geometrical aspects of 2D gravity.

The formulation is only concerned about the invariants, such as the cosmolog-
ical constant and its conjugate, without directly treating the field operators on the
2D world sheets. In this sense, what we have presented is a sort of S-matrix theory
for 2D gravity. Although such seems more or less inevitable in the situation with
the existence of strong topology fluctuation, an important question is then how to
transform back and forth to the world-sheet picture. In particular, a direct
derivation of the classical canonical structure which describes the genus-zero
surfaces, starting from the world sheet theory such as the Liouville theory coupled
with minimal conformal models [17, 18] or the topological gravity [19], is
desirable. It will be useful to clarify the physical significance of the constraint in the
action principle which is essentially an analyticity requirement with respect to the
puncture eigenvalue k.

Besides this problem, the most urgent question is whether the systems with ¢ =1
matter systems can be incorporated into the present framework. Since the notion
of the phase space consisting of the cosmological constant and its conjugate is
independent of the target space of the matter fields, the question is reduced to the
existence of the generalized momentum and coordinate corresponding to such
systems. This seems plausible at least for the c=1 model. Even for ¢>1, a
characteristic feature of the action principle, the “spontaneous” emergence of the
coupling constants out of the phase space of the cosmological constant and its
conjugate, might survive.
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