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Abstract. All finite dimensional irreducible representations of the quantum Lorentz
group SL4(2,C) are described explicitly and it is proved all finite dimensional
representations of SLg(2, C) are completely reducible. The conjecture of Podles
and Woronowicz will be answered affirmatively.

0. Introduction

The quantum Lorentz group SL^(2,(C), where q is a real parameter / 0 , ± 1 , was
introduced by Podles and Woronowicz [PW], and the Iwasawa decomposition
and representation theory were studied. This quantum group is combined with the
double group of SUβ(2), a g-analogue of the compact group SU(2) [W, MMNNU],
through the Iwasawa decomposition. Let Aq (respectively Bq) be the *-Hopf algebra
corresponding to the quantum group SL^(2,C) (respectively SUq(2)). (A *-Hopf
algebra means a Hopf algebra over <C with a *-operation satisfying some properties.
See Sect. 4.) The dual vector space B'q = H o m c ( ^ , <C) has a topological Hopf
algebra structure. By a topological Hopf algebra, we mean a topological analogue
of the usual Hopf algebra, in which the underlying vector space is assumed to
have a linear topology and the complete tensor product ® plays the role of the
usual tensor product. (See Sect. 1.)

Podles and Woronowicz have introduced some topological Hopf algebra
structure as well as some *-operation on Bq®B'q and have proved there is an
injective *-Hopf algebra map of Aq into Bq ® B'q. We call

the quantum double of Bq. This is the dual version of Drinfeld's quantum double
[D], and corresponds to the double group of S\Jq(2).

The topological Hopf algebra Sq has the largest (non-topological) Hopf
subalgebra Eq, and what they have done is the construction of an injective *-Hopf
algebra map of Aq into Eq. This is not surjective. There is a central group-like
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element τ of order 2 in Eq outside Aq. The conjecture 6.4 [PW] tells that we have

Eq = Aq® Aqτ.

The purpose of this paper is to prove this conjecture is true.
This conjecture has a close relation with representation theory. By a

representation of the quantum Lorentz group SL^(2, C) we mean a (right) comodule
for Sq. This concept involves a linear topology, since Sq is a topological Hopf
algebra, but we consider only discrete comodules. Thus the structure map of a
comodule V is a linear map p: V-> V®$q with discrete topology on V. We see
p(V) is contained in V®Eq if and only if V is locally finite, i.e., it is the sum of
finite dimensional subcomodules. In other words, locally finite representations of
SL9(2, (C) are the same thing as comodules for Eq.

In the previous paper [T2], we showed how the finite dimensional
representation theory of Uq = \]q{sl(2)) leads to an explicit description of the dual
Hopf algebra U° which is the largest (non-topological) Hopf subalgebra of the
topological dual U'q. One sees we are precisely in the same situation.

We will think Aq is a Hopf subalgebra of Eq. Comodules for Aq are called
smooth representations of SL4(2, C). The above conjecture literally tells that if V
is a comodule for Eq9 there are smooth representations Vx and V2 (uniquely
determined up to isomorphisms) such that

One sees this is equivalent to the previous statement.
To prove the conjecture, first we observe that comodules for Sq are the same

thing as crossed bimodules for Bq in the sense of Yetter [Y]. Next, we note that
there is an isomorphism of coalgebras (but not Hopf algebras)

This means all comodules for Aq, i.e., all smooth representations, are completely
reducible, and if Vk (respectively K*) denotes the k + 1-dimensional simple comodule
for Bq (respectively Bqx\ then Vk® Vf, k, leN, give all mutually non-isomorphic
simple comodules for Aq. (See [PW, Theorem 6.3].)

Therefore, the conjecture reduces to the following theorems.

Theorem A. Vk®Vf and Vk®Vf®<Eτ, k,/eN, give a complete set of
representatives for the isomorphism classes of all finite dimensional simple crossed
bimodules for Bq.

Theorem B. All finite dimensional crossed bimodules for Bq are completely reducible.

The paper is outlined as follows. In Sect. 1, we state basic facts on topological
Hopf algebras. In Sect. 2, we review the construction of the quantum double. In
Sect. 3, we establish the correspondence between comodules for the quantum
double and crossed bimodules. In Sect. 4, we review the construction of the quantum
Lorentz group SL^(2, <C) as well as the description of *-Hopf algebras Aq and Bq

and the embedding of Aq into the quantum double of Bq. In Sect. 5, we express
the crossed axiom for Bq in terms of (£7^,2^ )-bimodules. Using this expression, we
prove Theorem A in Sect. 6 and Theorem B in Sect. 7. The final section, Sect. 8,
which is an appendix, describes the braid structure on Aq arising from the braid
structure of the category of crossed bimodules.
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The first three sections deal with generalities, and we work over a general field
k. In the rest of the sections we let k = C the complex numbers.

The symbol * is limited to mean the *-operation. Hence we denote by V the
dual vector space Homk(V,k) (not by V*).

1. Topological Hopf Algebras

We state basic facts on topological Hopf algebras. Generalities on topological
coalgebras are developed in [Tl] .

We work over a field k. A topology on a vector space V is linear if all translation
v+ (veV) is continuous and if there is a fundamental system of neighborhoods of
0 {Kα} consisting of vector subspaces. In this paper, we consider only Hausdorff
topological vector spaces. This is equivalent to saying f] Va = 0. The completion

of V is defined to be

V= Inn V/Va

α

which has the prodiscrete topology.
If V and W are topological vector spaces with fundamental systems of

neighborhoods of 0 {Va} and {Wβ} we give the linear topology on V® W such
that {V ®Wβ+Va®W) is a fundamental system of neighborhoods of 0. V®W
is Hausdorff if V and W are Hausdorff. The completion of V® W will be denoted
V ® W, and this plays a basic role in the paper. Note that we have

V® W = Hm V/Va® W/Wβ.

We always give the discrete topology on k.
If M is a vector space, we give the linear topology on the dual space M' such

that L 1 for all finite dimensional subspaces L of M form a fundamental system
of neighborhoods of 0. More generally, if M and N are vector spaces, Homk(M, N)
will be given the linear topology such that Homfc (M/L, N) for all finite dimensional
L form a fundamental system of neighborhoods of 0. There is a natural isomorphism
of topological vector spaces [Tl,p. 513],

where N is given the discrete topology.
By a topological coalgebra we mean a topological vector space # with linear

continuous maps

satisfying the coassociativity and the counit condition [Tl,p. 510].
A topological algebra, its dual concept, consists of a topological vector space

s/ and linear continuous maps

If A is an algebra and C is a coalgebra, then the dual topological vector spaces
A' and C have natural structures of a topological coalgebra and a topological
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algebra respectively. More generally, the topological vector space si = Homfc(C, A)
has the following topological algebra structure:

m = Uomk (Δ, m): si ® si -»s/9

ύ = Homfc (ε, u):k^si,

where we identify si® si = Homk(C®C, A® A) [Tl, 1.14]. The multiplication m
is called the convolution product [S, pp. 69-72]. If we consider A is a discrete
topological algebra, we have an isomorphism of topological algebras

If H is a bialgebra, Endk(H) has two algebra structures. The convolution
product will be written a s / gf, while the composition will be written as f°g or fg.
Note that we have an isomorphism of topological algebras (with convolution
products)

Endfc (H®H)^ Endfc (H) ® Endk (H).

Let ^ be a topological coalgebra. Since we assume it is Hausdroff, # ® <β is a
subspace of (€®c€. A subspace C of # is called a subcoalgebra if we have
Zi(C) cz C ® C. (We consider no topology on C.) Obviously the sum of all
subcoalgebras is the largest subcoalgebra of ^ . For example, if A is an algebra,
the largest subcoalgebra of the topological coalgebra A' is denoted by A°
[S, Chap. VI].

By a comodule for <β9 we mean a discrete vector space V with a linear map

satisfying the usual axiom:

as maps

and (I®ε)°p is the canonical map

All commodules are ri#/ιί in this paper. \ί^ = A' the dual topological coalgebra
of an algebra A, then the comodules for # are naturally identified with the left
Λ-modules [Tl, Theorem 1.19].

1.1 Proposition. Let <β be a complete topological coalgebra with the largest
subcoalgebra C. Let (K,p) be a comodule for (€. We have p(V) cz V®C if and only
if V is locally finite, i.e., it is the sum of finite dimensional subcomodules.

Proof The "only if" part follows from [S, Theorem 2.1.3]. To prove the "if" part,
we may assume V is finite dimensional. Note that V®^ =V®C€, since # is
complete. Take a base υγ,..., vn for V and write

It is easy to see

hence xi} span a subcoalgebra and we have p(V) a V® C.
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A topological bialgebra is the topological version of the concept of a bialgebra.
The underlying vector space J f is assumed to have a linear topology and the
structure maps which are linear continuous

are assumed to satisfy the same axioms as a usual bialgebra. (Read ® for ® in
the diagrams of [S, p. 52].)

If H is a bialgebra, then the topological dual vector space H' has a natural
structure of a topological bialgebra.

For a topological bialgebra <?f, let E = Endc o n t(^f) be the vector space of all
linear continuous endomorphisms. This space is closed relative to the convolution
product

E is an algebra with this product and unit us. If the identity / has an inverse 5 in
the algebra £, we say ^f is a topological Hopf algebra and S the antipode. Just as
the non-topological Hopf algebras [S, Proposition 4.0.1], one sees the antipode
is an anti-endomorphism of the topological bialgebra.

1.2 Proposition. The largest subcoalgebra H of a topological Hopf algebra Jtf is a
Hopf algebra.

This follows easily, since /c, HH, and S(H) are subcoalgebras, hence they are
contained in H.

2. Quantum Double

Podles and Woronowicz [PW, Sect. 4] introduced the dual concept of Drinfeld's
quantum double [D] under the name "double group." The construction is reviewed
in the context of topological Hopf algebras. We include all proofs for self-contained-
ness.

Let H be a Hopf algebra with structure maps m,u, Δ, ε. Assume the antipode
S of H is bijective. We will make the topological algebra £ = Endk(H) into a
topological Hopf algebra. Let m = Homk(zl,m) and ύ = Homfc(ε, u) be the structure
maps of S, and recall we have

as topological algebras (Sect. 1).
The comultiplication Δ\$-*£®$ is defined to be the following continuous

homomorphism of topological algebras:

Δ: Endk{H) -+ Endk{H ® H)

where σ = (u®/)°(/®ε), hence σ~ι =(«®/)°5 0 (/®ε). We have

Δ(f)(x ®y) = Σ(1® x(1))Δ(f(yx(2)mi ® S(x(3))), x, yeH,

where and in the following we use the sigma notation [S, p. 10].



562 M. Takeuchi

2.1 Lemma. Δ is coassociative.

Proof. IϊFeEndk(H® H\ then x® y ® zin H®H®H is mapped by (I®Δ)(F) to

Σ(l ® 1 ® y(i,)(ί ® Δ)(F{x ® zy{2)))(\ ® 1 ® S(y{3))\

and by (2ί®/)(F) to

Σ(l ® *α>® 1)(4® I)(F(yx{2)® z))(l ® S(x(3))® 1).

If F = Δ(f\ both are equal to

Σ(l ® x(1) ® y{ί)xi2))A2(f(zy{2)xi3)mi ® S(xi5)) ® S(y(3)x{4))\

where Δ2: H -• // ® if ® H the iterated comultiplication. •

Define the counit ε:^ = Endfc(fJ)->/c,

2.2 Theorem, (f is a topological Hopf algebra.

Proof. The counit condition is easy to check. Define a continuous linear map
SSS

which maps x in H to YJS(xΛ1))SfS~1(x{2))x{3). We show 5 is an antipode of S. If
FeEndk(//®//), then (I®S)(F) maps x®y in H®H to

If F = ϋ(/), this becomes

S(y(1))S\x{3)mi®S)Δ(f(S-ι(y{2))x{2)mi

Hence rh(I®S)Δ(f) maps x in H to

m(Σ(l ® S(x(4))S2(x(3)))(/ ® S)Δ(f(S-1(x{5))x{2)))(\

which reduces to ε(/(l))ε(x). This means we have

Similarly, (S®I)Δ(f) maps x®y to

Hence m(S®I)Δ(f) maps x to

ΣS(x(1))S(/(x(6)S" H W W ^ S " K )

which is equal to ε(/(l))ε(x). This means we have

m(S®I)Δ = ύε.

Hence S is the antipode of $. •
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2.3 Definition. The topological Hopf algebra $ is called the quantum double of H.

If we identify δ = H ® H' as a topological algebra, the structure maps 4, ε, and
S have the following expressions:

~ ^ Δ®Δ ^

Δ:H®Hr >(H®H)®(Hf

(fl (g) fl) <§> (JT ^ ί ! L

ε\H®H'

~ ω S®S

S:H®H' >H®H' >H®H\

where ω denotes the inner action f\-+I'f-S. (We think /, S are elements in H ® H')
One sees our construction of the quantum double coincides with the double group
[PW, Sect. 4].

It follows we have the following homomorphisms of topological Hopf algebras:

>Htcop,

where H is given the discrete topology and cop means the coalgebra opposite.

2.6 Proposition. The composite

δ >δ®δ— >H®H'

is equal to the identity.

Proof. If we identify £®£ = Endk(H®H) and H®H' = Endk(H\ then π 1 ® π 2

maps F in Endk(H®H) to the composite (I®ε)°F°(u®I). If F = Δ(f), this
composite reduces to /. •

3. Crossed Bimodules

This section gives a correspondence between comodules for the quantum double
and crossed bimodules in the sense of Yetter [Y].

Let H be a Hopf algebra and let $ — Endfc(//) its quantum double.
By a right bimodule for H, we mean a right H-module and a right fί-comodule

V. The coaction will be denoted [S, p. 32]

3.1 Crossed Axiom [Y, Def. 3.6].

A crossed bimodule for H means a right bimodule for H satisfying the crossed
axiom.

Let V be a comodule for the topological bialgebra δ with structure
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By means of the topological bialgebra maps π l 5 π 2 (2.5), we have the following
comodule structures:

V®H'cop.

The second comodule structure p2 can be thought of as a right //-module structure.
It follows from 2.6 Proposition that we have

p\V^->V®Hfcop ——>V®H®H'cop=V®£.

Conversely, when V is a right //-bimodule, define p as the above composite.

3.2 Proposition. (K, p) is a right comodule for $ if and only if the crossed axiom holds
for the bimodule V.

Proof. The counit condition for p is always true. Identify

= V® Enάk(H) = Homfc(//, V® H)

as topological vector spaces. To say (F, p) is a comodule means that we have the
following commutative diagram:

P®I

Homk{H,V®H)^^>Homk{H®H,V®H®H)

with comultiplication Δ of S. Let / = p(v) with veV. Then / maps heH to

Σ(vh)i0)®(vh)iίy One sees by definition of Δ

(I ® Δ)(f)(x ®y) = ( ) ( ) W^W θ)

for x9yeH. Note that both are functions of vy and x. So, we may assume y = 1,
and the comodule condition tells that we have

for all veV9 xeH. This follows from the crossed axiom by application of the map
Pι®U and conversely, the crossed axiom follows from this by application of the
map I®ε®I. Hence the comodule condition is equivalent to the crossed
axiom. •

It follows that the crossed bimodules for H are the same thing as the comodules
for the quantum double $. In particular, if E denotes the largest (non-topological)
subcoalgebra (which is a subbialgebra) of S, then the category of right £-comodules
is completely identified with the category of locally finite crossed //-bimodules.

The following remarks will be useful in later discussions.

3.3 Remark. The crossed axiom is enough to check for generators of the algebra H.
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In fact, the set of heH satisfying the crossed axiom for all veV forms a
subalgebra.

Assume H is a Hopf subalgebra of U° for some Hopf algebra U. For xeU and
heH, define the actions [S, pp. 46, 100]

Recall [S, Sect. 2.1] that every right /f-comodule has a natural left [/-module
structure. Hence, if V is a right H-bimodule, we can think we have a bimodule

υVH for the algebras (7, H.

3.4 Remark. With the above assumptions, the crossed axiom is expressed

Σ(x(1)ι>)(x(2) - h) = ΣxuMh - x(1)))

for veV, xeU, heH.

3.5 Remark. With the above assumptions, if the algebra U is generated by a
subcoalgebra C and the algebra H by a subset Λ, then the crossed axiom of 3.4
is enough to check for all veV, xeC, and heΛ.

In fact, the set of heH satisfying the crossed axiom in 3.4 for all ve V and xeC
is a subalgebra, and the set of xeU satisfying it for all veV and heH is also a
subalgebra.

4. Quantum Lorentz Group

We review the construction of the quantum Lorentz group SL^(2, <C) introduced
by Podles and Woronowicz [PW, Sects. 1,5].

Hereafter, we let k = C the complex numbers. A *-algebra means an algebra
over C with an involutive conjugate linear automorphism * such that (ab)* = b*a*,
α, be A. The tensor product of two *-algebras has a natural *-structure. A *-Hopf
algebra means a Hopf algebra over C and a *-algebra H such that the
comultiplication A and the counit ε are *-homomorphisms, i.e., Δ(h)* = Δ{h*) and
ε(h) = ε(h*), heH. If this is the case, the algebra opposite fίo p or the coalgebra
opposite H c o p is a Hopf algebra, too. This implies that the antipode S of H is
bijective and one has

*oS = S~lo*, or (So*)2 = L

A topological *-algebra and a topological *-Hopf algebra are defined similarly.
If H is a *-Hopf algebra, we give the following *-structure to the dual topological

Hopf algebra if':

x*(α) = x(S(α)*), xeH\ aeH.
def

For a *-Hopf algebra H, let δ = End^H) be the quantum double. As a
topological algebra, this has a natural *-structure isomorphic to H®H'. If feδ,
we have / * = *ofo*os, or

/*(α)=/(S(α)*)*, αetf.
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4.1 Proposition. $ is a topological *-Hopf algebra.

Proof. We show the comultiplication A commutes with *. If fei, Δ{f)* maps
x®y in H®H to

lΔ(f)(S(x)*®S(y)*)r
which is

S(xi3))*)Δ(f(S{y)*S(x(2))*))(l ® x ( 1 )*)]*

Since Zl and * commute, it follows that <2(/)* = Δ(f*). Π

Note that the identity / is unitary in the *-algebra $ in the sense that
/* = / - 1 ( = S ) .

Fix a real parameter g ^ 0, ± 1 in the rest of the paper. The following notations
will be used throughout.

4.2 Definition. Let Bq be the (C-algebra defined by generators a, b, c, d and the

following relations:

ba = qab, ca = qac, db = qbd, dc = qcd,

cb = bc, ad — q~ιbc=\=da — qbc.

These relations tell that I I is the inverse of the matrix (
\ — q c a / \c d

The algebra Bq has the following *-Hopf algebra structure:

'a b\ (a®\ b®\\(\®a
c dj \c®\ d®\J\\®c lι

a b\ (\ 0'
ε\c d) \0 1

a b

c d

The *-Hopf algebra Bq corresponds to the compact quantum group 811,(2)
[W] [MMNNU].

Let Sq = End^B,,) the quantum double. The topological *-Hopf algebra Sq

represents the double group of SU?(2) [PW, Sect. 4]. The quantum Lorentz group
SLβ(2, C) was introduced by Podles and Woronowicz as a *-Hopf subalgebra of
iq. We define a *-Hopf subalgebra Cq of the topological dual B'q, and then a
*-subalgebra Λq of Bq®Cq. We show Aq is a Hopf subalgebra of <fg = Bq(g)B'q.
One sees later the *-Hopf algebra Aq corresponds to the quantum Lorentz group
SL,(2,Q.

Begin with two algebra maps Bq-><E,

fa b\ (qϊl2 0
P\c dHo , -

a ftW-1 0

c d V 0 - 1
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We think p and τ are group-like elements on Bq. The actions τ-% <-τ on Bq (see
above 3.4) are the algebra automorphism

'α b\J-a - ^
d) \-c -dj

hence the group-like τ is central in B'q. We have

iί τ<°o (4 3)

in the *-algebra B'q. Here, and in the following, we note that the involution of Bq,
x\-^S(x)*, preserves a and d, and exchanges b and c.

For any eeC, there is an opposite algebra map πe:Bq^>M2(<E)

y / 2 o \ /o oN

K0 q-^y \0 0y

Ό e\ f / ^ ^ 0

Let us express

V 0 p-χ(

with neeB'q. The fact that πe is an opposite representation means we have in the
topological Hopf algebra B'

ne®p, ε(ne) = 0.

In other words, ne is a (p'^^.pyprimitive.

4.4 Lemma, /n ί/*e topological *-algebra B'q, we have

(1)P*P = PP*9

(2) nep = qpne,

(3) n e p* = ^fp*ne,

ee

( ^ - V 1 ) * )(4) n χ -

Proof. (1) follows from (4.3), and (3) from (2) plus (4.3). To prove (2) and (4), note
that pnep~γ is a (p~ί, p)-primitive and [n*, ne~] is a (p~ ι(p~*)*, /?/?*)-primitive. (The
latter follows from the fact that p~ι®ne and n*®p* commute. This fact is a
consequence of (3).) In general, if x, y are two (g9 y)-primitives in B'q with group-likes
g,y, then a linear relation y = λx (ΛeC) will hold if it does on the generators

α, b, c, d. The linear relation (2) becomes at the generating matrix (

'0 0\/V / 2 0 \ _ fq1'2 0 \ / 0 0

which is true. Similarly, one can check (4). •
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Let n = ne for e = qί/2(\ — q~2) so that we have

4.5 Definition. Let Cq be the *-subalgebra of B'q generated by p, p " 1 , and n.
It is a *-Hopf subalgebra. It will be natural to consider Cq as a *-Hopf sub-

algebra of B'q
cop (but not of B'q), since we started with anti-representation πe.

We have the following inclusions of *-algebras:

- VJ q .

4.6 Definition. Let Aq be the *-subalgebra of Bq ® Cq generated by the elements
α, /?, 7, δ defined as follows:

'a. β\_(" b

κy δ) \c d

Note that we have

α* y*\_ίp* 0 Y d -qb

β* δ*J \n* (p"1)*/ X-q'^ a

4.7 Proposition. The following 17 relations hold among α, /?, 7, δ:

(1) βz = qaβ9 (2)yoL = qocy, (3)δβ = qβδ, (4) δy = qyδ,

(5) yβ = βγ, (6) δa - qβy = 1, (7) 0Lδ-q~ιβy = 1,

(8) α*<S = δα*, (9) j5*y = y)8*, (10) 7*7 = 77*,

(11) a*y = qya*, (12) γ*δ = q~ιδy*,

(13) α*α = αα* + (^" 2 -l)77*, (14) *̂(5 = δδ* + (1 -^"2)yy*i'

(15) x*β = q-ιβ(x* + q-\q-2-\)δy*,

(16) β*(5 = ^ j S * + q{\ - q~2)yoc*,

(17) jS*j3 = ββ* + (1 - ^"2)(αα* - δδ*) - (1 - ^"2)277*

Froo/. By using the previous Lemma 4.4, one checks that a,b,c,d and p.n.O.p'1

satisfy the 17 relations. Since they commute "doubly," the claim will follow from
[PW, Proposition 1.1, p. 389]. Q

4.8 Proposition. We have

/ β\ foc®\ J8®l\/l®α \®β\ Joe β\ (\ 0
Δ[ χ i δ χ l Λ l χ χ χ δ Γ -.

where Δ,ε the coalgebra structures of $q.

Proof. Define the following coaction on a 2-dimensional vector space Cw θ Cf

The statement means that this satisfies the comodule condition for Sq. In fact, this
is precisely the ^-comodule corresponding to the 2-dimensional crossed
B^-bimodule Vx (5.2). Π
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If S denotes the antipode of Sq9 we have

~/α β\Ja
γ δ) \γ δ

It follows that Aq is a *-Hopf subalgebra of Sq.
Let τ = 1 <g)τ which is a central group-like element of order 2 in Bq® B'q = δq.

The following theorem is the main result of the paper.

4.9 Theorem, (a) The *-algebra Aq is defined by generators α,β,y,<5 and the 17
relations of A.I.

(b) We have Aq + Aqτ = Aq 0 Aqτ.
(c) Aq® Aqτ coincides with the largest subcoalgebra of the quantum double

In the next section, the statement will be reduced to some representation-
theoretic facts.

(a) means the *-Hopf algebra Aq corresponds to the quantum Lorentz group
SL^(2, C). One will see (c) answers the conjecture of Podles and Woronowicz [PW,
6.4].

5. Crossed /^-Bimodules

We recall the embedding oίBq into a Hopf subalgebra of l/°, where Uq = U 9

[T2], and express the crossed axiom in the form of 3.4 explicitly.
Let Uq be the C-algebra defined by generators K,K~X,E,F and the relations

KEK~i=q2E, KFK-'^q-tF,

.„ , K-K~ι

We give it the following Hopf algebra structure:

9 ε(K)=\, S(K) = K'\

ε(E) = 0, S{E)=-EK~\

\, ε(F) = 0, S(F)=-KF.

We can embed the Hopf algebra Bq (4.2) into U°q as follows. Let λ:Uq-+M2(<E) be
the basic representation

° Λ F H f ° °
and write

a(x) b(x)

c(x) d(x)J'
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with ά,b,c,deU°. Then, I )ι—•( ~) induces an injective Hopf algebra
\c dj \c dj

mapBq-+U°, and more precisely, we have U° = Bq@Bqγ, where y:Bq\-+<E the
algebra map Kι-> - 1, £,Fι->0 (see [T2, 3.11]).

The actions ->, *- (above 3.4) have the following descriptions:

c d) \qc q~ιdΓ \c dj \q~ιc q~ιd

a b\_/0 a\ (a 6\ _ίc d

c d)~\0 c)9 \c d) ~U 0

a b\(b 0\ (a b\F==/0 0

c d) \d 0/' \c d) \a b

It follows from 3.5 Remark that the crossed 2^-bimodules admit the following
description.

5.1 Proposition. Let V be a right Bq-bimodule. If we consider V as a left Uq- and a
right Bq-module, then the crossed axiom is equivalent to the following 12 commutation
relations.

(1) K{va) = (Kv)a, (2) K(υb) = q-2(Kυ)b,

(3) K(vc) = q2(Kv)c9 (4) K(vd) = (Kv)d,

(5) E(va) = q(Ev)a - q2(Kv)c, (6) E(vb) = q ~ \Ev)b + va - (Kv)d,

(7) E(vc) = q(Ev)c, (8) E(vd) = q~\Ev)d + vc,

(9) F(va) = q(Fv)a + q(K ~ H)b, (10) F(vb) = q(Fv)b,

(11) F(υc) = q-ί(Fv)c + q-1(K-1v)d-q-ίυa, (12) F(vd) = q~1(Fv)d-q~ιvb,

where veV.

5.2 Example. Let Vx = Cw + <Ev a 2-dimensional vector space. Give the following
2^-bimodule structure on V1.

The corresponding

Ku = qu,

ua = qV2

uc = 0,

comodule

structure

module

structure

actions of

Kv = q~

u, va = q

vc = qV\\

jwh->M(g)α-f

\v\-^u®b +

(ux = p(x)u9

\vx = n(x)u -\-

K, E, F and α,

1t?, Eu = 0,

~1^2v, ub = 0,

-q~2)u, ud

v®d,

• p~1(x)v,

b, c9 d are

Ev = u,

vb = 0,

= q~1/2u,

XEB
yv c u q .

as follows:

Fu = v, Fv = 0,

vd = q1/2v.

One verifies the 12 commutation relations hold. Hence Vx is a crossed J54-bimodule.
(Note that the choice e = q1/2(l — q~2) is compulsory.)
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All finite dimensional l^-modules are completely reducible, and for each integer
/c^O, there are two simple L^-modules of dimension /c+ 1. One is a comodule
for Bq and the other for Bqy. Let Vk be the simple ^-comodule of dimension k + 1.
It has the highest weight qk and the lowest weight q~k. Every ^-comodule is the
direct sum of a set of Vk9 /ceN [T2, Sects. 2, 3].

Let B°q

p the algebra opposite of Bq with the same coalgebra structure. It is

identified with B -1. The maps ( ) f—• ( ] , ( ) induce Hopf algebra
\c dj \y δj \y* δ*J

maps

Let Φ be the composite

and Bop-

Bq®B°q

p-+Aq®Aq

which is a coalgebra map.
Let K* be the simple β°p-comodule of dimension k + 1. Then Vk ® V*9 (fc, /)eN 2

give a complete set of representatives for the isomorphism classes of all simple
comodules for Bq®Bop.

Every comodule for Bq ® B°q

p has an Λg-comodule structure through Φ, hence
the structure of a crossed 2^-bimodule.

5.3 Definition. For integers kJ^O, let Vkl denote the ^-comodule Vk® Vf. It is
also considered as a crossed ^-bimodule.

An explicit description of the actions of K, E, F and a, b, c, d on Vkl will be
given in the next section (6.4). One sees 5.2 Example gives a description of Vl0.

When V is a crossed £q-bimodule, let V(~] denote the βg-comodule V on which
a, b, c, d act by the operations of — a, — b, — c, — d. One verifies the 12 commutation
relations for V{~\ The corresponding comodule structure for the quantum double
Sq = Endc(β^) is obtained through the multiplication of τ.

The following two theorems will be proved in the next two sections.

5.4 Theorem. Vkl and V^ give a complete set of representatives for the iso-
morphism classes of all simple finite dimensional crossed B^-bimodules.

5.5 Theorem. All finite dimensional crossed Bq-bimodules are completely reducible.

We deduce 4.9 Theorem from these results. Let Aq be the *-algebra defined by
generators a,β,y,δ and the 17 relations of 4.7. It has a *-Hopf algebra structure
given by 4.8, and it corresponds to the quantum Lorentz group SL^(2, (C). There
is a canonical surjective *-Hopf algebra map Aq-+Aq9 and the coalgebra map Φ
factors as

Let Eq be the largest subcoalgebra of Sq = Endc(2^). 5.5 Theorem means Eq is
cosemisimple, and 5.4 Theorem means it is the direct sum of the coefficient spaces
of simple comodules Vk t and VkΊ\ k,le\t\. In other words, the map

Φ + Φτ: (Bq ® B°qη ® (Bq ® B°q

p) ̂ Aq + Aqτ c i q

is injective and has image Eq. Since Aq + Aqτ is contained in Eq, it follows that
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Eq = Aq + Aqτ = Aq © Agτ and that Φ is an isomorphism. This implies the projection
Aq -+ Aq is an isomorphism, and the statements (a), (b), (c) of 4.9 follow.

As a corollary of 5.4 and 5.5, it follows that every locally finite crossed
l^-bimodule (or a locally finite representation of SL^(2, <C) in the terminology of
[PW]) V is isomorphic to the direct sum Vx ® V(

2~
) for some uniquely determined

(up to isomorphisms) ^-comodules V1,V2. Λ^-comodules are smooth representa-
tions of SL^(2,C) in the terminology of [PW]. Thus our results give an affirmative
answer to the Conjecture 6.4 of [PW].

6. Finite Dimensional Simple Crossed Z^-Bimodules

We prove 5.4 Theorem. We begin with describing the bimodule structure of Vkl.
The bimodule structure of Vt =<Cw©Cι; is described in 5.2. We can identify

Vk as the subspace of Vι®-"®V1 (k copies spanned by Flvk. Ogi^/c, with
vk = u ® ® u. It is a sub-bimodule, and the following description follows easily
by induction using the 12 commutation relations of 5.1,

l-qFi-1vk, (Fivk)d = q'^'^Ψυ^ (6.1)

for O^i^k. Here and in the following, we use the notation

q-q

The expression {Fιυk)c should be interpreted to mean 0 when i = 0, since [0] = 0
(though F~ ιvk has no meaning). Such a convention will be used in the following.

The description of V%(=V0Λ) involves the signature of q. Let η be the signature
of q in the rest of the paper. By definition, the X^-comodule K* has a base w*, v*
such that the coaction is given by

By using the expression below 4.6, one sees the actions of X, £, F and a, b9 c, d on
V* are described as follows.

Ku* = qu*, Kv+^q-h*, Eu* = 0, Ev*=-qu*9

Fu*= - 4 ~ V , Fι;* = 0,

u*a = ηq'1/2u*9 υ*a = ηq1/2v*9 u*b = ηq1/2(l - q~ V , u*6 = 0,

w*c = 0, ι;*c = 0, u*d = ηq1/2u*, v*d==ηq-ί/2v*. (6.2)

We can identify Vf as the span of Eiv_ι, 0 ^ i ^ I in V*® ••• ® K* (/ copies),
where v_t = v* ® ® v*. Similarly as before, one verifies the following expressions:

'v.Jc = 0, {Elv^)d = ?/V(1/2) + i ^ w (6.3)
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It follows from (6.1) and (6.3) that the crossed bimodule Vkl has a base
vitj = Fιvk®EjV-l9 O^i^k.O^j^ /, and admits the following description of the
actions:

hj u J+Wij-i' ( 6 4 )

Here, we use the convention that vitJ means 0 unless 0 ^ i ^ k or 0 rgy S l
The description (6.4) tells that the following modified crossed bimodules are

more natural objects to study.

6.5 Definition. For integers kJ^O, let Vkι mean Vkl if q>0 or I even, and V[~)

otherwise.

The crossed bimodule Vkl has an expression which is obtained from (6.4) by
omitting the factor ηι.

6.6 Corollary, //we put v = υkl in Vkn then we have

va = q-(k + l)f2v, ΰbι+ί=0 = vck+\

and vbιc\ 0 ^ i ^ /, 0 ^j ^ k, form a base for Vkr We have

- (k/2) + (3/2)1 -3i+j

— vblcj+ \
\-q 2

ί-q
2

vbi+ιcj.

6.7 Proposition. The crossed Bq-bimodules Vkl and V^ are simple and pairwise
non-isomorphic.

Proof We show Vk ι is simple. The base element ι?. . has weight k — I + 2(j — /)
k + l

relative to K and weight i—j relative to a. The pairs of weights are distinct

for distinct (ij). Hence a subbimodule of Vkl is spanned by a set of y. r In particular,
it contains some v.j if it is non-zero. Applying b and c, one sees it contains v0 0 .
It is easy to see Vk t is generated by v0 0 over Uq. This implies Vk t (and V^ also)
is simple. To see they are mutually non-isomorphic, note that Vk z has highest
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k — I
weight k + / relative to K, and the corresponding weight vector has weight

/ k-l\
relative to a. Since the pair I k + /, ) determines (kj), it follows that Vkl and

K[~} for all /c, / are mutually non-isomorphic. Q

For a crossed 2^-bimodule V and /l,μe<C, let Vλμ be the subspace of veV
such that Kv = λv and va = μv. It follows from the commutation relations of b, c
with K,a (4.2 and 5.1), that we have

6.8 Lemma. // V is finite dimensional, Vλ0 = 0.

Proof. We may assume λ Φ 0. Since Vλ ob c Vq.2χ 0 , b is nilpotent on KΛ 0 . Similarly,
c is nilpotent, too. Since 1 =ad — q~^bc, we have ι;= —q~ιvbc for i^e^Q. This
implies t> = 0, •

6.9 Lemma. Let veVλφ. We have

(1) vc-(l-

(2) ι;fc + ^ ( l - q ^ μ

Proo/. (1) Let w be the element of the left-hand side. Since

(Ev)a =-q~x E(va) + q~ι K{vc) = q~1μEv + qλvc,

we have

wa = qμvc — (1 — q~2)λ~ 1μ(q~1μEv + gAfc)

= f̂" ιμυc — q~ι{\ — q~2)λ~1μ2Ev = q~iμw.

Since t c and Ev have weight g 2 i relative to K, so is w. (2) is similar. •

Let V be a finite dimensional simple crossed 2^-bimodule. We show V is
isomorphic to Kkί or V{

k~
] for some natural numbers kj.

There are A, μ e C — {0} such that Vλ μ φ 0, since the actions of X and α commute
with each other. We can choose λ,μ so that Vxq-Sμ = 0 for all veC and integers
s > 0. Take a non-zero element i; in Vλμ. Since K^^- iμ = 0 = ^- 2Λ,^- V ^ f°H° w s

from 6.9 that

vb= -q{l-q~2)λμFv and t c = (1 - q~2)λ~ιμEv. (6.10)

Note that vblcj is in K^u- ί)Λ qi+jμ. Hence they are linearly independent if non-zero.

6.11 Lemma. vblcjd = μ'^q-^Kvb^ Λ- q~

Proof. Apply 1 = ad — q~ιbc to vbιcJ. Π

6.12 Lemma. We have

(1) 1 i 1

(2)

Proof. (1) If Ϊ = 0, this is (6.10). (We use the convention that [Olt ί Γ 1 means 0).
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We have by (6) of 5.1,

E{vbι) = q-^EiΌb*-1)^ + vbl- 'a - K{vbl~ ιd\

where vbi-1a = qi~1μvbi-1 and vb^^^μ'^1-^'1 + q~ιvbic) by 6.11. Hence
K(vbi~1d) = μ-^^-^λivb1-1 +q~1vbic). Using this, the claim follows by
induction. (2) is similar. •

There are only finitely many pairs of integers (ij) such that vbιcj Φ 0, since
they are linearly independent. Take the largest integers fc, / ̂  0 such that vck Φ 0
and vbιφ0. It follows from (6.10) and (7) (respectively (10)) of 5.1 that the vector
Eh (respectively Fιv) is proportional to vcj (respectively vbι). Hence,

Ekvφ0, Ek + 1v = 0; Fιvφ09 Fl + 1v = 0.

It follows from [APW, 1.11 Lemma] that

λ = qι~k.

Letting i = / + 1 in (1) of 6.12, we conclude that

μ2 = λq-2i = q-k-i9 s o μ β ± ί - ( k + i)/2i

Assume we have μ = g~(fc + ί ) / 2 .

6.13 Proposition. The correspondence ϋbicJ\-+υbιcj gives an isomorphism of
Bq-bimodules Vkl £ V.

Proof. Call the above correspondence Φ'Vktl-+V. This map commutes with the
actions of K and α, since v and v have the same weights relative to K and a.
Obviously, it commutes with the actions of b,c. By using 6.12 Lemma and the
fact that

E(Όbιcj) = qJ(E(υlJ))cJ, F(vblcj) = q^Fivctyb1,

one sees easily that the last two identities of 6.6 Corollary hold with υ replaced
by v. Thus, φ commutes with a,b,c and K,E,F. It commutes with d, too, since
6.11 Lemma (with μ = q~(k+l)/2) holds for v. It follows that φ is a homomorphism
of βq-bimodules. Since both Vk x and V are simple crossed bimodules, one concludes
that φ is an isomorphism. Π

In case μ = —q~{k + l)/2, one gets an isomorphism Vk~
] ^ V. This concludes the

proof of 5.4 Theorem.

7. Complete Reducibility

We prove 5.5 Theorem.
A Hopf algebra H over a general field k is called co-semisίmple if all (right or

left) if-comodules are completely reducible [S, XIV]. The following criterion seems
fairly well-known among specialists, but it is difficult to find an explicit literature.

7.1 Proposition. The following are equivalent.
(1) The Hopf algebra H is cosemisimple.
(2) All exact sequences of H-comodules of the form
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split, where k denotes the trivial 1-dimensional comodule.
(3) (2) is true for all simple comodules W.

Proof. (3) => (2) is an easy exercise. To prove (2) => (1), let V be a comodule for H
and W a subcomodule of V. We show W is a direct summand of V. We may
assume V is finite dimensional. Then Homfc(K W) has a comodule structure
isomorphic to W ® V. The restriction induces a surjective comodule map

Let Kbe the inverse image of kl which is a subcomodule of Homfc(M^ W). We have
a surjective comodule map F-»fc->0 which splits by (2). If lt-n//, fc-> F is a section,
ι/f is a comodule map V^W such that ^ | W = /. Π

We show every exact sequence of crossed i^-bimodules

splits. The same method applies to V(

k~\ too. It will follow from 7.1 that the largest
subcoalgebra Eq of the quantum double Sq = End c (l^) is cosemisimple, yielding
5.5 Theorem.

The above exact sequence splits as i^-comodules, since Bq is cosemisimple. Let
V = Vk ι © (Cζ be the decomposition as ̂ -comodules. We have Kζ = ζ, Eζ = 0 = Fζ
and there are elements wfl, wb, wc, wd in Vkl such that

7.2 Lemma. We have

(1) Kwa = wa, (2) Kwb = q~2wb, (3)Kwc = q2wc, (4)

(5) £wΛ = - q2wc, (6) £w6 = wa - wd, (7) Ewc = 0, (8) £wd = wc,

(9)Fw f l = W , (10) Fw, = 0, (11) Fwc = q-\wd-wa\ (12) Fwd=-

(13) wbα = q(wb + wjή, (14) wcfl = # c + w/),

(15) wbd = q-\wb + wdb\ (16) wcrf = (7-\wc + wdc),

(17) w&c = wcfe,

(18) wfl + wdα = qwbc, (19) wd + wαd = q~xγ>bc.

Proof. The first 12 relations are consequences of 5.1 applied to v = ζ. The remaining
7 relations follow from the commutation relations of 4.2. •

7.3 Corollary. wb = 0 if and only if wc = 0.

Proof. If wb = 0, wα = wd by (6), and wc = — q2wc by (5), (8). Hence wc = 0, since q
is real. Similarly, wb = 0 if wc = 0. •

We will find all non-trivial pairs of elements wb, wc in Vk z satisfying conditions
(2), (3), (7), (10), and (17).

The Clebsch-Gordan rule [T2, Proposition 2.4] tells that

as ^-comodules or ί7^-modules. This means the L^-module Vkl has a highest
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weight vector of weight 2 (or a lowest weight vector of weight — 2) if and only if

k = lmod2 and |Jfc-Z|^2gfc + Z.

This condition is satisfied if and only if (k, Z) is of the form (r + 1, r + 1), (r, r + 2), or
(r + 2, r) for some r ^ 0. In any case, we have

We have a highest weight vector ]Γ xivr_il_i of weight 2 (respectively a lowest
ϊ = 0

r

weight vector £ y ^ . ^ ^ of weight —2), where
ϊ = 0

Let

r r

ι = 0 i = 0

We have by (6.4),

Wcb= - q λ ( ^ f - - g - 1 ) X x i [ ΐ + l ] [ / - ί > Γ - u - i - . 1 ,

WftC = μ(<7 - ^ " ^ Σ ^ . P + 1]ίk ~ Qvk_i_lr_i.

Case (k,Z) = (r + 1,r + 1). Condition wbc = wcb implies — qλxt = μyh 0 ^ Ϊ ' ^ r .
Since xt = yt in this case, this is equivalent to μ = — <?/.

Case (k, Z) = (r, r + 2) or (r + 2, r). In this case, one of wbc and wcb has length r, and
the other r + 1. Hence the condition wbc = wcb will imply both are zero. If r > 0,
it follows that wb = wc = 0. If r = 0, we have

λ = 0 if fc<ί,

μ = 0 if Z<k.

Summarizing the above, we get the following.

7.4 Proposition. The following list gives all non-trivial pairs of elements wb, wc in
Vktl satisfying conditions (2), (3), (7), (ίO), am/ (17) o/ 7.2.

(a) k = Z = r + 1 wiίΛ r^0 and
r r

wb=-qλ £ z , ! ^ . ^ , wc = A X z ίι?Γ_ i i Γ + 1_ ί,
i = 0 i = 0
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(b) fc = O, / = 2, wb = λv0,0, wc = 0,

(c) k = 2,l = 0, wb = 0, wc = λi>o,o>

To show that the extension V = Vk t © Cζ is trivial, first we reduce to the case
wb = wc = 0. By 7.3 and 7.4, it is enough to consider the case (a) of 7.4. In this case, let

r+1

i = 0

where

sί = (-^ + 1 )(-^- 1 ) (-^ + 1 - 2 ( '- 1 0[r+l][r]

Then Kω = ω, isω = 0 = Fω. Since we have

z . = [ r + l ] - i s . [ r + l - f ]

it follows from (6.4) that

>
i = 0

Hence, if we use

ί' = f-Λ(l-«~2Γ1l>+ir1ω
instead of ζ, then we have Cft = 0 = ζ'c.

We may assume wb = wc = 0. We have wfl = wd by (6) or (11) of 7.2. Call this
w. Then Kw = w by (1), £w = Fw = 0 by (5), (9), H* = WC = 0 by (13), (14), and
wa = wd= — w by (18), (19). (We refer to conditions of 7.2). If we put

it follows that we have V =Vkι®<Eζ9 where <Eζ is a subbimodule isomorphic to
the trivial bimodule (C. This shows that every extension of C by Vk, is trivial. The
same argument applies to Kj^, too. This will finish the proof of 5.5 Theorem.

8. Appendix. The Braiding Structure

In this appendix, we discuss the braiding structure on Aq. Mostly, we work over
a general field k.

The category of (right) crossed bimodules for a bialgebra H is pre-braided
[Y, Theorem 5.2]. This means if X, Y are crossed bimodules, then the map

{ ) (8.1)

is a bimodule map satisfying the coherence condition

s* ® γ,z = (sXtγ ® h)(Iχ ® sy,z),

SΛ:,r ®z = (/y ® SΛ:,z)(Sχ,y ® / z )
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The map sxγ is an isomorphism for all crossed bimodules X, Y if H has a twisted
antipode, i.e.', if Hop or //c o p is a Hopf algebra [Y, Theorem 7.2]. Then the category
of crossed bimodules is a braided category. This is the case if H has a bijective anti-
pode.

On the other hand, the concept of a braided bialgebra was introduced by Larson-
Towber [LT] and independently by Hayashi [H]. Let A be a bialgebra. By a
braiding on A, we mean a unit in the algebra (A (x) A)' which we identify with a
bilinear map

satisfying the following conditions:

(8.2)

for all x,y,z in A
If A is a braided bialgebra, then Com"'4, the category of (right) Λ-comodules,

is braided. If V, W are X-comodules, then the braiding is given by

Σ(i)>w(i)>w(θ)®v(oy ( 8 3 )

Conversely, if the category Com"'4 is braided, there is a unique braiding on A
such that the braiding of Com"'4 is given by (8.3) [LT, Proposition 2.13]. In other
words, there is a 1-1 correspondence between braidings on A and braidings on
Com"-4.

Let H be a Hopf algebra with bijective antipode, and let A be a subbialgebra
of δ = Endfc(//), the quantum double. The bialgebra A has the following braiding

<x,y> = <π2(x),π1(y)>, x,yeA, (8.4)

where we use the topological Hopf algebra maps of (2.5) and the canonical pairing
between //' and H. Note that Com"'4 is identified with a sub-monodial category
of the category of crossed if-bimodules.

8.5 Proposition. The braiding on Com"74 given by (8.4) and (83) coincides with the
one induced from the braiding structure of the category of crossed H-bίmodules.

Proof. Let V9 W be ,4-comodules. Note that

Vϊ-+ΣV(0)®π2(V(i)l VGV9

(respectively
w | ->Σ w (0)® π i (w ( 1 ) ) , weW)

gives the //-module structure on V (respectively the //-comodule structure on W).
Hence we have

veV, weW. This means the braiding sv w (8.3) coincides with the braiding sxγ

(8.1) if X, Y denote the crossed bimodules identified with V9 W. •
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We are in this situation if we take H = Bq and A = Aq. In this case, the braiding

(8.4) is defined by using the Hopf algebra maps

π1:Aq^>Bq, π2:Aq->Cq

and the canonical pairing between Cq and Bq. Since π x and π 2 are *-algebra maps,

too, it follows from the definition of * on B'q (above 4.1) that we have

>, x,yeAq.

Since <x,y> = <S(x),S(y)> [LT, Proposition 2.9] and S(y)* = S~\y*\ it follows
that

\y) = (x,S-\y)y, x,yeAq.

In a word, Aq is a braided *-Hopf algebra.
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