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Abstract. The quantum mechanics of the charged particles with rigid and local
symmetries propagating on the manifold M is studied. It is shown that the classical
rigid symmetries of this model may be anomalous. These anomalies are of local
and global type, and they related to topological obstructions to lifting a group
action of a group G on M to a principal (7(1) bundle P over M. The charged
particles with local symmetries may have additional anomalies and the representa-
tion theory of the group G is used to study these anomalies. Finally, the quantum
mechanics of the supersymmetric charged particles with symmetries is examined.

1. Introduction

The classical and quantum theory of a charged particle coupled to a (7(1) gauge
field (magnetic field) has attracted much attention. This is due to the existence of
quantum mechanical properties of this model which have topological interpretation.

There are two such quantum properties. The first one is Dime's observation
that the coupling constant of gauge field must be quantised [1]. The second
property is the observation of the authors in refs. [2-4] that the symmetries of
the classical equations of motion of this theory might be anomalous. In ref. [2],
N. S. Manton observed that a (7(1) symmetry of a charged particle propagating
on a flat torus is anomalous. In ref. [3], R. S. Ward extended this result to
the (7(1) symmetries of a charged particle propagating on any manifold M. The
anomaly was contributed to the fact that the (7(1) charges at the quantum level
are locally defined operators. These anomalies were also observed in ref. [10] using
path integral methods. Finally in ref. [4], R. Jackiw suggested that the algebra of
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charges associated with the symmetries of a charged particle may develope a central
extension even that the classical level.

In ref. [5], it was observed that these anomalies have a topological interpreta-
tion. They are related to obstructions to lifting a group action fg of a group G
on M to a 17(1) principal bundle P = P(M, 1/(1), π) over M with projection π and
by using topological methods a refinement of the results of refs. [2-4] was obtained
The group action fg generates the classical rigid symmetries of the model. P arises
naturally in the quantum theory of the charged particle from Dirac's quantisation
condition.

In this paper, the aim is to emphasise the importance of global and topological
properties of the manifold M in which the charged particle propagates in the
quantisation of this theory and to provide a unified treatment of the quantum
properties of the (supersymmetric) charged particle with symmetries. The main
result of this paper is the proof of the correspondence between the anomalies in the
rigid symmetries of a charged particle and the topological obstructions to lifting
a group action fg to a principal bundle P. It is shown that there are both local
and global type of anomalies. Several examples of anomalies are given.

A subgroup G' of the rigid symmetry group G of a charged particle is gauged.
Then it is shown that the gauged charged particle may have additional anomalies
apart from those of the charged particles with rigid symmetries. These anomalies
exist whenever the Hubert space of the corresponding quantum mechanical model
with the rigid symmetries does not carry the trivial representation of G' as subgroup
of G. If this anomaly is present, the imposition of the physical states condition for
a gauged charged particle leads to an empty physical Hubert space. Finally, the
quantum mechanics of the N = 1 supersymmetric charged particle propagating on
a manifold M with a group action fg is studied. In this case, the anomalies in the
symmetries of the.model generated by fg are related to the obstructions to lifting
the group action to a principal bundle P = P(M,K,π) over M with fibre a
(non-abelian) group K. Moreover, it is shown that some of the anomalies of the
supersymmetric charged particle correspond to obstructions of a topological
extension problem.

In Sect. 2, the classical theory of the charged particle with rigid and local
symmetries is considered. Particular attention is paid on the global and topological
issues that arise at the classical level.

In Sect. 3, the quantisation of the theory with rigid and local symmetries is
studied. It is shown how the liftings of the group action fg of the group G can be used
to construct unitary representations of G on the Hubert space of the theory and
the correspondence between anomalies and topological obstructions is established.

In Sect. 4, the anomalies of the models with rigid symmetries are examined.
This is achieved by using the results of the appendices regarding the obstructions
to lifting group actions on principal bundles. Several examples of local and global
anomalies are given. In Sect. 5, the supersymmetric charged particle with rigid
symmetries is considered. For this model it is shown that some of its anomalies
correspond to obstructions of a topological extension problem.

In Sect. 6, the spectrum of the Hamiltonian operator of the charged particles
propagating on any homogeneous space G/H is presented where G is any compact,
connected and semisimple Lie group. The standard left action of G on G/H is
gauged and an example of a gauged model with empty physical Hubert space is
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given. In Sect. 7, we give our conclusions and include a comment on the imposition
of classical symmetries to the quantum sectors associated to different 0-structures
[12] that appear in the quantisation of the charged particle.

In Appendix Al, the problem of lifting a group action fg of a compact Lie
group G on M to a principal bundle P = P{M, K, π) over M is stated and the
necessary conditions for the existence of a lifting are given. In Appendix A2, the
Hattori-Yoshida theorem [6,7] that describes the necessary and sufficient condi-
tions to lifting a group action fg of a compact Lie group G on a manifold M to
a principal (7(1) bundle P = P(M, 1/(1), π) over M is presented. The obstructions
are studied using (continuous) group cohomology [8] and singular cohomology.
In Appendix A3, a simple way to describe the obstructions to lifting the group
action of any compact and connected group G to a principal U(l) bundle
P{M, t/(l),π) is given. Finally in Appendix A4, the lifting of the left group action
of G on the homogeneous space G/H to any principal bundle P = P(M, K, π) over
G/H is briefly examined [9]. The lifting problem of group actions to principal
bundles with discrete fibres is also stated [17, 12].

2. Classical Theory

The equations of motion of a charged particle propagating on a manifold M are

-V ί S ί φ
i + g yω j*3 f0

k = O, 3, = δ/St, (2.1)

where φ is a C00 map from a wordline / = [0,1] (tel) to a C00 manifold M with
metric g, ij= l , . . . ,dimM. Vί = δί0

ίVI and Vt is the Levi-Civita connection of
the metric g of M and ω is a closed (dω = 0) but not necessarily exact two form
of M. The manifold M is restricted to be compact, path connected, oriented and
without boundary.

Let {Ua} be a good cover of M, the Lagrangian of the theory is given by

K = i\β)^tΦ%Φi + biadtΦ[ (2.2)

on each Ua of M where ωa = dba and

bβ = ba + dwβa (waβ=-wβa) (2.3)

are the patching conditions of {ba}. waβ is a function defined on the intersection
Uaβ = UaΓιUβ of any two open sets Όa,Όβ subsets of M. The momentum
pia — dLJddtφ

ι of the theory is locally defined and obeys the patching conditions

Pβ = P* + dwβa. (2.4)

The Hamiltonian

Ha = (l/2)gj/(pία - bia)(pja - bja) (2.5)

is globally defined (Ha = Hβ) under the patching conditions (2.3) and (2.4). Finally
the symplectic form Ωa = dpia A dx^ is a globally defined two form as well.

To continue, let fg be a group action of a group G on a manifold M, i.e.
fgfg' = fgg'y V&fl'eG and fe = Id M ; e is the identity element of the group G. The
equations of motion (2.1) of the charged particle are invariant under fg provided
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that

/*g = g (2.6)

and

f*ω = ω9 VgeG, (2.7)

where /*g (f*ω) is the pullback metric (two-form). Equation (2.6) implies that fg9

V#eG are isometries, and Eq. (2.7) indicates that the closed two form ω is invariant
under the group action fg.

For every group action fg of a compact Lie group G, we can always find a
metric g7 (two form ω7) that satisfies (2.6) ((2.7)). Indeed given any metric g, we set,

to = ίfUdμH{g)9 (2.8)
G

where dμH is the normalized Haar measure in G.* Similarly, we can construct ωr

However, if the group G is disconnected the cohomology class [ωj] of ω 7 in
H2(M, R) may not be the same as the class [ω] of the closed form ω.

Let ka9 a = 1,..., dim G, be the vector fields on M generated by the group action
fg. Infinitesimally, Eqs. (2.6) and (2.7) become

Lag = 0 (2.9)

and

Lαω = 0, (2.10)

where La is the Lie derivative with respect to the vector field ka. La = ιad + dιa,
where ιa is the inner product with respect to vector field ka that maps q forms to
q — 1 forms. The conserved charges associated with the symmetries generated by
fβ are

Qa* = KΛ(piΛ-bia)-ma0[, (2.11)
where

ιaωa = dmaa, (2.12)

and maa is a locally defined function on M. The charge Qa is globally defined on
M provided that maΛ is globally defined as well, i.e. maa = maβ. The poisson bracket
algebra of charges is

{βα.,β*«}=-/S>β« + cβfcβ, (2.13)

where fa

bc are the structure constants of the Lie algebra (Lie G) of the group G and
caba is a central extension given by

Cab* = V * ω α - f c

a b m c a . (2.14)

cab is a constant.
To study mαα and the central extension cαftac, we define,

πar=$ιaω(x) (2.15)
Cr

and
τ f l,= ίv*ω(x)</μ(x), (2.16)

Λf
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where Cr are 1-cycles of M and dμ is the measure in M constructed from the
metric g. Both πar and τab are Lie algebra cohomology cocycles [22], i.e. the class
of π is in f/^Lie G, H\M, R)) (R real numbers) and the class of τ is in # 2(Lie G).
Lie G acts trivially on Hί(M, R). If πar vanishes (παr = 0), it implies that ma is globally
defined, i.e. maa = maβ. Consequently the charge Qa is globally defined as well. Then
observe that cab is cohomologous to ταb, and if τab represents the trivial class in
H2(LΪQ G) after a suitable redefinition of the charges the central extension cah of
the algebra (2.13) vanishes. This concludes the study of the rigid symmetries of
the charged particles.

To gauge a subgroup G of the symmetry group G, we introduce a gauge field
A. The Lagrangian of the theory [14] is locally given by

VtΦiVtΦί + biadtφ[ - ma,aA
a\ (2.17)

where

Vtφ^ = dtφ\ + A^k^ (2.18)

and a! = l,...,dimG'. The fields φ are C00 sections of the fibre bundle
P(I, G', π)xG,M over the world line / = [0,1], where P(I, G', π) is a principal bundle
over / and A is a connection of P(I, G', π). The Lagrangian (2.17) is gauge invariant
(up to surface terms), if the central extension c α & α (2.13) of the algebra of charges
is the trivial class in iί2(Lie G). The equations of motion are globally defined
provided that π f l V (2.15) vanishes. The Hamiltonian of the theory is

where Q«, a' = 1,..., dim G', are the charges given by Eq. (2.11). The connection A
in (2.19) is a Lagrange multiplier and Qa. is a first class constraint that obeys the
algebra (2.13) under Poisson brackets. If G = (G" x U(l))/Γ, G" is a subgroup of G
and Γ a finite group, the Lagrangian (2.17) can be modified by adding a Chern-
Simons term associated with the (7(1) subgroup of G.

3. Quantisation

To quantise the charged particle propagating on a compact, path connected,
oriented manifold M without boundary, we use canonical commutation relations
on each patch of the good cover {Ua} of M to construct (after a choice of an
ordering ambiguity) the locally defined Hamiltonian operator

H, = - (l/2)g«(Vfa - ibuMj. ~ ibJx), (3.1)

where V̂  is the Levi-Civita connection of the metric g. The locally defined operators
{HΛ} can be patched together (Hβ = hβaHahaβ) to give a globally defined operator
H on M provided that the following patching conditions hold:

haβ = exp iwaβ (3.2)

and

KβhβγK*= *' V = (KβV1 (3-3)

on the overlaps Uaβ and Uaβy correspondingly.
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The operator H acts on the set of C00 functions {φa} which obey the patching
conditions

Ψβ = hβaψΛ. (3.4)

The Hubert space of wave functions of the theory is the space square integrable
sections L2(Γ(L),dμ) of the complex line bundle L with transition functions {haβ}.
{ba} is a connection of L. This is Dirac's quantisation condition. The inner product
in L2(Γ(L\dμ) is given by

J , (3.5)
M

where <,> is an inner product on the fibers of L compatible with the connection
b,dμ is the measure in M which^ is constructed from the metric g and
ψί,ψ2€L2(Γ(L),dμ).1 The operator H has a self adjoint extension in the Hubert
space L2{Γ{L\dμ).

Next suppose that the manifold M accepts a group action fg of the group G.
The Hamiltonian operator H remains invariant under fg provided that fg are
isometries, V#eG, and leave the connection {ba} invariant up to a U(l) gauge
transformation. The latter is true, if and only if, there is a lifting f\ of the group
action fg to the principal U(\) bundle P = P(M, 1/(1), π) associated with the line
bundle L [15]. Given a lifting / ] of G on P, it is always possible to construct a
lifting fl u of G to any associated line bundle LU = P xuC of P, where u is any
unitary irreducible representation of 1/(1) and C is the set of complex numbers.
The representation u is taken to be irreducible because otherwise Lu decomposes
to a direct sum of complex line bundles. The lifting f\u is defined by
f\ UCA CΛ = U\(P\ c]> where peP and ceC. Using the lifting f\u, we can construct
a unitary representation D [12,24] of the group G on L2(Γ(L\dv) by setting

(D(g)φ)(x) = (p{g- \ xψ2f\j{f-ι W), (3.6)

where ψeL2(Γ(Lu), dv\ dv is a quasi-invariant measure on M and p(g, x) given by

p(g, x) = dv(fg(x))/dv(xl p>0 (3.7)

is the Radon-Nikodym derivative. In the case of the charged particle with
symmetries, dv is set equal to the invariant measure dμ of the metric g (Eq. (2.6))
and p = 1.

In conclusion, the symmetries of the charged particle generated by the group
action fg of the group G are represented by unitary transformations on the Hubert
space L2(Γ(L)9 dμ) of the theory, if and only if there is a lifting f\ of fg on the
complex line bundle L that arises from Dirac's quantisation condition. Therefore
the obstructions to lifting the group action fg on M to L correspond to the
anomalies in the quantisation of this model. These anomalies are examined in
Sect. 4.

Having studied the quantisation of the charged particle with rigid symmetries
generated by the group action fg of the group G, we now turn to examine the

1 If M is a two-dimensional manifold, it is always possible to arrange such that L be a spin
bundle and therefore the wave functions φ are (commuting) spinors
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quantum mechanics of the charged particle with local symmetries generated by
gauging the subgroup G' of G. This theory described by the Hamiltonian (2.19) is
quantised in a similar way as the model with rigid symmetries. However in this
case the charges Qa> are first class constraints and after quantisation they should
annihilate the wave functions of the physical subspace Hphys of the total Hubert
space L2(Γ(L\dμ) of the corresponding theory with the rigid symmetries. Hphys

consists on the wave functions φeL2(Γ(L),dμ) that lie in the trivial representation
of G <= G as subrepresentation in D and it is the Hubert space of the gauged
charged particle. For a general line bundle L and a group action fg, D does not
necessarily contain copies of the trivial representation of G'. If this is the case,
ifphys is an empty space, i.e. the theory does not have a physical Hubert space and
therefore is anomalous. An example of this phenomenon will be given in Sect. 6.

4. Anomalies

In Sect. 3, it was shown that the symmetries of a charged particle generated by a
group action fg of a group G on a manifold M are anomalous whenever there are
obstructions to the existence of a lifting /J of fg to a principal (7(1) bundle
P = P(M, 1/(1), π) over M.

In the first part of this section, we study the local anomalies associated with
the group action fg of a compact and connected Lie group G on M and in the
second part, we examined the global anomalies which correspond to the group
action fg of a disconnected group G. The latter are similar to the global anomalies
described in ref. [19].

4.1 G Connected. For a compact and connected group G, the obstructions to lifting
the group action fg to the principal (7(1) bundle P over M are represented as
follows: let c :(P) be the first Chern class of P. Then from the Kunneth formula,
we get

f*{c1(P))=l®c1(P) + a + f*c1(P)®l9 (4.1)

where f:G x M^M is the group action of G on M and fo:G-+M is given by
fo(g):= f(g>χo)' >xo is a point of M. In general, the classes aeH1(G9H

1(M9Z)) and
f%cι(P)eH2(G,Z) are different from zero and they serve as the obstructions to
lifting the group action fg to the principal (7(1) bundle P. (For more details see
reference [7] and Appendix A3.)

Therefore the anomalies are represented by the classes a and /*Ci(P). Moreover
observe that up to torsion elements in the cohomology of the group G, a and
/*Ci(P) can be related to the Lie algebra cohomology cocycles π and τ given by
Eqs. (2.15) and (2.16) correspondingly.

Any compact and connected Lie group G can be decomposed as G = (Ga x Gs)/Γ,
where Γ is a finite subgroup of the center of the product Ga x Gs. Ga is a product
of (7(1) groups and Gs is a product of simple, simply connected, and compact Lie
groups. Using this decomposition of G, we can study the anomalies a and f%cγ(P)
for each component of G separately. Indeed, if G = Gs semisimple, simply con-
nected, and compact Lie group, the group action fg of G always lifts. This follows
from the observation that the first and second cohomology of G vanish with
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arbitrary coefficients, i.e. H1(G,H1(M9Z)) = H2(G,Z) = 0. Therefore the classes
aeH^G.H^M.Z)) and /*c1(P)e//2(G,Z) are equal to zero.

Now let G = Ga = (1/(1))". In this case HX(G9 H
ι(M, Z)) and H2(G, Z) are different

from zero and there are potential obstructions to lifting 1/(1) group actions to
principal 1/(1) bundles. The obstructions aεHι(G,Hι{M,Z)) and ffaWeH^CZ)
are given in terms of the cocycles π and τ (Eqs. (2.15) and (2.16)). This is because
H1(G,H1(M9Z)) and H2(G,Z) do not have torsion terms. An example of an
obstruction to lifting a (U(l))n group action is the following: let G= U(1),M =
S1 x S1 and fg the diagonal action of U(l) on M. It can be shown that fg does
not lift to any non-trivial U(l) principal bundle over M. This is in agreement with
the results of refs. [2,3].

To study the effects that the finite group Γ has on the obstructions, we assume
that the group action h = f (j x 1) of the group Ga x Gs on M lifts to a principal
U{\) bundle P = P(M, 1/(1), π), where / is the action of the group G = (Gax Gs)/Γ
on M and j is the projection /:Gα x Gs-+G. To find the principal U(l) bundles
P = P(M, ί/(l), π) over M that admit a lifting of the action h of the group Ga x Gs

but they do not admit a lifting of the group action / of G consider the commutative
diagram

(GaxGs)xM

jχ\ id*

(4.2)

GxM —-—>M

The induced commutative diagram on the second cohomology is

H2((Ga x Gs) x

(4.3)

H2(G x M, Z) < — ^ — H2(M, Z)

Since the principal 1/(1) bundle P = P(M, ί/(l), π) admits a lifting of h, it implies
(Appendix A3) that hϊc^P) = 1 ® c^P). However from the Kunneth formula, we
get /*Ci(P) = 1 ®Ci(P) + α + f*Ci(P)®l (Eq. (4.1)) and from the commutativity
of the diagram (4.3), (j x l)*a = 0 and 7*/* c i(^) = 0. Therefore, the obstructions
to lifting the group action / of G while the group action h of Gax Gs lifts to the
principal (7(1) bundle P with first Chern class cλ(P) are elements of Ker( j x 1)*
restricted on H^G.H^M.Z)) and Ker;* restricted on H2(G,Z). Keτ{j x 1)*
restricted on H^G^^M^)) and Ker;* restricted on JF/2(G,Z) are easily
calculated in some special cases.

For example let G be a simple, compact Lie group and Γ be a subgroup of
the centre of Gs such that G = GJΓ. Since Hι{G,Z) is equal to zero, Ker(; x 1)*
restricted on H1(G,H1(M,Z)) is equal to zero and the obstruction a always
vanishes. However Kery* restricted on H2(G,H) is equal to Γ; this can be seen
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by observing that for the simply connected, simple, and compact Lie groups the
second cohomology vanishes and H2(G, Z) = Γ. For example the standard action
of SO(3) on S2 does not lift to the Hopf fibration over S 2 or any other principal
1/(1) bundle over S 2 with odd first Chern number although the standard action
of SU(2) on S2 lifts to all principal (7(1) bundles over the sphere. The obstruction
class to lifting the action of SO(3) group is given by the non-trivial element of the
cohomology group H2(SO(3\Z) = Z2.

To give another example, we take G = (7(1) and Ga the Zp covering of G. If w
is the generator of H1(G, Z) then j*w = pw, where w is the generator of Hί(Ga,Z).
Thus Ker(; x 1)* restricted on Hι(G,Hι{M,Z)) is equals to zero.

4.2 G Disconnected. Suppose that G be a disconnected and compact group acting
on a manifold Aί with a group action fg. The Hattori-Yoshida theorem [6] gives
the necessary and sufficient conditions to lifting the group action fg of a compact
Lie group G on M to any principal 1/(1) bundle P = P{M, (7(1), π) over M. Indeed
the group action fg of G lifts to P, if and only if f*P £ P, VgeG and P is the
pullback of a principal (7(1) bundle Q = Q(MG, (7(1), π') over M G := EG x G M with
the inclusion map of M in MG. EG = EG(BG,G,p) is the universal classifying
bundle of the group G with projection p. I f / * P ^ P , V#eG, the obstructions
of a principal (7(1) bundle P over M to be the pullback of a principal (7(1)
bundle Q over MG are elements of the cohomology groups H3(BG,Z) and
JΪ2CBG, J Ϊ ^ Z ) ) (Appendix A2).

If the group G is connected, the obstructions described by the Hattori-Yoshida
theorem can be related to the cohomology classes a and /J(cx(P)) of Eq. (4.1). For
the proof of this statement see ref. [7] and Appendices A2 and A3.

Let Go be the connected component of G that contains the identity element e
of G. The sequence

l - ί G o - ^ G — » 4 — > 1 (4.4)

is exact where A is a finite but not necessarily abelian group. To study purely
global anomalies, let us assume that the group action h = (i x 1) / of Go on M
lifts to the principal (7(1) bundle P = P(M, (7(1),π) over M and f*P^P, VgeG.
From the commutative diagram

(4.5)

MGo

and the induced diagram on the second cohomology

H2(M9Z)

I 1 (4 6)

H2(MGo, Z) < - ^ — H2(MG9 Z)
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we can show that the principal (7(1) bundles P over M that accept a lifting of the
action h of Go but they do not admit a lifting of the group action / of G are elements
of the H2(MGo,Z) - Imfc*. ix(i2) is the inclusion of M in MGo(MG).

There are two sources of global anomalies. The first one appears whenever the
principal 1/(1) bundle P = P(M, 1/(1), π) is not isomorphic to the principal (7(1)
bundle f*P for some geG. An example of this type of global anomaly was given
in ref. [5]. A necessary condition for the existence of this type of global anomaly
is that H2(M,Z) has torsion. Indeed, let M = S2 x RP(ή) x RP(n\ where n ̂  3 is
an odd integer, RP(n) is the real projective space and G = SU{2) x Z 2 . SU(2) acts
on S2 with the standard action and the non-trivial element 5 of Z 2 interchange
the two projective subspaces of M. From the Kunneth formula H2(M,Z) = Z®
Z2 Θ Z2 and it is generated by the elements z, α and /?, where z is a torsion free
element, and α, β are torsion elements. The non-trivial element s of Z 2 in G induces
the following transformation on H2(M,Z):

The connected component Go (Go = Sl/(2)) of G lifts to all principal (7(1) bundles
over M. Both cohomology groups H3(BG,Z) and ^(BG.H^M^Z)) vanish.

Let F be the curvature 2-form of a [/(l)-principal bundle P = P(M, 1/(1), π)
invariant under the action of the group G (Eq. (2.7)), and [F] be the invariant,
torsion free representative of F in H2(M, Z). The curvature F does not completely
classify the principal bundle P since both principal bundles with first Chern classes
[F] and [F] + α may have the same curvature form (α and β correspond to flat
principal bundles). Thus, if ct(P) = [F] + α, /(*lf5)Ci(P) = [F] + 0 ^ [F] + α, and the
action fg does not lift to P even though its curvature two-form F is invariant.
Finally, observe that the group G lifts to the principal 1/(1) bundles over M with
first Chern classes, nz and nz + a + β,n integer.

The second type of global anomaly is due to the existence of obstructions to
lifting the group action fg of G to the principal (7(1) bundle P = P(M, l/(l),π)
which are elements in H3(BG, Z) and H2(BG, Hι{M, Z)) even though the connected
part Go of G lifts (the local anomalies vanish) and / * P ^ P , V geG. To give an
example of this type of global anomaly, we set G = Zp. Then we take M = SX x S1

and the group action fk(φ,θ) = (φ + (2/p)π,0 + (2//?)π)mod2π, where k is the
generator of Zp and 0<φ,θ^2π are the standard coordinates on M. Z acts freely
on M and from the fΐbration

EG->MG-+M/G (4.8)

we deduce that MG is homotopic to M/G. M/G is diffeomorphic to S1 x S1. The
inclusion i:M->MG is homotopic to the standard projection M^M/G and the
induced map on the cohomology is i*w = pw and i*z = pz, where {w,z} are the
generators of H1 (M/G, Z) and {w,z} are the generators of H1(M9Z). The second
cohomology H2(M,Z) (H2(M/G,Z)) group is generated by wuz (wuz), where u
is the cup product. This implies that / * F ^ P , V^GG and ΐ*(wuz) = p2 (wuz).
Therefore Im i* is generated by p2 (wuz). Thus all the principal U(l) bundles over
the torus M with first Chern number n such that n mod p2 φ 0 do not admit a
lifting of the group action / of Zp.
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5. Supers} m me trie Charged Particles

Let ξ be a vector bundle with connection Ω over a Riemannian manifold M with
metric g. The covariant derivative V of ξ is compatible with a fibre metric h. The
Lagrangian of N = 1 supersymmetric sigma model locally on M is given [18] by

Lα = (l/2)g l i β Dφ'5 f ^ + (i/2)hABaλ
AVλB + biaDφ\ (5.1)

where φ is a real C00 function (superfϊeld) from the flat super space Ξ 1 ' 1 to the
manifold M, λ is a C00 section of the vector bundle 0*£ over S 1 ' 1 , / ) 2 = iδί5

4,1? = 1,...,rank £ and V = DφiVi. The equations of motion of the Lagrangian
(5.1) are invariant under a group action /^ of a group G on manifold M provided
that Eqs. (2.6) and (2.7) hold, and the connection Ω is invariant up to a gauge
transformation [23]. To quantise this theory, we proceed along the same lines as
in the case of the charged particle. The wave functions of this theory are the square
integrable sections of the vector bundle η = S® L® ε over M, where S is a spin
bundle over M,L is a complex line bundle over M with connection b and ε is
either the spin bundle of the vector bundle ξ9 if ε is a real vector bundle, or ε = ξ2

9

if ξ is a hermitian vector bundle. An inner product in Γ(η) is defined as in Eq.
(3.5). The theory is anomalous, if the manifold M does not admit a spin structure
(vv2 φ 0) [18] (we assume that if ξ is real, it admits a spin structure w2(ζ) = 0). This
anomaly may be cancelled by taking the wave functions to be sections of η = Sc ® ε
vector bundle, where Sc is a Spinc(n) = Spin(n) xZ2U(l) vector bundle [13]. How-
ever, another anomaly may appear which is the obstruction to the existence of a
Spinc structure [20] (w3 Φ 0). A further modification is possible, the wave functions
of the theory may be taken to be sections of a vector bundle η with structure group
SpinG(n) = Spin(n) x Z 2 G [16]. Even after this modification, the theory may remain
anomalous. The anomalies are due to obstructions to the existence of SpinG struc-
tures [21]. The Hamiltonian operator of a supersymmetric charged particle after
a choice of an ordering ambiguity is the Laplace-Beltrami operator of M twisted
with a connection of the vector bundle η.

As in the case of the charged particle, the necessary and sufficient condition
to implement the symmetries generated by the group action fg with unitary trans-
formations on the Hubert space of the quantum theory is the existence of a lifting
f] °f fg o n Ά- This implies that the group action fg must lift to the associated
principal bundle P{M, K, π) of η. However in this case, the structure group of
P(M,K,π) is not necessarily isomorphic to 1/(1) (or a product of (7(1)) and the
Hattori-Yoshida theorem does not apply.

Next suppose that P(M, K, π) admits a lifting / ] of a group action fg. ϊf this
is the case, P{M, X, π) is the pullback of a principal bundle P0(MG, X, π') over
MG = EG xGM with the inclusion map of M in MG (Appendix Al). Thus the
necessary conditions to the existence of f\ can be derived by studying the
obstructions to extend the classifying map V.M-+BK of the principal bundle

2 The wave functions of the supersymmetric charged particle within hermitian vector bundle ξ
are sections of the vector bundle S(g)L® Aξ, where Aξ = Σns=0A

nξ. However the projection from
S®L®Aξ onto 5(χ)L(χ)f can be performed without violating the supersymmetry of the theory
[18]
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P(M,K,π) to MG. The extension problem can be described by the following
commutative diagram

<5 2 )

The map t0 must be specified up to a homotopy equivalence and it is the classifying
map of a principal bundle P0(MG, K9 π') over MG. Given the classifying map t of
P(M, X, π) and the inclusion i of M in MG, to construct t0 is a standard extension
problem and it can be solved by using topological perturbation theory. The
obstructions to extend the map t to ί0 correspond to anomalies in the quantum
mechanics of the supersymmetric charged particle:

It is possible to describe all the obstructions to lifting group actions to principal
fibre bundles P(M, X, π) with non-abelian structure group provided that P(M9 X, π)
has some additional structure. For example, the base space M is a homogeneous
space or P(M, X, π) admits a flat connection. The former case is studied in Sect. 6.

The principal bundles P(M, X, π) which admit flat connections are of general
interest. Indeed flat bundles are useful in the study of Aharonov-Bohm effect [11]
(X = U(l)) and the understanding of (non-abelian) ^-structures in quantum
mechanics. The principal flat bundles P = P(M,X,π) (X non-abelian) over M
correspond to the elements of Hoπ^π^MjXoXX) up to conjugations where x0 is
a point in M (X = U(l) for principal flat U(\) bundles). Let α be an element of
Hom(π1(M, xo\ X) then the principal bundle P(M, X, π) corresponding to the group
homomorphism α is an associated bundle of the principal bundle P(M,πι{M,x0)/
Ker α, π') with discrete fibers. Indeed P(M, K, n) = P(M, nx(M9 x o ) / K e r <*> π') xaK. To
study the lifting of the group action fg on the flat principal bundle P{M, X, π), it
is enough to examine the liftings of fg on P(M^^M,xo)/Ker<x,π'). The actions
of simply connected groups always lift to all principal bundles with discrete fibers.
More details are given in Appendix A4.

6. The Charged Particle on G/H Spaces

In the first part of this section, we study the Hubert space (L2(Γ(ε\ dμ)) L2(Γ(L\ dμ)
of (supersymmetric) charged particles propagating on a homogeneous space G/H
which are invariant under the left action of G on G/H. G is restricted to be compact
and connected. Then we gauge a subgroup G' of the group G. Using the
representation theory of G on the Hubert space L2(Γ(L\ dμ), we give an example
of a gauged charged particle with empty physical Hubert space, i.e. an example
of a gauged charged particle anomaly.

The principal bundles P = P(M, K, π) that admit a lifting /J of the left action
lg of G on M = G/M correspond to group homomorphisms oc H^K; P = G xaK
(Appendix A4). Let ε0 be a finite dimensional vector space that carries a unitary
representation u of the group K. Then using the lifting /] of G on P(M, X, π), we
can construct a unitary representation of G on the square integrable sections
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L2(Γ(ε\dμ) of the vector bundle ε = PxMε0, where dμ is the invariant measure in
G/H. This is possible because given /J there is a lifting Vgu of G on ε defined by

l» l l peP and veε0. (6.1)

Since G is compact, the representation of G on L2(Γ(ε), dμ) decomposes in finite
dimensional unitary irreducible representations (for a review see reference [24]).
Indeed observe that the sections L2{Γ(ε),dμ) can be identified with the square
integrable functions L2(C(G,ε0, w,α),dμ) from G to ε0 that satisfy the property,

ψ(gh) = u(φ-1))ψ(g) VΛeH. (6.2)

We have identified ε\eH with ε0. Given an irreducible representation Dy of the group
G on the vector space Vv we can construct a function φy on G that satisfies (6.2).
Indeed let Fy: Vy® HomH(Ky, ε0)-> C(G, ε0, w, α) such that Fy(ι?® £)(#) = B(Dyfe" > ) ,
where £eHomH(Ky,ε0), ueF y and geG. Then φy:=Fy(v®B). HomH(F y,ε 0) is the
space of linear functions B from Vy to ε0 that have the property B(Dy(h)v) =
u(α(/ι))£(t;). Finally, it can be shown that

ΣyFy(Vy®HomH(Vrε0)) (6.3)

spans L2(C(G,ε0,u,α),dμ), where the sum is over the set of irreducible unitary
representations Dy of the group G. Suppose that the unitary representation wα: = UOL
of the group H on ε0 is irreducible. From Frobenious reciprocity theorem, the
multiplicity d(y) of the irreducible representation Dy of G in the representation D
(Eq. (3.6)) (acting on the Hubert space L2(C(G,ε0,u,α),dμ)) is equal to the multi-
plicity of the representation ua of the group H as subrepresentation of Dy\H. Dy\H

is the restriction of Dy on the group H. For example if H = {e} and ε0 = C, the
action of G on L2(Γ(ε), dμ) gives the regular representation of G that contains all
the unitary irreducible representations Dy of G with multiplicity d(γ) equals to the
dimension of Dr

To find the eigenvalues of the Hamiltonian operator H (3.1) on the Hubert
space L2(Γ(L), dμ) invariant under the left action of G on G/H, we assume that G
is semisimple, compact, and connected Lie group, and the metric on G/H is the
metric induced by the Killing-Cartan metric^ of LieG. Then, the eigenvalues (up
to a constant) of the Hamiltonian operator H (3.1) are proportional to quadratic
Casimir of the group G of every irreducible representation Dy that appears in the
decomposition (6.3). Since this theorem to true for all the twisted Laplace-Beltrami
operators [24], we can also use it to calculate the eigenvalues of the Hamiltonian
operator of supersymmetric charged particle. The quadratic Casimir φ ) of the
irreducible representation Dy with highest weight Λy is given by

φ ) = (Λy + p, Λy + p > - <p, p >, (6.4)

where <,> is the Cartan metric on Lie G and p is half the sum of positive roots of
LieG.

The physical Hubert space Hphys of a gauged charged particle is the subspace
of L2(Γ(L), dμ) that carries the (copies) trivial representation of G' ^G as
subrepresentation of D (3.6), where G is a subgroup of G which has been gauged.
If the line bundle L is not topologically trivial, the trivial representation of G' may
not be a subrepresentation of D. To give an example of a gauged charged particle
model with physical Hubert space Hphys empty, we set M = S2 = SU(2)/U(l),
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G' = SU(2) and L the spin bundle Ls over S2. Ls is an associated complex line
bundle of the principal Hopf fibration with the faithful representation of 1/(1) on C.
The left action of 51/(2) on 5 2 lifts to all 1/(1) principal bundles over S2 and the
Hopf fibration corresponds to the identity group homomorphism α from H = (7(1)
to K = 1/(1). Finally using the decomposition (6.3) for the sections Γ(LS) of the
spin line bundle Ls, we can prove that the trivial representation of SU(2) is not a
subrepresentation of D (3.6) on L2(Γ(LS)9 dμ); dμ is the invariant measure on S2.
This implies that the physical Hubert space Hphys of the theory is empty.

7. Conclusions

We can arrange such that some of the anomalies studied in Sect. 4 are cancelled.
This can be achieved by altering appropriately the group G, the group action fg

and (or) the principal U(\) bundle P. For example, let G be a connected, semisimple
Lie group and assume that the classical symmetries of the charged particle
generated by the group action fg on the manifold M are anomalous. These
anomalies are cancelled, if we consider the lifting of the induced action of the
universal cover of G on M. Alternatively, it might be possible to choose a 1/(1)
principal bundle such that the symmetries generated by the group action fg of G
are not anomalous. However, this might require an additional quantisation of the
coupling constant of the interaction term, i.e. a refinement of Dirac's quantisation
condition. An example of this phenomenon was given in Sect. 4. If G is disconnected,
a similar cancellation mechanism for the global anomalies may be devised.

Another interesting phenomenon is the ^-structure effects due to a minimal
substitution of a (flat) connection in the momentum operator of a theory (refs.
[11] and [12]). Having fixed the connection b for the charged particle, we studied
a given sector of this theory. To examine other sectors, we substitute the connection
b in the hamiltonian operator H (3.1) with another connection A. This change
may alter even the domain that the operator H acts. To test whether the symmetries
of the charged particle generated by the action fg of the group G are implemented
in the sector represented with the connection A, we should repeat the analysis of
Sects. 3 and 4 for the Hamiltonian operator H with connection A. It is possible
that the symmetries generated by the group G can be implemented by unitary
transformations in the Hubert space of one sector but not in the Hubert space of
another.

In conclusion, the quantum mechanics of the charged particle propagating on
a manifold M with a group action fg of the group G was studied. It was shown
that these symmetries may be anomalous. There are anomalies both of global and
local type. For the particle with rigid symmetries these anomalies manifest
themselves as obstructions to lifting group actions to (7(1) principal bundles. Several
examples of obstructions were given and the nature of these obstructions was
illustrated.

In the case of gauged charged particle, apart from the anomalies that appear
in the charged particle with rigid symmetries, there is an additional anomaly
whenever the physical Hubert space is empty. An example of this anomaly was
given in Sect. 7 associated with the gauging of the left action of 5(7(2) on 5 2 for
a charged particle coupled to a (7(1) connection of the Hopf fibration over 5 2.
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The supersymmetric charged particles were also considered. It was shown that the
classical symmetries of this theory generated by a group action fg may be
anomalous. These anomalies were related to obstructions to lifting the group action
fg on a principal bundle P over M with fiber a non-abelian group K. It was
observed that some of these obstructions can be identified with the obstructions
of a topological extension problem.

Appendices

Al. Liftings and Obstructions. Let P = P(X, K, π) be a principal bundle with fibre
a compact and connected Lie group K over a compact, path connected, orientable
manifold X without boundary, π: P -> X is the projection of P onto %. Moreover,
let fg be a group action of the compact Lie group G on X. The lifting /J of the
group action fg is a group action of G on P such that π/J = fgπ, V#eG.

The group action fg defines a continuous map p:G-»Homeo(Jί), such that
p(g) = fg, Homeo(X) is the set of homeomorphisms of X with the compact open
topology and p(G):= Imp is a topological group. From the definition of the lifting
/ ] , it implies that there is a continuous map p^\ G-»Isom(P) such that p\g) = / ] ,
where Isom(P) is the space of bundle morphisms of P. Denote with σ the natural
map σ: Isom (P) -> Homeo (X), σ is not necessarily surjective. Now suppose that
f*(P) = P, V#eG, then the following sequence is exact:

l->Aut(P)->Isom G P-p(G)->l, (Al.l)

where IsomG(P):= σ~ίp(G) and Aut(P) is the space of bundle morphisms of P that
induce the identity transformation on X. To find a lifting /J of the group action
fg9 it is equivalent to construct a section in (Al.l) which is a group homomorphism.
If there is a section in (Al.l), then to find f\ is a standard group extension problem.
A section v of (Al.l) which is not necessarily a group homomorphism is called
pseudolifting.

To continue, suppose that P accepts a lifting / ] of the group action fg on X.
Then P is the pullback of a principal bundle P0(XG, K, π0) over XG:= EG xGX with
respect to the inclusion i.X^G, where EG(BG,G,p) is the universal classifying
bundle of the group G. The bundle space P o is isomorphic to EG x G P and the
projection π 0 is induced from the projection π of P. The converse of the above
statement is not necessarily true for generic principal bundles P[7]. However it
was shown in ref. [6] that is always true in the case of principal (7(1) bundles.

Λ2. Lifting Group Actions to Principal (7(1) Bundles. To prove that a principal
(7(1) bundle P = P(My (7(1), π) over X admits a lifting f\ of a group action fg of
the compact group G on X if and only if /*(P) = P, VgeG and P is the pullback
of a principal bundle over XG with the inclusion i of X in XG, we proceed as
follows: First we show that if the principal bundle P is the pullback of a principal
bundle over XG with the map i: X -+XG, then P admits a pseudolifting of the group
action fg. This implies that there is fg:P^>P,ygeG, such that fgfg> = fgg,o{g,g').
o(g,g') is the obstruction of the pseudolifting fg to be a group homomorphism. It
can be shown that o is independent from the choice of pseudolifting and is an
element of the group cohomology Z/2(G,Aut(P)) (for (7(1) principal bundles
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Aut(P) = C{X, 17(1)). Then it is shown that for [7(1) principal bundles P(X, (7(1), π)
and compact groups G the obstruction o vanishes.

The principal £7(1) bundles P = P(M, [7(1), π) over any manifold X are classified
by the elements of H\X,Z\ i.e. by their first Chern class c^P). Therefore, the
principal [7(1) bundles P that accept a lifting of the group action fg of G on X lie
in the image Imi* of i*:H2(XG,Z)-^H2(X,Z). To describe Imi*, we consider the
fibration

X-^XG—>BG, (All)

where BG is the base space of the universal classifying bundle EG(BG, G,p) of the
group G. Imi* consists on the elements of H2(X,Z) which "survive" to E^, where
(Er9dr), r = 1,..., oo, is the Leray-Serre spectral sequence of the fibration (A2.1).
Since Im i* g H2(X, Z), it is enough to find the elements of H2(X,Z) that they
"survive" up to E4. Thus if c^P) is the first Chern class of the principal bundle
P, then c^P) is in Imi*, provided that d2c1(P) = 0 and d3c1(P) = 0. Since
d2:H

2(X,Z)^H2(BG,H1{X,Z)) and Imd 3 g H3(£G,Z), if there are obstructions
they are elements of the cohomology groups H2(BG,H\X9Z)) a n d H\BG9Z).

Given a lifting /J of the group action / f l on the principal bundle P9 we can

construct another lifting f^υ by conjugating with any element v of Aut (P). Indeed

For [7(1) principal bundles the inequivalent liftings up to Aut(P) transformations
are classified by the elements of H\G, C{X, [7(1))).

A3. Lifting Group Actions of Compact and Connected Lie Groups. Now suppose
that G is compact and connected and acts on the manifold X with the group
action fg. It can be shown that the principal [7(1) bundle P = P(M, [7(1), π) is in
the Im i* if and only if /*cx(P) = 1 Oc^P), where c^P) is the first Chern class of
P [7]. The map i is the inclusion of the fibre in the fibration (A2.1). This statement
provides a simple discription of the obstructions to lifting compact and connected
Lie groups. Indeed, it is expected from the Kunneth formula that

f*Ci(P) = 1 ®c,{P) + a + ftc,{P)® 1, (All)

where aeHι(G,Hι(X,Z)) and f*ct(P)eH2(G9Z). fo:G-+X is defined by
/o(#):=/(ί7> xo\ where x0 is a given point of the space X. Therefore, the obstructions
to lifting the group action fg of the compact and connected group G are represented
by the elements a and / ^ ( P ) .

To prove this statement, we consider the commutative diagram

GxX — - — • X

j x l

(A3.2)

BG < >BG
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where is the inclusion of G in EG and / is the standard projection from EG x X
to XG = EG xGX. From the commutativity of (A3.2), if = l(jx 1) and the induced
map on cohomology is /*i* = (jxl)*ί*. Thus if c^P) is in Imi*, then
f*cx(P) = ( x l)*/*c1(P). But EG is contractible, therefore / * cx(P) = 1 ® cx(P) and
this proves the statement in one direction. Conversely, let us assume that
/* C l (P) = 1 ® Cl(P\ then we have to show that d2cι(P) = d^c^P) = 0, where (Endr)
is the Leray-Serre spectral sequence of the fϊbration (A2.1). Indeed, let (E'r, d'r) be
the Leray-Serre spectral sequence of the fϊbration G x X-^EG x X^BG. The
classes 1 ® c^P) survive to E'^ thus d'r{\ x cx(P)) = 0, Vr integer. The differentials dr

and d'r commute with the induced maps lr9 therefore for r = 2 d'2l2 = Z2̂ 2» where
/2 = l(g)/* and l2 is injective. Thus if f*c1(P)=l®c1(P), it implies that
d2c1(P) = 0. Similarly, it can be shown that d^cx(P) — 0. This proves the statement.

A.4. Lifting the Left Action of G on G/H. To study the necessary and sufficient
conditions to lifting the left group action of G on the homogeneous space X = G/H,
where G is compact and connected Lie group and H is a subgroup of G, we let
P = P(X, K, π) be a principal K bundle over X which accepts a lifting fig of the
left action lg of G on X. Then we can define a group homomorphism oc.H^K
as follows: let eHeG/H, then /heiί = e#, V/ieif, thus l\n-\eH) g π" 1 ^//) . Given
a point poeπ~1(eH\ "iheH there is fceK such that ll{po) = Pok. Define α(/i): = fe.
We observe that given the group homomorphism α, P = G xaK [9]. The converse
is also true, if P = G xaK for some group homomorphism <x:H^>K, then P accepts
a lifting of the left action of the group G on G/H which is defined by

\
Finally we examine the lifting of a group action fg of a compact and connected

group G to a principal bundle with discrete fibres. The effective action fg of G on
the base space X of the principal P = P(X, Z, π), Z discrete, lifts to P, if and only
if /o* πi(G>*o)^π*(πi(^>Po)) where x o

e ^> Poe*> a n d π(Po) = *o> a n d fo' G-+X
such that fo(g)''= fgi^o)- If G does not lift, then an extension G' of G

l - ^ Γ - ^ G ^ G - ^ l (A4.1)

always lifts, where Γ g π^P, p0) [17]. A similar statement is true if G is disconnected.
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