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Abstract. The phenomenon of the coexistence of infinitely many sinks for two
dimensional dissipative diffeomorphisms is a result due to Newhouse [Nel,Ne2].
In fact, for each parameter value at which a homoclinic tangency is formed
nondegenerately, there exist intervals in the parameter space containing dense sets
of parameter values for which there are infinitely many coexisting sinks (Robinson
[R]). The structure of the sinks constructed by Newhouse is limited. "Simple"
Newhouse parameter values are values at which there are infinitely many sinks
having some special well defined property concerning the structure. A result due
to Tedeschini-Lalli and Yorke [TY] says that the Lebesgue measure of the set of
simple Newhouse parameter values is zero when the tangencies are due to the
standard "affine" horseshoe map. It is argued in [TY] and [PR] that a more
general derivation of this measure zero result would be desirable. The main result
of this paper is that the Lebesgue measure of the set of KLUS-simple parameter
values (including the simple Newhouse parameter values) is zero for saddle
hyperbolic basic sets forming tangencies.

1. Introduction

Let M be a smooth 2-dimensional compact manifold, and let {Fμ}μeI c DifT3(M)
be a one parameter family of dissipative C3-diffeomorphisms so that for each μel
the diffeo Fμ maps M to itself, where / c R is some compact interval. For μel, a
point q eM is called a sink (respectively a saddle) of Fμ if q is a periodic point, say
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Fp

β(q) = q9 and the eigenvalues σ and λ of the Jacobian matrix DFp

μ(q) satisfy |σ| < 1,
\λ\ < 1 (respectively σ and λ are both real and 0 < |σ| < 1 < |λ|). If the period p of
a sink (saddle) is minimal, then the sink (saddle) is called a p-sink (p-saddle).

We say μoel is a nondegenerate homoclinic tangency value for {Fμ}μeI if this
family creates, for a p-saddle qμeΛμi a nondegenerate homoclinic intersection at
x = ro> μ = ô> that is (see also Sect. 2), there exist ε > 0, and subarcs ys

μ a Ws(qμ; Fμ)
and γu

μ cz W (qμ\Fμ) varying differentiably with μ such that: (1) for μ e [ μ 0 — ε,μ0)
the segments γs

μ and γu

μ do not intersect; (2) for μ = μ0 the segments y* and yJJ are
tangent at r0, and the intersection at r0 is of order two (equivalently, tne tangency
is of order one); (3) for μe(μ o ,μ o 4- ε] the segment γu

μ crosses γs

μ from one side to
the other and returns to the original side. Hence, when μ0 is a nondegenerate
homoclinic tangency value, then for μ > μ0 there are two new transverse inter-
sections and a Smale horseshoe for some iterate of the map.

The following surprising result is mainly due to Newhouse [Nel,Ne2];
Robinson [R] showed that Newhouse's result can also be formulated for one
parameter family of diffeomorphisms, and we will use this latter approach.

A parameter value μel is called a Newhouse parameter value if Fμ has infinitely
many coexisting sinks. Let μ o e/ be a nondegenerate tangency value such that the
stable manifold and unstable manifold of a 1-saddle of Fμo have a nontransversal
intersection at r0. Then the following holds (see [Nel,Ne2, and R] for details):

(1) For each n sufficiently large there exists a pπ-sink rn oίFμin) such that pn -* oo,
r n ->r 0 and μ(n)->μ0 as w->oo; (2) for every ε > 0 there exists an interval
He c [μ 0 — ε,μ0 -f ε) in which the set of Newhouse parameter values is residual.

Part (2) follows from (1) in [Ne2, R] by proving that arbitrarily close to μ0,
for which there is a tangency at r0, there is a wild hyperbolic set, that is, a hyperbolic
set Δμ displaying tangencies for each μ in an interval arbitrarily close to μ0.

It is important to know the answer to the question "What is the Lebesgue
measure of such a residual set (that is, countable intersection of open dense sets)
of Newhouse parameter values?". In [PR] it is mentioned that such a result might
give insight into the well known problem of whether the standard Henon map
(parameter values 1.4 and 0.3) has a strange attractor or not. In full generality,
this is a difficult problem. A first approach to attack this problem was undertaken
by Tedeschini-Lalli and Yorke [TY]. They considered the so-called simple
Newhouse parameter values (Newhouse parameter values for which the sinks have
some limited structure), and obtained the result that the Lebesgue measure of the
set of simple Newhouse parameter values for the standard ("affine") horseshoe
map is zero. For this map, Wang [W] improved the result and obtained that the
Hausdorff dimension of the set of simple Newhouse parameter values is positive
(and smaller than one).

A very natural question is: "What can be said about the Lebesgue measure of
some well-defined subset of the Newhouse parameter values for the family {Fμ}μeI

when for all μel, Fμ has a zero dimensional hyperbolic basic set Λμ varying
differentiably with μ and creating tangencies near μ0?". We will deal with this
problem.

In this paper, we give a definition of KLUS-simple parameter values based on
the structure of orbits that has been described in [TY]. We would like to emphasize
that a simple Newhouse parameter value is a KLUS-simple parameter value. The
main result of this paper is that the Lebesgue measure of the set of KLUS-simple
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parameter values is zero. We argue that it is sufficient to assume that F is of class
C2. In Sect. 4 we also organize a hierarchy of non-simple sinks whose infinite
coexistence has still probability zero.

2. Statement of the Result

Let M be a two dimensional compact smooth manifold. We write DifΓ3(M) for
the class of C 3 diffeomorphisms from M to itself.

Let FeDiΰ3(M). A subset A of M is hyperbolic if A is compact, invariant, and
there is a continuous splitting TAM = ES

A@E\ of the tangent bundle TΛM, a
constant 0 < ξ < 1 and a Riemannian norm || || on TM such that for each
XEΛ (1) TxF(Ex) = EF(x)9 TXF(EU

X) = EU

F{X); (2) \\TxF(vs)\\^ξ\\vs\\ for all vseEs

x,
|| TxF~\vu)\\<Lξ\\vu|| for all vueEu

x, where TXF denotes the derivative of F at x. A
set A a M is a hyperbolic basic set if (1) A is hyperbolic, (2) F is transitive on A
(that is, there is an orbit of F which is dense in A), and (3) there exists an open
neighborhood U of A such that A = f] Fn(U). A set A c M is a saddle basic set

πeZ

if A is a hyperbolic basic set for which dim(£s

Λ) = dim(£^) = 1. Note that each
periodic point with minimum period p in a saddle basic set is a p-saddle.

Let p denote the induced distance function on M. For a set Y c M the stable
set of Y is WS(Y;F) = {xeM: p(F I(x),F l(Y))-0 as n - oo} and the unstable set of
7 is Wu(Y;F) = {xeM:p(Fn(x),Fn(Y))^O as n-> - oo}. For a saddle basic set A
of F one has the stable set WS(A;F)= (J Ws(x;F), (respectively the unstable set

xeΛ

WU(A;F)= (J Wu(x;F)) is the union of the stable manifolds (respectively the

unstable manifolds) of all the elements of A. A neighborhood U of a saddle
hyperbolic basic set A is called a saddle isolating neighborhood for A if

(1) A = Π f( l/), and

(2) F( WM(Λ; F)ndU)n Clos 1/ = 0 .

In this case, a saddle basic set is also known as a zero dimensional hyperbolic
basic set.

Let / cz ]R denote a compact interval with nonempty interior. We consider the
one parameter family {F( ;μ):μel} cz Diff3(M). For each μel we write Fμ = F( μ),
and we assume (1) Fμ maps M into itself, (2) the absolute value of the Jacobian
of Fμ at x is less than one for each xeM.

For an open neighborhood U of a saddle basic set Aμ of Fμ9 where μel, we write

Wu

μ(U)= f]Fn

μ(U);

Ws

μ(U)= f]F;n(U);

and for each positive integer k we write

^ *(tf)= U

^ ( ^ ) = U
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For each μel let the maps# 1 ; μ , g2.μ\ R - > R be defined by

01*00 = 0, g2 Jy) = y2

Let H c / be some interval, and let /c://-»DifT3(M) defined by κ(μ) = F μ be a
C1 curve such that

(Al) For each μeH there exists a saddle basic set Λμ for Fμ varying differentiably
with μ.

(A2) There exists an open neighborhood U in M which is a saddle isolating
neighborhood for Λμ for all μeί/.

(A3) There exist a smooth open ball S and C3 coordinates φ.S^JR2 such that
(a) UnS = 0;
(b) there exist positive integers K and L such that if xeW"κ(U)nWs

μ.L(U)nS,
and if there exists qeΛ so that Wu(q;Fμ) and Ws(tf;Fμ) are not transversal
at x, then there exist segments ys

μ <= W"s(g; i^),?^ <= Ww(g; Fμ) both including x
for which

(bl) φ(x) is near (0, 0);
(b2) φ(yy c {(z1,z2):z2 = ^ ( z j , tfr1;μ is C 2 close to gUμ}\
(b3) φ(yj) c {(z1,z2): z 2 = ψ2;μ(zι)> φ2;μ is C 2 close to ^f2;μ};

(b4) — ^*(μ)<0, where y*(μ) = min{z2:(z1,z2)εφ(yj)}.

We call an interval H cz / a KLUS interval if the curve K has the above properties.
KLUS intervals are introduced to describe tangencies outside isolated neighbor-
hoods of saddle basic sets, making the required estimates in the proofs more
transparent.

Let H be a KLUS interval; for μeH we say a p-sink qμeS is a KLUS sink for
Fμ if the orbit Orb(qμ) of qμ satisfies:

(1) o r b ( ^ ) n S = {qμ}; (2) Orb(^) c \J Fn

μ(U); and

(3) Oτb(qμ)n U consists of at least p — (K + L) elements. Hence (by definition) the
number of iterates of a KLUS sink that are not contained in U is at most K + L,
for all parameter values in a KLUS interval.

The family {Fμ}μeI nondegenerately creates a homoclinic intersection at x = r0,
μ = μ0 for a p-saddle qμeΛμi if there exists ε > 0, and if there are one-dimensional
disks γs

μ c W s (^;F μ ) and y£ cz W " ^ ; ^ ) varying differentiably with μ, such that:

(2) there are C 3 local coordinates {(x,y)} near r 0 depending differentiably on μ,
and parametrizations {(xs

μ(τ),ys

μ(τ)): \τ\£δ} oϊys

μ and {(xμ(τ),yμ(τ)): | τ | g<5} of y"μ

for some <5 > 0 such that
(2a) (x*o(0), y*μo(0)) = (0,0) = (xjyO), yuJ0));
(2b) ys

μo(τ) = 0 for each τ e [ - δ, (5];
(2c) sign y^(^) = sign yu

μ( - δ) = - sign yμ(τ) for some | f | < <$, where τ might depend
on μ, for μe(μo,μo + ε];

(3) yμo and y n̂ have a tangency of order one at r0, that is, yu

uo(0) = 0 = ~ yu

μo(0)

d2
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(4) the extremum value y*(μ) of y" on the interval [ — δ, δ~] satisfies—y*(μ0) φ 0.
dμ

Let /+ <= I be a given interval and assume that U is a saddle isolating
neighborhood for the saddle basic set Λμ, where μel*. Assume that the family
{Fμ}μei creates for a p-saddle qμeΛμ a nondegenerate homoclinic intersection at
x = r0eM\C\osU9 μ = μoelnt/ ) | {.

Proposition. There exist an open ball S containing r0, positive integers K and L,
and δμo > 0 such that [μ 0 — δμo,μo + δμo] is a KLUS interval.

For μel and saddle basic set Λμ of Fμ, a point zμeM\Λμ is called a
KLUS-simpIe Newhouse sink if there exist an open ball S including zμ9 an open
saddle isolating neighborhood U of Λμ for which UnS = 0 , positive integers K
and L, and an interval Hal including μ such that the following hold: (1) zμ is a
KLUS sink for Fμ, and (2) H is a KLUS interval.

For μel, a set Γμ a M is called an attracting set of Fμ if (1) Γ μ is compact and
invariant, and (2) there exists an open neighborhood Vμ of Γμ such that
lim p(Fn

μ(x), Γμ) = 0 for every xeVμ; Γμ is called an attractor if (1) Γμ is an attracting
π->oo

set and (2) Fμ has a dense orbit on Γμ.
Let for μoel9 a point an

μo be a periodic point of minimum period n. Let /* c: /
be the maximal interval including μ0 such that for μe/* the point an

μ is a periodic
point with minimum period n and an

μ varies differentiably with μ. For each μ*€l*
we call {an

μ:μel*} the path of αj^.
For μe/, a set i"μ is called a p-attracting set if (1) Γμ is an attracting set for

F£, and (2) for every k, 1 g fe g /? — 1, Γμ is not an attracting set for Fj;; we call
the number p the period of the attracting set Γμ. Γμ is called a KLUS-simple
attracting set if there exists p e N such that (1) Γμ is a p-attracting set, (2) F μ includes
a point that is on the path of some KLUS-simple p-sink, and (3) Γμ^ is a topological
horsehoe for some μ^ > μ. For instance, a p-sink is both a p-attracting set and an
attractor. The parameter value μe/ is called a KLUS-simple parameter value if Fμ

has infinitely many KLUS-simple attracting sets of different period.

Theorem. The Lebesgue measure of the set of KLUS-simple parameter values in I
is zero.

Corollary. The set of parameter values in I, for which there are infinitely many
KLUS-simple Newhouse sinks, is zero.

We would like to emphasize that having allowed an attracting set to contain
several attractors, it might very well be, and indeed is generally the case, that a
KLUS-simple attracting set does in turn contain infinitely many attractors. We
will discuss in Sect. 4 which of these non-simple attractors can still be included in
our approach.

3. Proofs of the Results

Let {Fμ}μeIczΌiβ3(M), and p the distance function on M (induced by the
Riemannian metric). We assume that for every μe/ the set Λμ is a nontrivial saddle
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basic set for Fμ, that is, Λμ includes more than a periodic orbit, and Aμ varies
differentiably with μ.

3 A. Preliminaries. In this subsection, we present some auxiliary results for the one
parameter family of diffeomorphisms. Let μel be arbitrarily fixed. For a
nonwandering point zμ (a point such that for every open neighborhood V of zμ

there exists n ^ 1 for which Fn

μ(V)n V Φ 0) the local stable manifold Ws

loc(zμ;Fμ)
(respectively local unstable manifold Wu

Xoc(zμ\ Fμ)) of zμ of size β is the set of points
x in the stable manifold Ws(zμ; Fμ) (respectively unstable manifold Wu(zμ; Fμ)) so
that p(Fn

μ(zμ)9 Fn

μ(x))^β (respectively p{F~μ

n{zμ\F~n(x))^β) for all integers n^0,
where β > 0. When the stable or unstable manifold is a curve, we write W°^ (zμ; Fμ)
and W°0~(zμ;Fμ) for the two components of W°oc(zμ;Fμ)\{zμ}, where σ is either s
or u. The nontrivial saddle basic set Λμ is called periodic if there exists m e N such
that Fm has no dense orbit on Λμ9 and Λμ is called nonperiodic otherwise. The
following results 3-1-3-3, which are rephrased from [NP and PT], say that the
structure of saddle basic sets is essentially controlled by finite sets of periodic
points.

Proposition 3-1. There exist finite sets Ps

μ and Pu

μ of periodic points, such that for
all xeAμ\

(1) If x is not a limit point of both W"+c(x;Fμ)nΛμ and W\~c{x\F μ)cλAμ, then x is
in Ws(pμ;Fμ) for some pμePu

μ.
(2) If x is not a limit point of both Ws^c(x;Fμ)nΛμ and W\~c{x\Fμ)nAμ, then
xeWu(pμ;Fμ)for some pμεPs

μ.

Proof. For a proof, see Newhouse and Palis [NP]. •

Palis and Takens [PT] have shown that there exist regions in M, whose
boundaries are segments in the stable and unstable manifolds of these finite
sets of periodic points Ps and Pu, such that these regions when intersected with
the saddle basic set A form a Markov partition of A.

Proposition 3-2. Assume Aμ is a nontrivial nonperiodic saddle basic set of Fμ,
and let zμeΛμ be fixed. Let Ps

μ and Pu

μ be as in Proposition 3-1. There exist
finitely many disjoint regions Ri;μ being diffeomorphic images of the square
fl = [ - l , l ] x [ - l , l ] , say Ri;μ = hi;μ(B)9 l ^ i ^ Λ ί , for some N E N , and a
segment Iu

μ a Wu{zμ; Fμ) such that:

(1) ΛμnRi;μΦ0 for alii;

ί = 1 N N

(2)

(3) W J C Σ d*Rj;μ and F ^ A ^ c y duRj,μ9 where d^^hM^y):

|x | = l, - l ^ y ^ l } ) respectively duR^ = h,J{(x9y): - l ^ x ^ l , \y\ = l}) are
segments in the stable set Ws(Pu

μ; Fμ) respectively the unstable set Wu(Ps

μ Fμ); and
N

(4) for every i,ΓμnRi;μ consists of exactly one component and d(ΓμnRi.μ)c: \J dsRr>fl,

l^i^N. j=1

Proof. For a proof, see Palis ad Takens [PT]. •
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From now on, let Λμ denote a saddle basic set for F μ , U a saddle isolating
neighborhood of Λμ, and the point zμeΛμ, the regions Riμ, l^i^N, and the
segment Γμ c Wu(Λμ;Fμ) as in Proposition 3-2. There exist a C 1 + α stable foliation
g* on a neighborhood Vs

Λ.μ, respectively a C1+a unstable foliation g£ on a
neighborhood Vu

Λ.μ, of Λμ for some α > 0, and it is no restriction to assume that
every region Ri;μ is contained in Vs

Λ.μnVu

Λ.μ9 l^i^N; see [PT].
Let τμ: R -> Wu(zμ; Fμ) be a C 3 parametrization, and define a projection

πμ:Λμ-+\jR,μnI«μ
i = l

by taking in each region Riμ, l^i^N, the projection along the local stable
manifolds into the intersection Γμ with that region. This projection can be extended
from Λμ to the union of the regions Ri;μ by projecting along the leaves of the
foliation g*. This extension will be denoted by π\xVμ. The following result says
that for some iterate M, the map Fμ can be viewed as expansive along unstable
segments.

Proposition 3-3. There exist a positive integer M and a Cί+Λ mapφμ:

U τ H/j n Λ J - R defined by φμ(x) = r ^ o ^ o ^ o φ ) such that \φ'(x)\ > 1,
i = l

for some α > 0.

Proof. For a proof, see Palis and Takens [PT]. •

The Escape time Tυ(x,Fμ) oίxeU under Fμ is the minimum value n with the
property Fn

μ(x) not in U. Let J a U be a curve segment such that J intersects the
stable set Ws(Λμ;Fμ) transversally. We define for every integer k^ 1:

In particular, ^ x ( J ; F μ ) = J. Hence, for each integer fc^l we have Ak+ί(J;Fμ) is
the set of points in Ak(J;Fμ) whose escape time from U is at least k+ 1; hence,
Afc+i(J; Fμ) is the set of points in J that stay in U under F*. The points in J which
will stay in U under all iterates will be denoted by >400(J;Fμ). For every integer
k ^ 1 we have:

yWJ F,) = Ak+1(J;Fμ)uDk(J;Fμ)9 and

that is, J is the union of the set of points Ak+1(J;Fμ) whose escape time from U
is at least fc+ 1, and the set of points Dj(J;Fμ) whose escape time from U is j ,
where l^j^k. We write

DM;Fμ)= ϋ w g .

Note that ΛJJ F,) = (\ Ak(J;Fμ), and J = Ax(J;Fμ)κjDx(J;Fμ).
fc = 0

Denote the length of a segment £ c J by

Lemma 3-4. Let R Λ.μ(U) = {J: J component of Wu(Λμ; Fμ)nU,JnΛμ^0}. There
exists δΛ.μ > 0 such that for every JeRΛ.μ(U), and for each k ̂  1:
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(1) Each component ofAk(J; Fμ) contains components ofDk(J; Fμ) and Ak + ί (J; Fμ).
(2) Let A be an arbitrarily chosen component of Ak(J;Fμ). For each component

D of Dk(J,Fμ)nA, one has p(D)/p(A)^δΛμ, and each component G of
Ak + 1(J;Fμ)nA, satisfies p(G)/p(A)^δ A,μ.

Proof. For the proof, see the proof of the Geometric Lemma II in [NY]. •

3B. Some KLUS Properties. In this subsection, we present some auxiliary KLUS
results. Let H a I be a KLUS interval as defined in Sect. 2. Recall that U is a
saddle isolating neighborhood of Λμ for all μeH, S is an open ball disjoint from
U and S c F~L{U)nF^{U) for all μeH, and K, K e N . Obviously, every subinterval
in H is a KLUS interval.

Recall that, for every μeH, Vs

Λ.μ is a neighborhood of Λμ on which g* is
defined. Since each compact interval in H is a KLUS interval, both %s

μ and g£
depend difΓerentiably on μ, and by taking N sufficiently large in Proposition 3-2,
we may assume that every region Riμ is contained in f] (Vs

Λ.μn Vu

Λ.μ), where Riμ

μeH

is a region for Fμ as in Proposition 3-2, for all μeH. Then we select integer Q ^ 1

such that f] Fn

μ(U) c Vs

Λ.μ9 for each μeH. Define for each integer m ̂  β the set
n=-Q

m
Zι%}μ as the set of all curve segments J = [α,ί>] in the closure of f] Fn

μ(U) so
n= —m

/ m \

that (1) {fl,fc} cz <3ί P| i^(l/) j and (2) J intersects Ws(Λμ;Fμ) transversally. Let
for μeH the positive number δΛ;μ be as in Lemma 3-4. For the compact interval
H cz I we define the positive number δΛH by

Proposition 3-5. For et ery μe//, for each JeZ[%]

μ, and for every integer k ̂  1:

(1) Each component of Am+k(J;Fμ) contains components of Dm+k(J;Fμ) and
Am + k+l(JlFμ)'

(2) Let A be an arbitrarily chosen component ofAm+k(J; Fμ). For each component
D of Dm+k(J;Fμ)nA9 one has p(D)/p(A) ̂  δΛ;H, and each component G of
Am+k+i(J;Fμ)nA, satisfies p(G)/p(A)^δΛ;H.

Proof. Since the projection along the local stable manifolds is of class G 1 + α for
some α > 0, we obtain the result by applying Lemma 3-4. •

From Proposition 3-5 and the assumptions on Fμ we obtain that for each
k ^ 1 and all μeH, the number of components of Am+k(J; Fμ) and that of Dm+k(J; Fμ)
is finite, for all JeZι%]

μ. Let, for k ̂  1 and μeH, N(Ak) be the number of components
of Am+k(J;Fμ), and let N(Dk) be the number of components of Dm+k(J\Fμ\ where
JeZ™μ. We write, for each k^ 1 and μeH, the sets Am+k(J;Fμ) and Dm+k(J;Fμ)
as the union of their components as follows:

N(Ak)

Σ
N(Dk)

Dm+k(J;Fμ)= U Dm+k,(J;Fμ).
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Lemma 3-6. For every ε > 0 there exists a positive integer R such that for each
μeH, for every

oo N(Ak)

Σ Σ ίp(Am+kJ(J;Fμ)V<ε.
k = R 7 = 1

Proof. Let ε > 0 be given, and select positive integer R such that
2 " 1 ( l - ^ . / < ε . Then, for each μeH, and for every{ ;

JeZι%]

μ we have:
oo N(Ak)

Σ Σ ίpiΛm+kj(J;Fμ)V
k = R j=l

oo Γ N(Ak) )

^ Σ Σ ίp(Am+kj(J;Fμu\ ^ Σ { ( i - < W p( /)}2

{K;HV - KMΓ1 "(I - δΛ,H)2R < ε. •

3C. Rescalίng. Assume that the family {Fμ}μeI has for a p-saddle qμeΛμ a
nondegenerate homoclinic tangency at x = ro,μ = μoel. Assume that the
eigenvalues λ and σ of DFp

μo(qμo) satisfy λ > 1 > σ > 0, σ/l < 1 and some generic
condition implying that CMinearlzing cordinates exist in a neighborhood of qμ

for μeJ, where Jal is some interval including μ0. The following result is veiled
in [R], and it is explicitly due to [TY] (using a setting in [GH]). Palis and Takens
[PT] later independently used the same setting, getting to the same conclusion.

Proposition 3-7. For every MGN there exists reparametrizatίons μ = Mn(μ^) of the
μ variable, and μ* dependent coordinate transformation {x^y^)^φn ,μS

x^y^ s u c n

that

(1) for each compact set K in the (μ^, x^, y^)-space, the images ofK under the maps
(β*>x*,y*)-+(Mn(μ*\φn;μSx*,y*)) converge for n->oo ίo f/Wo);

(2) the domains of the maps (μ^x^yJ^(μ^φn.^°Fn

Mn(μJoφn.jx^yj)
converge for n-> oo to all o/R 3 , and the maps converge smoothly for n-> oo to the
map {μ*,x*,yJ->(μ*,Fμiιs(x^yJ) with F^(x^yJ = {y^y\ - μj.

Proof. For a proof, see [TY]. •

3D. Duration of YΛΛJS-Simple Sinks and Attracting Sets. Before we define the
duration of KLUS-simple sinks and attracting sets, we consider the family
{fβ}βe[-1,3] defined by fβ(y) = y2 — β. The following is well known:

(1) F o r / ? e [ - l , - £)/JGO-> oo asn->oo for all y.
(2) For β = — j a saddle node bifurcation occurs at y0 = | , for βe( — ̂ , 3] there
are two fixed points vβ and wβ such that vβ is unstable and wβ is a 1-sink
(respectively unstable) if jSe( —£,f) (respectively βe(f,3]).
(3) Write Iβ = [ - vβ, vβl Jβ = l-(vβ + β)/2, (vβ + j8)/2], and Aβ = wβiϊβe(- \, 0]
and Aβ = lfβ(0\ /^2(0)] if J?E(0,3]; for j ? G [ - i 2 ] / ^ c z / , c= [ - 2 , 2 ] , for
βe( — \, 2) A^ is a 1-attracting set and wβeAβ a Int Jβc=Jβa Int Iβ<^Iβc:( — 2,2),
and f) / (J^) = y^; for )SG(2, 3] f| /^(/^) is a Cantor set.

We define the duration of the 1-sink wβ as the interval (— £,f), and the duration
of the 1-attracting set Aβ as the interval ( — ^,2).
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It is not difficult to show that for each βe( —|,2) every two dimensional
C3-diffeomorphism, which is sufficiently C3-close to fβ9 also has a 1-attracting set
in the interior of [ - 2,2] x [ - 2,2]. For an explanation, see [TY] (see also Sect. 4
for additional comments).

Let H be a KLUS interval as in Sect. 3B. For μoeH, the duration in H of*
a KLUS-simple p-sink zp

H.μo is the component in {μeH: zp

H.μ is KLUS-simple p-sink}
that includes μo; the duration in H of a KLUS-simple p-attracting set Γp

H.μo S is
the component in {μeH:Γp

H.μ is KLUS-simple p-attracting set} that includes μ0.
We write Dur(Γ^) (respectively Dur(z£)) for the union of the durations in H, and
|Dur(Γ£)| (respectively |Dur(z£))| for the sum of the lengths of the durations in
H of all the p-attracting sets (respectively, p-sinks). Notice that the duration of a
KLUS-simple p-attracting set Γp equals the interval over which a topological
horseshoe is formed for Fp in a neighborhood B in S of the KLUS-simple p-path.
The length of the interval is proportional to the length of the component in
Proposition 3-5, because in order for Γp to be attracting, the Lth iterate of B must
be contained in the regions of Proposition 3-2.

The set of KLUS-simple parameter values in H is, by definition, contained in
oo

(J Όnr(Γk

H) for every peN. This implies that, for every p, the Lebesgue measure
k = p

of the KLUS-simple parameter values is at most Σ \Όur(Γk

H)\. In order to obtain

the result that the set of KLUS-simple parameter values in H has Lebesgue measure
zero, it is sufficient to show the following.

For each ε > 0 there exists P e N such that

X |Dur(Γ fc

H)|<ε,
k^P

where the sum is taken over all the KLUS-simple p-attracting sets for all p^P,
that arise (in S) from the tangencies of all the saddles in the saddle basic sets
{A;. μeH}.

Obviously, £ |Dur(Γ^) | < ε implies that £ |Dur(z^)| < ε (in the latter case

we sum over all the KLUS-simple p-sinks for all p^P arising from all the
tangencies of the saddles in the saddle basic sets {Λμ:μeH}).

3E. Proof of the Proposition. Let I# c / be a given interval and assume that U is
a saddle isolating neighborhood for the saddle basic set Λμ, where μe/*. Assume
that the family {Fμ}μeI creates for a p-saddle qμeΛμ a nondegenerate homoclinic
intersection at x = r 0eM\Clos U, μ = μoelntl^..

Select the minimal positive integers K and L such that r0eF*o(U) and
r0eFμo

L(U). Since Fμo(U)nFμo

L(U) is open, there exists <50 > 0 such that for each
μ e C μ o - ^ μ o + ^o] ^ intersection Fμ(U)nF~L(U) is open and it includes r0.
Let ε > 0 such that B(ro;ε)cz f] (Ff(U)nFμ

L{U)) and B(r0;ε)nU = 0 , where
μeH0

B(ro;ε) the ball centered at r 0 with radius ε, and Ho = [μ 0 - δo,μo + δ 0 ] . Define
S = B(ro;ε\ and we obtain, by the definition of nondegenerate homoclinic
bifurcation, that H is a KLUS-interval, where H = [μ 0 - δl9μ0 + δ j for some δl9

0 < δx ^ <50. We conclude: the choice dμo = δί gives the desired result. This completes
the proof of the proposition. •
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3F. Proof of the Theorem. Let the compact interval / be given. For each μe/, let
Λμ be the saddle basic set that varies differentiably with μ, and let V\.μ be a
neighborhood of Λμ on which the stable foliation 3£ is defined. We will assume
that Fμ has for every fceN and for each μe/, only either finitely many or no periodic
points with period k; this assumption is no restriction, see Yorke and Alligood
[YA].

We may assume that U is a saddle isolating neighborhood for the saddle basic
set Λμ for all μel, because of the differentiable dependence of Λμ on μ, there are
finitely many compact subintervals, say Il9...9IQ of /, and for each k there is
saddle isolating neighborhood Uk of Λμ for μe/k, and on which the following
applies.

Assume that the family {Fμ}μeI creates a nondegenerate homoclinic intersection
at x = r 0eM\Clos U, μ = μ o elnt / for a p-saddle qμeΛμ. Select the minimal positive
integers K,L such that roeF*o(U)nFμo

L(U). Select δo>0 such that for each
μe[μo — <5o>A*o + ^o] = # o the interior of the intersection f] [Fμ{U)nF~L(U)n

μeϋo

F~L(VS

Λ )] is nonempty, and includes r0. Let ε o > 0 such that B{ro;εo)cz
Int p) LF^(U)nF;L(U)nF;L(Vs

A.Jl and B(ro;εo)nU = 0 , where B(ro;so) the
μeffo

ball centered at r 0 with radius ε0. Define S = B(ro;εo\ and select δl9 0<δ1^δo

so that H = [μ 0 — δ l J μ 0 -f δ x ] satisfies all the conditions of a KLUS interval, see
Sect. 2 for details.

From the definition of S, we know that the stable foliation 5* can be extended
to exist on S for every μeH. Therefore, from now on, we will assume that the
stable foliation g* exists on 5, for all μeH.

Recall that for μoeH, the duration in H of a KLUS-simple p-sink z£ is the
component in {μsH\zp

H.μ is KLUS-simple p-sink} that includes μo; the duration
in if of a KLUS-simple p-attracting set Γp

H.μo is the component in {μeH: Γp

H.μ is
KLUS-simple p-attracting set} that includes μ0. We write Dur(Γ^) (respectively
Dur(z^)) for the union of the durations in H, and |Dur(Γ£)| (respectively |Dur(z£))|
for the sum of the lengths of the durations in H of all the p-attracting sets
(respectively, p-sinks). As explained in Sect. 3D, the set of KLUS-simple parameter
values in H has Lebesgue measure zero if for each ε > 0 there exists PeTti such
that

where the sum is taken over all the KLUS-simple p-attracting sets for all p^P,
that arise (in S) from the tangencies of all the saddles in the saddle basic sets
{Λμ:μeH}.

Let δΛ.H>0 as in Sect. 3B. Let ε > 0 be given; applying Proposition 3-5,
Proposition 3-7, Lemma 3-6, and the fact that the stable foliation on S exists
and the projection along the stable manifolds of Λμ is C 1 + α yields there exists a
constant C o > 0 such that for each p ^ Q » K + L the total length of the duration
in H of all the KLUS-simple p-attracting sets is at most C 0 [ l - δΛH~]Άp~κ~L) =
Ci [ l - < W P > where Cx = C 0 [ l -<5Λ ; HΓ 2<*+ L>.

Select integer P ^ Q such that Cj [ l - ^Λ H ] " 2 ^ 1 ~ ^ Λ ; H ] 2 P < ε τ h e n > for the
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total duration in H of all the fc-attracting sets for all k ^ P we get

— r π ^ i 2 p . V π ^ i 2

^CΓD- J ^ ^ ^ C I - ^ H:

The conclusion is that the set of KLUS parameter values in H for the above
S is zero.

For each nondegenerate tangency value μoeJ, for which {Fμ}μeI creates a
nondegenerate homoclinic intersection at x = r 0eM\Clos 1/ for a p-saddle qμeΛμ,
the above applies. Since both M\L/ and / are compact, we conclude that the set
of all KLUS parameter values in / is zero. This completes the proof of the
theorem. •

4. Discussion and Concluding Remarks

4-1. Order of Differentiability of the Diffeomorphism. We assume that the
diffeomorphism F is C3. This assumption implied the existence of a C 1 + α expanding
map, for some α > 0, in Proposition 3-3. If F is of class C2, then it is known that
such an expanding map is C1. We would like to point out that the Holder exponent
ot is only used to obtain (2) in the proof of Proposition 3-5. Fortunately, we can
prove Proposition 3-5 (in particular property (2)) for the C 1 map φ of Proposition
3-3 by combining the techniques of the proof of Proposition 6 in [Ne] and
Lemma 5.5 in [Nu]. Thus in fact, it is sufficient to assume F is C 2 to guarantee
the main results of the paper.

4-2. Non-Simple Attractors. Consider a KLUS-simple p-sink. In [TY] it is shown
that these sinks, for p large enough, exist by proving that a p-sink is created near
a nondegenerate tangency value via a saddle node bifurcation at μp. The family
Fp

μ is C3-close to the quadratic map of the interval, both in space and parameter.
The parameter interval Ip containing μ, and the neighborhood Boxp c R 2 of the
p-sink obey a rescaling law as p-»oo (\Ip\ccλ~2p, where λ>2 is the eigenvalue
of the afflne horsehoe). For each possible structure of a periodic orbit with period
n = k p there exists a parameter value μkelp at which such an orbit is created in
Boxp. In fact, a topological horsehoe is created for Fp

μ as μ varies through Ip.
Therefore, since Fp

μ is dissipative, each of these periodic orbits of period k-p is a
sink for some μkelp (for a proof, see [YA]). This is a subclass of non-simple
KLUS-sinks (when k ^ 2).

We call the KLUS-simple p-sink the pioneer of such a topological horseshoe.
For each p, the associated n-sinks with n = k-p appear as μ varies in lp> in an
order that tends (as p-> oo) to the Sarkovski order of the map of the interval. In
particular, given fcl5fc2elN, for each p sufficiently large, the corresponding r^-sink
and n2-sink (with nί = k1-p and n2 = k2'p) do not coexist.
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However, for fixed /?, in the process of the formation of a topological horseshoe,
the KLUS-simple p-saddle forms tangencies, and therefore the Newhouse
phenomenon of infinitely many coexisting sinks holds. That is, the above n-sinks*
can and do coexist for finite p. Holmes and Whitley [HW] nicely rephrased the
Newhouse phenomenon as an overlapping of the p-duration of sinks in
two-parameter families F^. ε :R 2 ->R 2 , where the parameter ε is a distance of the
family Fμ.ε from the one dimensional quadratic map.

Of the above n-sinks some never coexist (for example, /? 2fc-sinks which form
a "cascade") and their duration is already accounted for in the Duration of the
p-attracting set. For the others, one can copy all of our arguments for the pioneer
KLUS-simple p-saddle forming tangencies and prove that there are sinks which
are "simple" with respect to the pioneer, so they are simple at a second hierarchial
level. Infinitely many of them can therefore coexist only on a parameter set of
measure zero. Since under generic assumptions, there are countably many pioneers,
such KLUS-simple sinks of second level yield a measure zero set of KLUS-simple
second level Newhouse parameter values.

4-3. The [TYJSimple Newhouse Parameter Values. Comparing with the results
in [TY], we have a generalization for saddle hyperbolic basic sets, in particular,
a generalization for nonlinear horseshoe maps. Notice that in [TY] an "attracting
set" was called an "attractor."

4-4. Dimension. For clarity, we stated the theorem in Lebesgue measure. However,
anyone who is familiar with dimensions, will observe that the proof of the theorem
implies that the Box counting dimension (that is, the Capacity dimension) of the
set of KLUS-simple parameter values is less than one, which is slightly more
general.
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