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Abstract. The paper deals with normal operators R and S satisfying simple
commutation relations that we encounter investigating the quantum deformation
of the E(2) group. We show that R + S admits a normal extension if and only if
i^ - 1S satisfies a certain spectral condition. A number of related formulae are
derived. In particular, all the functions / satisfying the character equation f(R + S)
=f(R)f(S) are found.

0. Introduction

Investigating the quantum deformation (of the two-fold covering) of the group of
motions of the Euclidean plane E(2) we often deal with pairs of normal operators
(R, S) satisfying in a strong sense the relations SR = μ2RS and SR* = R*S (where μ
is a real number, 0<μ<l) . In the present paper we prove a number of results
involving such operators. The results will be used in [3], where the quantum E(2)
and its Pontryagin dual are elaborated and in [4], where a quantum deforma-
tion of the Lorentz group is introduced and investigated.

Let μ be a real number such that 0 < μ < 1. We denote by Dμ the set of all pairs
(R, S) of normal operators acting on a Hubert space H satisfying the following five
conditions:

(0.1)

2. (Phase #)(Phase S) = (Phase S)(Phase R),

3. (PhaseJR)*|S|(PhaseK) = μ|S|,

4. (PhaseS) |R| (Phase S)* = μ\R\,

5. \S\ and \R\ strongly commute.

One can easily show the following

* Supported in equal parts by the grant of the Ministry of Education of Poland and by CNRS
France
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Proposition 0.1. Let R and S be normal operators acting on H such that KεrR = {0}
and KerS={0}. Then (R,S)eDμ if and only if

SRφ = μ2RSφ, SR*φ = R*Sφ

for all φ belonging to a dense linear subset @)<ZH consisting of vectors with compact
R and S support and invariant under the action of R, R*, S, and S*.

The paper is composed in the following way. In Sect. 2 we investigate the sum
R + S. It turns out that it need not be normal [despite the formal commutation
(R 4- S)*(R. + S) = (R + S)(R + S)* the domain of (R + S)* may be strictly larger than
that of R 4- S]. We show that R -ί- S is normal if and only if R ~ ιS satisfies a certain
spectral condition. In this case R + S is unitarily equivalent to R. Sections 3 and 4
are devoted to the character equation f(R + S)=f(R)f(S). We find all solutions /
of this equation satisfying a certain boundness condition. In Sect. 5 we show that
for any C*-algebra A, R + SηA whenever R,SηA. Here η denotes the
C*-affiliation relation introduced in [1] and elaborated in [2], In Sect. 6 we
collected a few formulae relating the fundamental solution of the character
equation Fμ with the ^-exponential function. Section 1 introduces the holo-
morphic continuation property which is the main technical tool used in this
paper.

A few remarks about the notation. Let H be a Hubert space and Q be a closed
operator acting on H. 3){Q) and Sp(Q) will denote the domain and the spectrum
of β. The partial unitary and the positive selfadjoint operator entering the
polar decomposition of Q will be denoted by Phase Q and \Q\, respectively:

β = (Phaseβ)|β|.

We shall use this notation only for Q such that ker Q = ker β* = {0}. Then Phase β
is unitary. If β is normal then Phase β commutes with |β|. In this case

Q=SzdEQ(z),

where dEQ(z) is the spectral measure of β. We say that a vector φ e H has a compact
β-support if the support of the measure (φ\dEQ(z)φ) is compact.

In all cases whenever we deal with products PQ of closed unbounded operators
P and β the operators \P'\ = (Phase Q)*\P\(Phase β) and |β | strongly commute and
by definition

PQ = (Phase P)(Phase Q)m(\P% Iβl),

where m(x, y) = xy and consequently

m(\F\9\Q\)=ixydE(x9y)9

where E( , ) is the spectral measure on R + related to the strongly commuting pair
of positive selfadjoint operators |P'| and |β|.

The closure of the sum of operators R and S is denoted by R + S.

1. Holomorphic Continuation

Throughout the paper the following subgroup of C— {0} will play an essential
role:

: \t\eμz}. (1.1)
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We endow (Cμ with the Haar measure dv(ή normalized in such a way that such
v(S1) = l. The closure of (Cμ will be denoted by <Cμ:<Cμ = <Cμu{0}. (In [2] this set
was denoted by (C(|i).) All the complex functions on C μ considered in this paper are
square integrable on each circle contained in Cμ.

Let φ be such a function on <Cμ. We say that φ has the holomorphic
(meromorphic, respectively) continuation property if there exists a function $
holomorphic (meromorphic with a finite number of poles on each connected
component) on (C—(Cμ such that for all ze(Cμ we have

lim $(rz) = φ(z), lim $(rz) = φ'(μz),
l 0 + + O

where φ' is a function on <Eμ and the limits are understood in the sense of L2-norm
on each circle of <Cμ. In this case we write (Jί?φ)(z) and (Jfφ)(ζ) instead of φ\z) and
<j>(ζ). The reader should notice that $ and φ' are uniquely determined by φ.

Let φ be a function on <Cμ having the meromorphic (holomorphic, respectively)
continuation property. Then Jf φ(z) = φ{z) for all z e (Cμ if and only if φ admits a
meromorphic (holomorphic, respectively) extension on <C—{0}.

We shall use the following special function:

2kz

This formula defines Fμ(z) for all complex z except the values z=—μ 2k

(fc = 0,1,...). For these exceptional z we set Fμ(z) = — 1. Clearly_|Fμ(z)| = 1 for all
z E <D\ One can easily check that the function Fμ restricted to <Cμ is continuous.
Therefore, if Q is a normal operator affiliated with a C*-algebra A and Sp(β)cC μ

then Fμ(Q) is a unitary element of the multiplier algebra M(A). By straightforward
computation one can verify that for ze(Cμ:

Fμ{μ2z)Fμ(z-ι) = χ{μz), (1.3)

where χ(z) = (Phase z) lθ8«( |z | ).

Let us notice that Fμ has the holomorphic extension property and that

Jt?Fμ(z) = (l+μ-2z)Fμ(z) (1.4)

for all z e <Dμ. In Sect. 4 we shall use

Proposition 1.1. Let f be a function on (Dμ such that f and f ' 1 are bounded and
χ e (C. Assume that f has the holomorphic extension property and that

for all z e €μ. Then χe€μ and f(z) = const Fμ(χz).

Proof If χ = 0 then Jf/(z)=/(z) and / admits a holomorphic extension J on
C—{0}. By the maximum principle, / is bounded and using the Liouville theorem
we get / = const.

If χ φ θ then χ = χoμ
s

9 where seZ and μ < | χ o | ^ l . For any z e C μ we set

One can easily verify that

1. ^ z ( 2 ) = (χ0 Phase
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where lim H(z) = ί. In particular,
z->σo

\Fμχ(z)\ = \χ0Γ+i\H(z)\\z\e, (1.5)

where ρ= -log μ ( |χ 0 | )e]-l ,0] . If χφ<£μ then | χ o |< l , ρ<0 and Jim Fμχ(z) = 0.

2. Fμχ has the holomorphic extension property, (j?Fμz) (ζ)Φ0 for any ζe<C—(Dμ

and JTFμχ(z) = (l + μ~2χz)Fμχ{z).

Therefore, the quotient φ(z) =f(z)/Fμχ(z) has holomorphic extension property
and Jfφ(z) = φ(z) for all z e <tμ. It shows that φ admits an extension $ holomorphic
on C— {0}. In a neighbourhood of 0, Fμχ(z) ^ 1 and φ(z) is bounded. It means that
there is no singularity at z = 0 and $(z) is an entire function. By virtue of (1.5) there
exists a constant C such that for all sufficiently large ze<Πμ we have:

\-Q

where — ρ = log/i(|χ0|)< 1. Repeating the standard proof of the Liouville theorem
one can easily show that $(z) = const is the only entire function satisfying the above
estimate. Therefore, f(z) = const Fμχ(z). Now it is clear that χe(Dμ [otherwise
/(z)" 1 would not be bounded]. In this case |χol = l> Zo 1 =Zo
Fμχ(z) = Fμ(χz). Q.E.D.

2. When is R + S Normal?

The main results of this section are contained in the following theorems:

Theorem 2.1. Let (R,S)eDμ. Then the following conditions are equivalent:

1. R + S admits a normal extension,
2. R + S is normal,
3.

Theorem 2.2. Let (R,S)eDμ and Sp(R'1S)c(Dί. Then

= Fμ(R-1S)RFμ{R-ίS)*. (2.1)

Proof. Let (R, S) eDμ,Q0 = R + S,Q be the closure of Qo and Q = (Q*\9{φ)*. Then
Q' is an extension of Q. To show that in Theorem 2.1 Condition 1 implies
Condition 2 (the converse is obvious) it is sufficient to prove that

@{Q) = ®(Q*)n®{Qf). (2.2)

Indeed, if Q is a normal extension of Q then Q*CQ*9 β*U«2)Cβ*,
01 = (β*Ue))* 3 Q a n d ®(3]C 0(Q'). On the other hand, ̂ (β) = @(Q*) C 0(β*) and
using (2.2) we see that ^(β)C^(β), β = β and β is normal.

Proving the relation (2.2) and equivalence of Conditions 2 and 3 of
Theorem 2.1 we may assume that (R, S) acts on H in the irreducible way (otherwise
we use the direct integral decomposition into irreducible components). In this case
Theorem 2.1 essentially coincides with Theorem 3.1 of [2]. We repeat the main
steps of the proof, because the notation of [2] is not coherent with the present one
and because the argument used in [2] to show that in certain cases R + S has no
normal extensions [on the contrary to the condition (2.2)] does not survive the
direct integral synthesis.
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Let (R,S) be a pair of normal operators acting on a Hubert space in an
irreducible way and satisfying all the five conditions (0.1). Then

Sp(K) = **£", Sp(S) = ί s£«,

where ίκ, ts are positive real numbers. The pair (JR, S) is determined uniquely (up to
a unitary equivalence) by (tR, ts): there exists an orthonormal basis (ewn)m,M_integers
such that

Re = t μ n e ' ) _

for all m,neZ The set Hf of all finite linear combinations of basic vectors is a core
for R and S.

We shall identify H with L2((Cμ): For any φeH and any ze(£μ we set

<?(*)= Σ° (*«+*»"*, (2.4)
fc=-oo

where m = logμ(|z|) and u = Phase (z). One can easily verify that the series (2.4) is
convergent in the sense of L2((Cμ)-norm and that the correspondence
H 9 φ-κp( ) e L2((Cμ) is bijective and respects the Hubert space structure of H and
L2(<Eμ).

Let φeH. One can easily verify that ψeS){R) if and only if φ(-) has
holomorphic continuation property and (Jfφ)(z) is square integrable on <Eμ. In
this case

(Rφ)(z) = tR(Mrφ)(z). (2.5)

Similarly, φ e $J(S) if and only if φ( ) has holomorphic continuation property
and \z\(Jfφ)(z) is square integrable on <Cμ. In this case

(Sφ)(z) = tsμ-ίz(Jίfφ)(z). (2.6)

Consequently, φ 6 ̂ (Qo) if a n d o n ty if φ( *) ^ a s holomorphic continuation
property and (1 + |z|)(Jf φ)(z) is square integrable on (Cμ. In this case

(2.7)

Comparing (2.5) and (2.7) we get

(GoP)(z) = (1 + ίts/μtR]z)(Rφ) (z) (2.8)

for any φ e ®(βo)
 τ ^ e operator R " 1S is diagonal in !?(<[?). Comparing (2.5) and

(2.6) we have

(^-1Sφ)(z) = [ί5μ/ίΛ]z^(z). (2.9)

Consequently,

Sv(R-ιS) = lts/tRW. (2.10)

Assume now that

Then ts/tRφ<Dμ and tR-\-tsμ~γz^Q for any zeC*. In fact, there exists a positive
constant c such that ίΛ^c(ίΛ + tsμ~ιz) for all z e <Cμ. Therefore, ||Jίφ|| ^ c | | β o φ | | for
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any φ e ̂ (β o ) It shows that β 0 is a closed operator (convergence of Qoφn implies
that of Rφn and Sφn = Qoφn-Rφn):Qo = Q.

Briefly speaking [cf. (2.7)] the action of β consists in the holomorphic
continuation (which itself is a normal operator) followed by the multiplication by
tR + tsμ " *z. Therefore, φ e !@(Q*) if and only if φ multiplied by tR + tsμ~1z has the
holomorphic continuation property (and the resulting function is square inte-
grable). The crucial point is that tR + tsμ~ιζ vanishes at one point ζe<C — <Cμ.
Therefore, the function 3fφ [for φ e i^(β*)] is allowed to have a first order pole in
this point. More precisely we have (see the proof of Theorem 3.1 in [2] for the
details):

A vector φ e @{Q*) if and only if φ( ) has meromorphic continuation property,
the only possible singularity of <&φ(ζ) is a simple pole located at ζ= —μtR/ts and
the function (1 + \z\)(34?φ)(z) is square integrable.

Moreover, using the similar analysis one can show that φe3)(Qr) [where
β/ = (β*U(Q))*] if a n d only if φ(-) has meromorphic continuation property, the
only possible singularity of J^φ(ζ) is a simple pole located at ζ = — tR/μts and the
function (1 + |z|)(Jf φ){z) is square integrable.

Comparing the above descriptions of ί^(β), ^(β*), and @(Qr) we immediately
obtain (2.1). Moreover, Q){Q) is strictly smaller than ^(β*) and β is not normal.

To end this section we have to elaborate the case Sp(R~1S)C(Cμ. According to
(2.9), Fμ(R~*S)* coincides with the multiplication by f(z) = Fμ([tsμ/tR]z). If
Sp(R~ XS)C<Cμ then [cf. (2.10)] ts/tR is an integer power of μ. In this case /( ) has
holomorphic continuation property and [cf. (1.4)]

for a l l z e C .
Let φ e @(Q0). Then using the descriptions of domains 3){R) and ^(β 0 ) given in

the introductory part of this proof we see that Fμ(R~ιS)*φe@{R) and [cf. (2.5),
(2.11), and (2.7)],

(RFμ(R ~ 1S)*φ)(z) = tRJT(fφ)(z) = tR^f{z)^ψ{z)

= (tR + tsμ- ^ / ( z ) ^ (φ)(z) = (Fμ(R ~ 1S)*βoφ)(z).

It shows that

β0 = F^R-^R^FJiR-'S)*, (2.12)

where 9 = Fμ(R 15)*(β0). Let us notice that ζ= -μtR\ts is the only point in C
where the holomorphic extension jftf is approaching 0. Using this fact one can
show that a vector φ e Hf belongs to Q) if and only if Σ (— μ)k(ek+m> k\φ) = 0 [where
m = logμ(tR/tsy]. Clearly, the functional Hf3ψ^>Yj( — μ)k(ek+mtk\φ))e<E is not
continuous with respect to the graph norm of R. Therefore, 3) is a core of R and
passing to the closures on both sides of (2.12) we obtain

Q = Fμ(R-1S)RFμ{R-1S)*.

This formula coincides with (2.1). It shows that β is normal. In this case relation
(2.2) is obvious.
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3. The Character Property

In this section we prove the following remarkable

Theorem 3.1. Let (R,S)eDμ and Sρ(R% Sp(S)c€μ (in this case the condition
μ

Sp(lT ^ c C " is fulfilled automatically). Then
Fμ(R + S) = Fμ(R)Fμ(S). (3.1)

Proof Let D'μ be the set of all (R, S) e Dμ such that the spectra of R and S are
contained in Cμ. Let us notice that the assumptions of Theorem 3.1 are very
restrictive. Any (R, S) eD'μisa direct sum of a number of copies of the unique (up to
a unitary equivalence) irreducible (R0,S0)eD'μ. Therefore, it is sufficient to prove
(3.1) for a single pair.

Let H be a Hubert space spanned by an orthonormal basis (^m π) f c > m π. i n t e g e r s and
P, Q, R be operators introduced by

= fί ek+l,m+l,n>= fί ek

for all k,m,ne Έ. The set Hf of all finite linear combinations of basic vectors is by
definition the common core for P, Q, and S. One can check that (P, R), (P, S), (R, S),
(P,P,R), and (P,PS) belong to D'μ.

Operator P strongly commutes with R~ίS. Using (2.1) we get

Fμ(R-1S)PFμ(R-1S)* = P,

Fμ(R ~ 1S)PRFμ(R ~ιS)* = P(R + S).

It shows that the pair (P, PR) and (P, P(R -f S)) are unitarily equivalent. Therefore,
(P,P(R + S))eD'μ and using (2.1) we get

Fμ(R + S)PFμ(R 4- S)* = P 4- P(R + S).

On the other hand, R strongly commutes with PS. Keeping this fact in mind and
using twice (2.1) we get

Fμ(R)Fμ(S)PFμ(SrFμ(Rr = Fμ(R)(P 4- PS)Fμ(R)*

= Fμ(R)PFμ(R)* + Fμ(R)PSFμ(R)* = (P + PR) + PS.

Using twice Lemma 3.2 formulated below one can easily show that Hf is a core
of (P -i- PR) 4- PS. Therefore, (P -i- PR) 4- PS c P 4- P(# + S) (on ifr the two operators
coincide) and ( P 4 - P # ) + P S = P4-PCR + S) (normal operators have no normal
extensions). Comparing the two formulae derived above we get

Fμ(R 4- SrFμ(R)Fμ(S)P = PFμ(R + S)*Fμ(£)Fμ(S).

It shows that Fμ(R + S)*Fμ(R)Fμ(S) commutes with Phase P. On the other hand,
PhaseP scales R,S and R + S by the factor μ:

(Phase P)*β(PhaseP) = μβ
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for Q = R, S and R + S. Combining these two facts, for any integer n we obtain

Fμ(R + S)*Fμ(R)Fμ(S) = Fμ(μn(R + S))*Fμ(μnR)Fμ(μnS). (3.2)

Remembering that lim FJή = F (0) = 1 we get s-lim Fμ(μnQ) = IϊorQ = R,S and
ί->0 π-*oo

R + S. Therefore, the right-hand side of (3.2) tends strongly to / for n->oo and (3.1)
follows.

To end this section we have to prove

Lemma 3.2. Let (R,S)eDμ and 2 be a linear subset contained in
Assume that 2f is a core for R and that 3f is invariant under spectral projections of \S\.
Then Sf is a core for R + S.

Sketch of the Proof. The spectral projection of \S\ corresponding to the interval
[0, t] (where t e R) will be denoted by Et. Let φ e Q)(R + S). For any e > 0 we choose
ί > 0 such that

\\Etφ-φ\\^ε/2,

\\EtSφ-Sφ\\ίε/4,

\\EμtRφ-Rφ\\^s/4

and ψ e 2f such that

Then EtxpeΘ and using the above inequalities, the relations REt = EμtR and
\\SEt\\^t we get

\\Et\p-φ\\£6,

\\(R + S)(Etψ-φ)\\£ε. Q.E.D.

4. The Character Equation

Throughout this section R and S are normal operators acting on a Hubert space H.
We assume that (R9S)eDμ and Sp(Λ),Sp(S)C<Cμ. It turns out that Fμ(>) is
essentially the only bounded function with bounded inverse satisfying the
character equation (3.1).

Theorem 4.1. Let f be a measurable function on (Dμ such that f and f ' 1 are
bounded. Assume that

)=f(R)f(S). (4.1)

Then there exists χ e C μ such that

f(z) = Fμ(χz) (4.2)

for almost all z e (D*.

Remark. It follows immediately from Theorem 3.1 that all functions (4.2) satisfy
the relation (4.1).
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Proof. Keeping in mind the remarks at the beginning of the proof of Theorem 3.1
we may assume that the operators R and S are defined by (2.3) with tR = ts = l.
According to (2.1), relation (4.1) means that

Fμ(R ~ 1S)f(R)Fμ(R - 'Sr =f(R)f(S). (4.3)

We shall use the Fourier decompositions

(4.4)

(4.5)

It follows immediately from (2.3) that Phase R acting on emn increases index m
by one. Similarly, Phase S decreases index n by one, whereas Phase R " 1S decreases
both indices by one. Using this information one can easily compute the matrix
elements of both sides of (4.3). We get

where the summation runs over all integers i,j such that b + i = d+j. Comparing
the two expressions and replacing d—b and a — c by n and m, respectively, we
obtain

ι'b+ι)fm+n(μb+% (4.6)

where the summation runs over all integer i.
In what follows we need the infinitesimal version of this formula. We know that

Fμ(z) is a real analytic function in a neighbourhood of 0. Using this fact one can
prove that there exist positive constants A, ρ such that for sufficiently small z

for all keΈ. Moreover, it follows easily from (1.2) that

Fμ(z) = l - ( l - / < 2 ) ~ 1 z + ( l - μ 2 ) ~ 1 z + higher order terms.

Therefore,

Inserting n = — 1 in our main formula (4.6), dividing both sides by μc and
sending c-»oo we see that on the right-hand side only the terms with z= — 1 and
i = 0 survive. More precisely, we get

m-fc+l π~b+2

limfm(μb)f^(μc)/μc=

and
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Let z = μbu, where u = Phasez. Multiplying both sides by um~γ and summing
over m we get [cf. (4.5)]

ΣfJM/μ)(μ Phase zf = (1 + μ~ WOO

It shows that / has the holomorphic continuation property and that J^f(z)
= (l+μ~2χz)f(z). Using Proposition 1.1 we get χe<Eμ and f(z) = const Fβ(χz).
Comparing (4.1) with (3.1) we get const = 1. Q.E.D.

Now let K be a Hubert space and f:(Dι3z->f(z)eB(K) be a bounded
measurable mapping. For any normal operator Q acting on H such that Sp(β) C Cμ

we set
f(Q)=$f(z)®dEQ(z),

where dEQ(z) is the spectral measure of Q. We have the following unitary version of
Theorem 4.1.

Theorem 4.2. Let / : <Πμ s z-*f{z) e B(K) be a measurable mapping such that f(z) is
unitary for all z e <D\ Assume that

)=f(R)f(S).

Then there exists a normal operator X on K such that Sp(X)cCμ and

f(z) = Fμ(X*z)

for almost all z e <Dμ.

Proof A moment of reflection shows that also in this non-scalar case relation (4.6)
holds [now f£\z\) introduced by (4.5) are operators on K and the order of factors on
the left-hand side of (4.6) is relevant]. One can easily rewrite (1.3) in terms of
Fourier coefficients introduced by (4.4). We have

for all integers r, k. Using this formula to eliminate the complex conjugate term in
(4.6) we get

fm(μb)fn(μc)= Σ Fr_b(μm+c-b+1)Fr-c(μn+b-c+1)fm+n(μr)

Let us notice that the right-hand side is manifestly invariant under exchange
(m, b) ++ (n, c). Therefore, [fm(μb), /„(//)] = 0 and all unitaries f(z) (z e β>) mutually
commute. By the spectral decomposition our problem is now reduced to the scalar
one solved in the previous theorem. Q.E.D.

Let us notice the following continuity property:

Proposition4.3. Let f:(Eμ-+B(K) be a bounded measurable mapping. Then

s-limf(R + μnS)=f(R), (4.7)
n-*oo

s-limf(μnR + S)=f(S). (4.8)
n-*oo

Proof Relation (4.7) follows immediately from the formula [cf. (2.1)]

f(R + μnS) = U®Fμ(μnR ~ ̂ / ( K ) U®Fμ{μnR ~ιSψ.
Inserting in (4.7) S*5 R*, and / ' [where /;(z)=/(z)] instead of R, S, and / we
get (4.8). Q.E.D.
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5. The Affiliation Relation

Let AcB(H) be a C*-algebra and β be a closed operator acting on H. We always
assume that A is nondegenerate. We recall (cf. [1, 2]) that β is affiliated with A
(β η A) if and only if β(J + β * β ) ' 1 / 2 e M(A) and (/ + β*β) ~ ί/2A is dense in A. For
normal operators QηAiϊand only if {/(β): / e (^(Spβ)} is a subset of M(A) and
contains an approximate unity for A.

The main result of this section is the following:

Theorem 5.L_ Let A C B(H) be a C*-algebra and R,SηA. Assume that (R, S) e Dμ and
Sp(K-1S)C<Cμ. Then

R + SηA.

This result contains the essence of Theorem 3.2 of [2]. The proof presented
here is completely new and much simpler than the one presented in [2]. We shall
use

Proposition 5.2. Let AcB(H) be a C*-algebra, Qbe a normal operator acting on H
and Sp(Q)C<Cμ. Assume that for any ze(D\ Fμ(zQ)eM(A) and that the mapping

&3z^Fμ(zQ)ehf(A) (5.1)

(where M(A) is equipped with the topology of almost uniform convergence) is
continuous. Then QηA.

Remark. If QηA then the mapping (5.1) is obviously continuous.

Proof Let us notice [cf. (1.3)] that

Fμ(z)^ (Phase z)
loMM)-i

for large z e <D\ Using this asymptotic behavior one can easily show that all the
functions

(where m, n runs over Έ) belong to CJ^f) and separate points of <Dμ. Keeping in
mind the assumptions of the lemma we conclude that fmn(Q) e M(A) and (Stone-
Weierstrass theorem) f(Q)eM(A) for all / e C j C " ) . Moreover,

converges almost uniformly to Fμ(0 Q) = I as m-*oo. It shows that the set {/(β):
fe C^i^)} contains an approximate unity for A and the lemma follows.

Proof of_ Theorem 5.ί. Rescaling if necessary we may assume that Sp{R) C C μ and
Sp(5)cC^. By virtue of (3.1)

) = Fμ(tR)Fμ(tS)

for any t e C μ and using Proposition 5.2 we obtain R 4- S η A. Q.E.D.
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6. Properties of Fμ( )

In this section we collect some simple formulae that can be proved by

straightforward computations. We have

where

M ( O = Σ
k±o Factllβ(k)'

where

* \-uΓ2n

Fact1M(/c)=

n=ι
— 2(number of inversions)V ..

— L f*
Perm(fc)

where the summation runs over all permutations of k elements.
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