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Abstract. This paper is concerned with the asymptotic behavior toward the rare-
faction wave of the solution of a one-dimensional barotropic model system for
compressible viscous gas. We assume that the initial data tend to constant states
at x = ±oo, respectively, and the Riemann problem for the corresponding hyper-
bolic system admits a weak continuous rarefaction wave. If the adiabatic constant
y satisfies 1 ̂  γ ^ 2, then the solution is proved to tend to the rarefaction wave as
t -> oo under no smallness conditions of both the difference of asymptotic values
at x = + oo and the initial data. The proof is given by an elementary L2-energy
method.

1. Introduction

Subsequent to [10] and [11], we consider the Cauchy problem of a one-dimensional
barotropic model system for compressible viscous gas. Our problem is described as

vt — ux = 0

ut + p{v)x = μ(^\ (1.1)

p(v) = av~\ XGR, teR+=(0,oo)

with the initial data

{v,u)(0,x) = {υo,uo)(x)9 (1.2)

where υ{ > 0) is the specific volume, u is the velocity, μ( > 0) is the constant coefficient
of viscosity and p is the pressure given by p = av~γ for a constant a > 0 and the
adiabatic constant y ^ 1. We assume the initial data asymptotically tend to the
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constant states at x = ± oo:

lim (vθ9uo)(x) = (v±9u±)9 v±>0. (1.3)
JC~» ± OO

The asymptotic behavior as t -• oo of the solution is closely related to that of
the Riemann problem for the corresponding hyperbolic conservation law:

\Vt~Uχ

(~ (1.4)

with

w/x x , P l?w v ί(̂ -»W_) X < 0 /Λ _v

(t;, w)(0, x) = (t;£, WQ)(X) Ξ < (1.5)

l(v+9u+) x>0.

For a state (I;_,M_) (ι;_ >0, w_eR), we define in a suitable neighborhood

- ί - - f > 1 (1.6)

and

,u)eω;u^u^- | ^(s)^, M^M_ - J A2(s)ds>, (1.7)
1 7 - V- J

where Ax(i;) = — yj— p'(v) and /12(^) = y/— p'(v) are the distinct eigenvalues of the

matrix ( ). It is well-known that if (v + ,u+)eRR(v_,u_\ then the

\p'(v) o y
Riemann problem (1.4) with (1.5) admits a continuous weak solution of the form
(vR, uR)(x/t) (we call it "the rarefaction wave" for simplicity), which consists of three
constant states and the centered rarefaction waves connecting the constant states
(see Lax [6]).

We showed in [11] that the solution (v,u) of the original system (1.1)—(1.3)
tends to the rarefaction wave (vR,uR)(x/t) provided both \(v + ,u+) — (t;_,w_)| and
(v0 — vR,u0 — uR\(vθ9uo)xeL2 are sufficiently small. Further in [5], we succeeded
in removing the smallness condition for the initial data. Our purpose in the present
paper is to show that, when 1 ̂  γ ^ 2, the solution (v, u) asymptotically behaves
as(vR,uR)(x/t) without smallness conditions of both the initial data and \(υ + ,u+) —
(U_,M_)| . Our results are precisely as follows.
Theorem 1.1. Let l ^ y ^ 2 . // (υ + ,u+)eRR(v-,u.) and {vo-vR,uo-uR)eL2,
(vOx,uOx)eL2 and v0 >0, then the Cauchy problem (1.1\ (1.2) with (1.3) has a unique
global solution (v, u) in time satisfying

UXXEL2(R+XR)
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and

lim sup \(υ, u)(t,x) - (υR, uR)(x/t)\ = 0.
r->α> R

The asymptotic behaviors of the solutions of the single Burgers equations were
originally investigated by IΓin and Oleinik [2] (cf. [12,1]). For the system, those
toward the traveling wave solutions with shock profile were studied by [10,5,7].
It is still open when the asymptotic state is expected to be the superposition of
both shock and rarefaction waves.

Our plan of this paper is as follows. In the next section, we construct a smooth
approximate solution of the Riemann problem, which is the slight refinement of
that in the preceding paper [11]. In the last two sections, we reformulate our
problem and establish the a priori estimates by an elementary L2-energy method
with the aid of the techniques in [3,9].

2. Smooth Approximate Solution of the Riemann Problem

In the same situations as [11], we start with the Riemann problem for the typical
Burgers equation:

wR + wRwR =

with w_ < w + . As is well-known, (2.1) has a continuous weak solution of the form
wR(x/t) given by

ί w_ ξ ^ w_

ξ w _ g ί g w + (2.2)

We approximate wR(x/t) by the solution of the following problem:

{ wt + wwx = 0
(2-3)

w(0,x) = wo(x) = w + w-κq J (1 + y2yqdy,
o

where w = (w+ 4- w_)/2, w = (w+ — w_)/2 > 0, ε > 0 is a small constant to be deter-
00

mined later and κq is a constant such that κq j (1 + y2)~qdy = 1 for each q > 3/2.

Then we have °

Lemma 2.1. // w_ < w+, then the problem (2.3) has a unique smooth global solution
w(ί, x) in time satisfying the following:

(i) w_ < w(t,x)< w + , w x(ί,x)>0, (t,x)eR+x R.

(ii) For any p(l Sp^ °o) ίΊere ^x/sίs a constant Cpq such that
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|| wx(t9 •) | |L P £ C 1 ^ ^ 1 ^

teR + .

(iii) If W- > 0, then for some positive constant Cq,

I w(ί,x) - w_ I ̂  Cqw(\ + (εx) 2 H / 3 (l + (εw_ί)2)~*/3

\wx(t,x)\^Cqεw(l+(εx)2)-q/2(l+(εw_t)2)-q/2, x ^ O ,

(iv) // w+ < 0, then for some positive constant Cq

| w(ί,x) - w+1 S Cqw(l + (εx)2Γ«/3(l + (εw+t)2yq/\

+(εx)2)-q/2(\ +(εw + t)2yq/2, x ^ 0,

(v) lim sup I w(ί, x) — wΛ(x/ί)| = 0.

The proof is quite similar to Lemma 2.1 in [11], in which we took the initial
data wo(x) = w + vvtanhx. Since we have taken the new one in (2.3), it holds

from which (ii)2 follows. Hence ||wxx(t,-)\\LP is integrable on R+ for p> 1, which
is the crucial different point from the preceding.

We now approximate the weak solution (vR,uR)(x/t) of (1.4), (1.5) by using the
smooth solution w(t,x) of (2.3). The procedure is the same as that in [11]. If
(v + ,u+)eRR(v_,U-\ then there is a unique (ϋ,ϋ)eR1(v-,u_) satisfying (v+,u+)e
R2(v,ΰ) and the continuous weak solution of the Riemann problem (1.4) with (1.5)
is exactly given by

(υR, uR)(x/t) = (vR + vR-v,uR + uR- ΰ)(x/t)9 (2.4)

where

λ^iξ)) = wR(ξ) (respectively λ2(vR(ξ)) = wR(ξ)\ (2.5)
Vf(ξ) , Vf(ξ) v

uR{ξ) = u^- j λ^ds I respectively uR{ξ) = ΰ - [ λ2{s)ds\ (2.6)
V- \ V J

and wR(ξ) (respectively wR(ξ)) is given by (2.2) with

Wi_ =λ1(v-)9 w 1 + =λ1(v) (respectively w2_ =λ2(v)9w2+ =λ2(v + )). (2.7)

Along this process of (2.4)-(2.7), we define (F, U)(t,x) by

v9 u)(t,x) = (v, + v2-v,υ1 + υ2- a)(t,x)

λί(Vί) = wί(t9x)9 λ2(V2) = w2(t9x) (2.8)
Vx V2

l/i = iι_ - f λ^ds, U2 = U- J λ2(s)ds,
V - V

where w1 (respectively w2) is the solution of (2.3) with (2.7). It is easily seen that
both (Kl5 UJ and (F 2, (72) are smooth exact solutions of (1.4) and that (F, (7) satisfies

(2.9)
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where g{V) = p(V)-piVJ-p(V2) + p(υ). We note g(V) = 0 if (v^u^
or {v + ,u+)eR2(v-9U-).

Let<5 = | ι ? + — ι ; _ | + | κ + — M _ | . T h e n (V,U) satisfies t h e fo l lowing, d u e t o L e m m a
2.1.

Lemma 2.2. (V9 U) given by (2.8) satisfies the following:

(i) Vt>0, {t9x)eR+x R.
(ii) For some constant C

\Vx\^CVt9 Vt^Cεδ, (t,x)eR+xR.

(iii) // wt = (wi+ - wt _)/2 Φ 0 (i = 1,2), then

) - ^

/or

(iv) | |K x ( ί ,OII L pJI^( ί r ) l lLP^C^min(fe 1 - 1 ^(5 1 ^( l+ί)~ 1 + 1//7) for teR

(v) II K«(ί, •) | | ^ , II C/«(ί, -) | | ^

< C |

/or ίe/?+ αnrf, especially, for p > 1,

CO 00

J lir«(ί, )llLpΛ, J l|

(vi) lim sup \(V, U)(t,x) - (υR,uR)(x/t)\ = 0.
ί^oo R

3. Reformulation of the Problem

Making use of the approximate solution (F, U) constructed in the preceding section,
we rewrite the Cauchy problem (1.1) with (1.2) by the change of variables
(v9u) = (V +φ9U + ψ) as follows:

(φ9 ψ)(09 x) = (φ09 φo)(x) = (vo(x) - K(0, x), uo(x) - ί/(0, x)), (3.2)

where

(3.3)
= p(V)-p(Vι)-p(V2)
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We seek the solution of (3.1), (3.2) in the set of functions X(0, oo) where, for

X(09 T) = {(φ,φ)eC(\0, TlH^φ^L2^ T\L2\φxeL2(<d, T H1) and 0<

Here Hk(k ^ 0) denote the usual Sobolev space with the norm || \\k. In particular,
H° = L2 with H o = INI.

For the proof of Theorem 1 it suffices to show

Proposition 3.1. Let 1 £ y ^ 2. Then, there exists a unique global solution
(φ,φ)eX(0, oo) and a positive constant Co satisfying

and

00

sup||(<p,^)(f)ll?+ J (\\^/Vtφ(τ)\\2+ il<Pχ(τ)H2 + ll^xMII2)^ ^ Col l^^O^-
ί^C) 0

Proposition 3.1 is obtained by the combination of the existence and uniqueness
of the local solution in time with the continuation process to construct the global
solution (cf. [8,10,11] etc.). In the later section, we devote ourselves to the following
a priori estimates.

Proposition 3.2. (A priori estimates) When 1 ̂  γ ^ 2, suppose the problem (3.1), (3.2)
has a solution (φ, φ)eX(0, T) for some T > 0. Let v = v/V, then there exists a positive
constant CΊ independent of T such that

C;: ^ v(t, x) S Cί for (t, x)e[0, Γ] x R, (3.4)

i + ί ll\/^ί(£--i)(τ)ll2 + ll^xMII2 + ll^x(T)lli^T

0

ι - l , ^ 0 ) | | 2 + l) for ίe[0,Γ]. (3.5)

φ V
If we note vx = — -(0— 1), it suffices to prove Proposition 3.2 for the proof

of Proposition 3.1.

4. A Priori Estimates

Throughout this section we suppose the problem (3.1) with (3.2) has a solution
(φ, φ)eX(0, T) for some T > 0 . We write C as generic positive constants which
may be depend on wt (i = 1,2) and ε, but are independent of ί(0 ^ t ^ T) and (φ, φ).
C/a, b,...), j = 2,3,..., denote some positive constants depending on a, b,... . Also,
we abbreviate the integrand R without confusion.

Lemma 4.1. For sufficiently small ε > 0,

(4.1)
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ίί
vV

dxdτ^C2(\\ψ0\\,\\ΦΛ\ (4.2)

where Φ(v, V) = p(V)(v -V)-$ p(η)dη ^ 0.
v

Remark 4.1. If we put v = v/V, then Φ(v,V)=Φ(v)/Vy-1 and p(V+ψ)-p(V)-
p'(V)ψ = (v~y-1 +γ(v- i))/V\ where

η- 1 — logίj
Φ(η) = r - " f ' (4.3)

(η — l+(η y — 1 )/(y — 1) y > l .

Here we put a = 1 without loss of generality. Hence (4.1) is rewritten as

(4.4)

Proof of Lemma 4.1. Multiplying the first equation of (3.1) by p(V) — p(V + ψ) and
the second one by φ, summing them up and integrating it over [0, t] x R, we have

o (. v

Φ(vo(x), V(0,x))dx + } || G(V)x(τ)|| || φ(τ)||dτ. (4.5)
- J 2 r υ λ o

If we put p(V + φ) - p(V) - pf(V)ψ=f(v, V)φ\ then/(ι;, V) > 0. Since

φ)-p{V)-p\V)φ)Vt
vV

<v) Vy/vfiv, V)

v,

•K/V

v, V)Vtψf,

y
the discriminant D is μ—— 4, regarding E as the quadratic equation. It

V2υf(υ, V)
holds 0 < Vt < Cδε by Lemma 2.2 and 0 V̂2vf(v, V)

^C<+ooforO<ι;<+oo.

and E>C~X φφxVt

vV
. Thus (4.1) and (4.2) follows from the integrability of

|| G(V)x(t) || on R+ by virtue of Lemma 2.2. Q.E.D.
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Next, by the change of variable ϋ = v/Vwe reformulate (3.1) to another form:

v J VW + 1 Vγ+1\vy

If we multiply (4.6) by ΰjv and integrate it over R, we have

-μ(— ) =-G{V)x. (4.6)

v VW+

vK
v~2VW + 2 2 P

2J\v

Since

and

v J\ vj, v

we have, by the integration of (4.7) over [0, ί],

(4.7)

y
2

2\ϋ

2 \ ~ Vo o
dτ

o v vV 2 ΰyVγ + 2

where vo(x) = vo(x)/V(09x). Due to Lemma 4.1 and Lemma 2.2, (4.8) yields

Lemma 4.2.

(4.8)

2 f

+ JJ dxdτ^C4(\\Ψol\\Φol\\Vox\\) + C\^
0

V -dxdτ. (4.9)

We now show the key lemma.

Lemma 4.3. Let 1 ^ y ̂  2. TTzeft ί/zere ex/sίs a constant C5 = C5( || φ01|, || ̂ 0 1 | , || vQx

such that

2 t ΰ2

+ ffl^ϊϊ*«fr*C5, (4.10)

C;1^v(t,x)^C5. (4.11)

Proo/. We first prove the case when γ = 1. Since | F l̂ ^ CF, and p(V -\-φ) — p(V)—
(1-v)2

p'(V)φ = , the last term in (4.9) is finite by (4.1), which means (4.10). In order
Vΰ

to show (4.11), we put

(4.12)
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following KaneΓ [3]. Noting Ψ(v(t9x))->0 as x-» ± oo, we have

\Ψ(v(t,x))\ = j —Ψ(v(t9x))dx

2-'
J

Since f ^ ) -> + oo (respectively — oo) as #-» -f oo (respectively -f 0), (4.11) is valid
because of (4.10) and (4.4).

Next, we turn to the case 1 < γ ^ 2, in which the procedure is more complicated.
From (4.9) we lead to

Sublemma. For constants C6,Cη depending on \\φo\\, \\φo\\ and \\vQx\\, it holds

t I ( \ y - i

supz;(ί,x)^C6 + C 7 J - - sup0(τ,x) dτ. (4.13)
\ R

Proof. Let Ωι(t) = {xeR;v(t,x)^ 2}, Ω2(t) = {xeR;±< v(t9x)< 2} and Ω3(ή =
{XER; v(t9x)Sj}, then we divide the integrand of the last term in (4.9):

f f
O\βi(τ)

Since

and

ί ί
0 V Λi(t)

1 /

^ j ( sup v(τ, x)
o \

llί- ί
(1-vψ

it is valid from (4.4) and Lemma 2.2

\( f \AT <rr f_L—
O \ Ω\{τ)J O\L ~r 1)

By the mean value theorem, it is easily seen

When 0 < v ^ 1/2,

ί ί
0 V Ω2(t)

g c(t;y - 1 + y(5 - 1)) and hence, due to (4.4),

(4.14)

(4.15)

ί ί <ccv
(4.16)
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Combining (4.14)-(4.16), we have

y - 1

dτ

o v' -v \ o{i -tτr \ R

On the other hand, we also define Ψ(v) by (4.12) and note

\Ψ(ϋ(t,x))\Z -z®
l/2

(4.17)

(4.18)

by (4.4). For a moment let v(t, x) ^ 2, then

Λn v(t,x)

^ + J
*ί 2

" f
so that

^ C + j Cη-il2dη = 2Cv{t,x)il2 + C,
2

v{t,x)112 ^C + C\Ψ(ϋ{Ux))\. (4.19)

If we take C ^ y/2, then (4.19) holds also when υ(t,x) < 2. Applying (4.17)-(4.19)

to (4.9) we obtain (4.13). Q.E.D.

Now, we can complete the proof of Lemma 4.3. If γ — 1 ^ 1, i.e. y ^ 2, then

(4.13) shows sup£(ί,x) ^ C and so (4.10) due to Lemma 4.2 and (4.17). Therefore,
R

(4.11) follows from (4.18) in the same way as the case γ=l. Q.E.D.

The estimates of φx and ψxx are obtained by the multiplication by — φxx to

the second equation of (3.1) on the same line of [11]. We state the result only.

L e m m a 4 . 4 . There is a constant C8 depending on \\φo\\9 \\vOx\\9 | | I / Ό H I such that

(4.20)

Thus the proof of Proposition 3.2 is completed.
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