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Abstract. A further step is achieved toward establishing the celebrated
Boltzmann-Sinai ergodic hypothesis: for systems of four hard balls on the v-torus
(v>2) it is shown that, on the submanifold of the phase specified by the trivial
conservation laws, the system is a K-flow. All parts of our previous demonstration
providing the analogous result for three hard balls are simplified and strengthened.
The main novelties are: (i) A refinement of the geometric-algebraic methods used
earlier helps us to bound the codimension of the arising implicitly given set of
degeneracies even if we can not calculate their exact dimension that was possible
for three-billiards. As a matter of fact, it is this part of our arguments, where further
understanding and new ideas are necessary before attacking the general ergodic
problem; (ii) In the "pasting" part of the proof, which is a sophisticated version of
Hopf s classical device, the arguments are so general that it is hoped they work in
the general case, too. This is achieved for four balls, in particular, by a version of the
Transversal Fundamental Theorem which, on one hand, is simpler and more
suitable for applications than the previous one and, on the other hand, as we have
discovered earlier, is the main tool to prove global ergodicity of semi-dispersing
billiards; (iii) The verification of the Chernov-Sinai ansatz is essentially simplified
and the new idea of the proof also promises to work in the general case.
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1. Introduction

Our knowledge about the phase picture of classical Hamiltonian systems with
several particles (more than two, say) is surprisingly meager despite the central and
old interest in the subject. So far as we know, the only completely understood
examples are:

1. some one-dimensional completely integrable systems where the pair interaction
has a special, so-called reflection-symmetric form [cf. M(1981)];
2. the ergodic system of three elastic balls [cf. K-S-Sz(1991)];
3. special models of Hamiltonian systems with an arbitrary number of par-
ticles elaborated by Bunimovich-Liverani-Pellegrinotti-Sukhov [B-L-P-S (1991)]
whose ergodicity could have been shown by enhancing the methods of K-S-Sz
(1991); though these are not very realistic, they are the first Hamiltonian systems
with an arbitrary number of particles whose ergodicity has been established.

As to the case with two degrees of freedom, different families of potentials have
been found that result in an ergodic system. Here we suggest the reader to consult
the recent paper of Donnay-Liverani (1991) containing the most complete results
(for instance, most remarkably, ergodic systems given by smooth potentials) and a
good survey of earlier achievements.

The celebrated Boltzmann-Sinai ergodic hypothesis says that the Hamiltonian
systems of an arbitrary (ΛΓ^2) number of elastic hard balls on the v(^2)
dimensional torus are ergodic on connected components of submanifolds of the
phase space where the trivial integrals of motion are constant.

An instructive way to think about the problem is the following. The
hyperbolicity property needed to at least demonstrate local ergodicity of these
systems is only provided for a trajectory if it gathers all possible degrees of freedom
of the system. For two balls, one collision of these particles obviously introduces all
necessary degrees of freedom. This is, however, evidently not so for a higher
number of balls and, in K-S-Sz(1991), we suggested a strategy to tackle this
difficulty and could also successfully apply it to the case of three balls.

Now, in the present paper, we are able to establish the K-property of systems of
four balls. In fact - by simplifying and strengthening the tools of the previous work
- we could reach such a general understanding of the ergodic problem that, as it
seems to us at present, the main obstacle in proving the K-property for an arbitrary
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number of balls is a question of combinatorial flavor. This question was relatively
easy for N = 3, is tractable for N = 4 and - apart from some conjectures to be
discussed in a forthcoming paper - is quite new and completely open for N ^ 5.

Let us go now to a technical formulation of our result. Assume that, in general, a
system of JV(^2) balls of radii r>0 are given on Tv, the v-dimensional unit torus
(v ̂  2). Denote the phase point of the ith ball by (qi9 vt) G Γ X RV. The configuration

I cylindric

j JV JV

\^i<j^N. The energy H=~Σvf and the total momentum P=Σvi a r e

2 i i

integrals of the motion. Thus, without loss of generality, we can assume that H = \
N

and P = 0 and, moreover, that the sum of spatial components B = £ qt = 0 (if P φ 0,
1

then the center of mass has an additional conditionally periodic or periodic
motion). For these values of H, P and B, the phase space of the system reduces to
M: = Qx5Vv-v-i> where

with d: = dimQ = iV v — v, and where Sfk denotes, in general, the fc-dimensional
unit sphere. It is easy to see that the dynamics of the N balls, determined by their
uniform motion with elastic collisions on one hand, and the billiard flow [S*: t e R}
in Q with specular reflections at dQ on the other hand, are isomorphic and they
conserve the Liouville measure dμ = const dq dv.

In this paper we prove the following

Main Theorem. For N = 4, v ̂  3 and r< 1/8 the dynamical system (M, {S*},μ) is a
K-flow.

Earlier, for N = 2, Sinai (1970) [see also Bunimovich-Sinai (1973) and Gallavotti
(1975)] and Chernov and Sinai (1987) settled the cases v = 2, rΦl/4 and v^3,
r Φ1/4 respectively [for a detailed formulation see also K-S-Sz (1990)] while, for
N = 3, v^2 and r<l/6 the present authors could establish the K-property [cf.
K-S-Sz (1991)]. The role of the restriction r<l/8 is the same as that of the
condition r < 1/6 in the case N = 3. Its explanation and the discussion of the case
r> 1/8, N = 4 is analogous to what has been said in the case of three billiards and
for details we refer to K-S-Sz (1991). On the other hand, the description of the
difficulties arising in the case v = 2, N = 4 is essential and can be found in Sect. 4.

Next we describe the main parts of the proof by parallelly detailing the
organization of the paper. As explained above, our hard ball systems can be
represented as billiards in a higher-dimensional flat manifold with a special CW-
complex as its boundary. (In the strict sense, the configuration space is not a
manifold with boundary.)

As we have already mentioned, for two balls - apart from a well tractable small
set - the trajectories of the isomorphic billiard system are manifestly hyperbolic
since, in technical terms, the boundary components of the configuration space are
strictly convex from outside (i.e. the billiard is a dispersing one).



110 A. Kramli, N. Simanyi, and D. Szasz

In the case of three or more balls, however, the boundaries, in fact cylinders, are
just convex (i.e. the billiard system is a semi-dispersing one). To obtain
hyperbolicity of a trajectory or, as we said, to get all degrees of freedom of the
system involved, one should assume that the collision history of the orbit is
sufficiently rich.

The approach of our previous papers, K-S-Sz (1989) and K-S-Sz (1991) is based
on the so-called fundamental theorem for semi-dispersing billiards [cf. S-Ch (1987)
and K-S-Sz (1990)] which, in a 0th approximation, sounds as follows:

Fundamental "Theorem" for Semi-Dispersing Billiards. // x is a sufficient phase
point, then it has an open neighborhood U(x) that belongs to one ergodic component.

Here sufficiency of a phase point x or, in fact, of its orbit is a dynamical notion
implying that almost every point of its sufficiently small neighborhood is hyper-
bolic (though x itself may have zero exponents). The basic necessary notions and
notations about semidispersing billiards including those connected with suffi-
ciency are summarized in Sect. 2. The exact and, in fact, new and most power-
ful formulation of the Fundamental Theorem is given in Sect. 3.

If, for a semi-dispersing billiard, one can verify the statement that non-sufficient
points form a codίmension two subset of the phase space, then the Fundamental
Theorem almost implies the ergodicity of the system. The proof of the above
statement for our system of four balls forms the main body of the proof but further
difficulties also arise, for the Fundamental Theorem (Theorem 3.4) has additional
conditions (this is why its given formulation is only a 0th approximation), and the
presence of the first of them, in fact, leads to further difficulties. This assumption is
a global condition, the so-called Chernov-Sinai Ansatz. (For hard ball systems, the
verification of the additional two regularity conditions 3.2 and 3.3 is not difficult.)

Anyway, having the Fundamental Theorem at hand, the aforementioned
strategy consists of the following main steps:

1. Find an appropriate concept of richness of a trajectory or a finite trajectory
segment.

The definition need not be given in dynamical terms but rather in terms of the
symbolic collision sequence of the orbit. Also, it is worth noting that the
appropriate definition of richness may depend on the dimension of the torus.

2. Geometric-algebraic considerations.
According to our understanding, in a sufficiently small neighborhood of a
phase point x with a rich trajectory segment, non-sufficient points form a CW-
complex since they are solutions of certain implicitly given equations. Though we
can not show exactly this statement, we can still prove that non-sufficient points
form subsets of certain CW-complexes of codimension at least two. This is, of
course, amply suitable for our purposes.

This part of the proof uses geometric and algebraic considerations. For the case
of three balls, once the language of the problem had been found, this part was quite
elementary.

The suitable concept of richness is introduced in Sect. 4 and, moreover, Main
Theorem 4.3 expressing the statement of step 2 is also proved there.

3. Prove that non-rich phase points form a codimension two subset.
This part, the content of Sect. 5, is basically a sophisticated version of Hopf's
classical method, a fundamental tool for establishing local or global ergodicity of
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hyperbolic dynamical systems. In fact, in K-S-Sz (1991) we proposed the method of
"pasting," i.e. a variant of the Hopf method where the unstable and stable
foliations to be used to connect typical phase points arise from different dynamical
systems and these transversal foliations are complemented by a suitable, also
transversal "neutral" foliation. It is this part of the proof where the present
stronger though, in fact, equivalent formulation of the Fundamental Theorem to
be given in Sect. 3 is needed in our proof.

4. Singular orbits.
In Parts 2 and 3, it is convenient to first restrict the arguments to neighborhoods
of non-singular points. The treatment of points with a single singularity and the
verification of the Chernov-Sinai Ansatz (Condition 3.1, an important assumption
of the fundamental theorem) are closely related since both regard the notion of
sufficiency of points with exactly one singularity on their trajectory. The analysis
of these questions is executed in Sect. 6. Compared to our proof for the case of three
billiards, the demonstration is new and essentially simpler.

Having these steps elaborated, the proof of our theorem will be easily composed
from them in Sect. 7. Sections 3-7 containing the arguments are preceded by Sect. 2
collecting prerequisites about semi-dispersing billiards and their singularities, the
underlying notions of neutral subspaces and sufficiency, the necessary facts from
topological dimension theory and some further concepts: advance of an orbit,
decompositions into subsystems, sub-billiards, etc. The paper is supplemented by
an Appendix where we show that sets of phase points whose trajectories have
three-class partitions on infinite time intervals are of codimension not less than
two.

2. Prerequisites

Semi-Dispersing Billiards

In our previous paper K-S-Sz (1990), we formulated a self-contained summary of
some basic notions about semi-dispersing billiards. For convenience and brevity,
we will throughout use the concepts and notations of Sect. 2 of the aforementioned
paper. Here we only summarize some further notions from K-S-Sz (1989) and
K-S-Sz (1991) necessary to our forthcoming arguments.

As to the definitions of semi-dispersing and dispersing billiards (M, {S'}, μ) on a d-
dimensional billiard table Q, their Poincarέ maps T+ : M-+dM, T:dM-+dM, local
stable and unstable invariant manifolds γs'u(x) we refer to the aforementioned work.
Fix a semi-dispersing billiard system (M, {£'}, μ) and let x e M\dM. Choose a C2-
smooth, codimension 1 submanifold ΓcQXdQ such that QeΣ and V is a unit
normal vector to Σ at Q. We shall throughout use the notation x = (β, V) for a
point XEM where V=p(x) is the velocity and Q = π(x) is the spatial component of
x. Σ can be lifted to M to obtain a unique Σ C M by requiring that

(i) the projection π:Σ-+Σ be a C^diffeomorphism;
(ii) xeΣ;

(iii) for every yeΣ the vector p(y) is a normal vector to Σ.
We call Σ a local orthogonal manifold with support Σ. The unit normal vector V

attached to Q e Σ by Σ is denoted by V(Q).
The second fundamental form BΣ(x) of Σ (or Σ) at x is defined through
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and is a selfadjoint operator acting in the (d—l)-dimensional tangent hyperplane
J(x) of Σ at x, where d = dimQ. For qedQ denote by K(g)the second fundamental
form of dQ at q (it is always non-negative semi-definite since our billiard is semi-
dispersing). In this definition, of course, dQ is supplied with the field of normal
vectors pointing inwards Q.

Sometimes it will be convenient to denote x* = S*x and Σι = S*Σ. An orthogonal
manifold Σ is called convex if BΣ(y) ̂  0 for every y e Σ. For a finite or infinite
interval JcR and xeM, S'x will throughout denote the trajectory segment
{S'x'.tel}.

Singularities

We denote by M* the set of points xeM whose trajectory contains infinitely many
collisions such that at most one of these collisions is singular (i.e. a multiple or a
tangential collision). A collision at a point x e dM such that, in π(x), at least two
smooth pieces of dQ meet is called a multiple collision. A collision is called
tangential if x e dM and p(x) e Tπ(JC)δQ. We shall frequently use the collection <9^ +

of all singular reflections:

Definition 2.1. The set £f&+ is the collection of all phase points x e dM for which
the reflection, occurring at x, is singular (tangential or multiple) and, in the case of a
multiple collision, x is supplied with the outgoing velocity V+.

The reason for the last requirement is that, in the case of a multiple collision,
there is no collision law for the velocities. It is not hard to see that S?3l+ is a
compact cell-complex in M and dim(^^t+) = dimM — 2 = 6v — 3.

In the case of a singular collision, in general, there are two branches of the
trajectory of x (the dynamics {S*} has a discontinuity according to the order of the
collisions) and, if x e M*, then the notions, to be introduced below, make sense for
both of them. The important property of the set M* is that its complement M\M*
is a residual set, see Definition 2.6. The subset of points x e M* whose trajectory
has no singular collision is denoted by M°; then let M1 = M*\M°.

Finally, for arbitrary ne N, let Δn be the set of double singularities of order not
higher than n. Δn consists of points xedM for which there exist two different
integers kί and k2 (\kx\, \k2\ ^n) such that eitherTkix or - Tkίx belongs to

Neutral Subspaces and Sufficiency of Trajectory Segments

Let us introduce a convention. Since the configuration space Q has a natural
parallelization, i.e. all of its tangent spaces ^~QQ (Q e Q) can naturally be identified
with a d-dimensional vector space JΓ, the sums of the form Q + W (QeQ,We£P)
are meaningful if the length \\W\\ is small enough.

Now we can define the neutrality of a direction

Definition 2.2. Let x e M\dM. We say that the vector We&isa neutral vector for
the trajectory segment S[a'b]x at the point x = (Q, V) (α<0, b>0) and we assume
that a, b are not moments of collision) if, for some ε > 0, there is no strict dilation
effect of the mappings Sa and Sb restricted to the short line segment



K-Property of Four Billiard Balls 113

{(Q + sW, V): \s\ <ε}. The linear space W0(S[aMx) of the neutral vectors is called the
neutral space of S[a'b]x at the point c.

Of course, the neutral subspace can be defined at every point S*x of the
trajectory segment and - in the spirit of the gluing of orthogonal hyperplanes as
described in Sect. 2 of K-S-Sz (1989) - it is an invariant of the segment hence its
dimension is also an invariant. If necessary, we will denote the neutral subspace
of a path segment as W(S{a>b)x).

For different values of te[a,b\ however, the representations of W{S[a'b]x) at
S*x as subspaces of the common linear space 3£ are, in general, different. Thus, by
writing Wt(S[a>b]x), we will always mean the local representation of W(S[a>b]x) at
S*x φ dM. Finally, one more notation will be used throughout: for w e 2£ and t eR,
Q?(x) will denote the point S~*y where y = (Q* + w9 V

1) with xt = (Q\ V*).
The infinitesimal perturbation of the trajectories will play a crucial role in our

considerations. However, for proving some elementary properties of the neutral
directions it will be more convenient to work with small finite perturbations.

Lemma 2.3 (Characterization of a neutral direction.). A vector We££ is a neutral
direction for the trajectory segment {S*x :t1<t<t2] at the point x(tl^0 and t2 ^ 0)
if and only if there exist two positive numbers εx and ε2 such that, for every ε<ε l 9

p{S\Q, V)) = p(Sf(Q + εW, V)) for every te(tl9t2) except for the ε2-neighborhoods of
the reflection moments t\<...<t'kof the interval (tί912). (The endpoίnts tl9t2 are
supposed not to be moments of collision.)

Now we are able to introduce the fundamental concept of sufficiency of a
trajectory segment. It is worth stressing that the definition to be given is though
equivalent but formally different from the formulations of this notion of our
previous papers.

Definition 2.4. Assume that the finite or infinite trajectory S{a'b)x contains not
more than one singular collision. We say that it is sufficient if dim W(S[a'b]x) = 1, i.e.
no neutral directions exist apart from the trivial one: the direction of the flow. If
S{a'b)x does contain a singular collision, then the property just formulated is
required to hold for both branches of the segment.

Of course, if IcΓ and S1 x is sufficient, then S1 'x is also sufficient.

Decompositions and Sub-Billiards

It is intuitively clear that trajectory segments along which the system of balls
decomposes into at least two non-interacting subclasses can not gather all degrees
of freedom or, in a more technical wording, the segment can not be sufficient.
Throughout the paper we will be using the following notations: assume that a
system Jf = {ί,29...9N} of N (^2) balls is decomposed into two non-empty
classes: Jί = Jίγ\jJί2, Jfγc\Jf2 = §, |Λ^|*0 (ϊ = l,2). We say that the trajectory
segment S(a'b)x is partitioned by P = {^u^r

2} if aU its collisions occur among
particles of the same class of P, only. In such a case, the action of S* on
x = {xjri9 Xjr2} (t e [α, ft]) is certainly the product of two independent subdynamics:
St

JyιxJrι and S^2x^2.
To be more exact, we express S'x in detail as a direct product. To this end

decompose

x =
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Denote

Σ Qj = q,, Σ Vj = It, \ Σ vj = Et

Jί jV 4 jeJT

for f = 1,2. By a standard change of coordinates K(ξuIuEi), to every Xjr. there
corresponds an element Xjr. = K{ξuIuEi)Xjr.e Mjr., (the phase space of a billiard
with |Λ |̂ balls), and S'x can be understood as

StX={Kiqi + tIuIuEi)SjriK{quIuE.)Xjr. I ϊ = 1, 2} .

The dynamics St

Jrι or K^l+tIuIuEi)S
tj/ iK(ΆιJuEi) acting on jc^ will be called

subdynamίcs or a sub-billiard. The properties of a particular form of a three
particle sub-billiard are analyzed e.g. in and after (5.52).

Advance of a Subsystem

Next we introduce the notion of advance or time-shift for a system of balls. It will be
used for sub-billiards but we prefer to introduce it for our full dynamical system
(M, {5*}, μ) as it was defined in Sect. 1. As mentioned earlier in the present section, if
x = (Q, V)φdM, then the flow direction is always a neutral direction at x for any
trajectory segment S(a'b)x: a<0<b. Thus, if Sax,SbxφdM and α is a sufficiently
small real number such that

then the neutral subspaces of S{a>b)x at x and of S(a'b)(Sax) at Sax will be the same,
and, moreover, Sax will be a perturbation of x in the configuration space, namely

) . (2.5)

In fact, if, in addition, S{a'b)x is a sufficient trajectory segment, then the only neutral
directions at x are of the form {ocV: α e R}. This follows from Definitions 2.2 and 2.4
and this observation will be used throughout. Having pure spatial perturbations of
the form (2.5) (i.e. perturbations to the trivial neutral direction of the flow), the
number α is called the advance or time shift of the billiard system (M, S\ μ) with
respect to the neutral perturbation (2.5). It is also useful to express (2.5) in local
coordinates. For instance, if the trajectory S[a'b]x is partitioned by the partition
{P1? {i,j}}, then the advance of the subsystem {i,j} with respect to the spatial
perturbations dQe^C satisfying

is just α.

Some Facts from Topological Dimension Theory

Here we outline the necessary statements from general topology. As to a broader
exposition of the issues, see E (1978) or Sect. 2 of K-S-Sz (1991). We start with the
notion of residuality. Note that the dimension dim^4 of a separable metric space A
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is one of the three classical notions of dimension: the covering, the small inductive,
or the large inductive dimension. As it is known from general topology, all of them
are the same for separable metric spaces.

Definition 2.6. A subset A of M is called residual iff A can be covered by a
countable family of codimension 2 closed sets of //-measure zero [cf. Defini-
tion 2.12 of K-S-Sz (1991)].

Remark 2.7. Any countable union of codimension 2 smooth submanifolds is
residual.

Lemma 2.8. A subset A CM is residual if and only if, for every xeA, there exists a
neighborhood U of x such that UnA is residual. (Locality, cf Lemma 2.14 of K-S-Sz
(1991).)

The following lemmas characterize codimension-two and codimension-one
sets.

Lemma 2.9. For any closed subset ScM the following three conditions are
equivalent:
(i) dimS^dimM-2;

(ii) S φ M and, for every open connected set GcM, the difference set G\S is
also connected;
(iii) For every point xeM and for any neighborhood V of x in M there exists a
smaller neighborhood WcV of the point x such that, for every pair of points
y,ze W\S, there is a continuous curve γ in the set V\S connecting the points y and z
and, moreover, intS = 0.

[See Theorem 1.8.13 and Problem 1.8. E of E(1978).]

Property 2.10. For any subset SCM the condition d imS^dimM— 1 is equivalent
to intS = 0. [See Theorem 1.8.10 of E (1978).]

We recall an elementary, but important lemma [Lemma 4.15 from K-S-Sz
(1991)]. Let R2 the set of phase points xeM\dM such that the trajectory {S*x}
has a singular collision both for t < 0 and t > 0.

Lemma 2.11. The set R2 is a countable union of codimension 2 of submanifolds
ofM.

Finally, we cite the most important property of residual sets which gives us the
fundamental geometric tool to connect the open ergodic components of billiard
flows.

Lemma 2.12. The complement of a residual set AcM always contains an arcwise
connected, dense set BCM with full measure [See Property 3 of Sect. 4.1 of K-S-Sz
(1989).]

3. New Formulation of the Transversal Fundamental Theorem

The importance of fundamental theorems for demonstrating stochastic properties
of hyperbolic systems with discontinuities is twofold:
(i) they, in their original form initiated by Chernov and Sinai (1987), first of all
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guarantee local ergodicity in neighborhoods of hyperbolic - in our case, of suffi-
cient - points;
(ii) moreover, the transversal versions of the fundamental theorems as suggested by
K-S-Sz (1990 and 1991) make possible to apply the method of pasting which is
basic for establishing global ergodicity of semi-dispersing billiards.

The present form of the theorem is its "stable version" which guarantees the
existence of a bulk of "not too short" local stable invariant manifolds in suitably
small neighborhoods of sufficient phase points. As a matter of fact, the present
formulation of the fundamental theorem contains three modifications - formal
improvements - which are listed in the second remark following the theorem.
Although these changes are important in the applications, it is not hard to see that
this version of the theorem is equivalent to its earlier formulations in S-Ch (1987)
or K-S-Sz (1990). For more details see Remark 2 below.

Assume we are given a semi-dispersing billiard flow (M, {£'},//) satisfying the
following conditions:

Condition 3.1 (Chernov-Sinai Ansatz). Vor Vy@ + - almost every point x e 9*01+, the
positive semi-trajectory S^'^x is sufficient, where v#>@+ denotes the Riemannian
volume on the codimension one CW-complex

Condition 3.2 (Regularity of the set of degenerate tangencies). The set

{x = (q,v)edQxSd.1:(v,n(q)) = O and K(q)v = 0}

is a finite union of compact smooth submanifolds ofdM (usually with boundary), i.e.
this set is a CW-subcomplex of dM. Recall that K(q) is the second fundamental form
of dQatqedQ.

We remark that, in general, Condition 3.2 trivially holds for semi-dispersing
billiards with solely cylindric scatterers (e.g. systems of billiard balls).

Our last regularity condition concerns the sets Δn of double singularities:

Condition 3.3 (Regularity of double singularities). For every neN, the set Δnis a
finite union of compact smooth submanifolds of dM.

Assume, moreover, that the following objects are given:
(i) a sufficient base point x0 e M\dM such that x0 has at most one singularity on

its trajectory and this singularity, if it exists at all, occurs in the past,
(ii) a codimension-one smooth submanifold fsx0 of M which is transversal to all

the possible local stable leaves and singularity manifolds corresponding to
singular reflections in the future [the role of β is played by π2> 3,4(̂ 1,̂ ) in Sect. 5],
(iii) constants C>0 and 0 < α < l .

Theorem 3.4 (Transversal Fundamental Theorem). Under Conditions 3.1-3.3 and
in the setup just given there is an open neighborhood WCa(x0) of x0 in βr, such that

μβ{{z E WCf(X(x0): μβ(Bg(z, δ)) < ccμf(B(z, δ))}) = o(δ)

(small order of δ, δ->0),

where

B(z,δ):={z'εf:ρ(z,z')<δ},

Bg(z,δ):= {zΈB(z,δ): the inner radius of the leaf γs(z') is greater than Cδ),



K-Property of Four Billiard Balls 117

μβ is the Riemannίan volume in ύf, ρ is the natural metric on / and ys(z') denotes the
intersection with / of the local stable invariant manifold of the flow {S*} through the
point z' e M.

Remarks. 1. We note that (ii) is always fulfilled by any codimension-one
submanifold /CM which is defined purely in terms of the velocities only. It is a
routine task to show the needed transversality in that case.

2. The reader can find three changes in this formulation compared to that one
appeared in K-S-Sz (1990). The first one is just the presence of the high percentage
α (arbitrarily close to 1) of the good points z'eBg(z,δ) in B(z,δ). A thorough
analysis of the original proof shows that, indeed, arbitrarily high percentage of
good points (with stable leaf greater than Cδ) can be guaranteed by choosing the
free parameters of the proof carefully.

The second change is that here we got rid of the obnoxiously technical notion of
regular coverings and parallelepipeds but, instead, we use the well-shaped ball
neighborhoods B(z, δ). A simple geometric argument - operating with different
values of α, C and δ - shows that, actually, the present formulation is equivalent to
the original one using regular coverings.

Finally, the third change is that, in the new version, the statement of the
theorem refers to the codimension-one submanifold β of M. This modification of
the fundamental theorem plays an important role in the application 5.57. The main
reason for its validity is the transversality property (ii) of the submanifold β.
Indeed, we can repeat the whole proof of the fundamental theorem dealing, on one
hand, with the original geometric objects (such as singularity manifolds, balls,
tubular neighborhoods, local orthogonal manifolds etc.) defined in a "solid"
neighborhood U(x0) of x0 in M and, on the other hand, with the intersections of
these geometric objects with the codimension-one submanifold fnU(x0). Due to
the transversality assumption (ii), all the occurring numerical estimates of
measures [their proofs heavily use the measure-preserving property of the flow
(M, {St},μ)] can be translated word by word to the corresponding estimate on β
regarding the Riemannian volume of the submanifold /. It is important to note
that no relative version (with respect to f) of the Chernov-Sinai Ansatz is required
for this improvement but just the original form 3.1 concerning the flow (M, {Sf}, μ).
3. Theorem 3.4 remains, of course, true without (ii), that is, in every sufficiently
small "solid" neighborhood WCi0[(x0) oϊx0 in M. This "more original" form of the
theorem was used for the subsystems {1,2} and {3,4} in the simultaneous
application in Proposition 5.57.

Corollary 3.5. Let (M, {S"}, μ) be a semi-dispersing billiard system satisfying the
conditions of Theorem 3.4. Every sufficient point xeM* has a neighborhood
belonging to one ergodic component of the system, and the system is a K-flow on such
ergodίc components.

The corollary can be derived from Theorem 3.4 and its dual (the unstable
version) in the same way as Corollary 3.12 of K-S-Sz (1990) was obtained from the
Transversal Fundamental Theorem via the Zig-zag Theorem (Corollary 3.10 of
the same paper) and the absolute continuity properties elaborated in
Kat-Str(1986).
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4. Geometric-Algebraic Lemmas on the Codimension
of Manifolds Corresponding to Non-Sufficient Trajectory Segments
with a Rich Collision Structure

As said before, non-sufficient points of the phase space will be treated in two steps.
In this section we will show that, in neighborhoods of points with a rich collision
structure to be defined soon, non-sufficient points form CW-complexes whose
codimension can be bounded from below. If this lower bound is at least 2, we are
done, and the main aim of the forthcoming analysis is to find such a lower bound.
The basic idea is that, as a matter of fact, non-sufficiency means degeneracy of
certain equations. They should be first found or, at least, characterized and then,
since they are implicit, their degeneracies should be properly analyzed.

In this section we shall study finite, non-singular trajectory segments S(a'b)x
= {Stx:a<t<b} with collision structure {{iιJ1}9 {iiJi}* •• >{ιWj) We always
assume that the endpoints a, b of the time interval are not moments of collision.
Recall that the symbol {ίjj,} denotes a non-empty sequence of consecutive
collisions between the iΓth andj rth particles where ijjje{l,2,3,4}, i/=K/V We do
not assume that the non-ordered pair {itJi} is different from the neighboring pair
{ίι+x Jι+x} (/= 1,2,..., k — 1). The sequence of subsequent collisions corresponding
to the symbol {ib jt} is often called an island. The following operations among
symbolic collision structures are called permitted operations:

(a) Unification of two neighboring islands {itJi} and {h+ιJι+ι} which correspond
to the same pair of particles;
(b) Splitting an island {il9jι} into two neighboring islands with the same pair of
particles {ibjt}
[this is just the inverse of the operation (a)];
(c) Interchanging two disjoint islands {i,,̂ } and {iι+1Jι+1} where disjointness
means that the sets of particles {ίtJι} and {h + iJi+i} are disjoint;
(d) Re-labeling the particles il9 j l 9 ...,ifc, j k by a permutation of the numbers
1,2,3,4;
(e) Time reversal, that is replacing the sequence ({fi,;Ί},..., {ikJk}) by the sequence
({Wfc}> •••>{''! Jl})

We say that the collision structures of two trajectory segments are equivalent iff
the symbolic collision structure of the first segment can be transformed into that of
the second one by finitely many applications of permitted operations (a)-(e).
Throughout this section we shall often use the following, basic principle on the
dynamical behavior of trajectory segments with equivalent collision structures:

Principle 4.1. Two trajectory segments S(a'b)x and S(c'd)y with equivalent collision
structures are completely equivalent from the point of view of all dynamical methods
occurring in Sect. 4 and 5 of this paper, therefore, in the investigations we can confine
ourselves to the study of trajectory segments with mutually non-equivalent collision
structures.

Before drawing up the main result of this section we need one more definition:

Definition 4.2. We say that the trajectory segment Sia'b)x decomposes iff there is a
non-collision moment te(a9b) and there are two partitions P~ and P+ of the
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particle set {1,2,3,4} with the following properties:
(i) Both partitions P~ and P+ consist of two non-empty classes;

(ii) all the collisions in the time interval (a, t) take place between particles from the
same class of P~, i.e. S(fl> t}x is partitioned by P~
(iii) S(t>b)x is partitioned by P+.

It is important to observe that a trajectory segment with collision structure
(0Wi}> •> {hJk}) does not decompose if and only if there is an index / e {1,2,..., k}
such that the "collision graph" on the vertices 1,2,3,4 with edges {il9jι}9..., {hJi}
is connected and, similarly, the collision graph with edges {ibj^,..., {ikjk} is also
connected on the vertex set {1,2,3,4}.

We note that the decomposability is invariant under the permitted operations
except for (c).

Now we are in the position of formulating the main result of this section.

Main Theorem 4.3. // the dimension v of the underlying torus is at least three and the
collision structure of the non-singular trajectory segment S(a'b)x is not equivalent to
any decomposing collision structure, then there is an open neighborhood U(x) of x in
M and a closed subset N of U(x) with the following properties:
(1) For every point ye U(x)\N the trajectory segment S^'b^y is sufficient;
(2) N is a finite union of smooth submanifolds of U(x) (that is, a CW-complex in

(3) the codimension of N is at least v —1 (^2), i.e. dimAΓ^5v.

For the purposes of the present paper richness of the collision structure of a
non-singular trajectory segment is just the condition formulated in the main
theorem: the indecomposability of any collision structure equivalent to the
given one. [E.g. the collision structure ({13} {34} {12} {34} {13}) is though
indecomposable but not rich since the collision structure ({13} {12} {34} {13}),
equivalent to it, is decomposable.] If we intended to cover the 2-dimensional
case, too, we would be forced to accept a more stringent notion of richness
(cf. Remark 4.28).

All the remaining part of this section is devoted to the proof of the main lemma.
First of all, according to Principle 4.1, we can assume that the symbolic collision

structure ({il9 j ' J , . . . , {ik,jk}) of the trajectory segment S{a'b)x is minimal, that is, the
number k of islands is the minimum number of islands in the equivalence class of
this collision structure. A simple but a bit tedious combinatorial enumeration
shows that any minimal collision structure, which satisfies the condition of the
Main Theorem 4.3, is equivalent to a collision structure that contains a block
(sequence of consecutive islands) from the following list of minimal, mutually non-
equivalent collision sequences:

1. ({13},
23},
34},

14},
24},
14},

12}, {13}, {14
12}, {13}, {14
12}, {13}, {34

34}, {24}, {12}, {13}, {34
24}, {13}, {12}, {34}, {13})

2. (
3 (
4. (
5. (
6. (
7 (
8. (
9 (

10. (
11. ({234}-3, {12}, {23}).

23}, {14}, {12}, {34}, {13})
34}, {14}, {12}, {13}, {14})
34}, {24}, {12}, {13}, {14})
lί}, {234}a 3, {1/}) Ue{2,3,4};
2 3 4 } , {f2}, {13})
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Here the symbol {234} ^ 3 denotes any collision sequence among the particles 2,3,4
that contains at least three different islands. For the sake of brevity, we omit the
complete proof of this combinatorial classification and leave it to the reader.
However, we hint to the reader that the starting point of this classification is the
collision {iιJt}, for which both collision graphs {iί9j\}9...,{ibjι} and
{ii9jι}9. , {ikJk} a r e connected on the vertex set {1,2,3,4}. Next, we can classify the
collision graphs {ί/Jz}> •••>{**>./*} according to the growth of these connected
graphs from the starting edge {i,,;,} up to the first edge {ίmjm} which makes this
graph connected. There will be five non-equivalent cases:

({12}, {34}, {13}),

({12}, {13}, {14}),

({12}, {13}, {24}),

({12}, {13}, {34}), and

Finally, we proceed in a similar manner when classifying the connected graphs
{hJi}> •••> {hJi} a n d then we consider all the possible, non-equivalent matchings
of these cases.

If the symbolic collision sequence of the trajectory segment S(a'b)x contains a
block from the above list of eleven collision sequences, then the same is true for
every trajectory segment Sia'b)y, provided the point y is close enough to the base
point x. It turns out that this block is rich enough in order to show the sufficiency
required in Main Theorem 4.3, that is, sufficiency outside of a closed CW-complex
N with codimension at least v — 1 (v ̂  3). Thus the verification of the main lemma
splits into eleven cases according to the blocks 1-11. As a matter of fact, these
proofs are very similar to each other in the groups of cases {1, 2, 3, 4, 7, 8}, {5,6},
and {10,11}, therefore, we shall only present the proof for the cases 5,7,9, and 11.

Before going into details we outline the basic ideas of the analysis. As noted
earlier, the non-sufficiency of trajectory segments S(a'b)y in some neighborhood
ye U(x) of a rich point x should, in fact, be thought of as the degeneracy of certain
equations. Since our notion of richness is, necessarily, rather implicit, even
minimal rich sequences can be rather long; so, in general, it seems to be a too
complicated task to calculate these equations for all sequences. [For the case of
N = 3 balls or the case of N = 4 balls on Tv (v ̂  4) this is still possible.] As a matter of
fact, we can and do obtain these equations in cases 9 and 11 while in cases 5 and 7
we give these types of equation for shorter subsets of the collision structure. This
part is quite elementary and is based on our calculus with neutral subspaces and
the collision laws. Then, in the second part of the proof, we use appropriate
perturbational arguments combined with the dispersing property of smaller
billiard subsystems to obtain the desired bound for the codimensions.

Case 7. ({34}, {14}, {12}, {13}, {14}). In the study of some neutral spaces we will
use the following notations:

t~
certain (not specified) moment between the first and second islands;
certain moment between the second and third islands;
certain moment between the third and fourth islands;
certain moment between the fourth and fifth islands;
the advance of the collisions at the second island;
The advance of the collisions at the fourth island.
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(Islands can be thought of as two-billiard subsystems on appropriate time
intervals.)

It is a natural wish to get rid of the trivial neutral direction: the direction of the
flow {Sτ: τ G R}. We can achieve this goal by simply requiring that the advance of
the central island {12} be zero. This assumption automatically implies that the
reduced neutral spaces Wt°-(S{t~>t+)y) and W;°+(S(ί~'ί+));) are identical:

Wt°-(S{t->t+)y)=Wt°+(S{t~>t+)y)

ί 4

= U W 1 ) W 2 , W 3 , W 4 ) G ] R 4 V : Σ WJ = 0 & wx = \

. (4.4)

Here the phase point y is any point close enough to x. The superscript 0 refers to
the assumption of having zero advance at the central island {12}. Throughout this
section we assume the convention of having zero advance at the central (third) island.
We know from the preliminaries that neutrality with respect to the first island {14}
with advance α exactly means that

tt+ϊη = ΦΪ-v\-). (4.5)

Similarly, neutrality with respect to the island {13} with advance β is just
equivalent to the equation

(4.6)

Here ξ and η (eRv) are the linear parameters of the space Wt°-(S(t~fΐ+)y) [or
Wt°+(S(t~>t+)y)'] from (4.4). It is, of course, true that

i/3~=i/3

+ & ι/4~=ι4+. (4.7)

The equations (4.5)-(4.6) obviously imply that

Thus the reduced neutral space Wt°-(S{T~'T+)y) is two-dimensional; two
independent linear parameters are α and β. From the collision equations for the
island {13} we have

T+ ί +

w; =WΛ =η,
(4 9)

Using (4.8) and (4.9) we obtain the following formula for the relative displacement

4 1

w Γ -wΓ =«(t>4~ -»Ί')+i/?[(»3+ -ι>Γ)-(vi+ - < ) ] (4.10)

We want to characterize the set N+ of points j eί/fx) [l/(x) is some open
neighborhood of x in M, small enough - the whole Sect. 4 deals with local objects],
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for which the trajectory segment S(T~'b)y is not sufficient, that is, we want to
describe the set

N+ = {ye U(x): Wtϊ(Sσ~'b)y)*{0}}

= {yeU(x):y(vΓ-vΓ)

can be solved for a,β,y with α2 + β 2 φ θ }

= {yeU(x): the vectors t>4~ — v*[, v%+ — v^+, and

v\+ —v\+ — ι/3

+ + v\+ are linearly dependent}.

Here we can observe that

i ~vi =υ4 ~vί
= {\f~ — vt[) + (vtι —ifί) + (ifι — vl+) (4.12)

and, by the collision equations for the island {13},

»Ί+ -v Γ =H(fΓ -vΓ)-(vΐ - O ] , (4.13)
therefore, the linear dependence of the vectors ι?4 — v\, v%+ — v\+, and v%+ — v\+

—1/3

+ 4- t?i+ is equivalent to that of the vectors t/4~ — ifϊ, v\~ — v\+, and v\+ — v\+. The
characterization of the set of degeneracy N+ C U(x) is contained in the following
lemma:

Lemma 4.14. The set N+ C U(x) defined above is a closed CW-complex (the union
of finitely many smooth submanifolds of U(x)) in U(x) with codimension at least
v — 2, that is, dim N + ^ 5v + 1 . Moreover, the perturbations of the form Q™+ ( ) with
w = (ξ, ξ, — 3ξ, ξ) (ξ e Rv) are transversal to every cell of N+ with codimension v — 2
and the perturbations of the form Q?- ( ) with w = (ξ, ξ, ξ,—3ξ)(ξe Rv) are tangential
to every cell of N+.

Proof We know from (4.13) that the closed set of degeneracy N+ C U(x) can be
defined by the formula

{y e U{x): the vectors t/4~ (y) — v\ (y), v*ϊ {y) — v^ (y), and

ifi (y) — vl+(y) are linearly dependent}. (4.15)

First we observe that

A) the perturbations of the form Q™ ( ) with w = (ζ, ξ, ξ, — 3ξ) (ζ e Rv) leave all the
three vectors in (4.15) fixed, so the statement of Lemma 4.14 regarding the tangency
of these perturbations is obvious. Furthermore, it is clear that the relative velocity
t;4~ —ifi is not the zero vector:

vϊ(y)-vϊ(yH0 for all yeU(x). (4.16)

Next,

B) the perturbations β;

w

+( ) with w=(ξ,ξ, -3ξ+,ξ) (ξeRv) leave the vectors v% -v\~
and v\ —vfι fixed, while the third vector if± — v\+ varies on an open piece of a
(v —l)-dimensional sphere in Rv and this sphere contains the origin of Rv.
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As the third observation, we claim that

C) the perturbations of the form QΓ-() with w = (ξ, -£,0,0) (ξeRv) leave the
nonzero vector v^ — v^ fixed, while the vector vxϊ — v\+ varies on an open piece of a
(v —l)-dimensional sphere in Rv and this sphere contains the origin.

Now it is time to define the four cells of the complex iV+,

JV+ : = {y e U(x): v\~(y) Φ v\+(y) & the vectors

vt4(y) — vt

1'(y) and t>Ί~O>) —ι>Ί+O0 are parallel}, (4.17)

It is obvious that the set N+ is the union of the sets Nf, ΛΓj, N^, and N%. The
observation C) implies now that the set N^ is either empty or it is a codimension-
(v — 1) smooth submanifold of U(x). Similarly, C) and (4.16) again imply that the set
N% is either the empty set or it is a codimension v — 1 smooth submanifold in U(x).
An argument, completely analogous to that regarding the set Nf, shows that N$ is
either empty or it is a codimension v — 1 smooth submanifold of U(x). Finally, it
follows from the observation B) that N% is either empty or it is a codimension
v —2 submanifold of U(x). Summing up these results, we see that the set N+ is a
CW-complex in U(x) with dimiV+ ^ 5v + 1 .

The remaining part of Lemma 4.14 (the trans versality) follows easily from B).
Hence the proof of Lemma 4.14.

Now we are going to describe the set N~ of points yeU(x) for which the
trajectory segment Sia'τ+)y is not sufficient. From the collision equations for the
first island {14},

(4.18)

and from (4.8) we get the following formula for the relative displacement

w%~ -wl~ =iα[(ι/4~ -v^) + {υl~ -vΓ^-βiv^ -v\+). (4.19)

Thus the closed subset N~ C C/(x) can be defined in the following way:

= {ye U(x): the equation y(t?J —v\

can be solved for oc,β,y with α2 + /?2Φ0}

{ye U(x): the vectors v\~ — v\", vιζ —v^, and

(ι̂ 4~ — v*i) + (vl~ — v[~) are linearly dependent} .

(4.20)
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Here we observe that

vΓ -vΓ =i[(D'4- -i/Γ)+(»Γ -»Γ)]

+&-<)+«-**). (4.21)

(In the proof we used the conservation of the momentum: υ[~ +vl~ =v^ + t4~.)
Thus the set of degeneracy N~ c U(x) can also be defined by the formula

. thevectors v%\y)-v^(y\v\-{y)-v\\y\ and

v*4 (y)- v[~(y) + vl~{y)-v\~(y) are linearly dependent}.

The next lemma (characterization of the set N ) and its proof are very similar to
Lemma 4.14 and its proof but, as a matter of fact, the situation here is not
completely isomorphic to the situation of Lemma 4.14, since there, for instance, the
first particle participates in all of the collisions.

Lemma 4.23. The set N~ is a closed CW-complex in U(x) with codimension at least
v —2, that is, dimiV" ^5v + l. Moreover, the perturbations of the form Q^-{-)with
w = (ξ, ξ9 ξ9 — 3ξ) (ξ e Rv) are transversal to every cell of N~ which has the maximum
allowed dimension 5v + l and the perturbations of the form βJ+( ) with
w = (ξ9ξ9 —3ξ9ξ) (£eRv) are tangential to every cell of N~.

Proof of Lemma 4.23. We note first that one of the three vectors occuring in (4.22)
is never zero:

Ϊ/3

+ (y) φ v\
+ (y) for every point y e U(x). (4.24)

Furthermore, we make three observations, analogous to A)-C) in Lemma 4.14:
A') The perturbations of the form Q?+ ( ) with w = (ξ, ζ,-3ξ, ξ) (ξ e Rv) leave all the
three vectors occurring in (4.22) fixed, so the statement of Lemma 4.23
regarding these perturbations is obvious.
Br) The perturbations of the form βt

w-( ) with w = (ξ,ξ,ξ, -3ξ)_ (ξeW) leave the
vectors ι/3

+— v\+ and v\ —v\+ fixed, while the third vector v\ —v\ +vl —v\
varies on an open piece of a (v —l)-dimensional sphere in Rv and this sphere
contains the origin of Rv.
C) The perturbations βf

w

+(.) with w = (ξ, - £ 0 , 0 ) (ξeRv) leave the non-zero
vector v*3 — v^ fixed, while the vector v\ — ι/x

+ varies on an open piece of a (v — 1)-
dimensional sphere in Rv and this sphere contains the origin.

The decomposition of the closed set N~ into cells looks as follows:

N2 : = {y e U(x): v\~ (y) Φ v'ι (y) & the vectors

v\~(y)-v\+(y) and v'3*{y)-vϊ(y) are parallel}, (4.25)

N; :=

4

It is clear that N~ = \J Nj~. Furthermore, in virtue of C) the closed set JVf is

either empty or it is a smooth submanifold of U(x) with codimension v —1.
Secondly, by C) again, the set N2 is also either empty or it is a codimension v — 1
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smooth submanifold of U(x). Similarly, observation B') implies that the closed set
Nϊ is again either empty or it is a codimension v — 1 smooth submanifold of U(x).
Finally, again B) yields that the set N± is either empty or it is a codimension v — 2
smooth submanifold of U(x). The statement of the lemma regarding the
perturbations Q?-{ ) with w = (ξ, ξ, ζ,—3ξ) is also a consequence of B'). Hence the
lemma.

Now it is time to combine Lemmas 4.14 and 4.23 to complete the proof of the
main lemma in the case ({34}, {14}, {12}, {13}, {14}). The closed subset NC U(x)
required in the main lemma will be N~nN+:

N: = N~nN+ = [j (JVΓπNt

+). (4.26)
j,k=l

It follows from the definition of the sets N± that for every point yeU(x)\N the
trajectory segment S(a'b)y is sufficient. We note, however, that even the set N may
contain points y with a sufficient trajectory segment S(a'b)y. Statement (2) of the
main theorem follows easily from the nature of the definition of N. We saw above
that dim(JVj"niVfc")̂ 5v unless j=fe = 4. As far as the intersection N^nNf is
concerned, the statements of Lemmas 4.14 and 4.23 concerning the perturbations
<2Γ-() with w = (ξ,ξ,ξ, —3ζ) show that at each point yeN^nN^ the manifolds
ΛΓ4 and N£ are transversal, therefore the set N^nNf is either empty or it is a
(4v + 3)-dimensional submanifold of U(x) and 4v + 3^5v, provided v^3. Hence
the proof of the Main Theorem 4.3 in the case of the collision structure
({34}, {14}, {12}, {13}, {14}).

Remark 4.27. The upper estimate 5v for dim(iV~niV+), in general, cannot be
improved because the set JVj~ =Nf cN~nN+ can be a non-empty manifold of
dimension 5v.

Remark 4.28. It is clear from the proof of Main Theorem 4.3 that the present
method breaks down for v = 2. Indeed, in this case both sets N~ and N+ fill out the
entire neighborhood U(x) because every triplet of vectors in R2 is linearly
dependent. Therefore, in the case v = 2 we need a more subtle investigation of the
set N'cU(x) of points yeU(x) for which the segment S(a'b)y is not sufficient.
Despite the fact that the set N' is much slimmer than N=N+nN~ = U(x\
unfortunately, in general it is a codimension-one cell complex, and we would have
to use one more island in the study in order to guarantee two codimensions.
However, the number of mutually non-equivalent symbolic collision sequences of
six islands would be so high, and the study of the set of points with non-sufficient
trajectories containing 6 islands would be technically so involved, that we decided
not to work it out.

Case 5. ({24}, {13}, {12}, {34}, {13}). First we note that the definitions of T", Γ 5

ί+, T + , α, /?, JV~, and N+ are the same as earlier. We again assume that the advance
of collisions at the third island is zero. A computation, analogous to that one giving
us (4.11), shows that

N+ = {yeU(x): the vectors vt

3'(y)-v\~(y\vl+(y)-vT

i

+{yX and
vϊ+(y) ~VV (y) — V3+ (y) + *4+ (y) are linearly dependent}. (4.29)
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From the collision laws for the fourth island and from the equations v\+ =v\+,
v\~ = v3

+ we get

-vD-tf-Ol (4.30)
Therefore, we have

N+ = {ye U(x): the vectors v3~(y) — v\~(y)9 v\+ (y) — v\~(y)9 and
v3+iy)~^3iy) are linearly dependent}. (4.31)

The lemma describing the set of degeneracy N+ is analogous to Lemma 4.14 and
has the following actual form:

Lemma 4.32. The setN+C U(x) is a closed cell complex in U(x) with codimension at
least v - 2, that is, dimiV+ g 5v + 1 . The perturbations Q?+( ) with w = (ξ9 ξ9 ξ9—3ξ)
(ζeW) are transversal to every cell of N+ with codimension v — 2 and the
perturbations βΓ-(*) W ϊ ί ^ w = (ξ,ξ, — ξ9 — ξ) (£eR v) are tangential to every cell
ofN+.

Proof. Since the proof is very similar to that of Lemma 4.14, we shall only list the
observations A")-C") analogous to A)-C) and the definitions of the manifolds iVj1"'
analogous toΛΓ/.
A") The perturbations QΓ-( ) with w = {ξ9ξ, -ξ, -ζ) {ξeW) leave all the three
vectors occurring in (4.31) fixed.
B") The perturbations βf

w+(0 w i t h w = (ξ,ξ,ξ,-3ξ) (ξeRv) leave the vectors
ι;3~ — v\~ and v\+ — v\~ fixed while the vector vl+ — v*3

+ varies on an open piece of a
(v —l)-dimensional sphere in Rv and this sphere contains the origin.
C") The perturbations βΓ-( ) with w = (ξ, - ξ, 0,0) leave the vector v*3~ - v\~ fixed
while the vector tfy —v^ varies on an open piece of a (v — l)-dimensional sphere
and this sphere contains the origin

+' = {ye U{x): t£" (y) Φ I;'/ (y) & the vectors

^ " M - ^ ί y ) and v\+(y)-vt

ι'(y) are parallel}, (4.33)

=

The structure of the proof of Lemma 4.32 is the same as that of Lemma 4.14,
therefore we omit the details here.

Let us switch to the brief study of the set of degeneracy N~. A routine calculus,
similar to that one giving us (4.11), shows that

N ' = {y e U(x): the vectors v3~ (y) — v\~(y)9 ί/4~ (y) — v3~(y), and

vt2(y) — vt4(y) are linearly dependent}. (4.34)

A bit surprising to us, this description of the set N~ has a nature, significantly
different from that of (4.22), because in (4.34) all the velocities are considered at the
same time t". Corresponding to this difference, the geometric description of the set
N~ C U(x) is also different from Lemma 4.23:
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Lemma 4.35. The set N~ is a closed cell complex in U(x) with codimension at least
v-2, that is dimΛΓ ^5v + l. The perturbations Q?+{) with w = (ζ,ξ,ζ, -3ξ) are
tangential to every cell ofN~.

Proof. It is easy to see that the set {(ξl9 ξ2, ξ3) e R3v: the vectors ξje Rv are linearly
dependent} is a closed cell-complex in R3v with codimension v —2 and this set is
invariant under multiplications by non-zero scalars. This yields the first part of the
lemma. As far as the second part is concerned, all the three vectors from (4.34) are
invariant under perturbations βJ+( ) with w = (ξ,ξ,ξ, —3ξ) (ζeJV). Hence the
lemma.

Using Lemmas 4.32 and 4.35, we can complete the proof of the main theorem in
the case

({24}, {13}, {12}, {34}, {13})

just the same way as in the case

({34}, {14}, {12}, {13}, {14}).

Here the perturbations Q?+ ( ) with w = (ξ, ξ, ξ,—3ξ) will show the trans versality of
the manifolds N%' and N^'.

Case 9. ({lϊ}, {234} ^3, {1/}). (ίje{2,3,4}). It turns out that the treatment of the
Cases 9-11 is much easier than the study of the Cases 1-8. Even our usual
notations become simpler:

t~: certain (not specified) moment between the blocks {li} and {234} ^ 3 ;
t+: certain moment between the blocks {234}>3 and {1/};

α: the advance of the collisions at the island \ }
β: the advance of the collisions at the island

We note first that, as it follows from our former result concerning the three-
particle-billiards [cf. K-S-Sz (1991)], generalization of Lemma 4.12 for the
v-dimensional torus), the set N° of points y e U(x) for which the trajectory segment
Si'iϊVy °f the sub-billiard {2,3,4} is not sufficient, is a closed cell complex of U(x)
having codimension at least v —1. Therefore, it is enough to study the smallness
(codimension is at least v —1) of the set N\N°, where

N = {yeU(x): the segment S(a'b)y is not sufficient}. (4.36)

This means technically that we can assume the base point x not belong to N° or,
what is basically the same, the set N°cU(x) be empty. The set equality N° = Φ
actually means that for every point y e U(x) and for every vector we Wt±(S(t~ft+)y)
the advance is the same for all the collisions in the block {234} ^ 3. We can again get
rid of the trivial neutral direction of the flow by simply taking the advance of these
collisions zero. We denote the corresponding neutral spaces by Wt°±{ ). It is now
straightforward that

t ( y ) M y )
1 ={(-3ζ,ζ,ξ,ξ):ξeW} for all yeU(x).

This yields the following simple description of the neutral space Wt°-(S{a b)y):

Wt°-{S(a'b)y)=Wt%{S(a'b)y)

= {(-3ξ,ξ,ξ,ζ): the vector ξeRv is parallel both with

ti~(y)-<fi(y) and vγ(y)-vϊ(y)} for all yεU(x). (4.38)
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Thus yeN if and only if v\~(y) — vt^(y) is parallel with vt

j

+(y) — vt^(y):

N = {yeU(x): the vectors v\~(y) — v1(y) and vt

j

+(y) — v1(y) are parallel}.
(4.39)

Here υ^y) denotes the common velocity vt

1~(y) = vt

ί

+(y). We want to show that the
closed cell-complex N has codimension at least v —1, that is dimiV^5v. The
procedure is as follows: For every point ye U(x) we consider the configuration
perturbations Q™-(y)e U(x) with w = (0, w2, w3, w4) (vvjeRv, Σw/ = 0). The effect of
these perturbations on the compound velocity (v2

+, ι/3

+, i/4

+) is that the compound
vector (v2

+ + vJ3, if$ + vJ3, ι;4

+ + υJ3) varies on (fills out) an open piece P(y) of a
(2v —l)-dimensional sphere S2v~1(y) in the 2v-dimensional euclidean space

3,v4):vjeRv & Σvj = 0}.

This is a well-known fact from the theory of billiards. Here we used the assumption
that the trajectory segment Sfy'i^y of the sub-billiard system {2,3,4} is sufficient.
In such a sphere the linear dependence of the vectors v\~ —vx and v*/ —v1 just
means that the vector (vl

2 +vJ39 v£+vJ3, vtf+OJ3) belongs to certain
codimension v — 1 affine subspace A(y) of H. The intersection P(y)nA(y) is either
empty, or a singleton, or a v-dimensional submanifold of P(y). This easily implies
that the codimension of N in U(x) is at least v — 1.

Case ίί. ({234} > 3, {12}, {23}). Once again, let Γ separate the blocks {234} ^ 3

and {12} while t* separate the islands {12} and {23} and, moreover, let α, β be the
advances of the collisions at the islands {12} and {23}, respectively. For the same
reason as before (in the treatment of Case 9), we can assume that for every point
yeU(x) the trajectory segment Sflξ'Xly of the sub-billiard system {2,3,4} is
sufficient. We again get rid of the trivial neutral direction of the flow by taking the
advance of the collisions at the block {234} ^ 3 zero. We denote the corresponding
neutral spaces by Wt°±( ). It is obvious thai

for all yeU(x). (4.40)

The neutrality at the island {12} with advance α means that 4ξ = α(ι/2~ — v\~), that is

ξ=i<xW2~-*i). (4.41)

From the collision laws for the island {12} we can easily obtain the following
formula for the relative displacements w^ and w3

+:

Thus the neutrality with respect to the island {23} means that the vectors ι/2

+ —1/3

+

and

w<2

+ - < = i φ ' 2

+ - v\+ - v<2 + υ\-) = atti -1//)

are parallel, therefore the set NcU(x) of points yeU(x) for which the segment
Sia'b)y is not sufficient can be described in the following way:

N={yeU(x): the vectors v2

+(y) — v^(y) and vt

2

+(y) — vt2~(y) are parallel}.
(4.43)
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We can now observe that applying perturbations of the form <2t

w+()
w = 07> — *?, 0,0) (η e Rv), the vector t/2

+ —1/3

+ remains fixed while the vector ι/2

+ —1/2~
fills out an open piece of a (v — l)-dimensional sphere in Rv and this sphere contains
the origin. Using the presented arguments from the study of the preceding cases we
can conclude that dimiV^5v.

The proof of the Main Theorem 4.3 is now complete.

5. Trajectories with a Poor Collision Structure

The result of the preceding section guarantees the sufficiency of non-singular
trajectories S("°°f00)x0 for "almost every" point xoeM, provided this trajectory
contains a bounded segment whose symbolic collision sequence (structure) is not
equivalent to any decomposing one. Here the phrase "almost every" means that
the set of exceptional points x 0 (for which the implication is false) is a countable
union of smooth, codimension two (at least two) submanifolds of M. The goal of
the present section is to prove the following theorem:

Main Theorem 5.1. The set Md is residual, where Md is the collection of all non-
singular points xoeM (a non-singular point is a point with non-singular trajectory)
whose trajectory
(i) is not sufficient

and
(ii) decomposes, that is, the collision sequence of every finite segment S(a'b)x0 is
equivalent to some decomposing one.

For our purposes it is important to show that for every point xoeMd the
trajectory of x0 decomposes uniformly, that is, we can find a non-collision moment
ί o elR and two partitions PUP2 of the particles 1,2,3,4 such that both partitions
consist of two classes and, after finitely many permitted operations (a)-(e) (see the
beginning of Sect. 4) on the symbolic collision sequence of S("°°f00)x0, the
trajectory segment S(~°°'io):x0 is partitioned by Px and, similarly, S^'^XQ is
partitioned by P2. A classical and fundamental lemma (Konig's Lemma) from
combinatorics yields the required uniform decomposability. Before drawing up
this lemma, we need a well-known definition from combinatorics.

A tree is a partially ordered set(T, < ) such that for every element aeTthe subset
{teT:t<a}is well ordered by <.We say that aeTis at the αίΛ level (a is an ordinal
number) iff the order type of the set {teT: t<a] is oc. The height of T is the least
ordinal number β which is strictly greater then all the ordinals corresponding to non-
empty levels. In this case we say that T is β-high.

The combinatorial result just mentioned is the following statement [see Lemma
10.3 in E-H-M-R (1984)].

Lemma 5.2 (Konig's Lemma). // we are given an ω-high tree T such that all the
levels of T are finite, then T contains an infinite ordered subset (a branch).

We note that the order type of such a branch is necessarily ω.
Having this result at hand, it is a routine task to show that for every point

xoeMd the trajectory S("°°f00)x0 decomposes uniformly, i.e. there is a non-
collision moment ί o e R and there is a pair (Pΐ9P2) of two-class partitions on
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{1,2,3,4} such that, after finitely many permitted operations on the symbolic
collision sequence of the trajectory of x0, the trajectory segment 5("°°'io)xo is
partitioned by Pί and, similarly, S(ίo' ^XQ is partitioned by P2. We note that the
only required permitted operations in this process are the unification of two
neighboring identical islands (a) and the interchanging of two neighboring, disjoint
islands (c). We do not intend to go into the details of this argument - showing the
uniform decomposability of the trajectory of points xoeMd-, we only give a hint
to the reader. Let us denote the double infinite sequence of islands of S(~ °°' ̂ XQ by
{...,/_!, /0, Iί9...}. Then the elements of the three T are 5-tuples of the form
(AT, P0(N), fe, P1? P2), where N is an arbitrary natural number, P0(N) is the
composition of finitely many permitted operations (a) and (c) on the sequence {I-N9

/_N +!,..., IN}, k is an integer between 0 and n (0 ̂  k ̂  ή) where n is the length of the
transformed sequence

P0(N) [/_„, I-N+i, .,IN] = {J» J2, •> Jn),

Px and P2 are two-class partitions of the set {1,2,3,4}, and we also require that all
the collisions of Jί9J29...9Jk take only place inside of some classes of Px and,
similarly, all the collisions of Jk+1?..., Jn only occur inside of some classes of P2. The
partial ordering < on Tis defined as the appropriate notion of natural restriction.
It is now clear that any infinite branch

f i < F 2 < . . . , FN = (N,P0(N), kN9 Pl9 P2)

of T defines a composition of permitted operations (a) and (c) which shows the
uniform decomposability of {...,/_!, Jo, Iί9...}. It may happen that this
composition contains infinitely many operations, but even in this case, finitely
many of them will do. The reason is that for all N large enough the incoming islands
IN (I-N) represent collisions between particles of the same class of P2 (Px), provided
that the trajectory S(ίfQO)x0 (S^^'^XQ) is not partitioned by any three-class
partition for every t e R and, in virtue of the Appendix, this can be assumed for x0.

Keeping in mind Principle 4.1 and the previous argument, in order to prove the
residuality of the set Md it is enough to show that the set MPί P 2 is residual (Px and
P2 are two-class partitions of the set {1,2,3,4}), where

MPup2 = {xeM\dM: S("°°'0)x is partitioned by Px

and S(0' ̂ x is partitioned by P2}. (5.3)

The two classes of the partition JFJ are denoted by Cγ{P^j and C2(/ ) (i = 1,2). We fix
an arbitrary point x 0 e M P l ) P 2 and show that the set MPιP2nU(x0) is residual for
some open neighborhood U(x0) of x0. [Residuality is a local property, see
Lemma 2.14 in K-S-Sz (1991).] Throughout the whole section we can assume that,
for the fixed base point x0, the sub-billiard semi-trajectories S^{p^0)x0 and S^p^o
(i = 1,2) are sufficient trajectories, where the symbol S[?(^x0 denotes the positive
semi-trajectory of the billiard of particles from Ci(P2\ observing this trajectory
from the moving co-ordinate system associated with one of the centers of mass of
the particles from C^P^. The trajectory of a "one-particle billiard system" is
always thought to be sufficient! The notion of sufficiency for S^p^0)x0 is
analogous. The argument, showing the possibility of the assumption just
mentioned, is the following one: By the result of the Appendix of the present paper
we can assume that the sub-billiard semi-trajectories S<?jp̂  and SC7(P)I)°) (I = 1>2)

contain infinitely many islands, provided the cardinality of Ct{P^ (0^)) is greater
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than one. According to the Main Lemma 4.13 of K-S-SZ (1991) (applied to the
general case v ^ 2), the existence of four islands guarantees the required sufficiency
modulo a codimension-two submanifold. Actually, in our case v ^ 3 , even the
presence of three islands is enough.

Due to the continuity of the flow St it is clear that there exists an open, ball
neighborhood U(x0) of x0 not intersecting the boundary dM that has the following
property: For every point yeMPl P2nU(x0) the sub-billiard semi-trajectories
ScΊ(Ά0)y a n d scdP2)y O' = 1>2) are sufficient.

Now we encounter five, non-isomorphic possibilities for the pair {P1,P2) to be
discussed:

{2,3,4}), P2 = ( { } {
} {2,3,4}), P2 = ({2}, {1,3,4

1,2}, {3,4}), P2 = ({1,3}, {2,4
( d ) P 1 = P 2 = ({l}, {2,3,4});
( e ) P 1 = P 2 = ( { } { 4 }

It turns out that these cases are significantly different, namely, the most
complicated one is the first. Cases (b) and (c) are simple, since, as we shall show it,
there is actually no point x0 e MPuPl for which all the four mentioned sub-billiard
semi-trajectories are sufficient. Note that non-sufficiency of S * " 0 0 ' 0 0 ^ is required
for points x0 e Md. Finally, the last two cases can be treated by "integrating up
codimension - two sets," see the finishing part of this section or K-S-Sz (1989)
(proof of sublemma 2).

We are going to prove in each case that the set MPup2nU(x0) is residual. We
shall follow the basic strategy of the article K-S-Sz (1991), using the so-called
pseudo-stable and pseudo-unstable manifolds, their transversality and, finally, the
"zig-zag lemma" on then. In the proof of this zig-zag lemma the strongest, and
most up to date version of the fundamental theorem for the sub-billiard systems

heavily be used.

Discussion of Case (a). ^ = ( { 1 } , {2,3,4}), P2 = ({1,2}, {3,4}).

We define four closed subsets F+ and F+ of U(x0) as follows:

F_ = {ye U(x0): the semi-trajectory {S*y: t < 0} contains no pro-
per collision between the classes of P j , (5.4)

F+ = {y G U(x0): the semi-trajectory {S*y: t > 0} contains no pro-
per collision between the classes of P 2}, (5.5)

FL = {ye U(x0): cancelling the interaction between the classes of
P l 5 in the modified semi-trajectory S^" 0 0 ' 0 ^ the distance
between centers of particles from different classes of Pλ is
never less than 2r — ε 0}, (5.6)

F+ = {ye U(x0): cancelling the interaction between the classes of
P2, in the modified semi-trajectory S^tΰO)y the distance
between centers of particles from different classes of P2 is
never less than 2r—ε0}. (5.7)

Important Remark. If some of the semi-trajectories in the definitions (5.4)-(5.7) is
not uniquely defined (caused by a multiple collision), then the text in these
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definitions reads "some of the branches of the semi-trajectory contains no proper
collision...." This convention is important in order to have closed sets F+, i7-, F+,
and FL.

We note that r is the common radius of the particles and ε0 >0 is a fixed, small
number. In these formulas the cancellation of the indicated interactions means that
the non-interacting particles are allowed to overlap each other without any force
between them. In the course of the proof we shall see that, after fixing the value of
ε0, the open neighborhood U(x0) must be chosen small enough in order that the
proof can go on.

From the definition of these closed subsets of U(x0) and from the mixing
property of the two- and three-billiards on the torus TΓV [established in S-Ch (1987)
and K-S-Sz (1991)], one can easily deduce the following properties of the closed
sets F± and F'±:

F_CFL and

MPuP2nU(x0)cF_nF+.

(5.8)

(5.9)

(5.10)

In order to establish the residuality of the set F_nF+, we need to define the so-
called pseudo-stable manifolds ys

0(y), γs

lt 2{y\ y%,Λy\ ys

e(y) and the pseudo-unstable
manifolds yu

0(y), y"(y) for generic points y of U(x0):

yso(y) =\

Q(z)-Q(y)=

zeU(xo):V(z)=V(y) &

2\v3(y)-vM'
(5.11)

7\,2(y):=CCy{zeU(x0): q3(

exponentially quickly as ί-» + 00},

•&.&)••= CC,{zeU(Xo): q&)

exponentially quickly as ί-> + 00},

fe(y)-= U ys

3,4(z)>
zeyί,2(y)

(5.12)

(5.13)

(5.14)
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Ύ"o(y)- =zeU(x0): V{z)=V(y) & Q(z)-Q(y)

(5.15)

γ"e(y): = CCy{zeU(x0): q1{z)=q1{y),

v1(z) = v1(y) & dist(S 2>3>4z,S(

2>3>43θ->0

exponentially quickly as ί-» — 00}. (5.16)

Here the subscript "e" stands for "exponential" and CCy denotes the operation of
taking the arcwise connected component of a set containing the point y.

For every point y e U(x0) the "neutral" manifolds ys

0(y) and yKy) are well defined
pieces of affine subspaces in U(x0) not terminating in U(x0), while, for almost every
point y e U(xo\ the exponentially contracting (dilating) manifolds ys

lt2(y)> 73,4(^)5
ys

e{y), and y"(y) are only smooth manifolds of class C 1 (actually of class C )
containing y as an interior point and having dimensions v — 1 , v —l,2v —2, and
2v—1 respectively. The set of such points y is denoted by G (good points). It is
known [see Ch (1982)] that μ(G) = μ(U(x0)) but, unfortunately, the size of these
manifolds can be arbitrarily small. We introduce one more neutral manifold
"generated" by 70 a n d Jo'-

:= U (5.17)

The neutral manifolds γo(y) are also the intersections of U(x0) with affine
subspaces, just like in the case of γ^iy) and y5(y). The manifold fo(y) has dimension
v + 2 if Vi(y) + v2(y), v3(y) φ vjy) and the manifold γ"0(y) has dimension v + 1 unless
^ ϋ Ή t f s ύ ό ^ Λ j ό By O U Γ assumption on the base point x0, the required
inequalities hold for y—x0 and, by choosing the neighborhood U(x0) small
enough, for every y e U(x0), too. From the formulas (5.11) and (5.15) we see that the
intersection of -foiy) and γg(y) is 2-dimensional for every point y e U(x0) or, more
precisely,

zeU(x0: V(z) = V(y) &

(5.18)
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Thus we get, as a consequence, that for every yeU(x0) dim('yo(}>)) = 2v + l,
therefore,

dim(γo(y)) + dim(γs

e(y)) + dim(γu

e(a)) = 2v + 1 + 2v - 2 + 2v - 1

= 6v-2 = d i m M - l

for all points yeG. One can expect that these three manifolds intersect
transversally at the point y, that is, the tangent space SΓyM of M at y contains a
codimension one subspace Ly such that

Ly = SΓyUy) + Sryfe(y) + ryWy). (5.19)

Here + denotes the direct sum (not necessarily orthogonal) of linear spaces. If
turns out that this expectation is justified:

Lemma 5.20. For every point yeG there exists a codimension one subspace Ly of the
tangent space 2ΓyM such that (5.19) holds.

Proof. Since we deal with transversality properties of linear subspaces of 3~yM
which are the tangent spaces of some submanifolds through y, we shall use the
notion of infinitesimal perturbations dqj and dVj (/= 1,2,3,4) of the data qs and vj9

where these quantities dqj9 dVj are v-dimensional, first order infinitesimally small
vectors. First of all, we put forward a sublemma:

Sublemma 5.21. For every point yeG the manifolds ys

e(y) and yu

e(y) are transversal.

Proof Let the compound perturbation {(dqj9 dvj): h = 1,2,3,4} be a common non-
zero element of the tangent spaces 2Γyy

s

e{y) and 3~yy
u

e{y). By the negative definiteness
of the second fundamental form of local stable invariant manifolds of the systems
{St

lf2} and {S34} and by the positive definiteness of the second fundamental form
of local unstable invariant manifolds of the flow {S^^}, w e have the following
inequalities:

Σ dqj'dvj<θ, (5.22)

Σ dqj-dvj>0, (5.23)

which is impossible. Sublemma 5.21 is proved. [The multiplication in (5.22H5.23)
and in the further formulas denotes the standard scalar product in R v .] Now we
return to the proof of Lemma 5.20.

By the sublemma, we have to prove the equality y y o y \
+ &~yy

u

e(yy]=O. Let the perturbation Π = {{dqj,dvj): 7 = 1,2,3,4} be a common
element of ^~yy0(y) and Fyy\(y) + 3~yy%y). According to the sublemma, the
perturbation Π can be split into the components Π~ = {{dqj\dvj):
j = 1,2,3,4} e eryfe{y) and Π+ = {(dqt,dvt):j = 1,2,3,4} e Py fjy). By the conserv-
ation laws for the subsystems {S\t2}> {̂ 3,4}? a n < i {̂ 2,3,4} (conservation of the
kinetic energy, center of mass, and total momentum) we get the following system of
equations:

Σ dqy=0, (5.24)
J = 2

dqϊ=0, (5.25)
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dqΐ+dq}=0, (5.26)

=0, (5.27)

Σ dv]-=O, (5.28)

dv;=O, (5.29)

= 0, (5.30)

= 0, (5.31)

Σ dv7 Vj=0, (5.32)
j = 2

dvt'(Ό1-Ό2) = 09 (5.33)

dv£ '(v3-v4) = 0. (5.34)

By the negative definiteness of the second fundamental form of the local stable
invariant manifolds (of the flows {S\f 2) and {S3A}) and by the positive definiteness
of the second fundamental form of the local unstable invariant manifolds (of the
flow {$2,3,4}) w e again get

4

Σ dqj -dv]"^0, (5.35)
j = 2

dqf'dvf^O, (5.36)

dq3-dv3^0. (5.37)

We note that in (5.35) strict inequality holds whenever 77" + 0 and either in (5.36)
or in (5.37) strict inequality holds if Π + +0. Finally, using the fact Πe^~yγ0(y) is a
pure spatial perturbation (that is, dVj = 0), we also have

dυ]-+dvt=0 (/ = 2,3,4), (5.38)

dvt=0. (5.39)

From (5.30), (5.39), and (5.38) we obtain

dvϊ=0, (5.40)

dυ2=0. (5.41)

Next, (5.39), (5.40), and the non-degeneracy of the second fundamental form of
local invariant manifolds yield

dql=0, (5.42)

dqϊ=0. (5.43)

At this stage of the proof we again take advantage of the relation
Π~ +Π+ e^~yγ0(y), that is, dq3 — dq4 must be a scalar multiple of the relative
velocity v3 — v4: dq3 — dq4 = oc(v3 — v4) or, equivalently,

d<h + 2dg^" + 2dq3 = oc(v3 — v4) (5.44)
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for some OCGR. Here we used the formulas (5.24) and (5.27). Multiplying both sides
of (5.44) by dv$ and using (5.34) we get

2dv$ - dq$ + dv$ (dq2 + 2dqς) = 0. (5.45)

In the last equality the factor dq^ +2dq^ is clearly dqϊ —dq4. By (5.37), (5.35),
(5.41), (5.28), and (5.38) we get that both terms on the left-hand side of (5.45) are
non-positive numbers, therefore, by (5.45), equality holds in (5.35) and (5.37). Using
the remark after (5.37) and the relation dqX dvX =0, we obtain that 77 ~ = 77+ = 0,
i.e. 77 = 0. Lemma 5.20 is proved.

We continue the proof of the residuality for the set MPuP2nU(x0) [cf. (5.3)] in
case (a). By the set inequality (5.10) it is enough to prove that dim(F_nF+)
^ d i m M —2 = 6v —3. To that end, we need an auxiliary foliation of the open ball
U(x0) by the codimension v + 1 smooth submanifolds ΦIE as follows:

y) = I & v\(y) + υ%y) = 2E}

( 7 e J R v , E e R + ) . . (5.46)

According to property 4 in Sect. 4.1 of K-S-Sz (1989), the inequality dim(F_nF+)
^6v —3 would be implied by the following lemma:

Main Lemma 5.47. For each submanifold ΦI>EC U(x0) the dimension of the closed
set F-nF+nΦj E is at most 5v — 4 = dimΦ / E — 2.

All the remaining part of the discussion of case (a) is devoted to the proof of this
Main Lemma. The base of this proof is a simultaneous application of the
transversal fundamental theorem for the sub-billiard systems S\>2 (ί>0), S*3Λ

(t > 0), and S'2t 3 , 4 (t < 0). A series of lemmas leads to the proof of the Main Lemma.

Lemma5.48. For every point yeG the manifolds yo(y), ysi,2(y)> and 73,4OO ore
contained in the manifold Φ{y)'.= Φi(y),E(y) an^ the intersection yu

e(y)r\Φ{y) has
dimension v — 1 .

Proof. The statements on yo(y), yϊf2Cy), a n d y%,Λy) a r e obviously true. The last
claim of this lemma follows from the
(i) non-degeneracy of the second fundamental form of local unstable manifolds of

the sub-billiard flow £2,3,4
and from the fact that
(ii) intersecting the manifold γu

e(y) with Φ(y) means that, when making the
exponential unstable perturbation in the subsystem {2,3,4}, the velocity v2 must
be kept fixed so, in terms of the velocities in this subsystem, this allows to us v — 1
degrees of freedom. [The velocities v3 and v4 can be varied in such a way that
v3 + v4 and vl + vl are fixed, which defines a (v —l)-dimensional sphere.] As a
consequence of 5.20 and 5.48, we get

Lemma 5.49. For every point yeG the tangent space 2Γy Φ(y) is the direct sum of the
tangent spaces ^yγ0(y% ^yful{y\ Pyτ\Λiy), and ^y(γu

e(y)nΦ(y)).

Proof Simple computation with the dimension.

In order to prove the Main Lemma, based on the previous sublemma, we want
to use the famous and successful zig-zag argument [essentially due to Hopf and
Hedlund, see the proof of Lemma 5.3 in K-S-Sz (1991)] in each manifold Φt E.
However, this argument requires that the intersection (7^ vF+)nΦItE be a zero set
with respect to the measure μφ induced by the inherited Riemannian metric on
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Lemma 5.50. For every pair (/, E) the intersection (FL uF+)nΦj E is a zero set with
respect to the measure μφ.

Proof. The relation μφ(F+ n Φ7 E) = 0 follows easily from the mixing property of the
subsystem S\t2 (t>0) [or, equίvalently, from the mixing property of the flow S3Λ

(ί>0)] as a "weak lemma on avoiding of balls," see Lemma 2.16 in K-S-Sz (1991).
Namely, this lemma, applied to the system S3Λ (ί>0), yields that for every
manifold Φ(ql9 q2, vl9 v2) (which is a submanifold ofΦVί+V2t^iv^+V2»)) the intersection
F+nΦ(quq2, vuv2) has measure zero with respect to the Riemannian volume in

The proof of the relation μΦ{F'_nΦIE) = 0 is more subtle. For each pair (/, E) (for
which Φj E is non-empty) we define an auxiliary foliation ΦIE with the smooth
submanifolds

Φ(qi>Vi>V2):={yeU(x0): q1(y) = ql9υ1(y) = Ό1 and υ2(y) = v2}

We shall actually prove that for every qx for almost all v2 [such that
Vi+(I — vί)

2 = 2E'] the intersection FLrλΦ(quv1J — vλ) has measure zero with
respect to the Riemannian volume in Φ(qί9 v^l — vj. For this purpose, we define
(locally) the canonical projection π2t3t4:M-*M3 of the phase space M into the
phase space M 3 of the sub-billiard system S2f3A as follows:

π2,3, Λ{(qP »/) :j = 1,2,3,4}): = {(Qp Vj) :j = 2,3,4}, (5.51)

where

(/ = 2,3,4),

,; 1 (5.52)
/ 2 ( ^ + έ ^ i ) (/ = 2,3,4).

Here the normalizing factor (1— f ι^)~ 1 / 2 guarantees that the usual energy
normalization 4

Σ V? = 1

holds. This definition is only correct locally because we multiply the position
qί eTΓv by 1/3. It is clear that the projection π 2 , 3 j 4 restricted to Φ(ql9 vu I — vj is a
diffeomorphism of Φ(ql9vl9 I — v^) onto a codimension v smooth submanifold
π2,3,4 [®{qu vι> ^ — Vιϊ) of M3 and this submanifold can be defined by the equation
V2 = (l—%v2)~ί/2 (/—f^i) = const. The next result is an important characteriz-
ation of the action of π 2 , 3 , 4 on the velocities. We define the projection n^t3Λ of the
(3v —l)-dimensional sphere of velocities

4 4

onto the (2v —l)-dimensional sphere of velocities

4 4

3=2 J 3=2 J

by assigning to any compound velocity (vl9 v29 v3, v4) the three-particle compound

velocity (l-fi>i)~1 / 2(t>2 + 3ϋi> ^3 + 3̂ 1̂  ϋ 4 + i ^ i )
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Sublemma5.53. At any point (vu v2, v3, v^eS3*'1 the mapping n\f3Λ; S 3 v - 1

-•S 2*" 1 restricted to the subset

(which is a (2v —1)-dimensional smooth submanifold in a neighborhood of (vuv2,
v3, v4)) maps a suitable neighborhood of (vu v2, v3i v4) in S3v~ 1diffeomorphically onto
an open subset of S 2 v ~\ provided that

(i)
(ii) v3

and
(iii) υ1

We note that the first two conditions are natural and obviously valid in a
neighborhood of the base point xoeM.

Proof It is clear that the set {(v'l91/2,v3, v4)eS3v~x: v\ +ι/2 = vx+ v2} is a (2v-1)-
dimensional smooth manifold in a neighborhood of (vu v2, v3, v4). We want to
show that the derivative of π\t 3Λ at (vx, υ2, v3, vA) is non-degenerate on the tangent
space of S j v - 1 at (ι;l5 v2, v3, υA). Assume that the tangent vector (dvu —dvu dv3,
— dv3) of Sψ'1 at (vl9 v29 v3, vA) is mapped into 0 by Dπ^t3t4. This means that

(5.54)

(5.55)

(Keep in mind that dv2= —dvί and dv4= —dv3)
If we multiply (5.55) by vγ and make the straightforward simplifications, then

we get
(»!•*!)(»! -(»l+»2)-i) = 0. (5.56)

By the assumption (iii) this implies v1-dv1 = 0. Using (5.55) we obtain the equation
dv1=0 and, therefore, dv3 — 0 by (5.54) with j = 3. Hence the sublemma.

Let us return to the proof of Lemma 5.50. Assume that, on the contrary, for
some g?eTΓv there is a positive set of velocities v1 on the sphere v\ + (I — vι)

2 = 2E
[I = v1

Jtv2 and E=\(v\-\-v^) are fixed!] such that the intersection FLr\Φ(q\, vl9

I — Vγ) has positive measure with respect to the Riemannian volume in Φ(q\,v1,
I — v^. We can obviously assume that for these velocities v1 property (iii) of the
sublemma holds. These assumptions and the sublemma yield that
π2,3,4(^-n^/,£(^i)) has positive measure in the codimension one smooth
submanifold (locally!) τc2 3 4(ΦI^<ZM3. Here

Φ/.*(«?) '• = {y e U{x0): qi(y) = q°l9 Όl{y) + v2(y) = / and

for; = 2, 3, 4. For j = 2 (5.54) is equivalent to the equation

The characterization of the projected manifolds π2t 34(Φ(q°, v^I — v^) shows that
these manifolds are (uniformly) transversal to the local unstable leaves in M3 and,
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therefore, similar transversality holds for the codimension one submanifold

The transversal fundamental theorem for M 3 implies that for almost all points z of
π2,3,4(Φj,E(#i)) ^ e local unstable leaf yu

Mi{z) exists. This statement, together with
the latest form of our indirect assumption imply that for some v\ the set

^:={zGπ2,3 > 4(Φ(^,t;?,/ = ί;?)nF:):Λ3(z) exists}

has positive measure in the codimension v smooth submanifold n234(Φ(q^ v\,
I — t;?)) of M3. Using the transversality between π234(Φ(<??, v°u / —ι??)) and the
leaves yu

M3(z) we have that the set

{zeM3:3zΈΛ such that zeyu

M3(z') and ρ(S2,3,4z,S2>3>4z')<εo for all ί<0}

has positive measure in M3. However, all the points of this set avoid a moving open
subset of the configuration space of M 3 and this open set moves according to a
conditionally periodic motion on the torus. But the positivity and the latest
statement contradict to the "weak lemma on avoiding of balls," see Lemma 2.16 in
K-S-Sz (1991). The contradiction completes the proof of Lemma 5.50.

Now we are not too far from the end of the proof of Main Lemma. Consider a
submanifold ΦIjECU(x0) and an arbitrary point yeF.nF+nΦj E for which
property (iii) of Sublemma 5.53 holds. We shall fix the point y until the end of the
proof of 5.47. By the locality of being a codimension two set, our goal is to show
that there is an open neighborhood V(y) oϊy in Φι E such that the dimension of the
set V(y)nF_ nF+ is at most 5v — 4 = dim Φ7 E — 2. After the proof of the existence of
such a neighborhood V(y) we shall point out what to do if v^y) I=\.

The argument, just coming up, is the point where we apply the strong form of
the transversal fundamental theorem for the subsystems S\t2, S3Λ (ί>0), and
£2,3,4 (t<0). Using the fact that the trajectories Sf ^y, S3°;^y, and S2~£i0)y are
sufficient and the codimension one smooth submanifold π 2 > 3 } 4 (Φ / > £ )cM 3 can be
defined purely in terms of the velocities (locally, cf. Sublemma 5.53 and the first
remark after Theorem 3.4), the strong version of the fundamental theorem (see
Sect. 3) applied simultaneously to the flows S\t2,S3Λ (t >0) and <S2,3,4 (t <0) says
the following statement:

Proposition5.57. For every C>0 and 0 < α < l there is an open neighborhood
Wc,a(y) of y in Φj E with the following property:

μΦ({z e WcJy): μφ(Bg(z, δ)) < <xμφ(B(z, δ))}) = o(δ)

(small order of δ, <5->0)

where

B(z,δ):={z'eΦIfE:ρ(z,z')<δ}9

Bg(z,δ):= {z'eB(z,δ): the inner radii of the leaves yi,2(z'), y%Λ(z'\ and

y"(z')nΦIE are greater than Cδ},

and μφ is the Riemannian volume in ΦIE.

Proof It follows easily from the strong version of the transversal fundamental
theorem for the subsystems S\t2, S 3 4 , and S2i3Λ, see Sect. 3.
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Taking into account the well known fact that the conditional measures of μφ

with respect to the partitions yj( ), foi'l fi.ii ), yS3,ΛΊ a n d yUe(')^φi,E are
almost everywhere equivalent to the Riemannian volumes on these submanifolds
[absolute continuity, cf. Theorem 4.1 of Kat-Str (1986) and the transversality
proved in Lemma 5.20], and the fact that the tangent spaces of these submanifolds
depend continuously on the base point, by a successive use of a "Fubini type"
argument we can conclude as follows:

Corollary 5.58. For every 0 < α < 1 there exists a small open ball Va(y) C ΦIiE around
y in $I,E with the following property:

μφ({zeVa(y): B(z,δ) does not have the oc-zίg-zag property}) = o(δ) (<5->0)
(5.59)

where the ball B(z, δ) C ΦIfEhas, by definition, the a-zίg-zag property iff for every zero
set NcΦItE there is a set ANcB(z,δ)\N such that
i) ( j ( ( δ ) \

(ii) for every pair of points w l5 w2eAN there exists a sequence γί9γ2, •• ?7fc °f
submanifolds of ΦIE with the following properties:
(a) yj is either of type ys

0, γ
u

0, y \ f 2 , y s

3 A , or yu

enΦItE (/ = 1,2, ...,fc),
(b) wίeyί,w2eyk,
(c) 7 j n 7 j

Proof A standard geometric argument.

Our final observation before finishing the proof of 5.47 is the analog of
Lemma 5.8 from K-S-Sz (1991):

Proposition 5.60. // U(x0) is small enough (compared to ε0, see (5.6)J, then for every
zeU(x0)

F+ φ 0 implies y\

F+Φ0 implies y\t2

F+Φ0 implies y3t4

F_ Φ 0 implies yu

e(z) C FL , and

F_=t=0 implies yu

c

The proof is straightforward.
We want to show that for the considered (and fixed) point yeΦIEc\F_nF+

there is a suitable open ball V(y)cΦI E around y in ΦItE, for which

Taking into account 5.58 and 5.60 with the zero set N = (FLvF+)nΦI E (see
Lemma 5.50), we see that for some α (close enough to 1) and for every open
connected set UcVa(y) the set l/\(F_ nF+) is also connected. As it is known from
topological dimension theory, the last statement just means that

The only part, remaining from the proof of 5.47, is dealing with points yeΦIE

for which (iii) of Sublemma 5.53 is false. Unfortunately, these points can fill in a
codimension one (if not empty) submanifold H of ΦhE. For such points we cannot
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say that the projected manifold π2t 3,4.(ΦI,E) C M3 is, at least locally, a codimension
one, smooth submanifold of M3. Therefore, in this case we are not able to apply the
strong version of the fundamental theorem to the sub-billiard flow $2,3,4 (ί<0).
Anyhow, the fundamental theorem applies to the subsystems S\f2

 a n d S3,4 (ί >0).
Let us consider a small, open ball V(y) around y in Φι E which is split into two open
connected parts by the manifold Hn V(y). By the preceding argument - proving
5.47 in some neighborhood of any point z e ΦIfE\H - the set F_ nF+ n(V(y)\H) can
have dimension at most 5v —4. Thus our only task is to show that dim(F_nF+

n V(y)nH) ̂  5v — 4. Since dim(V(y)nH) = 5v — 3, by property 2.10, it is enough to
show that the set F_nF+nV(y)nH has an empty interior in V(y)nH. We can
actually prove that even the set F+nV(y)nH has an empty interior in V(y)nH.
Assume the contrary:

U: = intV(y)nH(F+nV(y)nH) + φ.

Here we observe that all the existing leaves y\t2(z) C ΦI,E(Z E U)are transversal to U
whenever vί (z) is not parallel with I = vί(z) + v2(z\ because during the perturbations
of type γ\t2 Λe velocity v^z^—jl varies on a sphere centered at the origin of Rv.
The event v^z) \\ υ2(z), however, occurs on a set of codimension v — 1 (^ 2), so we can
assume that v^z) is not parallel with / in V(y). By the strong version of the
fundamental theorem for the flow S\f2 (* > 0) (see Sect. 3), for μH-almost every point
zeU the local stable leaf y\f2(z) exists with positive inner radius. By the
transversality mentioned above, the set

U y'u(z)cΦ,,£
zeU

has positive μφ-measure and this is impossible, because by Proposition 5.60, this
set is a subset of F+ nΦj E that has measure zero in ΦI E by Lemma 5.50. Hence the
Main Lemma 5.47. The discussion of case (a) (Px = ({1}, {2,3,4}). P2 = ({1,2}, {3,4}))
is now complete.

Let us continue the study of cases (a)-(e). It turns out that the discussion of cases
(b)-(e) is much easier than that of (a).

Case(b). ^=({1}, {2,3,4}), P2=({2}, {1,3,4}). It follows easily from the as-
sumed sufficiency of the sub-billiard trajectories S273*4

O)Xo and Sf^lx0 that in
case (b) the neutral linear spaces ^ ( S * " 0 0 ' 0 ^ ) and W0(Si0tCO)x0) (their definition
see in Sect.4) are as follows:

- o o , 0 ) ^ \ (5.61)

(5.62)

[compare with (5.15)]. Taking a closer look at the relative displacement Aq4 — Aq3

of any common element (Aqu Aq2, Aq3, Aq4)* of the spaces W^S*"0 0 '0^) and
W0(S(0iCO)x0), we see that λ = μ and, therefore, x = y, x= — 3y. Thus the common
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element must be of the form

that is, the trajectory S("°°f00)x0 is sufficient. The conclusion is that if

^ = ({1}, {2,3,4}) and P2 = ({2}, {1,3,4}),

then the set MPuP2 is residual, because the only possibility to have points
x 0 eM P l ) p 2 (non-sufficiency is required in MPuP2) is that one of the sub-billiard
semi-trajectories S^^0)x0 and S(^lx0 is not sufficient.

Case(c). ^=({1,2}, {3,4}), P2 = ({1,3}, {2,4}). The argument is, in many
respects, similar to that in case (b). From the assumed sufficiency of the four sub-
billiard semitrajectories, an easy computation shows that the neutral spaces

ft^xo) and W ^ 0 ' 0 0 ^ ) are as follows:

l 3 4

Aq2-Aq1= φ2{x0)-ι>i(xo))> MA~Ms = βtyΛxo)~vs

for some a,/J,eR>,

Aq3- Aq1 = y(υ3(x0)-vί{x0)), Aq4~Δq2 = δ{v4(xo)-v2(xo))

for some y, <

A simple calculation shows that for any common element

(Δqfc, e Wά#-~ O)Xo)nWά&Ό' ~}x0)

the equation

(α - γyv^xo) + (δ - φ2(x0) + (γ - β)v3(x0) + (β~ δ)v4(x0) = 0 (5.63)

holds. If the only linear dependence among the velocities Vj{x0) (j=\,2,3,4) is
4

Σ Vj{xo) = 0,

then we have oc — y = δ — (x = γ — β = β — δ, therefore, <x = β = y = δ and the trajectory
£(-00,00)^ j s sufficient, which is not allowed for points xoeMPuPr Thus MPιPl

CDKJN, where N is the set of points x0eMPuP2 for which one of the four sub-
billiard semitrajectories is not sufficient, while D is the set of points y e M for which
the span of the velocities Vj(y) is not 3-dimensional. {D stands for "dependence,"
while N for "not sufficient.") It is easy to see that D is a compact cell-complex in M
and dimD^5v + l =dimM —(v —2). The only trouble can be caused when v = 3
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and having some cells C in D with codimension one in M. However, we can
show that the closed set F_nC has an empty interior in the cell C. [The same is
true, of course, for F+nC. For the definition F± see (5.4H5.5).] This will be
enough, because then the set F_nC is residual in M [cf. Theorem 1.8.10 of
E (1978), showing that dim(F_n C)^dimC-1 =dim - 2 ] and it contains the set
MPup2nC. Assume, on the contrary, that intc(F_nC) + 0. It is obvious that for
every point yeC the span of any pair of the four velocities vfy) 0 = 1, ...,4) is
the same 2-dimensional subspace of R 3 depending, of course, on y. This yields
that (i) for such points y the invariant manifold y3Λ(y) is transversal to C and (ii)
for almost every point yeC the manifold y^f4iy) exists. These two properties
are contradictory to intc(F_nC)φ0, because the set

U LylAy)nU(xoκ
yeF-r\C

must have positive measure and, on the other hand, it should be a subset of the zero
set FL, provided U(x0) is small enough. Thus MPί Pl is residual in case (c), too.

Cases (d) and (e). We do not intend to investigate both cases in detail because,
on one hand, their discussions are quite similar and, on the other hand, the method
has been well developed in K-S-Sz (1989) (the proof of Sublemma 2). Therefore, we
shall only sketch the proof of the codimension two property for the set F_ nF+

when P± = P2 = ({1}, {2,3,4}). We want to apply property 4 in 4.1 of K-S-Sz (1989)
(the possibility of "integrating up" codimension two closed sets) in order to obtain
the required lower bound for the codimension of F_ πF + . The auxilary foliation of
the neighborhood U(x0) corresponds to all the data of the first particle: qx and vί.
For each submanifold ΦquΌl = {ye U(x0): q^y) = q1 and vγ(y) = vί] the intersection
F_ nF+nΦquΌί is a codimension two closed set in Φquυi by the lemma on avoiding
of balls [Lemma 3 in K-S-Sz (1989)]. By virtue of property 4 of the same paper we
have dim(F_nF+)^diml/(;co) — 2 = 6v — 3. Hence the proof of residuality of
MP l p2 in all cases (a)-{e)

6. Singular Trajectories

The purpose of this supplementary section is the proof of the residuality of the set
of all singular, non-sufficient phase points. We remind the reader that the
residuality (basically, the codimension-two property) of the set of all singular, non-
sufficient phase points was not covered by Sects. 4 and 5. The main result of this
section - implying the residuality of the set of all singular, non-sufficient phase
points and even the Chernov-Sinai Ansatz - is the following theorem:

Theorem 6.1. For every cell C of maximum dimension (6v —3) in < 9 ^ + the set
C e d CC of all ''eventually decomposing" phase points can be covered by a countable
family of closed, zero subsets (with respect to the surface measure in C) of C.

A point xeίfM* is said to be eventually decomposing if
(a) the semi-trajectory S(OfOO)x is not singular and
(b) there is a number t0 > 0 and a two-class partition P of the particles such that the
trajectory segment S{t0fCO)x is partitioned by P (see Sect. 2).
This theorem, together with

(i) Main Theorem 4.3,
(ii) the result stating that the set of points with at least two singularities has two

codimensions [Lemma 4.1 in K-S-Sz (1990)],
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(iii) property 2.10,
(iv) the result on the uniform decomposability of any decomposing trajectory
segment (the consequence of Kόnig's Lemma 5.2)
yields that
(A) for almost every point xetfffl* the positive trajectory S{0>co)x is sufficient
[Chernov-Sinai Ansatz, see Condition 3.1 in K-S-Sz (1990)],
(B) the set of all points S*x (xe^0ί+, ί>0) for which the segment S^'^x is not
sufficient is residual.

Proof of 6Λ. We can, of course, assume that the number t0 > 0 and the partition P
are fixed; the corresponding subset of C e d is denoted by C e d(ί0,P):

Ced(ί0, P):={xe C e d: S(ί0' «»x is partitioned by P}. (6.2)

We claim that the closure C7c(Ced(ί0,P)) of the above set has measure zero in C.
Assume the contrary, that is

μc(Clc(Ced(to,P)))>0. (6.3)

Denote by Cd s the collection of all points x e C for which there is at least one
singularity on the positive trajectory S(0' ̂ x. (Points with double singularity.) It is
now clear that the set C7c(Ced(ί0,P))\Cds is exactly Ced(f0,P) and the sets
C7c(Ced(£0, P)) and Ced(ί0, P) have the same μc-measure, which is, according to the
indirect assumption (6.3), positive. Consider now a Lebesgue point (point with
density one) x0 e Ced(ί0, P) of the set Ced(ί0, P). Choose a number t% > t0 for which
Sux0 φ dM, that is t^ is not a moment of collision. It is clear that the point y0 = S^XQ
is a Lebesgue point of the set \J S^C^ίo, P)) with respect to the surface measure

ί>0

of the codimension - one smooth submanifold N= [j S^C). We fix a small, open
ί>0

ball U(y0) = B(y0, δ0) C M\dM with radius δ0 < t# —10 centered at y0. In the course
of the present proof we shall see how small the radius δ0 should be. Actually, we
first require that δ0 be small enough depending on the number ε0 [cf. the note after
(5.7)], so that the implications of Proposition 5.60 (regarding the pseudo-stable
manifolds) hold for U(y0) = B(y0, δ0) instead of U(x0). For the sake of brevity, from
the time being we assume that P = ({1,2}, {3,4}); the discussion of the case P = ({1},
{2,3,4}) is similar and we leave it to the reader.

The definitions of the closed sets F+ C U(y0) and F+ C U(y0) are formally the same
as (5.5) and (5.7); the only difference is that the base neighborhood U(x0) is now
replaced by U(y0) = B(y0, δ0). The remark after (5.7) applies again to the definitions
of F+ and F+, ensuring the closedness of these sets. It is, of course, again true that

F+CF'+ and μ(F^) = 0. (6.4)

The definitions of the pseudo-stable invariant manifolds ys

0( ), ys

1>2( ), and γs

3Λ( )
are again formally the same as (5.11)—(5.13) with U(x0) replaced by U(y0). By the
smallness of (50, the first three implications of 5.60 remain true. For an arbitrary
point y e B(y0, δ0) we can try to construct the generate γs

g (y) of all the pseudo-stable
leaves in the following way:

•φ) = U rί(z)= U fop(z), (6.5)
zeγ§P(y) zey§(y)

where the exponentially contracting leaves fe(-) are defined by (5.14) and

γsj>(y):= {zefo{yy.Q{z)-Q{y)l_V{y)}. (6.6)
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In terms of the parameters w, λ, μ of (5.11), the points z e ys^(y) can be described by
the equation

2w{v1+v2)+ -(vί- v2)
2 + y (v3-vj2 = 0. (6.7)

It is important to note that the coefficients vί + v2, (vί — v2)
2

9 and (v3 —1;4)
2 in (6.7)

do not vary while making perturbations of the form ys

0( ) or ys

e( ). The meaning of
the parameters is as follows:

w is the displacement of the center of mass of the subsystem {1,2},
λ is the time shift (advance) of the subsystem {1,2} while μ is the time shift of the

subsystem {3,4}.
The observations just mentioned imply the commutativity

U fe(*)= U yy(*)

appearing in (6.5). This commutativity together with the transversality of γs

0( ) and
ys

e(') yield that for almost all points yeB(yθ9δo) the set ys

g(y) is an orthogonal
manifold (of dimension 3v — ί) containing y as an interior point. Moreover, the
orthogonal manifold ys

g(y) is concave, which follows simply from the concavity of
the manifolds ys

0(-) and ys

e( ). Since the concave orthogonal manifolds remain
concave under the action of the flow S* (t < 0), by Sublemma 4.2 of K-S-Sz (1990) we
get that the manifolds ys

g(y) are transversal to the codimension one manifold
CCyo(B(y0,δ0)nN) for all points yeCCyo{B{yθ9δo)nN). Here, again, CCyo(Λ)
denotes the arcwise connected component of the set A that contains the point y0.
We note that the trans versality just mentioned is meaningful even in the case when
ys

g(y) does not exist, since the tangent space of this "non-existing" leaf ys

g(y) can be
constructed by the continued function method [see, for instance, Ch(1982),
formulas (1) and (3)] and the transversality is the consequence of the continuity of
the value of this continued fraction. We arrive at the conclusion that, by choosing
the radius (50 small enough, at least one of the following statements is true:

1. for all points y e CCyo(B(yo, δo)nN) the manifold yso{y) is transversal to N;
2. for all points y e CCyo(B(yo, δo)nN) the manifold γ\ 2{y) (if exists) is transversal
toJV;
3. for all points y e CCyo(B(yo, δo)nN) the manifold y| 4(y) (if exists) is transversal
toΛί.

We shall finish the proof assuming (2); the treatment of (3) is absolutely similar and
the first case is even much simpler, since, in that case, there is no problem with the
existence of the leaves yffi ).
In virtue of the transversal fundamental theorem for the subsystem {1,2}, for
almost every point y e CCyo(B(yo, δo)nN) (with respect to the Riemannian volume
vN in N) the invariant manifold ys

ί>2(y) exists, that is, it contains y as an interior
point. We chose y0 as a Lebesgue point of the set (J ^(C^^o, P)), therefore, the

ί>0

set

U S*(Cβd(t0, P))\ nCCyo(B(y0, δo)nN) (6.8)

has positive vN-measure. The set in (6.8) is clearly a subset of

F+nCCyo{B{y09δ0)nN): = A.
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We consider the following union of invariant manifolds:

B:= U fuiiy)'
yeA

The v^-positivity of A and the existence and transversality of the leaves y\t2(y)
(stated above) imply the μ-positivity of B:μ(B) >0. On the other hand, by the
second implication of 5.60, the set B must be a subset of F+, but F'+ is a zero set by
(6.4). This contradiction finishes the proof of 6.1.

7. Proof of Theorem

The proof is, of course, based on the Fundamental Theorem (Theorem 3.4 and its
Corollary 3.5) and therefore we start it by checking the Conditions 3.1-3.3.
Condition 3.1 was verified in Sect. 6. Condition 3.2, as a matter of fact, trivially
holds for semi-dispersing billiards with solely cylindric scatterers. Condition 3.3
certainly follows from Lemma 2.11.

Proof of Main Theorem. Now Corollary 3.5 implies that every sufficient point
x0 e M* has an open neighborhood belonging to one ergodic component of the
system. Further, by Lemma 2.11 and Remark 2.7, we see that M\M* is a countable
union of codimension-two submanifolds of M, a residual set. Thus we can focus on
showing that JV, the subset (in M*) of non-sufficient points, is a residual set.

By Lemma 2.8, residuality can be verified locally, in neighborhoods of points of
N. lίx e NnM1, then the necessary statement is just corollary (B) of Theorem 6.1. If
xeNnM0, then there are two possibilities: x is rich or x is non-rich. By
Theorem 5.1, the set of all non-rich, non-sufficient points of M° is a residual set.
Finally, by Theorem 4.3, in a sufficiently small neighborhood U of any rich point of
NnM0, Nn U is contained in a CW-complex with codimension at least two. Hence
the Main Theorem of this paper.

Appendix. Three-Class Partitions of Particles
on Infinite Time Intervals

The set-up of this section is more general than that throughout the whole paper:
All the billiard flows {M, S\ μ) of N (^ 3) particles on the torus can be considered,
provided that for all k ̂  N — 2 the fe-billiard on the torus is ergodic. It is known that
this is the case if N^5. The result of the appendix is as follows:

Theorem. Consider the flow {M, S\ μ] of N (^ 3) billiard balls on the torus. Assume
that for all k^N—2 the k-billiard on the torus is ergodic (and, therefore, it is a
K-system). Let P = {Cί,C2,C3} be a partition of the N particles into three-non-
empty classes Cl9 C2, and C3. Then we claim that the codimension of the closed set

F = {XEM: in the trajectory S{0i0O)x there is no

proper collision between different classes of P}
is at least two.

Proof. We shall distinguish between two cases, namely, when the number of
classes Q with \Ct\ ^ 2 (| | denotes the cardinality of a set) is greater than one, or,
when it is at most one. (The first case can not occur, of course, if iV^4.)
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Case I. |{f:|Ci|^2}|^2. Assume that |CΊ|^2 and |C 2 | ^2. We foliate the phase
space M according to all the initial data qβ v} (j e C3), and all the outer parameters

Σ qj9 Σ vj, - Σ vj,

Σ Qj, Σ Vj, ~ Σ vj
jeC2 jsC2 2 jeC2

of the subsystems St

Cι and S?C2. For fixed such values, the corresponding
submanifold Φ of M can be identified with the direct product MC l x MCl in a
natural way where Mc. denotes the phase space of the subsystem S .̂. By the weak
lemma on avoiding of balls ([Lemma 2.16 of K-S-Sz (1991)] and by the assumed
X-property of the fc-billiards for k g N — 2, the projection πc.(FnΦ) is contained in
a suitable closed zero subset Ft of MCi. (The set Ft is defined via avoiding the balls
from C3.) Thus FnΦcFγ x F2 and

dim(FnΦ) ̂  dim(F1 x F2) ̂  dim^ + dimF2

^ d i m M C l - l + d i m M C 2 - l = d i m Φ - 2

by Theorems 1.5.16 and 1.8.10 of E (1978). Therefore, by property 4 of Sect. 4.1 in
K-S-Sz (1989), the codimension of the closed set F is at least two.

Case II. \{i: \Ct\ ^2}| ^ 1. Assume that \C2\ = 1 and |C3 | = 1. If, moreover, ICJ = 1
too, then a simple geometric argument shows that codim(F) = 3. (The condition
that a fixed pair {ij} does not collide means that the relative velocity vt — vj belongs
to the union of finitely many hyperplanes and these conditions, corresponding to
different pairs of particles, are of course, independent.) Thus we suppose that
|C 1 | ^2. We fix the values of q-} and Vj of the two particles from C 2 uC 3 . The
corresponding submanifold of M, which is naturally isomorphic to the phase space
MCί of the subsystem S^, is again denoted by Φ. In order to have a non-empty
intersection FnΦ it is necessary that the relative velocity Vi — Vj (ίeC2,jeC3) be
contained in a finite collection of hyperplanes of Rv. This is "one equation" that
makes the codimension of F at least one. By the weak lemma on avoiding of ballls
[Lemma 2.16 of K-S-Sz (1991)], applied to the subsystem S^, we see that the
measure of the intersection FnΦ in Φ is zero, thus FnΦ has an empty interior in Φ.
By virtue of Theorem 1.8.10 of E (1978), this implies that codim(F)^2. Hence the
theorem of the Appendix.
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