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Abstract. In this paper we consider the bosonic sector of the electroweak theory.
It has been shown in the work of Ambjorn and Olesen that when the Higgs mass
equals to the mass of the Z boson, the model in two dimensions subject to the 't
Hooft periodic boundary condition may be reduced to a BogomoΓnyi system and
that the solutions of the system are vortices in a "dual superconductor". We shall
prove using a constrained variational reformulation of the problem the existence
of such vortices. Our conditions for the existence of solutions are necessary and
sufficient when the vortex number N = 1,2.

1. Introduction

Instantons, monopoles, and vortices form a rich spectrum of topologically elegant
solutions of gauge field theories. Vortices arise in two-dimensional models in which
the gauge symmetry is spontaneously broken via Higgs bosons. Such solutions
represent string-like field configurations in higher dimensions and, in the context
of the abelian Higgs theory, were first discovered in Abrikosov's poineering study
[1] of the magnetic properties of superconducting materials. In recent years, due
to their interesting roles in grand unified theories, especially in cosmology [10],
nonabelian vortices have attracted a considerable amount of attention. It is well-
known that one of the most important and successful nonabelian gauge field
theories is the electroweak theory of Glashow, Salam and Weinberg, where the
gauge group is SU(2)x (7(1). In a series of papers, Ambjorn and Olesen [3-5]
proposed that a class of periodic vortex-like solutions similar to those of Abrikosov
occur in this electroweak theory (see also Skalozub [11,12]). They showed that,
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when the coupling constants satisfy a critical condition, energetically stable solutions
can be found from a BogomoΓnyi system. These solutions give rise to a distribution
of vortex-lines and the total energy is proportional to the quantized flux or the
vortex number. Moreover, the interesting structure of the equations allows one to
derive a magnetic anti-screening phenomenon relevant to the quark confinement
problem. Since the fermionic sector of the model is not responsible for the spon-
taneously broken symmetry, it suffices to consider the bosonic sector only. The
periodicity may be realized by the 't Hooft boundary condition [13]. Ambjorn
and Olesen used a perturbation analysis and numerical experiments to support
the existence of such nonabelian vortices but they were unable to obtain a rigorous
proof [4]. The major difficulty is that the BogomoΓnyi equations now take a more
delicate form than in the classical abelian case [8,14] due to the above mentioned
anti-screening of the magnetic field. (For the abelian case, the structure of the
BogomoΓnyi equations allows a complete resolution of the multivortex problem
over a periodic cell realizing Abrikosov's solutions [14].) Indeed, such a significant
difference has already been exhibited in an earlier study of Ambjorn and Olesen
on the periodic vortices of a simplified 50(3) theory [2] in which the W-bosons
acquire masses through a Higgs mechanism but the Higgs fields are neglected
from the Lagrangian. Here a system of the BogomoΓnyi type equations also occur
but the reduced elliptic equation takes a similar form as those in the prescribed
Gaussian curvature problem for compact surfaces with a positive Euler character-
istic [9]. Hence in this situation one might only expect to find certain sufficient
conditions for the existence of multivortex solutions [15].

In this paper we will study the existence of multivortex solutions in the full
electroweak theory proposed by Ambjorn and Olesen. Our main strategy is to
use a crucial change of field variables to transform the system into a "lower
diagonal" form. Such an approach allows a multi-constrained variational solution
of the problem if the given data in the problem satisfy certain restrictions. Under
these restrictions, existence results will be established. When the vortex number
N = 1,2, our conditions for existence are both necessary and sufficient. Whether
or not these conditions for the case N ^ 3 may further be improved remains open.

The organization of the paper is as follows. In Sect. 2 we discuss the electroweak
theory in the standard unitary gauge with a residual U(l) symmetry and set up
most of our preliminary notation. In Sect. 3 we show that a convenient 't Hooft
periodic boundary condition (for an arbitrary lattice structure) in the electroweak
theory is equivalent to that in the corresponding U(l) model. Section 4 gives a
characterization of the quantized flux by the vortex number, parallel to the situation
in the abelian Higgs model [14]. In Sect. 5 we prove our main theorem (Theorem 5.6)
for the existence of multivortices in the electroweak theory. Section 6 contains
some concluding remarks.

2. The Electroweak Theory in the Unitary Gauge

We shall use {τβ}β=li2>3 to denote the Pauli matrices:

'0 lλ _ / 0 - i \ (\ 0

o j ' τ 2 ~ ( i o
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Then ta = τβ/2, a = 1,2,3 is a set of generators of SU(2) satisfying the commutation
relation

Let φ be a complex doublet. The gauge group SU(2) x U(l) transforms φ as
follows:

iωJaiΦ* ωflelR, a = 1,2,3,

i-iξto)Φ,

where

1/1

is a generator of (7(1) in the above matrix representation.
In the (1 + 3)-dimensional Minkowski space with the signature (—h -f +), the

SU(2) and (7(1) gauge fields are denoted respectively by Aμ = Aata (or Aμ = (Aa

μ)
as an isovector) and Bμ. Both Aa

μ and Bμ are real 4-vectors. The field strength
tensors and the 5(7(2) x (7(1) gauge-covariant derivative are defined by

Fμv = SμAv - dχAμ + ig\_Aμ, Av\

Gμv = dμBv-δvBv,

DμΦ = dμφ + igAa

μtaφ + ig'Bμtoφ,

where g, g' > 0 are coupling constants.
The Lagrangian density of the electroweak theory in the bosonic sector is

Se = - ±(F^ Fμv + G^Gμv) - (D»φγ(Dμφ) - λ(φ2

0 - φ*φ)\ (2.1)

where and in what follows, ίςt" always denotes the Hermitian conjugate, and A, φ0

are positive parameters.
The new vector fields Pμ and Zμ are a rotation of the pair Aμ and Bμ:

Zμ= -Bμsinθ + A3

μcosθ.

In terms of Pμi ZμJ Dμ is written

^ μ = Sμ + ig{A1

μtι + A2

μt2) 4- iPμ(gsin θί3 -h g'cos0ίo) + /Zμ(^cos θt3 - g'sin θt0).

Requiring that the coefficient of Pμ be the charge operator eQ = e(t3 + ί0), where
— e is the charge of the electron, we obtain the relations

e = g sin θ = g' cos 0,

99'
e =

{22)

Such a 0 is called the Weinberg (mixing) angle. In the sequel, we will always assume
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that θ is fixed this way. The Dμ takes the form

Dμ = dμ + igiAfa + Λ2

μt2) + iPμeQ + iZμeQ\

where Q = cot θt3 — tan θt0 is the neutral charge operator.
From (2.2), when we go to the unitary gauge in which

where φ is a real scalar field, there holds

-g(Au-iA2)φ

\ 2cos0 /

Define now the complex vector field

and 9μ = dμ- igA3

μ. With the notation Pμv = dμPv- dvPμ,Zμv = dμZv- dvZμ, the
Lagrangian (2.1) takes the form

JSf = - \(βμ Wx - - \PμvPμ

-\g1φ1WμW\~dμφdμφ-
1

4cos20
g2φ2ZμZμ-λ(φ2

0-φ2)2. (2.3)

Thus the model is reformulated in the unitary gauge. The W and Z fields
represent two massive vector bosons which eliminate the unphysical massless
goldstone particle in the original setting. These fields mediate short-range (weak)
interactions. The remaining massless gauge (photon) field P arising from the
residual U(\) symmetry mediates long-range (electromagnetic) interactions.

As in [4], we assume that the magnetic excitation is in the third direction.
Thus, we arrive at the vortex ansatz

7=1,2,

= φ(xί9x2). (2.4)

As a consequence, if the corresponding Wx and W2 are represented by a complex
scalar field W according to W1 = W,W2 = iW (this implies the relation A\— —A\9

Al = A\), the energy density associated with (2.3) takes the form

(2.5)
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The residual U(l) symmetry of the model may clearly be seen from the
invariance of (2.5) under the gauge transformation

-djζ, Zj^Zj, φt->φ, (2.6)
e

due to (2.2).

3. Equivalence of the 'tHooft Periodic Boundary Conditions

In this section, we discuss the 't Hooft periodic boundary conditions. Since we are
interested in vortex-like solutions, only the two-dimensional case will be examined.
Namely, we assume that the field configurations are in the form (2.4).

Consider a fundamental domain Ω of a lattice in R 2 generated by independent
vectors ax and a2:

Ω = {x = (x 1 ,x 2 )eR 2 |x = s1a1 + s2a2, 0<Sχ,s 2 < 1}.

Define

ΓΛk = {xeR 2 | x = 5fcak, 0 < sk < 1}, k = 1,2.

Then dΩ = Γ . 1 u Γ . 2 u { a 1 + Γ . 2 } u { a 2 + Γ. 1 }u{O,a 1 ,a 2 f a 1 +β 2 } .

Let Aj = Aajta, Bp and φ be the gauge potentials and the Higgs boson fields
respectively. The 'tHooft periodic boundary conditions are such that the triple
(Aj9 Bp φ) are doubly periodic in R 2 up to gauge transformations. For our purpose
we impose this periodicity as follows:

(exp ( - iξk(h + to))φ)(x + afc) = (exp ( - iξk(t3 + to))φ)(x)9

I ωkAjωk-
λ - -ωkdjωk-

 x)(x + ak) = ( ωkAjωk

 x - -ωkdjωk~
x )(x),

V g \ g /

x e ( Γ a i u Γ a 2 ) - Γ a k , k = l , 2 , (3.1)

where ξί9ξ2 are real-valued smooth functions defined in a neighborhood of ΓΆ2u
{*i + Γa2}» ΓΛι u{a 2 + Γ a i }, respectively, and

ωk(x) = exp(-%(x)ί3)e5t/(2), exp(-i{k(x)ί0)6£/(l).

Let us see what these conditions imply for the field configurations in the unitary
gauge. It is easy to verify that the first relation in (3.1) says that φ is periodic:

φ(x + afc) = <p(x), X 6 ( Γ a i u Γ J - Γ a k , /c = l,2. (3.2)

To proceed further, we recall the following well-known Campbell-Hausdorff
formula
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where A, B are n x n complex matrices. Therefore

ωAjCQ-1 =Qxp(-iξt3)AajtaQxp(iξt3)

--ωdjω-^-idjξ)^.
9 9

Thus after some calculation we obtain, in the notation of Sect. 2,

+ *k))W(x + afc) = e x p ( ^

x e ( Γ a i u Γ a 2 ) - Γ a k , fc=l,2. (3.3)

Combining the above equation with the last relation in the boundary condition
(3.1) and using (2.2), we have

Z,.(x + a*) = Z;(x), x G ( Γ a i u Γ a 2 ) - Γ a k , /c=l,2. (3.4)

We summarize the boundary conditions (3.2)-(3.4) we have obtained as follows:

φ(x + ak) = φ(x),

cxp(iξk(x + afc))H^(x + afc) = exp(iξk(x))W(x),

Z7(x + ak) = Zj(x), XG(Γ a i uΓ a 2 )-Γ a k , /c=l,2. (3.5)

The relations (3.5) are exactly the 'tHooft periodic boundary conditions for
the reduced (7(1) model (2.5) over the lattice with fundamental domain Ω (because
in such a situation a gauge transformation is defined according to the formula
(2.6)). Hence we have shown that the 'tHooft periodic conditions for the full
SU(2) x U(\) theory and the theory in the residual U(\) symmetry are in fact
equivalent.

For convenience, we momentarily denote the value of a function ξ at a point
x = s1a1 + s2a2e.Ω by ξ(sl9s2). Since W is a single-valued complex scalar field,
there must exist an integer NeΈ so that

(3.6)
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As a consequence of (3.5)-(3.6), there holds

(3.7)

Namely, the total magnetic flux through Ω is quantized and independent of the
size of Ω. On the other hand, it is easily seen that the flux through Ω induced by
the massive vector boson Z is zero.

Using (3.7) and the boundary condition (3.5), we see that the energy density
(2.5) leads to the energy lower bound as in Ambjorn and Olesen [4]:

E=

i92W\2

Ω

Ω

9

2sinθ 2cos0 2cos0

sin0\ e 8sin0

In the critical case where

forA> 92

8cos20*

8cos 20
(3.8)

namely the Higgs mass equals to the mass of Z vector boson, the above energy
lower bound may be saturated by the solutions of the following BogomoΓnyi
system:

(
2cos0

(3.9)

subject to the 't Hooft periodic boundary condition (3.5).
It is straightforward to verify that solutions of (3.9) give rise to solutions of the

original electroweak theory. From the second equation in (3.9) and (3.7) it is seen
that the integer N in the relation (3.6) must be positive. The rest of the paper will
be devoted to a construction of the solutions of (3.9)
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4. Realization of Quantized Flux

This section discusses how the quantized flux is characterized by a smooth solution
quartet (φ, W, PJ9 ZJ) of the BogomoΓnyi equations (3.9). For simplicity, we assume
that the field W does not vanish on δΩ. The domain Ω may be viewed as a subset
in the complex plane <C. A point in Ω will be denoted by z = xx + ix2 and the set
of zeros oϊ Why Z(W).

Under the notation

3 = ̂ ( d i - i δ 2 ) , 5t = l ( δ 1 + ίa2), 0L = Al + iAl

the first equation in (3.9) takes the form

i (4.1)

Such a relation implies that, locally in Ω, W is the product of a holomorphic
function and a nonvanishing smooth function (see Jaffe and Taubes [8]). Let
zoeZ(W). Then we have the representation

W(z) = (z-z0Γh0(xux2) (4.2)

in a neighborhood of z = z0. Here h0 is a nonvanishing complex-valued smooth
function and the multiplicity n0 of the zero zoeZ(W) a positive integer. This
description implies in particular that Z(W) is a finite set.

The unitary gauge assumption makes it necessary to impose that the real Higgs
field φ has no zero.

To proceed further, we let Z(W) — {zl9...,zm} and assume that the multiplicity
of the zero z = zx is nx > 0, / = 1,..., m. zu..., zm are the vortex locations of the
solution and nu...9nm are commonly called the local vortex numbers. Hence
N = Hi + ••• + nm is the total vortex number.

The first equation in (3.9) or (4.1) may be rewritten

o *
α = - - 5* In W, away from Z(W). (4.3)

9

Therefore, outside Z{W\ Eqs. (3.15) may be reduced by virtue of (4.3) and
Z 1 2 = (2 cos 0/#)zl In φ to

(4.4)
4cos20

(cf. [4]). Since W has the representation (4.2) in a neighborhood of a point eZ(W\
the substitution \W\2 = exp(w),φ2 = exp(w) allows us to rewrite (4.4) in the full
domain Ω in the form

m

— Δu = g2 exp (w) + Ag2 exp (u) — 4π ]Γ nj<5(z — z^),
/ = i

^ w = ^ — τ ^ ( e χ P (w) ~ Φo) + 2g e χ P (M)» ίn β»2 cos θ

w, w are periodic on δΩ. (4.5)
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Conversely, if («, w) is a solution of (4.5), then we can define the quartet
(φ, W,PpZj) according to

Zj(z) = εudk In φ(z),
9

Pj(z) = esc ΘA]{z) - cot ΘZj(z\ (4.6)

where A? is determined through (4.3) (the definition of α may actually be extended
smoothly to the full Ω\ see [8]). It is not hard to check that (φ, W,Pj,Zj) is a
solution of the BogomoΓnyi system (3.9) satisfying the periodic boundary condition
(3.5) so that the total vortex number in (3.6) is given by N = n1-{- — Y n m .

In conclusion the quantized flux Φ is characterized as in the abelian Higgs
model [14] by the vortex number and, to find a solution with flux 2πN/e, it suffices
to solve the coupled equations (4.5) with nx + •• + nm = N. In the next section, we
will present a resolution of this system of equations.

5. Existence of Multivortices

Since the boundary condition in (4.5) is periodic, it will be most convenient to
view the problem as defined on the 2-torus T(Ω) = IR2/~ where x ^ y for x, y e R 2

if x = y mod(ax) or mod(a2). In the sequel no mention of the domain Ω will be
made whenever there is no risk of confusion.

The following standard result will be useful for our background subtraction.

Lemma 5.1. For N ~nι + ••• + nm, there is a function u0 which is smooth in the
complement of the set {z 1 ?...,zm} so that

Δu° = ~~ 7777 + 4 π Σ nιδ(z ~ zι) (5.1)

Moreover, uo(z) — In \z — zt\
2nι is smooth in a small neighborhood of z = zt.

A proof of this lemma may be found in Aubin [7].
Now define v = u — u0. Obviously the function C/0 = exp(u0) is smooth and

nonnegative. Hence Eqs. (4.5) become

4πN
Δv = —— - g2 exp (w) - 4#2 Uo exp (v),

Δw = — ? — (exp(w) - φl) + 2g2Uo exp(v). (5.2)
2 cos θ
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It may be hard to treat the above system directly. To proceed further we
introduce the following transformation of dependent variables:

\η = t; + 2w,

= v. (5.3)

Then (5.2) is equivalent to

Δη= -H + g2 tan 2 θexp{\\_η - v~]),

4πN
v

where

(5.4)

H=g2φ2o
cos 20

An integration by parts of the first equation in (5.4) yields a constraint for the
solution:

Q ) ^ O . (5.5)

On the other hand, using (5.5) and the second equation in (5.4), we obtain another
constraint:

These are constraints for both the solutions and the ranges of physical parameters.
For convenience, we extract the above constraints for the parameters as follows:

^ 2 , Λ 2

| β | COS20

Let W1'2 = WU2{T(Ω)) be the usual Sobolev space (the set of (a ί9*2Aperiodic
L2 functions whose distributional derivatives are also in L2, equipped with the
standard inner product). Here U = LP(Ω) = LP{T{Ω)). The norm of IP will be
denoted by || | |p.

Lemma 5.2. The mapping Wlt2-+Lι given by /ι—>exp(/) is well-defined and
compact.

Proof. See Theorem 2.46 in Aubin [7]. •

It will be seen that the modified system (5.4) leads to a variational reformulation
of the problem. Let us first define the functionals Iσ,JuJ2 on WU2 by the
expressions
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Lemma 5.3. Consider the following constrained minimization problem

min{IMv)\(η,v)eW^\ Jk(η9υ) = Ck9k =192}. (5.8)

If σ = cot2 0, then a solution of (5.8) is a smooth solution of Eqs. (5.4).

Proof Lemma 5.2 implies that Jί9J2 are well-defined in W1'2. Note also that the
Frechet derivatives J\9 J'2 of the constraint functional are linearly independent.

Given σ > 0, let (η, v) be a solution of (5.8). Then by standard elliptic regularity
theory (η, v) must be smooth and there exist Lagrange multipliers λσ9 μσ depending
of course on σ so that

(5.9)

which means that (η9 v) verifies the first equation in (5.4) for any σ > 0.
To recover the second equation in (5.4), we choose σ = cot2 θ. Therefore, by

virtue of λσ = 2g2 and integrating the second equation in (5.9), we have μσ = —4g2.
In particular, (η, v) solves the second equation in (5.4) as well. The lemma is
proved. •

In the rest of this section, we fix σ = cot2 θ and suppress the subscript of Iσ for
simplicity. The admissible set of the variational problem (5.8) will be denoted by

Integrating the first equation in (5.9) and using J^η.v) = C l 5 we obtain

When (5.7) is satisfied, Cl9 C2 > 0, and thus Sf φ 0.

Lemma 5.4. For feW1'2 with J / = 0 and given ε > 0 , there holds the following
optimal estimate:

f exp(/) ^ C(e)exp Γ [ γ ^ + e l || V/1|f Y (5.10)

where C(ε) > 0 is a constant depending only on ε.

The above lemma is a special case of a result in Aubin [6].
We now state our existence result for Eqs. (4.5) as follows.

Lemma 5.5. //, in addition to (5.7), there holds the inequality

then for any distribution z 1 , . . . , z m e ί 2 and nί9...9nmeZ+ with nx + ~ + nm = N9the

system (4.5) has a solution.

Proof. It suffices to prove that (5.2) or (5.4) has a solution. However, by virtue of
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Lemma 5.3, it is sufficient to show the existence of a minimizer of the constrained
optimization problem (5.8)

We first prove that, under the condition (5.11), the objective functional / is
bounded from below on £f. For this purpose we rewrite each fe Wlt2 as follows:

where Jί{f) denotes the integral mean of f:Jί(f) = (j f)/\Ω\ and Jl(f') = 0. Hence
/ may be put for (η, v)e^ in the form

-\W\2 + -\Vη'\2\ + 4πNJΐ(v)-σH\Ω\Jΐ(η). (5.12)

Let us now evaluate

Λ(η9 v) = 4πNJ/(v) - σH\Ω\Jί{η)

in (5.12) in terms of η',v\ and the constraints.
From (5.6), we have

Thus

Jt(υ) = In C2 - In (J Uo exp (i/)). (5.13)

On the other hand, (5.5) implies in a similar manner

Jt(η) = Jt{v) + 2 In Cx - 2 In (j exp ( | |>' -1?'])). (5.14)

As a consequence,

, ι;) = (4πN - σH\Ω\)J((υ) 4- 2σH\Ω\ ln(Jexp(|[^' -1;'])) + C3,

where C3 = - 2σH|ί2|lnC 1.
The second term in the expression oϊΛ(η9 v) above has a lower bound as may be

seen from the convexity of the exponential function and Jensen's inequality:

Therefore, using (5.13),

)^C4J

= C 4 lnC 2 + C3 + 2σH\Ω\\n\Ω\ - C4ln(Jl/oexp(i/)), (5.15)

where

due to the condition (5.7).
We now estimate the last term on the right-hand-side of (5.15). Let p,q be a

pair of conjugate exponents: 1 <p,q< oo, l/p+ l/q= 1. From the Schwarz inequality
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and Lemma 5.4 it follows that

ln(J Uo exp(ι/)) S - ln(J l/J) + -
P a

^-ln(Jl/5) + -lnC(ε) + f-^ + ε^||Vι/||i (5.16)
p J q \16π /

By virtue of (5.15)—(5.16) we obtain the lower bound

^ κ(q,ε)\\W\\2 + - \\Vη'\\ + C3 + 2σH\Ω\ln\Ω\
2

+ C 4 ( l n C 2 - - I n [J ( / * ] - - I n C(ε)\ (5.17)
\ p q J

where

~4πN

Using (5.11), it is seen that the constants q > 1 and ε > 0 can be suitably chosen
to make κ(q, ε) > 0. Hence / has a lower bound on £f.

Finally, let {(ηpVj)} a £f be a minimizing sequence of the variational problem
(5.8). The inequality (5.17) implies that {(η'j,v'j)} is bounded in WU1. On the other
hand, the relations (5.13)—(5.14) and Lemma 5.2 say that {Ji(v^)\ and {Jί{r\^\ are
bounded sequences as well. Hence {(ηp Vj)} itself is bounded mW1*2. For simplicity,
we assume that (ηpVj)->some (η9υ)eWlt2 weakly as j->ao. As a consequence of
Lemma 5.2, there holds (η,υ)ESf. However, the weak lower semicontinuity of the
functional / over W1'2 enables us to make the comparison I{η,v) ^ liminf/(ff^Uy).
Thus (η, v) solves (5.8) and the proof of the lemma is complete. •

From Lemma 5.5 and the discussion of Sect. 4, we are immediately led to the
following existence result for multivortex solutions of the electroweak theory.

Theorem 5.6. For any z1,...,zmef2 and w 1,...,«meZ+ with nΐ + — \ - n m = N
satisfying (5.7) and (5.11), the BogomoΓnyi system (3.9) subject to the 'ί Hooft periodic
boundary condition has a smooth vortex-line solution (φ, W,Pj9Z3)so that φ>0 and
Z{W) = {zl9...,zm}, the multiplicity of the zero z = zt of W is nl91= l,...,m, and
the total flux Φ=2πN/e.

Corollary 5.7. In the case that N = 1,2, (5.7) is a necessary and sufficient condition
for the existence of a vortex solution described in Theorem 5.6.

Proof We may rewrite (5.11) in the form

0 > 4π(N - 2 sin2 θ) - g2\Ω\φ2

0. (5.18)

It is easy to see that (5.18) is contained in (5.7) for N = 1,2. •
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6. Concluding Remarks

Remark 6.1. Our existence theorem is obtained through the transformation (5.3)
which reformulates the problem into a "lower diagonal" system so that a cons-
trained variational solver may be used. We do not know at this moment whether
or not the sufficient condition (5.11) may further be improved. At first glance, the
condition (5.11) seems to depend on our special choice of the change of variables
(5.3). For example, the transformation

v

2cos20 ' ( 6 j)

w = w

also reduces the system (5.2) into a variational problem which makes one think
that a different set of sufficient conditions for the existence of multivortices of the
model might be worked out and a possible improvement upon (5.11) would result.
The following brief discussion provides a negative answer to this speculation.

In fact, substituting (6.1) into (5.2), we have

Δγ = H' - 2g2 tan2 0£/oexp(2cos2 θ[y - w]),

[Δw = α(exp(w) - φ2

0) + 2g2Uoexp(2cos2 θ[y - w]), (6.2)

where

Integrating (6.2), we find the constraints for a solution as follows:

J Uoexp(2 cos2 0[y-w]) = C ' l S 0 0 ^ 0 * ^ , (6.3)

U
It can be shown as before that, if σ = cot2 0, a minimizer of the constrained

optimization problem

)|(y,w)e^}, (6.5)

9> = {(γ9w)eWU2\(y,w) satisfies (6.3)-(6.4)}

is a smooth solution of the system (6.2).
With the notation of Sect. 5, we have, for (y, wje^ the decomposition

γ = Jί{y) + y'9 w = Jί{vή + W.

Therefore we may rewrite /(γ, w) in the form
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° \\\ + i II VwΊlf + j9Ίn(J exp(w'))

- | β | σ / / ' ^ - ^ l n ( ί C/Oexp(2cos20[/ - w'])) + C3,

where

2sin20\cos20 |Λ

C' 3 =-/ΠnC' 2 + — ^ \Ω\σH'\nC\.
2 cos 0

Jensen's inequality again implies that ln(Jexp(w'))^ln|/2|.
Let p,g be a pair of conjugate exponents as in Sect. 5. From the Schwarz

inequality and (5.10) we obtain the following lower bound for /(y, w):

I(γ, w) ̂  Kf || V/ ||2 + K" \\ Vw' \\ \ + Q , (6.6)

where

r > 0 is a constant,

ln[J l/g] + - In C(β)) + /Tin |

Suppose now there is a suitable r > 0 to make

As a consequence of this condition, it is immediate to see that we can choose
suitable q > 1 and ε > 0 so that κ\ K" > 0. Thus (6.6) implies that (6.5) has a
minimizer and the existence of multivortex solutions again follows.

However, the two conditions (5.11) and (6.7) are actually equivalent.
To see this, we first assume that (5.11) is true. Let r = tan20. It is seen that

both requirements in (6.7) are verified. Hence (5.11) implies (6.7). Suppose now
(6.7) holds for some r > 0. If r ^ tan2 0, then the second inequality in (6.7) implies
(5.11); while if r < tan2 0, or 1/r > cot2 0, then (5.11) follows from the first inequality
in (6.7). Thus (6.7) implies (5.11) as well.

Remark 6.2. Let T denote the temperature and Tc > 0 a critical temperature. The
dependence of the electroweak theory on T may be switched on by adding the
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term 2λφl(T/Tc)
2φ2 to the static energy (2.5) (see Ambjorn and Olesen [5]).

Therefore the vortex equations (3.9) become

2cos0

It is clear that for T ^ Tc, this system has no solution, while for T < Tc9 an Λf-vortex

solution exists provided that N satisfies (5.7) and (5.11) in which φ\ is replaced

by φS( l- [Γ/ΓJ 2 ) .
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