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Abstract. We study the orbits of the dual billiard map about a polygonal table
using the technique of necklace dynamics. Our main result is that for a certain class
of tables, called the quasi-rational polygons, the dual billiard orbits are bounded.
This implies that for the subset of rational tables (i.e. polygons with rational
vertices) the dual billiard orbits are periodic.

1. Introduction

Let P be a closed bounded domain in R2 with a C1 boundary and set E = R2\P. If P
is strictly convex, the dual billiard T: E-*E is defined as follows. For any point o e E
there are two rays R and Rf emanating from o and tangent to P, where the observer
looking at P from o sees R on the left and R' on the right of P. Let A and A' be the
points of tangency. For any point v e R2 denote by rv the Euclidean reflection
about v. Then T(o) = rA(ό). The mapping T is continuous, preserves the Lebesgue
measure and invertible with T~^(ό) = rA,(ό).

If P is not strictly convex (for instance, P is a convex polygon) the dual billiard
mapping T is defined the same way but not on all of E (Fig. 1). Denote by σ1 the
union of straight lines through the sides of P. Then both T and T~1 are defined on
E\σ1 and σ^nE is the union of singular sets of T and T~ *. By induction on n g; 1 we
define σw, a finite union of straight lines, where Γfc, —n^k^n, are well defined on

oo

E\σn. The singular set Σ= (j σn is a countable union of straight lines, and for
w = l

xeE\Σ (regular points) the infinite orbits {Tnx: — oo<n<oo} are defined. The
theme of this work is the orbit behavior for dual polygonal billiards. In particular,
can they be unbounded? If P is not a polygon but is bounded by a C7-curve of
positive curvature, all of the orbits are bounded [Ml, D]. The proof is based on the
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Fig. 1. Dual billiard about a polygon

twist-map technique, thus the smoothness of the boundary curve of P is essential.
The question whether the dual billiard orbits are bounded if P has corners, in
particular if P is a polygon, was formulated in [M2] and discussed in [VS,K].

The main claim of [VS and K] is that if a polygon P satisfies certain conditions
then the orbits are bounded and under further assumptions on P the orbits are
periodic. We have tried hard to unravel the statements and the argument in
[VS, K]. To no avail. The exposition in [K] seems to follow that of [VS], but is
more cryptic, which makes it even worse. When we learned that the referee and the
editor of [VS] had the same problem with it and could not help us, we gave up on
[VS] and [K] and took up the problem on our own. The results are reported here.
In the rest of the introduction we briefly describe the contents of the paper.

In Sect. 2 we introduce the notions of the necklace and the necklace dynamics.
Let o e E and let {Tno} be the corresponding orbit. Imagine an observer located at
o. From his point of view, o is at rest and P moves, getting reflected each time about
one of its vertices. The successive positions of P form a necklace {Pn} with P0 = P
(Fig. 2). The necklaces about o are the orbits of the corresponding necklace
dynamics. The one-to-one correspondence between the orbits of the dual billiard
and the necklaces (Proposition 2.2) allows to replace the study of the dual billiard
map by the study of the necklace dynamics. This is analogous to the technique of
reflecting,the billiard table in polygonal billiards [G2].

Further in Sect. 2 we associate with any convex polygon P and a point o a
polygonal line Q unique up to dilations about o. The rationale for Q is that any
necklace about o, if it is sufficiently far from o, roughly follows Q. We prove
(Proposition 2.5, the proof is in Sect. 3) that Q is actually closed thus defining a
polygon - the necklace polygon Q. The necklace polygon β(P) is determined by P
uniquely up to scaling and translations. Let P have p vertices and let q rg p be the
number of directions of the sides of P. Then Q(P) is a centrally symmetric 2g-gon.

The necklace dynamics is given by a selfmapping W of the set & of strongly
regular polygons congruent to P (see Sect. 2). In Sect. 4 we associate with each
vertex of Q(P] a subset of 0* which is naturally isomorphic to a disjoint union S of
two (truncated) semiinfinite strips (minus the singular set which is a countable
collection of intervals). The induced first return map F: S-^S is a local translation.
More precisely, S is tiled by a countable set of polygons Sh and F restricted to St is
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the translation by a vector υt. The singular set of F is contained in
thus the union of the singular sets of the mappings F", — oo <n< oo, is at most
a countable union of intervals. Our original question becomes: are the (regular)
orbits of F bounded?

In order to answer this question, we study in Sect. 4 a slightly more general
(than F) class of mappings: local translations of multiple truncated strips. A local
translation F : S->S is periodic if there is a vector pή= 0 along S such that for any
x E S we have F(x + p) = F(x) + p. Our main technical result (Theorem 4.6) says that
if a local translation F is invertible and periodic then the orbits of F are
bounded.

A polygon P is called quasi-rational if its necklace polygon Q(P) satisfies certain
rationality conditions (Definition 3.2). A polygon P is rational if its vertices belong
to the integer lattice in some coordinate system on R2 (Definition 2.7). Any
rational polygon is quasi-rational (Proposition 3.3) but not vice versa. For
instance, the regular π-gons are quasi-rational but not rational for n ή= 3, 4, 6.

In Sect. 5 we apply Theorem 4.6 to the dual polygonal billiards.
Theorem 5.1 says that if P is quasi-rational then the dual billiard orbits are
bounded. If P is rational the orbits are periodic. A crucial point in the proof is that
the first return map F:S-^S corresponding to a quasi-rational polygon is periodic.

The technique of Sect. 4 allows to obtain the upper and lower bounds for the
dual billiard trajectories. Denote by \x\ the distance from a point x to the polygon
P. By Theorem 5.3, there are positive constants a<b,A and B (depending only on
P) such that for any x and all n

a\x\-A^\Tn(x)\^b\x\ + B.

Therefore, if x is sufficiently far from P, the dual billiard orbit {Tn(x): — oo
<n< 00} is bounded away from P (Corollary 5.3).

Let P be a quasi-rational but not rational polygon. We expect the dual billiard
about P to have nonperiodic orbits. Our expectation seems to be confirmed by the
dual billiard about the regular octagon [GS].

2. Preliminaries

Let P be a convex polygon, £ = R2\P and let σ(P) be the union of straight lines
through the sides of P. Any point o e E\σ(P) (these points are called regular about
P) uniquely determines a vertex A1 of P such that T(o) = rAl(o) (we use notation of
Sect. 1). Set Pv = rAl(P). If oeE\σ(P1), it determines a vertex A2 of Px and we set
P2 = rA2(PJ. After n steps of this process we obtain a sequence P0 = P, P l5..., Pn of
polygons and a sequence Al9...,An of their vertices (Fig. 2). Setting for brevity
rA. = rt we have Pί+1=rί+1(P/), O^i^n —1.

2.1. We say that {P0 = P, P1?..., Pj is a necklace of length n about o. It is obtained
by developing P (n times) about o in the positive direction. Reversing the direction
(which corresponds to replacing T by T"1) we get the necklace
{PO = P, P-1?..., P_w} obtained by developing P (m times) about o in the negative
direction.

We can extend the necklace {P_w,..., P0,..., Pn} indefinitely in both directions
as long as o is regular about Pfc, — oo < k < oo. We call such points strongly regular
about P. Let G be the group of reflections and translations of R2 and denote by GP
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Fig. 2. A necklace

the subgroup generated by reflections about the vertices of P. The set Σ(P)
= (gσ(P) : g e GP} is a countable union of straight lines. The set RP of strongly
regular points contains E\Σ(P).

Definition. Let oeRP and let N(P, o) = {..., P_m, ...,P0 = P, ...,PΠ, ...} be the
corresponding infinite necklace. We say that the necklace N(P, o) is bounded if the

/c=oo

set (J Pk is bounded. We say that the necklace N(P, o) is periodic if PΛ = P0 for
k= -oo

some n > 0. The definition of a bounded necklace applies in an obvious way to the
semiinfmite necklaces

N.(P9o) = {...9P^...9PQ = P} and N +(P,o) = {P0 = P, ...,PΠ, ...} .

2.2. Proposition. 1. Lei — m^O^n and let oeE. The finite necklace

is defined simultaneously with the finite orbit {Tk(o\ —m^k^n}. For l ^ f c ^
— m ̂  — / ̂  — 1 we Λαi e

a) b) (1)

2. Lβί o e jRp. The infinite orbit {Tk(o\ — oo < k < 00} is bounded if and only if the
necklace N(P,o] is bounded. The statement applies in an obvious way to the
semiίnfinite orbits and necklaces.
3. Let o E RP. The orbit (Tfc(o), — oo < k < 00} is periodic if and only if the necklace
N(P, o) is periodic.
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Proof. 1) Consider the necklace {P0, ...,PΠ} and denote by Tk the dual billiard
about Pfc, 0 ̂  k <* n, Γ0 = T. Set o± = T(o). The reflection r t sends (ol5 P0) into (0, PJ
and conjugates T with 7i : T=rίTίrl (Fig. 1).

It suffices to prove (1 a) for k = n. We will prove it by induction on n. For n = 1 it is
trivial: T(o) = r^o). For

By definition, {Pl5 . . ., Pj is a necklace of length « — 1 about o. Hence, by inductive
assumption, T?~1(o) = r2 ...rn(o\ and (la) follows. Equation (Ib) is equivalent to
(la) under the substitution T-+T'1. We leave the details to the reader.
2) and 3) Denote by d(X, Y) the distance between the sets X, YcR2. The orbit
{Tk(o)} is bounded if and only if the sequence d(T\o\P) is bounded. By Eq. (1),
d(Tk(o),P) = d(o,Pk) which proves 2). Let o be a periodic point, Tn(o) = o, and let
{PO, ...,PΠ} be the corresponding necklace with PM = ̂ π...^ι(P0) By Eq. (1),
rn...rί(o) = o, thus either rn . . . rl is the identity or it is the reflection about o (n has
to be odd). In the first case Pn = P0 and the necklace {P0, . . ., Pj is periodic. In the
second case the reflection r0 provides an isomorphism of (o,P0) and (o,Pn).
Therefore r0 induces an isomorphism of the necklaces {P0, ...,PΠ} and
{Pπ, . . ., P2/l}, hence P2n = P0 and the necklace {P0, . . ., P2n} is periodic. The proof of
the converse is even easier and we leave it to the reader.

2.3. Fix an "origin" o e R2 and let P be a convex n-gon not containing o. We say that
P is in a regular position (about o) if oφσ(P). Let Iί9 ...,/O T be the straight lines
through o parallel to the sides of P (m = n if P does not have parallel sides). The lines
/!,...,/„, divide R2 into 2m closed cones C l5 . . ., C2m and we denote by Rl9 . . ., R2m

their boundary rays enumerated counterclockwise (Fig. 3). In what follows we use
the convention that C2w+1 = C l5 £2m+ι = #ι We have -Cf = Cί+m, -R. = Ri+m.

Fig. 3. The system of cones corresponding to a polygon and a point; the head and the tail of P; the
necklace mapping
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Let us denote our original polygon by P0 and consider the set @t of polygons P
congruent to P0 (i.e. P = gP0, g e G) and in a regular position about o. Notice that
the preceding construction does not depend on the choice of P in &. For any such
P let T be the dual billiard map about P and let A + , A _ be the vertices of P such

and denote the corresponding reflections by r + , r_ . In the necklace
{r _(P), P, r +(P)} (Fig. 3) the polygons r _(P), r + (P) are congruent to P0 and do not
contain o. Denote the set of such polygons by & and define the mapping W\ ffl^^
by W(P) = r+(P). Analogously, we set W~\P) = r_(P}.

We define the set ̂  C ̂  of polygons P strongly regular about o by requiring that
Wn(P) e & for all n. The construction above defines an invertible selfmapping W of
2P with the inverse W~l. The complement 0ί\2P is analogous to the singular set
Σ(P) of the dual billiard mapping and like Σ(P) has codimension one. We call W the
necklace mapping. By Proposition 2.2, the correspondence between T and W
preserves the periodic and the bounded orbits. This allows us to forget
(temporarily) the mapping T and study the orbits of W, i.e. the necklace dynamics.

IΪA, B are points in R2, we denote by \_AB] the closed segment joining them and
by AB the corresponding vector. We also indicate vectors by upper arrows, e.g. a,
and use notation A + a for the usual action of vectors on R2, e.g. A + AB = B.

2.4. Choose a cone C from the set {Ct : 1 ̂  z ̂  2m} and let R+, R_ be its boundary
rays (Fig. 4). Denote by ĉ( ĉ, ̂ c) the subset of Sf(3t, 3s) consisting of polygons
PCC.

Lemma - Definition. Let Pe$c and let A + ,A_ be the head and the tail of P. The
vector A_A+ does not depend on the choice of P e&c. We denote this vector by ac

and call it the necklace vector corresponding to the cone C.

Fig. 4. The necklace vector
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Proof. Let P' e 01 c t>e another polygon and let A'+9AL be the head and the tail of P.
Suppose first that P differs from P by a translation :P' = P + a. Then A'+=A++a9

A'_ = A. +a (Fig. 4), hence A'-A'+=A-A+. If P differs from P by a reflection,
P = rP, we can assume that r is the reflection about A_ (Fig. 4). Then A'+=A-9

A_ =r(A+) and ALA'+ = r(A+A.) = A.A+.

Corollary. We have a_c = — ac.

Proof. Let Pε$c and letac = A_A + . Calculating a_ c using the polygon r0P e ̂  _ c

we obtain the assertion.

2.5. We denote by at the necklace vectors corresponding to the cones Q, 1 ̂  ί ̂  2m.
Choose a point ^el^ (AjΦo) and draw the ray emanating from ^ in the
direction of aλ until it crosses R2 at a point A2. Repeat this construction until we
come back to the ray #i=#2m+i obtaining in the process the polygonal line
Q = A1A2 ...A2m+1. If we make another choice A\eR^ where oA\ =λ(oA^ Λ,>0,
we obtain the similar polygonal line

Q' = A'iA'2...A'2m+1=λ(A1A2...A2m+1).

Proposition - Definition. We have A2m+1=A1 thus Q = A±A2 ...A2m+1 is a closed
polygon. Any change of the data involved in the definition of Q (i.e. o9AleRl and the
choice of R±) changes Q by translations and dilations only. Thus the polygon
Q = Q(P) is determined by P uniquely up to translations and dilations, and we call it
the necklace polygon of P. The necklace polygon of P is a convex centrally
symmetric 2m-gon.

We postpone the proof of the proposition until Sect. 3.

2.6. The dual billiards are naturally covariant with respect to the group H of
orientation preserving affine transformations of R2. More precisely, let P and P' be
two convex polygons. Denote by T and T the corresponding dual billiard
mappings of the respective regions E and E'. If P' = hP, heH, then h : E-*E' is an
isomorphism and T' = hTh~^.

In view of the above, the theory of dual billiards should be /f-covariant. A
subset LcR2 is called a lattice if L = /ιZ2, where heH and Z2 is the standard
integer lattice.

Lemma. Let P be an arbitrary polygon and let GP be the corresponding group. The
group Gp is discrete if and only if the vertices of P belong to a lattice.

Proof. Both properties are fί-invariant. Suppose first that the vertices of P belong
to a lattice L. Acting by H, if necessary, we can assume that L = Z2. The group GP is
contained in the group generated by reflections about the points of Z2, which is
discrete, hence GP is discrete. Take this as an assumption now and let Aί9 . . ., An be
the vertices of P. Set αj = 2A1Ai,2^i^ n. The group L generated by the translations
αj, 2^ι^n, is contained in GP, hence it is discrete. Therefore L is a lattice.

2.7. Definition. A polygon P is called rational if the group GP is discrete or,
equivalently, if the vertices of P belong to a lattice.

Remarks. 1. By definition, the set of rational polygons is //-invariant. All triangles
are rational. For n > 3 rational n-gons are dense in the set of all n-gons (in the
natural topology). 2. The reader should not confuse the notion of rational polygon
in the present context with its counterpart in the theory of polygonal billiards (see,
e.g., [Gl, Definition 6]). The two notions are dual to each other.
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3. Necklace Polygon

Let N(P, o) = {..., P _ m,..., P0 = P,..., Pn,...} be a necklace (finite or infinite) and let

be the corresponding sequence of heads and tails, where Vί is the tail of Pi and the
head o{ Pi_l. The (finite or infinite) polygonal line

is the string of the necklace N(P, o).

3.1. Proof of Proposition 2.5. Assume the opposite, i.e. that A2m+1 ή=A1 and call the
piecewise linear curve \_A^ ...A2m + 1] the necklace polygonal line. Replacing T by
T~ 1, if necessary, we can assume without loss of generality that \oA2m+ J < \oA±\
(Fig. 5). The ratio

0<\oA2m+l\/\oA1\=μ<l

does not depend on the position of A^ on the ray R = R^. Hence starting the
necklace polygonal line 5 at any point A e R and turning around o once in the
positive direction, we return to R at the point A' where oA = μ(oA). Continuing S
indefinitely we obtain a selfsimilar infinite polygonal spiral about o that spirals
into o with the rate 1/μ.

Let N(P, o) be an infinite necklace with P0 e & intersecting the ray R and let Γ be
the corresponding infinite string. Consider the necklace polygonal line S0 starting
at the point A = \_V0V1']r^R and returning to R at Av. Follow the string Γ from the
point A counterclockwise until it returns to R, and denote by A\ the point of
return. We take the distance I^^ΊI for the measure of the deviation between S0

and Γ after one turn around o.

Fig. 5. Necklace polygonal line
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Recall the system of cones Cl9 ...,C2m we have introduced in Sect. 2. By
Lemma 2.4, a segment [1̂  + J of Γ located inside a cone C of the system is parallel
to the corresponding necklace vector ac. Therefore the deviation between Γ and S0

can increase only at the crossings with the rays Rί9 ... 5 JR 2m+ι Denote by d the
diameter of P. There is a constant a depending only on P modulo dilations such
that at each crossing the deviation increases by at most ad. Thus after one turn
around o the deviation between Γ and S0 is at most (2m + \)ad = c, where c does not
depend on the starting point A. We have

loA'^oAΛ + ̂ A'^μloAl + c. (2)

Let Si be the necklace polygonal line starting at A\ and going around o once in the
positive direction, and let A2 be the point where it comes back to R. Follow Γ from
A\ in the positive direction until it crosses R and let A'2 be the crossing point.
Continuing by induction, we obtain two sequences [An] and {A'n} of points in R

The preceding argument shows that for all n we have \AnA'n\ ^ c. Hence, by
construction and Eq. (2)

'n\ + c. (3)

It follows by induction from Eq. (3) that

(4)

We reverse the direction and follow the string Γ clockwise. Repeating the
preceding construction we obtain the sequences {A_n} and [A'-n}9 n^O, of points
on R. The argument of Eq. (3) applies and yields

\oA'_(n+^μ-ι\oA_n\-c. (5)

Set v = μ ~ * > 1 . From Eq. (5), by induction on n, we obtain that if \oA\ > c(v — 1) ~ 1,
we have for all n > 0,

\oA'.H\ ̂  vn(\oA\ - φ - 1)) + φ - 1) . (6)

By Eq. (4), the polygons Pk, k> 0, stay within a finite distance from the origin.
By Eq. (6), the distance from P_k to the origin grows exponentially as fc-»oo (at
least if P0 is sufficiently far from o).

Suppose now that the polygon P0 (and therefore all Pe0>) is rational. By
Lemma 2.6, the set of polygons {Pk : — oo</c<oo}is discrete. The set {Pk : 0 < fc},
being discrete and bounded, is finite, i.e. the necklace N(P,o) is periodic. This
contradicts to the earlier conclusion that the set {|JP_k:/c^O} is unbounded.
Thus Proposition 2.5 holds for rational polygons P.

The necklace polygonal line Q depends not only on P but on the choice of
"origin" o, the ray R (from the system of rays parallel to the sides of P) and a point A
on R. Let us fix this data for P (assume for simplicity that P has no parallel sides).
Consider the polygons P' (with the same number of sides) which are sufficiently
close to P. For any such P' there is a unique ray R (from o) close to R and a unique
point A on R such that \oA'\ = \oA\. The polygonal line Q uniquely determined by
this data is close to Q. In other words (with an obvious normalisation), Q(P)
continuously depends on P.

Let now P be an arbitrary polygon and let Pf be a sequence of rational polygons
converging to P. Since Qt = Q(Pt) are closed polygons and since βf->β(P) as i-> oo,
<2(P) is a closed polygon.
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Corollary. The necklace polygon Q(P) is a convex centrally symmetric polygon
determined by P uniquely up to translations and dilations.

Proof. Consider the necklace polygon Q as a polygonal line Q = Al ...A2m+ί

determined (in addition to P) by o, R and a point A1 E R. Varying A± on jR changes
Q by dilations about o. Choosing another ray R corresponds to a change of A1 on
R, i.e. it produces only dilations. Taking another point o' for the origin corresponds
to a parallel translation of the system of rays {Rί9 ...9R2m}9 thus it produces a
translation of Q.

Since the convexity of Q is obvious from construction, it remains to show that Q
is symmetric about o. By Corollary 2.4, the triangles Ai = AioAi + 1 and
Atn + i = Am + ioAm + i + 1 are similar for all i. Denote by r f >0 the corresponding
dilation coefficient: Δm+ί= — r^ (the minus corresponds to the symmetry about
o). Comparing the adjacent triangles we see that ri does not depend on i:\oAm+i\
= r\oAt\. Therefore \oA2m+ί\ = r2\oAί\9 and, by Proposition 2.5, r=l .

3.2. Let P be a convex polygon and let Ci9 1 ̂  i ̂  2m, be the corresponding system
of cones about a point o with the necklace vectors at. Let Q = A1 ...A2m+1 be a
necklace polygon of P centered at o. By Proposition 2.5, there are 2m positive
numbers r such that

^ ί + 1=r ffli, 1^2m (7)

and rm + i = η. By Corollary 3.1, the numbers ri are determined by P uniquely up to
a common factor, thus the point (r^ : . . . : rm) e RPm" ί (the real projective space of
dimension m — 1) is determined by P uniquely up to a cyclic permutation.

Definition. A polygon P is called quasi-rational if the numbers r l 9 . . ., rm are rational
(up to a common factor), i.e. (r1:... :rm)eQPm"1.

Lemma. Let P be a quasi-rational polygon. There exists a necklace polygon
Q = A1 ... A2m + 1 such that

(8)

where kt are positive integers.

Proof. Let Q be an arbitrary necklace polygon corresponding to P, and let o be the
center of Q. Let r—r^Q), 1 r^z^m, be the numbers in Eq. (7) corresponding to Q.
For the necklace polygon λQ obtained from Q by dilation by λ > 0, we have r^λQ)
= λrt(Q\ l^i^m. Since P is quasi-rational, there is λ1 > 0 such that r = r^λ^Q) are
rational numbers. Let λ2 be the least common denominator of r , 1 ̂  / ̂  m. Then
the numbers rί(λίλ2Q) = λίλ2ri = kί are integers. Thus the necklace polygon λ1λ2Q
satisfies (8).

3.3. Proposition. Any rational polygon is quasi-rational.

Proof. Let (x9 y} be a coordinate system on R2 and let o = (0, 0). A point A e R2 is
called rational if it has rational coordinates. A vector a is rational if a = oA and A is
a rational point. A line in R2 is rational if it contains two rational points.

Let P be a rational polygon and let (x, y) be a coordinate system on R2 such that
the vertices of P are rational points and o = (0, 0). Then the rays Rt (corresponding
to P and o} define rational lines and the necklace vectors a{ are rational. Choose a
rational point A± on R1 and let Q = Aί .-.A2m+1 be the corresponding necklace
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polygon. The line containing Ai and parallel to av is rational, hence A2, as a point
of intersection of rational lines, is rational. Continuing by induction, we conclude
that all vertices of Q are rational points, hence the vectors AtAi+l are rational. Two
collinear rational vectors differ by a rational scalar, hence the numbers ri in Eq. (7)
are rational.

3.4. Remark. Let P be a regular n-gon and let Q be the corresponding necklace
polygon. If n is even then Q is a regular n-gon, if n is odd then Q is a regular 2n-gon.
In any case, the numbers r, of Eq. (7) are all equal, hence the regular n-gon is quasi-
rational for all n. On the other hand, it is rational only for n = 3,4,6. Thus rational
polygons form a proper subset of the set of quasi-rational polygons.

4. Necklace Dynamics

We use notation of Sect. 2 and assume that P0 is not centrally symmetric (unless
specified otherwise). Then e9

5> = t9
?+ue9

?_, a disjoint union, where P — P0 + a f o r
Pe^+ and P = rA(P0) for Peίf- (a, rA are uniquely determined by P). We choose a
cone C from our system of cones (see Fig. 3), denote by C the following cone, by Rf

the ray separating C from C, and let R be the other boundary ray of C. We denote
by ^R the set of P in ̂  intersecting R and set

4.1. Let P1? P2 e 5^ (or y*) and assume that P^nC" = 0, i = 1, 2. Assume that the
heads Al9A2 of P1?P2 are well defined (e.g. Pfe^+). By the argument of
Lemma 2.4, A2 = A1+ΐ, where ? is the unique vector such that P2 = P1 + Γ.
Therefore the correspondence P-+A which assigns to every Pe^±, PnC' = 0, its
head A, uniquely extends to a mapping ft:«S^fu5^?-^R2 satisfying /z(P + ί)
= /ί(P) + ί! We set M^± ) = S± (suppressing the dependence on #). By construction,
both mappings h:^+ -+S+CR2 are one-to-one.

Figure 6 introduces the notion of a truncated strip. It shows an infinite strip
divided by a finite polygonal line into two truncated strips. The boundary of a
truncated strip S consists of two parallel rays R and R and a polygonal line L. A
vector like the vector Γon Fig. 6 (i.e., parallel to R and pointing to oo) is said to be
along the truncated strip S.

Lemma. The sets S+9 S_ are truncated strips. The lower boundary ray of each is R
while the upper boundary ray is contained in R + ac.

Fig. 6. Truncated strip
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Proof. Consider, for concreteness, the polygons P in ^+. Denote by A = A(P) and
B = B(P) the "head" and the "tail" of P. By our convention, A(P) (B(P)) is indeed the
head (tail) of P if P C Int(C). Otherwise, for any P' C Int(C), P' = P + ζ we have A(P)
= A(P) + ζ B(P') = B(P) + t.lϊA belongs to a side s of P parallel to R then A is closer
to o than the other vertex of s (Fig. 3). Therefore, for Pe^f with A(P)εR the
points A(P) sweep all of R forming the lower part of the boundary of S + . For P in
£f+ with B(P) E R the points B(P) sweep a subray ρ C R (ρ φ R if B belongs to a side 5
parallel to R). The corresponding points A(P) span the ray R = ρ + ac (see
Lemma 2.4) which is the upper part of the boundary of S+. The remaining part of
the boundary of S+ is swept by the points A(P\ where oebd(P), i.e. it is a finite
polygonal line.

4.2. We consider the cone C with the boundary rays R, R and the corresponding
truncated strips S +, S _. For n ̂  0 we define the ray R'n = R' — na, where a = ac is the
necklace vector. Let R'n intersect R(R) at Dn(En\ and for n > 0 denote by πn the
parallelogram D,,..̂ ,, _!#„!)„ (Fig. 7). We think of S+ and S_ as being located
on two different copies of R2 and denote by π*, π~ the corresponding copies of πn

(n > o). Then S+(S_) is the union of ππ

+, (π~), n > 0, and the closed polygon π^"(π^").
For the case shown in Fig. 7, HQ is the "truncated triangle" oE0δKo. Denote by a, S
the vectors DQU^D^EQ. By Lemma 4.1, for rc>0, the vectors DnEn_ί are equal to
the necklace vector a, and π^ + ί = π^+ x (Fig. 7).

Remark. The constructions above are well defined only on polygons in regular
position. Therefore the constructions below will be well defined only on a set of
regular points in S+(S-). To simplify the exposition, in what follows we ignore the
singular set which is a countable union of intervals in S + (S_). This should not
cause any confusion.

Fig. 7. Decomposition of truncated strip
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Let S = S+uS_be the "abstract" disjoint union (the double truncated strip). We
use "prime" to denote the counterparts of the objects above corresponding to the
ray R'9 e.g. S'± are the truncated strips with the base R. For Pε£fR there is a unique
k = k(P) ̂  0 such that W\P) e yR,. This defines a mapping P-> Wk(P) of yR into yκ,.
Under the isomorphisms h: <9 -̂>S, h': £fR,^>S' it becomes a mapping /: S-*S' of
the double truncated strips.

Lemma. There exists a vector-valued function τ = τ( + ,n mod2) such that for Aeπ*
(n ̂  0) we have

f(A) = A + na + τ. (9)

Proof. Let σn (n^l) be the strip between the rays R'n-ι and Rn (Fig. 7). Then
πn = σnnS+. The head of a polygon P belongs to σn if (and only if) Wn(P) intersects
R. Let Aeπn be the head of P and let {P,Pl5 ...,PM = P'} be the corresponding
necklace (Fig. 8). Set Ak = A + ka, 1 ̂ fc^n. By Lemma 2.4, for k<n,Ak is the head
of Pfc = W\P\ and An is a vertex of F. The "intrinsic" position of the head A of P' is
determined by the "pairity" sgn(P') of F9 where sgn(P') = ± for P'e^ΐ. An
analogous statement holds for the head A of P, hence for the vertex An = A + naoϊ
P'. Thus the "correction vector" τ = AnA depends only on the pair sgn(P), sgn(Pr).
Since sgn (P') = sgn (P) (— 1 )w, Eq. (9) holds for n ̂  1. Our convention for the vertices
h(P\h'(P'] if Peπ0,π'0 automatically extends Eq. (9) to the case n = 0.

Remark. An elaboration of the argument above shows that the "head correction
vector" -f can take at most two values.

The isomorphisms h, h' transfer the functions sgn(P), sgn(P') from ίfR, SfR, to the
double strips S, Sf. We denote the transferred functions by sgn(y4), sgn^f).

Corollary. The mapping f:S-+S' satisfies

(10)

In particular,

Fig. 8. The mapping /: S-+S'
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Proof. The vector ί(ff) is along the strip S (Sf). The translation A -+A +2c[ sends π*
into π*+ 2. Let ,4 e πM and let f(A) = A + na + τ. Then A + 2<?e πn + 2 and, by Eq. (9)

f(A + 2a) = A + 23+ (n + 2)a + τ =

4.3. Let D be a plane domain with a decomposition D = (J Pί? ie/, where Pt are
subdomains with piecewise smooth boundaries dP{ (e.g. polygons), and, for zφj,
Pj nPjCδPj nδPj. A mapping /:D—>D' (possibly singular on Q δPf) is called a /oca/
translation with respect to the decomposition D = (J Pf if there is a vector valued
function Γon / such that for xePt

 ιel

The definition naturally extends to the situation when D, D' are abstract disjoint
unions of (a finite number of) plane domains, e.g., D = D + uD _ , D' = D'+ uD'_ , and
the domains D+ = [J Pf satisfy the conditions above. Denote by ε = { + } the index
set for D and by ε' = { +_] that for D'. A local translation /: D-»D' is given by a
vector valued function ί(ε, ι) and by an index-valued function ε'(ε, ί) so that for
x e P we have

/(*) = * + f(β,0, /(x)6^(efί). (11)

A mapping/: D^D' from an abstract union of plain domains into another one is a
/oca/ translation if it can be put into the form above.

Let /:D->D', f'\D'-+D" be local translations. Then the composition
/'/:D->D" is a local translation.

Proposition. FKe wse notation of Subsect.4.2. The mapping f:S^Sf is a local
translation with respect to the decomposition S±= (J π*. The vector valued

-̂  _> ">0

function ton { + } x {?t^0} is git en fcy ί(ε,n) = nαH-τ(ε,nmod2). T/ze {±}-valued
function εr is given by εf(ε,n) = s(—\)n.

Proof. Follows immediately from Lemma 4.2.

4.4. We return to the system of cones {C1? ...,C2m} and rays {R l5 ...,,R2m} we have
associated with our dual polygonal billiard. With every cone Cf (bounded by the
rays RhRi+l) we associate (as in Sects. 4.1, 4.2) the double truncated strip
Si = 5j+ uSf", the decomposition S^ = (J π^i) and the vectors αίs ζ, ̂  (i = 1, . . ., 2m

«>o
with the convention 2m +1 = 1). By Proposition 4.3, the mappings f^.S^S^ ^ are
local translations, hence the product F=f2m ...fγ is a local translation of S = St

into itself. By construction, F is the first return map associated with W. More
precisely, for x e S there is a unique polygon P (intersecting R = Ri) such that x is
the head of P. We follow the necklace of P : {Pfc = W\P\ k> 0} until it returns to R.
Let it return on a polygon P' = PΛ and let x' be the head of P'. Then x' = F(x). Set
c[= cli (a vector along S). Define the function ε(x) on S with values in { + } by
ε' = ε(x)ε. Let x e 5ε and let F(x) e Sε, (ε, ε' = + ).

Proposition. Lei ί/ie polygon P defining the dual billiard be quasi-rational. Then
there exists a positive integer n such that F satisfies

F(x + 2na) = F(x) + 2na~. (12)

Equation (12) implicitly means that ε(x + 2nd) = ε(x).
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Proof. We use the preceding notation and denote by At the triangle with the side
vectors 3^2^ (/ = !,... ,2m) and vertex o. Let Q = Al...A2m be an arbitrary
necklace polygon of P and let AiAi+ί=riaί, r{>0, l^/^2m. The polygon Q is
divided into 2m triangles oAtAi+i, where oAiAi+^ — riΔi (similarity of triangles).
Therefore, for 1 ̂ /^2m,

oAi+ί=rβί = ri+ίSi+i. (13)

Suppose now that the polygon P is quasi-rational. By Lemma 3.2, we can
assume that the numbers rt are integers, r~ni9 1 ̂ /^2m. Applying Corollary 4.2
to the mappings fi:Si-^Sί+ί and using Eq. (13), we obtain that for any xeSt,

+Jί+ί. (14)

Iterating Eq. (14) for / = 1, ...,2m we obtain that for xeS,

This proves the proposition with n = w1.
Denote the vector 2m? by p. For any xeS and k>0 the point x + kpeS while

x — kpmay not belong to S.

Corollary. Lei fc 6 Z and x e S. If x + fcjf e S ί/ierc

F(x + kp) = F(x) + kp. (15)

Proo/ Reduce to the case fc>0 and apply Eq. (12).

4.5. Set ΠQ =π* u. .uπ^,,, /If =πfΠ + 1u...uπ4W, etc ..... Also set Π^1=πQ. The
"double" parallelogram 77 = 77^ u77^ is a "fundamental domain" of 5 with respect
to the translations by kp, i.e., for any xeS there is a unique x0e77 and a unique
integer v(x) ̂  — 1 such that

X = XO + V(X)P, (16)

where v(x) = k for xe/7k. Note that in general not all points of the form x0 — p
belong to S because Π^l are truncated parallelograms.

Lemma-Definition. We define a mapping Φ:Π-+Π and an integer valued function
τ(x) on Π by the equation

F(x) = Φ(x) + τ(x)p, (17)

where τ(x) = v(F(x)), Φ(x) e Π. The pair (Φ, τ) uniquely determines F. The mapping Φ
is invertίble and Φ, Φ"1 :Π-+Π are local translations.

Proof. Equation (17) is obtained by applying (16) to the point F(x), xeΠ. By
Corollary 4.4 and Eq. (16), for any xεS

F(x) = Φ(x0) + τ(x0)p + v(x)p (1 8)

which uniquely determines F. The mapping F is invertible by definition. The
inverse mapping F~ 1 : S-+S is obtained by reversing the directions of the necklaces
in the constructions of Subsects. 4.3, 4.4. Hence F"1 is a local translation and
satisfies the periodicity condition (15). Applying Eq. (17) to F"1 we obtain a
mapping Φ':77-*77 and an integer valued function τ' on Π where

F-1(x) = Φ'(x) + τ'(x)p. (19)
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From Eqs. (17)-(19) we see that Φ'-Φ"1, τ'(x)= -^Φ'^x)), hence

F-l(x) = φ-1(x)-τ(φ-1(x))p. (20)

Since F is a local translation, the function τ is locally constant and Eq. (17) implies
that Φ is a local translation. The same argument applies to Φ"1.

Corollary. Equation (17) establishes a one-to-one correspondence between the
mappings F:S-+S and the pairs (Φ:77—>77, τ:/7—>{n§: — 1}). The function τ
corresponding to an ίnvertίble mapping F can take values —1,0,1 only.

Proof. The first assertion is immediate from the proof of Lemma 4.5. If F is
invertible we have the function τ' defined by Eq. (19) with values ^ — 1. By Eq. (20),
τ(x) = — τ'(y)^l, hence the only possible values are 0 and +1.

4.6. The notion of a double truncated strip S = S + vS_ has an obvious
generalisation. Namely, let S= (J Sε, \E\<ao, be an abstract disjoint union of a

εe£

finite number of truncated strips with a vector p which is along all Sε. We think of S
as a subset of |E| copies of R2 and say that S is a multiple truncated strip. The
setting of Subsect. 4.5 immediately extends to the selfmappings of multiple
truncated strips. Leaving the details to the reader, we will use the notation and the
results of Subsect. 4.5 in this slightly more general situation.

Theorem. Let S be a multiple truncated strip and let F: S-+S be a local translation
satisfying the periodicity condition (15). 1. // F is invertible, then the orbits
{Fk(x): — co<k<oo} are bounded. 2. Let F be invertible and assume that the
translation vectors t(ε, ί) defining F generate a discrete group. Then the orbits of F
are periodic.

Proof. 1. Let Π = (J 77ε, Π C 5, be the "multiple parallelogram" associated with F
εeE

and let (Φ, τ) be the data corresponding to F. Here Φ: Π-+Π is a local translation
and τ:77—>Z is an integer valued function with -φc)^— 1. For any n^.1 the
mapping Fn:S^S satisfies Eq. (15). From Eqs. (17) and (18) we obtain that the
data (Φn, τj corresponding to Fn are given by Φn = Φn:Π^Π and

τΛ(x) = τ(x) + τ(Φx)+...+τ(Φ I I-1x). (21)

Let (Φ" *, τ _ J correspond to the inverse mapping F~l: S-+S and let (Φ~n, τ _ J be
the data for F~", n ̂  1, where, by Eq. (20),

τ_n(x) = τ_l(x) + τ_1(φ-lx)+...+τ_1(φ-(n-Vχ)=-τn(φ-"x). (22)

By definition of τk [Eq. (17)], we have for xel7, — oo </c< oo,

Fk(x) = Φk(x) + τk(x)p, (23)

therefore an orbit (Fk(x): — oo <k< oo,xe77} is bounded if and only if |τfc(x)|
<const for all k. By Corollary 4.5, for any n^ 1, the functions τwτ_n take values
± 1 and 0 only, hence for x e 77,

|τk(x)|^l, -oo<fe<oo. (24)

We have shown that the orbits (Fk(x): — oo <k< 00} are bounded for xeΠ.
Equation (15) implies that they are bounded for all xeS.
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2. Denote by T the group generated by the translation vectors t(s, ί). By Eq. (11), for
any xeS, neZ, there is t(x,n)eT such that Fn(x) = x + t(x,n). If T is a discrete
group then any orbit (Fn(x): — oo<n<oo}c{.x+T}is discrete. Thus the orbits are
bounded and discrete, hence finite.

5. Main Results

We return to the dual billiards and their orbits.

5.1. Theorem. Let T be the dual billiard mapping about a polygon P. If P is quasi-
rational then the orbits of T are bounded. If P is rational the orbits of T are periodic.

Proof. Let o be a strongly regular point about P, i.e. the orbit

O = {Tn(o):-oo<n<oo}

is well defined. By Proposition 2.2, 0 is bounded (periodic) if and only if the
corresponding necklace N(P, o) is bounded (periodic).

The necklace JV(P, o) is an orbit of the necklace dynamics mapping W. We use
notation of Sect. 4. Let S be the double truncated strip corresponding to a cone C
and let F : S->S be the induced mapping. It is clear from the construction of F in
Sect. 4 that an orbit of W is bounded (periodic) if and only if the corresponding
orbit of F is bounded (periodic).

Let P be quasi-rational. Then, by Proposition 4.4 and Theorem 4.6(1), the
orbits of F are bounded, hence, by the preceding argument, the dual billiard orbits
are bounded. Let P be rational. Since, by Proposition 3.3, P is quasi-rational, the
dual billiard orbits are bounded. By definition of rationality (Definition 2.7), the
orbits are discrete, hence they are finite, i.e. periodic.

5.2. In the setting of Theorem 5.1 we want to estimate the spread of a dual billiard
orbit. We will need a lemma about the necklace dynamics.

We use notation of Sect. 4 for a quasi-rational polygon P. Let R and R' be
arbitrary rays from the system of rays associated with P (and a point o) and let 5, S'
be the corresponding double truncated strips. Let S = (J 77Π, S' = (J Π'n be the

n^ -1 n^-1

respective decompositions of the strips into the double parallelograms (ill 15 77'_ L

are truncated). Let pand pf be the vectors along S and Sf such that (for n^O)Πn+p
= Πn+ί, Π'n+p' = Π'n+1. With any integer r we associate a mapping f:S-+S' as
follows. Let x e S and let P(x) be the polygon with the head x. We develop P(x) into
a necklace (in the positive direction if r^O and negative otherwise). We let the
necklace make \r\ full turns about o, then we continue until it reaches R'. Let P' be
the corresponding polygon of the necklace and let x' e S' be its head. We set
x' =f(x). Note that the mapping F of Theorem 4.6 is the special case corresponding
toS' = S,r = l.

Lemma. Let S, S", r be arbitrary and let f: S-+S' be the mapping defined above. For
all n>—l we have

Proof. The argument of Sect. 4 applies and shows that / corresponds to a mapping
φ : Π->Π' and an integer valued function τ on Π such that for x e Π (identified with
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and τ(x)^ — 1. The inverse mapping/"1 :S'-*S corresponds to φ~l : Π' -+Π and
the function τ'(x') = — τ(φ ~ 1(x/)) Therefore — 1 ̂  τ(x) ̂  1 . The periodicity property

(25)

implies the assertion.

Corollary. We use the preceding notation. For xeS denote by XcR2 the orbit of x
under the necklace dynamics. Let x e Πn. Then for any double strip S',

Proof. Immediate from the preceding lemma.

5.3. Denote by d(x,P) the distance from xεE to P.

Theorem. Let P be a quasi-rational polygon and let T be the dual billiard about P.
There are positive constants a<b and A, B such that for any (strongly regular) point
o and all n

a d(o, P)-A^d( Tn(o\ P)g>b d(o, P} + B. (26)

Proof. Consider the infinite necklace

generated by P. By the proof of Proposition 2.2, Eq. (26) is equivalent to

a d(P09 o)-A^ d(Pi9 o)£b. d(P0, o) + B. (27)

In what follows we denote by const any positive constant if its value is irrelevant
for the proof. Denote by xteE the head of Pf and set \\x\\ =d(o,x). Since
I | |x f | | — d(Pi9 0)|^diam(P), Eq. (27) is equivalent to

α || x0 1| - const ̂  || x f || ̂  b \\ x0 \\ + const . (28)

Suppose that x0 does not belong to any (double truncated) strip S. Then P0 C C
for some cone C. Denote by x'0 the head of the polygon Pl in the necklace JV(P, o)
such that Pl crosses a boundary ray of C and |/| is the smallest possible. Then

where a = ac and τ is a "head correction vector." By elementary geometry, there
exist constants Q<u<β depending only on P such that

α||x0 | | —diam(P)^ ||x'0|| ^β\\x0\\ + diam(P).

Therefore, Eq. (28) is equivalent to the inequalities

const ||x'01| — constrg HX^ ̂  const ||x'0|| + const.

Equivalently, it suffices to show (28) under the assumption that x0 e S for some S.
Let <20 be the unique necklace polygon (about o) satisfying Eq. (8), where the

maximal common divisor of the integers kt is equal to one. Let R be the base ray of
S and let a, cί, δ*be the corresponding vectors (Fig. 7). Denote by k = k(S) the integer
kt in Eq. (8) corresponding to S.

Any point x e S belongs to a unique parallelogram πn, where n = n(x). Then (see
Fig. 7)

+ const.
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Let now N(x) be the index N such that x e ΠN. Since Π is 2k times longer than π, we
have, analogously to the preceding inequality

\\x\\ /2k\\d\\- const ^N(x)^ \\x\\ /2k\\d\\+ const. (29)

Let N = N(x0). By Corollary 5.2, the orbit {xt: — oo<i<oo} belongs to any
polygonal annulus A(λί,λ2) = {[J λQQ:λί^λ^λ2} that contains
77N_1u77ΛΓu77JV+1. It suffices to take

where the positive constants cl9 c2 depend only on P. Combining this with (29) we
obtain that the orbit {xt : — oo <i< 00} is covered by A(λl9λ2) with

\\xJ/2k\\d\\-const<λί<λ2<\\xQ\\/2k\\d\\+const. (30)

Denote by Qi(Q2) the radius of the maximal (minimal) circle about o inscribed
into Qo (superscribed about ζ)0). The polygonal annulus A(λl9λ2) is contained in
the (usual) annulus about o bounded by the circles with the radii λ1ρ1 <λ2ρ2. In
view of Eq. (30), we get

£i l | xo l l /2 fc | | d | | -const< HX^ <ρ2 | |x0 | |/2fc||d|| +const (31)

which finishes the proof.

Corollary. // a point x is sufficiently far from P, its dual billiard orbit is bounded
away from P.

Proof. Immediate from Eq. (26).

5.4. The following assertion has been proved in the course of proof of Theorem 5.3.

Corollary. Let P be quasi-rational and let o be an arbitrary (strongly regular) point.
Let Q = λQQ be a necklace polygon (about o) intersecting P. There are c1?c2>0
(depending only on P) such that the necklace N(P, o) is contained in the polygonal
annulus

A(λ — Cι,λ — c2) = {(Jμζ)Q:λ — c1<μ<λ — c2}.
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