Commun. Math. Phys. 143, 253-285 (1992) Communications in
Mathematical

© Springer-Verlag 1992

Summations over Equilaterally Triangulated Surfaces
and the Critical String Measure*

Dirk-Jan Smit**

Department of Physics, University of California, Berkeley, CA 94720, USA and Theoretical
Physics Group, Lawrence Berkeley Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720*** USA

Received October 4, 1990

Abstract. We propose a new approach to the summation over dynamically tri-
angulated Riemann surfaces which does not rely on properties of the potential in
a matrix model. Instead, we formulate a purely algebraic discretization of critical
string path integral. This is combined with a technique which assigns to each
equilateral triangulation of a two-dimensional surface a Riemann surface defined
over a certain finite extension of the field of rational numbers, i.e. an arithmetic
surface. Thus we establish a new formulation in which the sum over randomly
triangulated surfaces defines an invariant measure on the moduli space of arithmetic
surfaces. It is shown that because of this it is far from obvious that this measure
for large genera approximates the measure defined by the continuum theory, i.e.
Liouville theory or critical string theory. In low genus this subtlety does not exist.
In the case of critical string theory we explicitly compute the volume of the moduli
space of arithmetic surfaces in terms of the modular height function and show
that for low genus it approximates correctly the continuum measure. We also
discuss a continuum limit which bears some resemblance with a double scaling
limit in matrix models.

1. Introduction and Summary

Recently it has become clear that sums over certain discretizations of two
dimensional surfaces, referred to as dynamical triangulations (DT) may provide a
suitable framework for studying (non-perturbative) 2D gravity and eventually
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string theory. Contrary to the case in the usual Regge calculus where one considers
triangulations with variable lengths of the triangles, one now considers tri-
angulations consisting just of flat triangles which may be chosen to be equilateral,
all having the same size [1,2]. As a consequence, since the length is no longer a
dynamical variable, the geometry of the two dimensional surface is encoded in the
number of triangles meeting at each vertex. If six triangles meet at each vertex, a
flat Euclidean surface is described, while a larger (smaller) number of triangles gives
rise to a surface with negative (positive) scalar curvature.

Consequently, in the partition function of the bosonic string one replaces the
sum over two dimensional geometries by a summation over triangulations. The
discretized partition function for a string moving in D dimensions reads [1]

2,- 3 Il

oo |G % Q)PP

where Ggf’ denotes the adjacency matrix specifying a triangulation with n vertices,
in the set of J of all equilateral triangulations of a given genus g surface, and
|G;| denotes the order of the symmetry group of the triangulation. The term &/

corresponds to the descretized Polyakov action

exp(—H[X, 7)), (1.1)

1 n n

A[X,T] =EZ(X,- —X)’GP+p Y logs;. (1.2)
i,j i=1

The first term is the discrete analogue of [d%¢,/g(VX(£))? in the continuum

formulation of the string, while the terms in the second sum correspond to curvature
terms of which the first is the Euler characteristic expressed in terms of the vertices,

while the second is the analogue of —ﬁjdzé\/&Rz(é). (This term is irrelevant in
the continuum theory.) We refer to [1] for further details on the notation.
Integrating out the X; fields, with § =0, the partition function becomes
Z,=Y (det(s;6;;— Ggf’))”’/z, (1.3)
G

(n)
ij

where s; denotes the discrete surface element.

Formally this amounts to a discretization of the integral over the space of
metrics, after appropriate gauge fixing, in the continuum formulation of the theory.
One would like to make contact with an apparently different approach to 2D
gravity namely Liouville theory, in which one constructs an invariant measure on
the space of all two dimensional metrics after appropriate gauge fixing. In some
sense one would like to argue that the above expression defines a discretization
of this measure. Of course, (1.3) defines an invariant measure on the space of all
two dimensional triangulations of a surface (independent of the metrical properties
of the dynamical triangulations). The popular belief is that in the continuum limit
this measures agrees with the one from Liouville theory. There is, however, a subtle
paradox here which prevents us from concluding that the two approaches to 2d
gravity are indeed two sides of the same coin. This puzzle is present in any
embedding dimension D, hence also in critical string theory. The puzzle arises due
to the fact that dynamically triangulated surfaces are badly distributed in the
moduli space of a generic genus g Riemann surface. Its solution would reveal either
a striking property of Liouville theory and critical string theory which becomes
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only visible in high genus, or would render an inconsistency between the DT
approach and the continuum formulation of (sub-)critical string theory.

One of the main results of this paper is to explain explicitly how this paradox
arises as a consequence of an algebraic property of the DT approach. For this we
will present an alternative formulation of the DT approach which does not rely
on properties of a matrix model. It applies essentially to any embedding dimension
D and includes the description using matrix models. In this formulation the sum
over triangulations in (1.1) corresponds to a replacement of the original of the
continuum integral over moduli space .#, by a discrete sum over special points
in the moduli space corresponding to so-called arithmetic surfaces. Such a
replacement in case of the critical bosonic string has been proposed already in
[4,5]. The weights attached to each triangulation, i.e. to each algebraic point in
M, is the symmetry factor |G;| in (1.1). As generic triangulations do not have any
symmetries this factor is generically unity in the DT approach. It is far from
obvious, however, that with this weight (1.3) will reproduce the string measure
obtained from the continuum theory. The problem is, as was discussed also in [4],
that arithmetic surfaces are for high genus (g > 23) badly distributed in .#,. We
emphasize that this problem exists irrespective of the dimension D, and becomes
manifest only for high genus, i.e. for large orders in perturbation theory. In this
paper we will discuss this problem for critical bosonic string theory, where explicit
computations are not so difficult. For low genus the problem does not exist as we
will verify explicitly in the case of critical string theory.

In order to appreciate the fundamental difference between the DT approach
and the continuum theory let us briefly discuss the familiar interpretation of (1.3).
For this it turns out to be useful to pass to the dual lattice of the triangulation. In
terms of the dual lattice, the partition function is seen to correspond to the free
energy of a matrix field theory with a Gaussian propagator [1,2]. In such a theory
one considers an N x N Hermitian matrix field @(x) with action

S[@] = — 3 Tr ([ d°xd"(y) D(x)e! D=2 ()

N
(2 )-D/Z ——Tr ([ d°vV(P(x))), 1.4
where V(@) is the potential
V(@)=9g,@ +1g, 0>+ 19,0+ ---. (1.5

The 1/N? expansion of the free energy is related to perturbation expansion of the
partition function (1.1) by

0
Z =Y N"272Z (B)+ const. (1.6)
g=0

Expression (1.3) makes sense in principle in any dimension, but so far it has only
been practical in dimensions D < 1, i.e. for sub-critical string theory. One finds
that the spectrum of a bosonic string in D <1 can be obtained from Feynman
diagram techniques for the propagator and vertices in the matrix theory. The
surprising fact is that in this region the matrix theory has been shown to have an
interesting continuum limit in which N — oo in a subtle way, the so-called double
scaling limit, which shows the existence of a phase transition of the theory, allowing
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one to consider the theory beyond the asymptotic expansion [3]. This is very
different from Liouville theory which is strictly perturbative and for which so far
the sum over all genera is meaningless.

In this paper we address the problem of relating the continuum critical string
theory with the DT approach, taking a different approach towards (1.1) which does
not rely on a matrix model. Instead, we will use an apparent different formulation
of discretizing the string path integral proposed in [4,5] in combination with a
recent mathematical result by Voedvodski and Shabat in [6]. In short, the result
in [6] states that every equilateral triangulated surface corresponds in a one-to-one
way with an algebraic point in moduli space. (An algebraic point in moduli space
corresponds to an arithmetic surface which is specified by a polynomial equation
for which the coefficients lie in an algebraic number field, i.e. a finite extension of
the rationals Q.) Varying the number of vertices corresponds with varying the
number field. In this way we establish a new, alternative description of DT
approach, in which each graph of given topology is in a one-to-one correspondence
with an arithmetic surface of the same topology. This new formulation is suitable
to discuss the above mentioned problem.

Applied to critical string theory we shall show that the summation over equi-
lateral triangulations in (1.3) equals the volume of the lattice in .#, formed by the
algebraic points computed with the string measure. The volume of this lattice was
computed earlier in [7,8] and is given by the so-called modular height function
on /,. As was shown there, the density of the string measure with respect to the
canonical measure equals the inverse archemedean part of the modular height
function of an algebraic point in the moduli space. Along these lines we establish
a formulation of the critical string measure in terms of the combinatorial data of
the equilateral triangulation of a genus g surface. Such an approach has been
advocated earlier by Manin in [9].

For low genus our expression indeed converges to the familiar expression for
the string path integral. However, for high genera this is far from obvious. The
number of arithmetic surfaces for a finite extension K of Q, i.e. the number of
K-rational points in .#, are contained in a low dimensional variety denoted by
oA, of M,. Although the closure &/ of the space &/, (corresponding to the Q
algebralc pomts of .4 ,) coincides w1th M g (the compactlﬁed moduli space) the Q
algebralc points are very badly distributed in .#,. That is, the sum in (1.1) Wthh
is in fact defined on &/ ,, is peaked at the points correspondmg to finite extensions.’
A priori there is no 1ndlcat10n that the measure obtained from the continuum
theory is peaked at algebraic points which for any finite extension form a subspace
of finite codimension in .#,. It would therefore be interesting to see whether the
computations done in the DT approach are in some special gauge of the continuum
theory in which the measure gets its support only from the algebraic points thereby
resolving the paradox. One way to study this is to investigate Liouville theory or
critical string theory for high genus Riemann surfaces.

In [10] previous attempts have been made, based on techniques developed by
’t Hooft [31] to assign a given triangulation to a metric on a Riemann surface,

! The Euler numbers of o/ ,and A , are the same: the difference lies in the geometry of the two
spaces
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or more precisely, a conformal equivalence class of metrics. In the sum over
triangulations one has to control the density of vertices which turned out to be
very difficult if not impossible. So these attempts could not provide a successful
description of the spectrum of string in terms of the combinatorial data of the
triangulation, a problem essentially already discussed in [31]. The result in [6]
provides more information: namely the number field over which the Riemann
surface is defined. The degree of the extension of this number field turns out to
be a measure for the density of vertices. We will show how to incorporate this extra
information such that one may overcome the above mentioned problem.

To discuss the summation over all Q algebraic points we construct a continuum
limit which turns out to be, at least qualitatively, similar to the double scaling
limit in a matrix theory. It is clear from the above that such a limit is very subtle.
As will be shown, for this one needs to introduce an extra parameter which upon
fine tuning allows one to take the limit to Q.

The paper is organized as follows. First we discuss a discretization of the
measure on ./, as proposed earlier in [4,5]. This will be done in Sect. 2 where
we will use intersection theory to show that this discretization depends on the
modular height function. This section is in fact a reformulation of the results in
[4, 5, 8, 7] put in a different context, more suitable for discussing a possible
“continuum limit.”

Subsequently, in Sect. 3 we discuss the relation with equilaterally triangulated
surfaces. First we will explain briefly the result of [6] and provide some explicit
examples of their result. From this it will follow that (1.1) in fact defines a measure
on the space of arithmetic surfaces. We will then establish a relation between
certain triangulations and the geometry of the moduli space of genus g using the
so-called accessory parameters for n-punctured spheres. By a result in [13] the
accessory parameters are related with the Weil-Petersson Kihler form on the
moduli space of an n-punctured sphere.

In Sect. 4 we will use this to discuss a continuum limit necessary to define (1.3)
and relate it to the discretization described in Sect. 2. As we will argue this then
implies that the volume of the moduli space of curves of genus g measured by the
critical bosonic string measure is for low genus given by the height function summed
over the rational points up to a finite rational constant.

After this work was done we were informed by P. Nelson that in the same
spirit as in [4, 5, 9]) the authors of ref. [11] made an attempt also to use the result
[6] in the context of 2D gravity essentially running into the same paradox
mentioned above. Some of the discussion presented there has been previously
discussed in [4].

2. A Discretization of the Polyakov Measure

In this section we will construct a discretization of the Polyakov measure using
a height function. Such a function turns out to be a generalization of a Green’s
function which is used to put a hermitian metric on determinant line bundles. The
discretization discussed in this section looks conceptually quite different from the
discretization in [3]. In later sections we shall see, however, that there is deep
relation between the two.
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In the first part of this section we will discuss the relevant Green’s functions
and discuss properties of the metrics associated with it. Subsequently, we use some
intersection theory to explain the role of the height function. The main purpose
of this section is to explain the derivation of (2.41), which appeared earlier in
[4, 5, 7, 8], and to put this result in a different perspective. The formalism used
in this section is explained in more detail in older work on the mathematical
formulation of bosonic string theory [16, 15, 17].

2.1. The Definition of the Polyakov Measure. In the Friedan-Shenker approach
to perturbative string theory [15] the partition function of the string corresponds
to a Hermitian metric on the tensor product of a holomorphic determinant line
bundle and some holomorphically (projectively) flat vector bundle on the moduli
space of stable Riemann surfaces of genus g. In the simplest case, corresponding
to the usual formulation of the bosonic string, this vector bundle is a determinant
line bundle as well. Since all such line bundles are by a theorem by Harer isomorphic
to the determinant line bundle of holomorphic differentials on the Riemann surface,
it is not so difficult to describe this metric in this case. It arises upon using two
fundamental isomorphisms. The first one is the so-called Kodaira—Spencer
isomorphism. Let

XM 2.1)

be the universal curve over the moduli space .# defined over the integers Z. (To
be more precise: .# is the moduli stack over Z of stable curves of genus g.)
Associated with it we have the relative dualizing sheaf? wy, , on the Riemann
surface X. (By abuse of notation we refer to the fibers of = as Riemann surfaces
X). The Kodaira—Spencer isomorphism is a map of the square of the dualizing
sheaf and the cotangent bundle of moduli space (i.e. the bundle of holomorphic
quadratic differentials on X):

(det )y, , = det 2, ® O(A), 2.2)

where A denotes the compactification divisor of the moduli space in the
Deligne-Mumford compactification [18]. We refer for the notation to [7, 4]. The
second isomorphism we need is the so-called Mumford-isomorphism [19]

(det )02, , = (det 1,042 2 ® O(—4), g> 1. 23)

Mumford has shown that (detzn,w, ,)®'* is in fact a holomorphically trivial
bundle. Combining (2.2-3) one finds the isomorphism g,

(detm,wy, )® = det 2, ®024), g>1. 2.4)

This isomorphism is unique up to a multiplicative constant, depending only on
the genus and which corresponds physically to the string coupling constant.

The Polyakov measure on .#, is constructed out of (2.4) by introducing
Hermitian metrics on the left-hand side of (2.4) such that (2.4) becomes an isometry.
Although differently formulated, the isomorphism (2.4) is at the origin of the famous
Belavin—Kniznik theorem [20].

2 Loosely speaking this is the bundle of holomorphic differentials
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A suitable metric on the bundle of holomorphic one-forms is provided by a
Green’s function on X. For convenience we recall in this context a lemma of
Arakelov.

Lemma [21]. Let X be a Riemann surface and let P be a point on X. Let ds* be
an arbitrary but given Hermitian metric on X, with volume form du. Then there is
a unique function G(P,z) of ze X having the following properties:

1. G(P,z) is a smooth non-negative real-valued function of z which has a unique first
order zero at z= P,

2.
8,010g G(P, 2)|,_ p = in(dy — 5p)1, _p» 2.5)

where 0p is the (1,1) current representing the evaluation of (0,0) forms at z = P.
That is

[ f(2)0p= f(P); (2.6)
X
3.
[log G(P,z)du = 0; 2.7
X
4,
G(P,z)=G(z,P) for all z and P on X. (2.8)
The function g(P, z) = log (P, z) is called the Green’s function on X with respect to
du.

It turns out to be useful to introduce a special Hermitian metric ds?, called
the Arakelov metric. This is only a matter of convenience: all the results turn out
to be independent of the choice of the metric ds*. The Arakelov metric is defined
as follows. For a given line bundle L on X with a given Hermitian metric on it
one has the curvature two-form:

R, =0,0,log|s|?dz A dz. seL, (2.9)
with z a local coordinate. This curvature form satisfies:
j R; =2mideg(L), (2.10)
X

with the integer deg(L) denoting the degree of L. One calls L an admissible line
bundle with respect to the Hermitian metric ds* on X if

R, =2mideg(L)dpu. (2.11)

Arakelov showed that each line bundle L on X has a unique (up to multiplication
by a constant) admissible metric with respect to the metric ds* on X.

Furthermore, each admissible metric is related to the Green’s function with
respect to ds? as follows. Let Q be a point on X. The constant function I is a unit
section of the structure sheaf 04(Q) (ie. the line bundle of meromorphic func-
tions on X evaluated at z= Q.) One puts a Hermitian metric ||| on Ox(Q) by
putting

1110, (P) = G(P, Q) = exp g(P, Q), 2.12)
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where the norm of the unit section is I evaluated at the point PeX. Note that
the right-hand side vanishes as P — Q, which implies that this a non-singular metric
on all of X. Property (2) implies that it is also an admissible metric. Upon taking
tensor powers one may generalize this construction to obtain an admissible metric
on any line bundle O(D) for any divisor D on X, by taking

Ox(D, + D3)= Ox(D,)® Ox(D,) (2.13)

to be an isometry. The metric on @4(D) obtained in this way is referred to as the
Green’s metric ||*||g.

Let us next apply this to the bundle of holomorphic differentials. We take as
the metric on the space of sections of wy, ,:

i _
{oy,wy) =§§;w1 A @y 0 €l(X, 0y, 4). (2.14)

Fix a basis w;, i=1,...,g9 of I'(X,wy, ,) and choose a Hermitian metric ds? on
X such that its volume form du satisfies

i g9
=2 =Z (2.15)

Now choose a base point P, on X, then one has the embedding

P P
P—><jw1,...,ng) (2.16)
Po Po
of X into its Jacobian #(X) = C?/A with A denoting the period lattice of X. The
canonical metric on C? induces a flat metric on #(X), having volume form gdu.
We will use this fact to introduce an admissible metric on wy, , with respect to
ds? defined as above. Namely, let 0y(P) have its Green’s metric (2.12), where the
Green’s function is with respect to the metric ds? on X. The residue of a differential

at P gives an isomorphism of the fibre at P of

wy;.4(P) = wy 4 ® Ox(P) (2.17)

to C. Now, give wy, , the Hermitian metric such that for all points P this residue
becomes an isometry. This defines a Green’s metric on wy, , With respect to ds*.
Explicitly:

m |2¢ Ql
s ————% SEWyx, 4 2.18
Islle(Q) = m G(P.0)’ X/ (2.18)
which is indeed an admissible metric on wy, ,. The metric ds* has volume
form

4n(1—g)

If we had not chosen this metric but instead an arbitrary Hermitian metric then
the Green’s metric would not be so simply related with the canonical metric on
the Jacobian.

There exists a natural way to transfer the admissible metric on wy, , to a
metric on the determinant line bundle det m wy, 4. The metric thus obtained is

(2.19)
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referred to as the Faltings metric and denoted as ||-||z. We refer the reader to
[22, Theorem 1] for a formulation of this fact. The theorem implies that the
Faltings metric on (det m, wy, )®13 can be expressed in terms of theta functions
[23].2 An important property of the Faltings metric is that the isomorphism (2.4)
is an isometry for this metric. This follows from a local version of the Grothendieck—
Riemann—Roch theorem as formulated in [26]. For details on this theorem and
its application to the Faltings metric we refer to [17,4]. Thus we obtain a metric
on (det 2 ,,7) ®(24). Passing to the dual bundle we obtain a Hermitian metric
on the determinant line bundle det T, the tangent bundle to .#/Z. In [16,4] it
is shown that this metric up to a multiplicative constant depending only on the
genus is the Polyakov measure. It reads explicitly

RN 3g-3
KOS T 60 Bl 14Prr o) 2.20)
with
[T 6P, P)

where ¢; denotes a holomorphic quadratic differential and é denotes Faltings’
invariant on a Riemann surface [22], and u is the isomorphism (2.4). Furthermore,
A4 is a genus dependent parameter. In (2.20) s is a section of (det m,wy, ,)®'. The
metric on this bundle is the metric defined in (2.15).

2.2. From Green’s Functions to Intersection Theory. The formulation of the parti-
tion function as a metric using Green’s functions is suitable for a generalization
to arithmetic surfaces, i.e. compact Riemann surfaces defined over some algebraic
number field. This generalization essentially relies on the introduction of a suitable
intersection product of divisors on the arithmetic surface which, for the number
field C, coincides with the Green’s function log G(P, z) introduced in the previous
subsection. We start off with the definition of the so-called Arakelov intersection
product on arithmetic surfaces. Subsequently we will describe the relation between
this intersection product and a height function. We will be brief here, as most of
the mathematics is described in [4,5].

An arithmetic surface is loosely speaking the analogue of a Riemann surface
defined over an algebraic number field K, (i.e. a finite extension of Q). In general
it is given by a set of polynomial equations (like “ordinary” curves), but unlike
the usual situation, the coefficients and solutions are elements in some"algebraic
number field K. The mathematically correct way to describe such surfaces involves

3 Originally, the string partition function was shown to correspond to a different metric, the
so-called Quillen metric, [24]. The chiral bosonization formula in [25,17] (which provided an
alternative way to proving that the partition function is expressible in terms of theta functions),
are equivalent due to the following relation between the Faltings metric and the Quillen metric:

det’ A, ~1/?
n-||p=Ag( A°> I-llgs

where A is a constant only depending on the genus, A, is the scalar Laplacian computed with
the Arakelov metric, A the area of the Riemann surface and ||+ || o the Quillen metric. (See e.g. [4].)
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a so-called affine projective scheme. That is, one describes the arithmetic surface as
7: X — Spec(O), (2.22)

where Oy denotes the ring of integers of K. This defines an affine surface, hence
we need a suitable compactification of 7 in order to get a precise analogy with a
compact Riemann surface. This is done by considering the infinite places of K
which arise upon the embeddings of K into the complex numbers. There are exactly
[K:Q] of these embeddings. (The notation [K:Q] denotes the degree of the
extension of K.) The fibers of = above the infinite places of K define a compacti-
fication of the arithmetic surface: each fibre over an infinite place is isomorphic
to a compact Riemann surface. Thus X(K,) = X (C), for each infinite place v. From
now on we assume that there is a Hermitian metric ds? given on the Riemann
surface X (K,) for each infinite place ve Mg. We have the following commutative
diagram:

X —X
j . j . (2.23)
Spec(Og) —— M

On the compact surface X one may introduce an Arakalov divisor D which
is defined as

D = Dfin + Dinf = Z kvcu + Z ’lvo (224)
veMﬁ“ veM g
where k, are integers and the C, denote the fibers of © over the finite places ve M.

In other words
C,=n"'Spec(F,), (2.25)

where F, denotes the residue class field of K. Its order (i.e. the number of elements)
is denoted by g¢,. In the second term in (2.24) the symbol F, stands for the fibre
of m over the infinite places ve Mg of K. The 4, are real numbers.

The main result of ref. [21] we need here is the construction of an intersection
product for divisors D which at the infinite places is given by a Green’s function
with respect to the metric ds? on the Riemann surface X(K,) for each infinite
place v. The intersection product <,) is defined as follows:

<D15D2>E<D1’D2>fin+<D1’D2>inf’ (226)

where {D,, D, ), is the intersection product of two Arakelov divisors D, D, on
X over the finite places. This quantity is given by

<D1’D2>fin= z <D1’D2>05 (2-27)
veM‘;(i“
where
{D,,D,>,=1log(q,) x (the intersection multiplicity). (2.28)

For the infinite places one has
<D1aD2>inf= Z <D17D2>u (229)

©
veM g
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which is related to the Green’s function on X(K,) =~ X(C) with respect to ds?:
(Dy,D;),=¢,10gG(Dy,D,), veMg, (2.30)

where ¢, =1(2) for K, = R(C).

Having introduced divisors and an intersection product on X one can now
define line bundles on X which over the Riemann surface at the infinite places
can be given Hermitian metrics induced from the Green’s function in the way
described in the previous subsection. Such line bundles will be called metrized line
bundles. For an Arakelov divisor D we let

L= (Q(Dfin)

be the line bundle on X which has the Green’s metric on the induced bundle on
X, for each infinite place v, with respect to the hermitian metric ds2. Thus for the
infinite places we have an admissible metric on the induced line bundle. Let s be
a section of L. The divisor of s is defined to be

diV(S) = (s)ﬁn + Z vaw (231)

UEM:
with (s)g;, the divisor of s on the finite part of X and
wv(s) = j - log ls1vdﬂv9 (2'32)
XU
where du, is the volume form of the Hermitian metric on X, for each infinite place
v. Now, recall that admissible metrics are unique up to scalar multiplication. Thus
L= Ox(div(s)). (2.33)

We now want to relate the degree of a metrized line bundle on X with the
intersection product for the divisor of its sections. Let S = Spec(0) and consider
a section s(S) of m of which we let D, be its divisor. Let L = O4(D,) be the metrized
line bundle defined by an arbitrary Arakelov divisor D, on X. From [22] we learn
that for every

{Dy,D;) =deg(s*(Ox(D,)), (2.34)
where “deg” denotes the degree of the metrized line bundle L defined as [22]
deg(L) = log(order(L/Ox-t))— 3. &,log]tl,, (2.35)
UEM;(O

with ¢t a section of L. This concludes our survey of the arithmetic calculus on X.
We are now ready to describe a discretization of the Polyakov measure, announced
in the beginning of this section.

2.3. Discretizing the Polyakov Measure Using the Modular Height Function. Recall
that the Polyakov measure defines a real valued function on the Jacobian of the
Riemann surface X. We will now show that when one considers it as an arithmetic
surface this function gets replaced by a so-called height function. Let 6 be the
theta divisor in the Jacobian # of the arithmetic surface X. This is an Arakelov
divisor and 04(0) is an metrized line bundle of degree g—1 (we assume g>1) on
X. The sections of this metrized line bundle give rise to the embedding of the
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Jacobian into a projective space:
¢: 7 /(£ 1) > P(H(Z, 0x(0))). (2.36)

The image has degree 297 '4! and the dimension of the projective space is 29— 1.
Now choose an isomorphism

P(H°(#, 0x(0))) = P**~'(K)
and define for a point z = (z,,...,2,,)eP?*~}(K) the canonical height h(z):
h(z) = ), max{log|z|,,...,10g|234l,}, (2.37)

where the sum runs over all places of K. Note that this definition shows that the
height is in fact a distance function, measuring the logarithmic distance to the
closest K-rational point.*

A result by [27] states that for a point « on the Jacobian the limit

h (@) = lim he ¢ (na)

n— o n2

(2.38)

exists, is independent of the sections chosen in @(f), and defines a positive real
valued function h,: ¢ —R. We are interested in computing this function. In
principle this can be done by using the intersection theory described above.
However, to do the calculation in practice one estimates this height function by
the modular height function introduced by Faltings. This function is defined as
follows. Let n: X — Spec(0) be the universal curve. (See the diagram (2.23).) Then
one defines:

h(X) = deg(det T, wys). (2.39)

[K:Q]

This is the modular height function and can be computed using Arakelov

intersection theory on X. It is understood that the line bundle appearing on the

right-hand side is a metrized line bundle. One may regard the modular height
function as a distance function for the rational points on the moduli space over K.

Now return to the isometry (2.20) defining the Polyakov measure. It gives

Hermitian metrics at the line bundle $* det T 4, . The Ox-module defines a lattice in

S*T42QzR =[] S*T 4,2, (2.40)

0
veM

on which the Polyakov measure defines a volume form. In [7,8] the volume of
(8*T 4,z ® zR)/S*T 4,7 has been computed using the Riemann—-Roch theorem on
Spec(Ox). We will not repeat this calculation here, as it is explicitly shown there.

4 This becomes more clear if we consider the height in the two-dimensional projective space
P%(Q). A point zeP?(Q) corresponds to a line through the origin in a three dimensional space.
The height h(z) measures the logarithmic distance to the origin of the closest non-zero integral
lattice point (i.e. a point with integer coordinates) on this line:

h(z) =log./a*+b*>+c?,

with (a, b, c) a lattice point on the line specified by z
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The result reads (for genus g>1)
Vol<< [T s* Tﬁ/z>/S* TJ,,/Z>= C-(272D1/?)B3a= K Qlexp(13h(X)), (2.41)
veM ¢
where the constant C depends only on the number field K,
C= NK/Q(AX)— 2K:Q)

We also have computed explicitly the height function h(X) for genus 1 [28] and
2 [4,5]):

1

h(X),—, = 12[K:Q] <log INgo(dx) — ve%; & 10g(IA(f.,)I(Im(Tv))6>,
1

h(X), -, = 10[K-Q] (loglN k@l (4x) — .,e%;; & IOg(IXIO(Tu)“m(Tv))S)’

which thus shows that each infinite place the height reproduces the well known
formula for the string partition function [29].

One would now like to replace the original integral over the moduli space for
arbitrary genus by a summation over the rational points corresponding to curves
defined over Spec(0x) in the limit to the algebraic closure Q. That is, one would
like to dedine the discrete partition function as

Z= }il'fl Y, VOI((S*T 4,z ®zR)/S* T 42), (242)

~Q x/k

where the sum is over all the rational curves defined over K. The rational points
in moduli space form a discrete set, forming the lattice (2.40). By taking large
enough extensions one may hope that the volume of this lattice reproduces the
path integral over the moduli space in the continuum formulation of the bosonic
string. (The Q points are dense in .#,.) Thus (2.42) corresponds to a “lattice
approximation” of critical string theory, which has been proposed already in [4, 5].
In the next section we shall see that each term in (2.42) in fact corresponds with
a triangulated Riemann surface. Using this we will argue that (2.42) and the
discretization (1.3) as defined in the DT approach are the same. The question
whether (1.3) reproduces critical string theory thus becomes an arithmetic problem,
involving the distribution of rational points in moduli space. As was already
mentioned, it is far from obvious that this discretization will approach the
continuum measure for generic genera.

It should be realized that (2.42) combines both the arithmetic and complex
analytical properties of the theory. Formula (2.35) for the degree of a line bundle
suggests a factorization of the (2.42) like one usually has in p-adic analysis.

3. Algebraic Points and Equilateral Triangulations

The algebraic points in moduli space have a nice geometrical interpretation in
terms of triangulated surfaces due to a result of Voedvodski and Shabat [6], which
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we will explore below to show that the sum in (1.3) is related to the discretization
discussed in the previous section. The fundamental result is that each Riemann
surface that can be triangulated by Euclidean equilateral triangles is algebraic and
vice versa: to each equilateral triangulation one can assign a unique complex
structure on a two dimensional surface, turning it into a Riemann surface. This
Riemann surface is necessarily an arithmetic surface. This implies that the original
integral over metrics in the partition function of string theory can be replaced by
the summation (1.3) over triangulated surfaces corresponding to algebraic points.
For this we discuss the result in [6] in some detail and develop a technique by
which one may relate a given triangulation with a K-rational point in moduli
space in some simple examples.

3.1. Triangulations. Let us begin with presenting a geometrical interpretation of
an algebraic point in .. The starting point is a theorem by Belyi [30]. It states
that a complete algebraic curve X over a field of characteristic zero (e.g. C), can

be defined over Q if and only if there exists a covering map
¢:X - P! (3.1)

which is holomorphic outside three points (e.g. {0, 1, c0}).

In practice it is not so easy to find examples of such functions. In [6] it is
shown that such functions are intimately related with functions depending on a
period matrix 7 and a complex coordinate which for certain special values of t
are functions on the complex plane that give rise to a polygon consisting exclusively
of equilateral triangles. This polygon is holomorphically equivalent to the Riemann
surface characterized by 1. That is, the required function “transfers” the canonical
complex structure (inherited from C) on the interior of each triangle to the polygon
such that it defines a complex structure on a two dimensional surface characterized
by the period matrix 7. This complex structure on X is called the equilateral
complex structure. The result is stated in the following.

Theorem [6]. Let X be a complete nonsingular complex algebraic curve. It is defined
over Q if and only if there exists a simplicial scheme for which X is biholomorphically
equivalent to the Riemann surface X with the equilateral complex structure.

The proof of the theorem relies to a large extent on the construction of the
equilateral complex structure. Using conformal mappings, it is explained how in
principle the required Belyi function ¢ can be obtained. We will explain below
how one obtains from a given set of equilateral triangles a unique Riemann surface
of given genus. Instead of reviewing the abstract procedure by which one shows
how the complex structure is obtained, we show this explicitly in an example which
turns out to be useful in the rest of this section.

In order to relate the combinatorial data of a set of triangles with a compact
two dimensional surface one introduces a so-called simplicial scheme S which
consists of a finite set J,(S) which will correspond to the vertices and two collections
J1(S) and J,(S) consisting of respectively two-element and three-element subsets
of J(S), J(S), respectively J,(S), correspond to the set of edges, respectively faces.
For consistency one requires that all two element subsets of J,(S) are contained
in J(S). Out of S one then constructs a polyhedron in a real Euclidean vector space
of dimension equal to the order of the set J,(S). S is identified with the coordinate
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vectors on this vector space and the convex hulls of the images of J,(S) and J,(S)
form the edges and faces of this polyhedron. Such a polyhedron is called the
realization of § and denoted by |S]|.

One next introduces a flag-set & (S) associated with S which allows one to
identify triangles on the polyhedron. It is defined as the set of tuples

F(S) = {o, B,7€Jo(S) x J1(S) x J2(S)| = B =y} (3.2
One also introduces the projections
T F(S)=J,(S), q=0,1,2 (3.3)

In order to study a complex structure on the faces of the polyhedron which
extends to the edges and vertices such that |S| becomes homeomorphic to a
compact Riemann surface, it turns out to be useful to introduce a group action
on & (S) which maps triangles into each other. One defines a group C, acting on
Z(8) by the following relations for its generators o,,p=0,1,2 for all elements
Fe#(S):

oi=0t=02=(0,0,)"=1, (3.4
having the following properties

1.
ny(ooF) =n,(F)<p#q;

2. C, must act transitively, so that the realization |S| is connected;
3. there must be an element OeC,
0:F(S)—{+1}
such that
O(g,°oF)= — O(F).

It is not hard to see that for a given S its realization is homeomorphic to a two
dimensional surface if and only if there is a unique action of C, on % (S) satisfying
the above properties.

Let us pause for a moment and see how this works in a simple example.” We
will build a regular tetrahedron with vertices numbered from 1 to 4. (See Fig. 1.)

4

2

Fig. 1. The tetrahedron

5 I thank B. Edixhoven for discussions on this point
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So we have
Jo(S)={1,2,3,4},
Jo(8)={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},
J2(8)={{1,2,3},{1,2,4},{2,3,4},{1,3,4}},

and S is realized in R* The flagset % (S) is given by (3.2) and thus is of order
4-3-2 = 24. The action of the group C, is easily determined from the definition of
its generators. Take F =(1,{1,2},{1,2,3})eZ(S), then

GO(F)=(2s{1’2}9{132’3})’ (35)
o, (F)=(1,{1,3},{1,2,3}). (3.6)

These actions are natural; we have illustrated them in Fig. 2. The action of o, is
less automatic, since it adds a new vertex to the configuration as we have, (see Fig. 3),

GZ(F)=(L{1’2}’{1’2,4})7 (37)

where the new vertex is labelled by 4. A priori, this may not be a unique vertex,
however, in this example the action of ¢, is unique since the order of the set

{reJ,(S)|Bey} =2.

Since all o; change the orientation of the triangle described by F, the above action
of g; satisfies all the properties listed above. Observe that in addition to the relation
(3.4) we have (6,0,)* = 1. This tells exactly how many triangles meet at each vertex.

2 2
%o
—
1 3 1 3
2 2
oy
[ ———
1 3

Figs. 2 and 3. The action of C,
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More generally: the orbits of the group generated by g;, i = 1,2 correspond to the
number of triangles meeting at each vertex. Thus we see that from a given S and
a flagset & the action of C, gives a unique realization |S].

To show that |S| is homeomorphic to a Riemann surface, requires the
construction of a complex structure. In [6] such a complex structure is constructed
out of the canonical complex structure on each interior of a triangle inherited
from C. Of course, the extension to the edges and vertices will lead to a
compatability condition for each of the complex structures on the faces. It turns
out that there is a unique complex structure on |S| which satisfies this condition.

In order to describe this complex structure one constructs a slightly different
realization of S in which one considers the set of triangles in the complex plane.
Consider the set of equilateral triangles T* of which one side is along the interval
[0, 1] on the real axis in the complex plane and a vertex in the upper, respectively
lower, half plane. Form the disconnected set of triangles

%(S)= {zx FeC x F(S)|zeT* for O(F) = + 1}. (3.8)

The group €, acts on this set so its is natural to define two equivalence relations
on this set. The first equivalence relation, R, says that two elements in € are
equivalent whenever F'=0,F and z =z'eR. The other relation R, involves the
action of 6, and g,. The group %, generated by o, ; acts as

0o(z x F) = ((1 — 2) x (3o(F)),
0,(zx F) = ((e7**""3) x (a,(F)). (39

The quotient #(S)/R defined by the weakest equivalence the relation R generated
by R, ,, defines a space X(S) on which the following complex structure inherited
from C can be defined.

Let n be the number of triangles meeting at each vertex, i.e. for a given Fe%,n
is the smallest integer for which (g,0,)"(F)=F. The sum of the angles at each
vertex thus equals nz/6. Let Z, be a holomorphic function with respect to the
canonical complex structure (inherited from C) on the interior of one the v triangle,
v=1,...,n. Whenever a point P lies on an edge, say of the v'* and v+ 1™ triangles
then

Z(P)=Z,.(P)

Thus it is clear that we have holomorphic coordinates on all points except possibly
at the vertices. So let P be a vertex of a triangle A,. We may assume that Z,(P) =0,
and that A, has an edge in common with the triangle A4, . ;. (We identify the v-th
triangle with the (v + 1)-th one. Let V, be the angle of A, at Z, =0. Then one may
define a local coordinate Z at P by

Zly,=Z,Qre XV, (3.10)
where @ is point in A, and the sum runs over all angles meeting at the origin
(with ¥, =0). The number u is the sum of the angles: u = 22—7:/ Since all triangles
are equilateral one may recast this into ’

Z\y, = exp(2miv/n)(Z )" (3.11)

This turns X(S) into a compact Riemann surface. In fact this formula tells us that
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each open neighborhood of a vertex in X(S) with the vertex itself removed is
biholomorphic to a punctured disc. The complex structure on X(S) is called the
equilateral complex structure. Note that when n =6, the triangulation describes
a flat surface and the equilateral complex structure coincides to the canonical
complex structure on C. Namely, if n = 6, rotation over 180 degrees, (that is, taking
v=23) indeed corresponds to multiplication with —1. Another important
observation is that changes of the lengths of the edges of the triangles does not
change the conformal class of the discretized metric.

The theorem in [6] quoted above implies that each equilateral triangulation
endowed with its equilateral complex structure defines a Q-algebraic Riemann
surface and vice versa. For us the part of the theorem

Triangulation — Riemann surface

is most important, as we shall now discuss. It follows from the existence of a Belyi
function. Namely, draw the medians in each of the triangles T* e%(S) so that one
obtains 6 small rectangular triangles. Label these small triangles according to their
orientation following from O(F). The images of these triangles on X(S) are thus
in a one-to-one correspondence with the flag set % (S). One now proceeds with
constructing a (continuous) conformal transformation of €(S) onto P! by mapping
each rectangular triangle onto the upper half plane, respectively lower half plane,
according to their orientation such that the three angles are sent to 0, 1, co. This
map is invariant under the equivalence relation R so that it determines, at least
in principle, the Belyi function. Hence, to a given equilateral triangulation one can
assign the equilateral complex structure, obtained from a simplicial scheme S,
provided this surface is Q-algebraic. It is important to realize that this map is
independent of the metrical properties, i.e. of the size of the edges of the triangles!
It is intuitively clear that the surface is necessarily algebraic: the only parameters
entering the description of the map are the three branch points which are obviously
algebraic. Thus we have assigned to a given triangulation a branched cover of the
sphere, which is holomorphic (with respect to the equilateral complex structure)
outside the three branch points. The conclusion is that this branched cover
describes an arithmetic surface. That is, every planar graph of arbitrary topology
(generated from a potential in matrix model, say) corresponds to an arithmetic
surface described as a multiple cover of the sphere, branched over exactly three
points. Even more is true: all arithmetic surfaces are be obtained in this way.

3.2. Strings from Triangulations. At this point it is useful to make contact with
earlier attempts in [10] to assign a metric to a triangulated surface using planar
diagram techniques of 't Hooft [31]. Like we did above one uses the dual graph
of a triangulation and considers the propagator from the action (1.2) in a mixed
coordinate-momentum representation. The vertices of the dual graph can be
defined by the intersections of the medians in a triangulation. The edges of the
dual graph have an interpretation in terms of momenta in a Mandelstam formula-

. 1
tion of the string. Namely, introduce light-cone coordinates X * = — (X, + X ).
2
In a mixed momentum-coordinate representation it then follows that the action
(1.2) gives a propagator for each edge (i, j> [10],
P —iX] — X[ )exp(iPy(X; — X[)— LXE-XxHH. (3.12)

t J
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The integration over the coordinates X~ gives momentum conservation: )’ P =0,
ij

where P;; denotes the momentum between two points i, j of the triangulation. This

conservation law implies that the momentum difference P;; corresponds to an

edge in the dual graph of the triangulation. After integrating over X, the integrand

reduces to

1
exp<—ZE(Xil—le)2>, (3.13)
L]
which almost looks like the propagator for a planar SU(N)-gauge theory
P
expl =) [——L— X4—<X42), 3.14
p< ,Z,: 2i(X,.+—Xj+)( ' i) (.14

considered in [31, (5.1), p.470] except for a crucial difference: in (3.14) there is a
dynamical variable in front of the quadratic term in the exponent, whereas in
(3.13) this is essentially the (non-zero) string constant a~! (which we have put to
unity). Since « ! has the dimension of a mass it is not obvious how to obtain this
parameter from the field theoretical “counterpart” (3.13).° This problem can be
formulated more clearly as follows. Let us perform a “Wick rotation” and define
a time coordinate t; =iX j+. Thus one recovers the Mandelstam description of the
world sheet: a vertex corresponds to the joining or splitting of string at a time t;,
each string piece having a width equal to the momentum difference P} (see Fig. 4).
It is thus natural to consider the momentum at a dual vertex as a space coordinate
P =0,
The field equation for (1.2) is just the discrete Laplace equation

<_Z> (t;—1;)* =0, (3.15)
LJ

Fig. 4. The splitting and joining of strings

6 I thank K. Bardakci for making me realize this
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where the sum runs over all edges in the triangulation. This implies a discrete
version of Cauchy—Riemann’s equation:’

1;,—T1;j=0;—0j (3.16)

The solution of (3.15-16) thus defines a local complex coordinate z; = t; + io; in
each strip. The function X;- is holomorphic in each strip with respect to this
coordinate but ramifies at the vertices. It is not hard to see that the folding of a
strip to a closed Riemann surface leads to the same compatibility condition on
the vertices as explained above, that is the induced complex coordinate is exactly
the coordinate (3.11) defined for the simplicial scheme S.

The problem mentioned above can now be restated as follows: In string theory
the sum (1.3) over all triangulations is done for a fixed number of vertices, i.e. for
fixed ratio

y!

7 2

Pij
(Ti—fj) .

This specifies the string constant « and hence the spectrum of the string. So far
one was unable to impose this condition in a natural way starting from a
triangulation, which thus prevents one to “derive” strings from triangulations
(see [31] for example).

However, in our approach one can do this consistently using the theorem in
the previous section, which relates a triangulation with a Riemann surface over a
specific number field. In Sect. 4 it is shown that the condition of fixed area
corresponds to fixing the number field in the expansion (2.42). This extra
information (which is absolutely essential) was not explored in the attempts in
[10]. Ahead of the analysis presented in the rest of this section, we thus arrive at
an important conclusion:

(3.17)

“the original summation over metrics can be replaced by a summation over
equilateral triangles corresponding to Q-algebraic points in the moduli space.”

3.3. Triangulations of Genus g and Ramified Covers of the Sphere. The tetrahedron
discussed in Subsect. 3.2 corresponds to a triangulation of the sphere. Since any
P! is algebraic, we expect to have many inequivalent triangulations of it all
corresponding to different finite extensions of Q. The most obvious examples
consist of the regular Platonic solids of which the tetrahedron is just an example.
These triangulations of the sphere have symmetry groups that are subgroups of
SO(3), and consequently, the realization |S| can be embedded into a three
dimensional sphere. This is rather special, as a generic genus zero triangulation
with realization |S| has no such symmetry. Below we will outline a technique by
which one can obtain in a few simple examples in genus zero and one the Belyi
function and the number field. The discussion presented below does not solve the
general problem of determining the Belyi function, it rather gives some insight
why the generic problem is quite involved. Despite its limited use for this problem,

7 This construction was explained to me by V. Kazakov



Summations over Equilaterally Triangulated Surfaces 273

we shall see in the following subsection that the results below are of help in
understanding the summation over triangulated surfaces.

Our technique is based on a simple fact: any genus g equilateral triangulation
can be described by a ramified covering of the sphere with n distinguished points.
This is allowed since we already showed that every open neighborhood of a vertex
is biholomorphic equivalent to a punctured disc. If the center of the disc does not
correspond to a point on the surface it defines a puncture, otherwise it is a regular
distinguished point.

We fix the number of punctures to be n. Thus we are interested in an n-punctured
sphere which we will describe by X =C — {w,...,w,}, where w; denotes the
location of the i™ puncture. As is well known such a surface is uniformized by a
Fuchsian group I:

X ~H/T, (3.18)

where H is the upper-half plane and I is a torsion-free subgroup in PSL,(R).
Together with this one has the map J:H — X which is automorphic with respect
to I, ie. J(yz)=J(z) for all yeI. One can choose a set of parabolic generators
S.,...,S, satisfying the relation

S$,:8,--8,=1 (3.19)
and which have the property that their fixed points denoted by z,,...,z,eRuU {00}
project onto wy,...,w,. The map J has an inverse J~':X —>H which is a
meromorphic function on H of which the branch points are related with the linear

fractional transformations in I'. It gives rise to a so-called projective or uniformizing
connection via the Schwarz differential equation:

SU" Y =Ty, (3.20)

where Ty is known to be a rational function on X:

Tx(w)=ni( ! Ci ) (3.21)

5T
i=1 2(W—W,~) w—Ww;

The unknown parameters c;, are the so-called accessory parameters of the
Riemann surface X and are in one-to-one correspondence with the parabolic fixed
points and hence with the punctures w; [32,13]. The differential Ty(w)dw? is a
projective connection on X. It is referred to as the connection corresponding to
the uniformization J.

Of course, one may choose three points at will, so welet w; =0, w, =1, w3 = 0.
If the point w = oo is a branch point of order v, the asymptotic expansion of Ty reads

1(1—v~2 ® .
Tx(w)=§(w—2)+ T awiv3, (3.22)
j=0

Now let us consider the case of three punctures located at w; =0, w; =1,
w3 = oo0. The function Ty is explicitly known in this case see e.g. [32]. We denote
it by 7:

9_=1(1—v;2)+1(1—v2_22)+g b ’
2w 2w=1)" w (w1

(3.23)
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with the constants a and b given by
a=—-b=31-v;2—v;2—v;?). (3.24)

The asymptotic formula (3.22) is true provided we take v; = v. The numbers v; are
the ramification indices of the points w;.

The function Ty for n-punctures involves the accessory parameters c;, but
contains also the term J:

i w;—1 1—v;2
Ty=7+y —ii=D <( )y c,-). (3.25)
=4 ww—1)(w— w)\2(w—w;)
It is not hard to see that the parameters c; can be expressed as residues
1
cj=————Res, ww—1)Ty(w)d*w, j=4,...,n, (3.26)
wiw;—1)

where Reswl denotes the residue at w=w;. Summarizing, we have associated to
the surface X = H/I" a function Ty which ramifies at exactly the n points
corresponding to the parabolic fixed points of I'. This is of course not the Belyi
function, but let us see how the problem of determining the Belyi function can be
solved in a simple example using the above.

In general may groups that uniformize X and generically the function Ty is
not even unique for a given uniformization. Things are a little bit better if one
insists on a Fuchsian uniformization, i.e. of the form discussed above: In this case
the function Ty is in one-to-one correspondence with I

In [32] a useful formula is derived expressing the relation of the functions Ty
for two equivalent Fuchsian uniformizations of X. The result we need can be
formulated as follows. Let D, and D, be two domains in the complex plane on
which the groups I'}, I', act properly discontinuously. Assume a given covering
f:D, - D, inducing a (surjective) homomorphism f* :I"; — I", such that

fey=f*@)of Vyel}.

The map f induces a conformal map F:D,/I"'; —» D,/I", such that the following

diagram is commutative:

f
D, — D,

1 , 1 . (3.27)

D,/G, — D,/G,

Associated with each projection J;, i=1,2 one has a projective connection
T} (z,)dz2, respectively T'?(z,)dz3, where z;, i = 1,2 are local coordinates on D, .
Using f and properties of the Schwarz derivative it follows that

T(e,)dz3 = S(f 7). (3.28)

In other words, T is defined on D,/I", only when the branch cuts on D, of f ™!
are related by a PSL,(R) transformation. (Since then &(f ') = 0.) This result turns
out to be very useful for our purposes. Namely, we recall that the 2n+ 2-punctured
sphere can be alternatively described by a hyperelliptic curve of genus n. So we
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Fig. 5. Glueing the tetrahedron using the Weierstrass #-function

have at least two equivalent uniformizations. The function that relates the two
corresponding projective connections will be related to the Belyi-function.

To show this, we return to the tetrahedron example consisting of four triangles
depicted in Fig. 5. Let w, and w, be two complex numbers and form the set

Q={zeC|z#n,w, + n,w,, Vn;,n,eZ}. (3.29)

Let
(],')ZH—»Q

be a covering of £ by the upper-half plane. Next we introduce two groups. I'; is
generated by y,(z) = z + w, and y,(z) = z + w,. This group acts on 2 and it is easy
to see that the quotient £2/I"; uniformizes a once punctured torus. The second
group I, is generated by y,,y, and y;(z) = — z. The group I", acts on £ as well
and it follows that /I, uniformizes a four-punctured sphere. Let 2(z,z) be the
Weierstrass P-function. This is an elliptic function depending on the modular
parameter te£2/I"; and the complex coordinate z. 2 induces a surjective map

Qr,-Qr,

branched over co and the three points e; = 2(w,/2), e, = P(w,/2), P <w1 ;%)

From the general result explained above it follows that the two uniformizing
connections T, and Ty, are related by the Schwarzian derivative #(¢?),
which is unique up to a PSL,(R) transformation, and hence independent of the
representation of ¢. The uniformizing connection for the once punctured torus is
known to be, [33]:

T-Q/rx = 9’(45‘ 1) = %(,@(‘C, Z) + C(T,')), (330)

where ¢(7) is the accessory parameter of the once punctured torus with ramification
index v = 1. Using properties of the Weierstrass Z-function one may show that it
has the following scaling behavior:

c(Ar) = %c(r). (3.31)
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. at
From this one may deduce that under t—»1' = the accessory parameter

ct+d
c(t') = (ct+d)%c(7). (3.32)

Now, let J:02—- Q2/I', be the projection associated with the group I',. In fact we
see that J = ¢, thus implying that T, ., can be written as a function of z as

transforms as

Torn@=SU""@) =" ‘(5))(%) — L&), (3.33)

where ¢ = 27 1(z) and £(f(z)) denotes the Schwarzian derivative of f with respect
to z. The right-hand side can be computed in various ways, see e.g. [32]. The
result reads

3(1 1 I
Ty r,(2)= g{(z_el)Z + (z—e,)? * (Z—es)z}

1 1 1 i
_3{(z_e1)(z_ez) tooesa” (z—ez)(z—e3)} (334)

with z a coordinate on P!. This is the projective connection for the punctured
sphere branched over e;,i = 1,2, 3 and oo with ramification indices v, = v = 2. Using
the expression for the accessory parameter in terms of a residue, one may recast
this (with e; =0, e, =1, e3 = o0) into

3z2—z+1
= 3.35
QA28 22(z—1) (3.3
ww—1) {é 1 +1 2w—1 } (3.36)
zz—1)(z—w) (8z—w 8ww—1)
so that the accessory parameter for the 4-punctured sphere reads
1 2w—1

cw)=- 2" (3.37)

8 ww—1)

with w the location of the 4™ puncture. We thus see that the determination of the
accessory parameter for the 4-punctured sphere is equivalent with the
determination of the accessory parameter of the once-punctured torus.

Now, let us take the location of this puncture such that it corresponds to the
fourth vertex of a regular tetrahedron. In our coordinates this means w = exp 2mi/3.
This fixes the value of the modular parameter in the Weierstrass function to be
7 = exp 2mi/6. For this value of the modular parameter the Weierstrass function is
easily seen to glue the four equilateral triangles in the complex plane into a regular
tetrahedron. See Fig. 5. The elliptic curve described by this Weierstrass function
is easily computed: it has the form

y2=x3+1, (3.38)

and is defined over the quadratic imaginary extension Q(e*"/®) of Q. We have
thus found that the Weierstrass P-function explicitly describes the genus zero
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triangulation corresponding to the tetrahedron. Along a different way this result
has also been obtained by M. Bauer and C. Itzykson [34].

The Weierstrass P-function is not the Belyi function for this triangulation.
However, the result above implies that this function must be an algebraic function
of the #-function. At this point we recall the general construction of the Belyi
function in [6] discussed in Subsect. 3.1 and the fact that the triangulation has a
symmetry group corresponding to the modulary group I'/I"(3) =~ A, which is a
discrete subgroup of the three dimensional rotation group SO(3).® If we draw the
medians in each of the four equilateral triangles and assign to each of the points
the values of the function 2(z) we find that the Belyi function is six sheeted cover
of the sphere uniformized by H/I'(3). Hence the Belyi function corresponds to the
J#s-function on the fundamental domain of I"(3) which parametrizes a six-fold
cover of P!,

_A@w—ary o 550
27 A2(A—1)? (1)
At first one may wonder by the Weierstrass P-function is related to a genus
zero triangulation since it is an elliptic function hence intuitively related to a genus

one surface. The reason is as follows. The complete genus one curve corresponds
to a map C— C2, defined by z —(#(z), #'(z)), having Weierstrass equation

A1)

(3.39)

3

y2+axy+azy=x3+a,x*+a,x = ag, (3.40)

where y = 2'(z) and x = 2(z). In the construction above one projects this curve
back to the C by ignoring essentially the £(z) part, which forces
a, =a,=a;=a,=0. In other words: one forgets about one of the sheets of the
cover.

From this example one may easily obtain genus one triangulations by
considering the full curve (3.40) in C? describing a torus. It describes a triangulation
in genus one, shown in Fig. 5. This fact is a simple consequence of the well known

. . ¥(z)
fact that the Picard A-function 1= 9%
3

this explicitly using relations among theta-functions [36].
The above example is an illustration of a much deeper theorem proved by
Belyi, on finite extensions with given Galois group. The theorem quoted in

Subsect. 3.1 is in fact a corollary of this result. We will not discuss this theorem

is a rational function. One may show

8 The modulary groups that we are interested in arise in the context of genus zero subgroups
of the modular group. The simplest examples of genus zero subgroups I” are (apart from the
full modular group I" = PSL,(Z) itself) the inhomogeneous principal congruence subgroups I"(N)
with N <5 defined by the matrices in PSL,(Z) obeying the condition:

(“ b)=(1 0> Mod N.
c d 0 1

The modulary group I'y = PSL,(Z)/I'(N) corresponds to the symmetry group of the triangulation
of the sphere corresponding to regular Platonic polyhedrons. The surfaces X are parametrized
by a function #(z),zeC being the coordinate on P'. These coordinates are well known in the
literature [35]
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here, but mention a few facts related to it, which may be of use for the continuum
theory. The tetrahedron has the (obvious) automorphism group A4, of 12 elements.
The result of Belyi provides a construction which assigns a surface to this
polyhedron described by a cover of the sphere which is defined over a finite
extension having Galois group which is exactly the symmetry of the triangulation.
Roughly speaking one thus concludes that planar graphs of arbitrary topology in
fact correspond to surfaces having an “unusual” symmetry given by the Galois
group of the finite extension over which it is defined! In case of the other Platonic
polyhedrons we can be more explicit on this point. The symmetries of these
polyhedrons correspond to finite subgroups of SO(3). In order to have a Galois
group interpretation of these subgroups we need a slightly different description.
Namely, let F be a number field (of characteristic /, and let G be a finite subgroup
of (the Chevalley group) GL,(F) (of order prime to [). Let H be the image of G in
PGL,(F). One then has the following cases [38]

1. H is cyclic;
2. H is dihedral (i.e. it contains a cyclic subgroup of index 2);
3. H is isomorphic to 4,,S, or As.

It follows from some relatively straightforward calculations that the groups G
indeed correspond to Galois groups of finite extensions of Q over which the
arithmetic curves are defined associated with the polyhedrons (upon application
of Belyi’s theorem).

In general, however, a genus zero triangulation does not have a three
dimensional rotation symmetry, and in general it cannot be embedded in a three
dimensional space. That is, other Chevalley groups (and possible finite subgroups)
will occur as Galois groups of the associated curves. Such curves will be, however,
no longer described by a single equation but rather by a set of equations all having
coefficients and solutions in the same finite extension. In the example above, we
just needed one equation. It is only for the Platonic polyhedrons, that a single
equation suffices (with in addition some projection). The situation for higher genus
surfaces is even more difficult as for generic genera the number of equations
necessary to describe a triangulation of the same topology is over determined, i.e.
the co-dimension is lower than the number of equations! A generic arithmetic
surface has no automorphisms. At this point it is amusing to recall that in [39]
it was shown surfaces with automorphisms may still be very important. Namely,
it was shown there that high energy scattering in critical string theory (i.e. for large
orders in perturbation theory) the main contribution comes from surfaces having
at least a cyclic symmetry. These surfaces are just examples of arithmetic surfaces
described by a single algebraic equation! Of course, this is only a superficial
suggestion indicating that the continuum theory has a tendency to single out
“symmetric” arithmetic surfaces.

It is now clear that in the DT approach to string theory we are interested in
the distribution of arithmetic surfaces in the moduli space of genus g surfaces. This
density is related to the modular height as the saw in the previous section. Despite
the difficulty of determining the Belyi function explicitly, we can be more precise
on the relation between the modular height function and triangulations of surfaces.
Let us fix a given triangulation and write the corresponding surface as X = H/I”
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for some Fuchsian group I” (assuming that a Fuchsian uniformization of X exists®).
Correspondingly we have the map J and its inverse J~! as we discussed before.
Since we started from a triangulation, there is a fixed number field K over which
X is defined. As follows from the properties of the Belyi function, K specifies the
number of vertices necessary for the triangulation. The number of sheets of the
cover defined by the Belyi function is a measure for the number of vertices. All
possible triangulations with the same number of vertices (and for fixed topology)
thus correspond to different K-algebraic points in the moduli space of X. Each
different point has its own uniformizing group I', which determines the location
of the accessory parameters, and hence the “shape” of the triangulation. The global
structure of the triangulation is thus determined by its topology and the number
field, whereas the “local” properties follow from the uniformization.

The partition function on the moduli space .# of X defined over K thus
corresponds to a function measuring the distance between any two K-algebraic
points, but this is in fact the modular height function. In the next section we will
see that in the case of triangulations of the sphere the relation between the modular
height and the geometry of the moduli space becomes more explicit.

We close this subsection with a side remark on the metric on the surface X
compatible with the complex structure (3.11). We would like to show that the
uniformization of the Riemann surface X can be used to show that a suitable
surface element measures the density of squares in Fig. 4. Namely, on H one has
the Poincaré metric

dz
Ay(2)dz = ———, 3.41
ez = (3.41)
which induces a metric on H/I" (since I" = Aut(H)),
Ay (2)AZ = Jy(2)dz. (3.42)

The metric on H/I" will have singularities at the points of ramification, but is still
integrable over H/I'". For example, at a vertex we have the coordinate (3.11), so
that the metric behaves at the ramification points as

|Z|*~'dZ
Oz

with v = n/6 the ramification index at the vertex. This metric is clearly integrable.
It is not hard to show, using a discrete Gauss—Bonnet theorem as in [37] that the
area of H/I is given by

3.43)

Area (H/T) = 2n<(2g ~2)+ Y (1—v 1)), (3.44)
k=1

where N is a number of vertices. Now recall that the curvature represented at
each vertex is given by R;=n(v;'—1). Thus we recover that A(Z) indeed
corresponds to the density of squares in Fig. 4.

° In general this will not be so: one needs a Shottky group (i.e. a particular Kleinian group).
The argument below still goes through except for a few technical modifications
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4. The Sum over Triangulated Surfaces

Let us finally return to the problem of relating the volume of the lattice formed
by the algebraic points in the moduli space with the discretized string integral
(1.3) for equilateral triangulations. We will discuss those rational points that define
curves, for which the moduli space is .#,, , of a sphere with n-punctures. We shall
argue that (2.42) when restricted to hyperelliptic curves equals (1.3) in the case the
triangulations are described by some finite cover of the sphere. In order to obtain
this result we will use a result in [13] which relates the Kahler form on .#, , with
the accessory parameters of the sphere. Subsequently, we discuss a limit to all
algebraic points which bears some resemblance with the double scaling limit in a
matrix theory.

The geometry of the moduli space .4, , is conveniently described by the
Weil-Petersson (WP) Kidhler metric, defined by a Hermitian innerproduct for
holomorphic quadratic differentials using the hyperbolic line element on the
Riemann surface. Namely for ¢ a holomorphic quadratic differential and A% the
hyperbolic line element (i.. the constant curvature metric) on the Riemann surface
X we form the Beltrami differential ¢1~2 and define the Weil-Petersson inner
product as

(YD, = ,j‘ (A~ )L )= 5[ dYi~2 4.1)

Note that this definition makes use of the (unique) constant curvature metric
compatible with the given complex structure on X.

The WP metric arises naturally in the context of accessory parameters as was
shown in [13]. This is a consequence of the fact that the Teichmiiller space of an
n-punctured sphere can be mapped into an n-dimensional complex vector space
W, defined by

W,={(wy,...,w)eC"|w; #0,1; w; #w;>i #j}. 4.2)

This map plays an essential role below, so let us explain this in a little more detail.
(We use the notation of [13].) Let I" be the Fuchsian group uniformizing X. Then
the Beltrami differential 4 = ¢4~ 2 introduced above satisfies u(yz)y'(z)/y'(z) = u(z)
for all yerI. (z is the coordinate on the upper half plane.) Now, for each u the
Beltrami equation gives rise to a function f,(z) which in turn gives rise to a
Fuchsiangroup I', = f, ' f ! which is of the same type as I, that is I', is generated
by f.8:f, ! with i=1,...,n. In other words: for each conformal equivalence class
labelled by a Beltrami differential we have a representation p, of I, ie.
@:I"—> PSL,(R) defined by y— f,op°f '. Denote the corresponding map u—p,.
It is well known that the set of all equivalence classes of p, gives a model of
Teichmiiller space.

Now embed the surface X into Cu{oo}, and let J, be the projection map
H— X = H/T, fixing the points 0,1, co. Furthermore, define the map w* as the
composition w* = J o d ,(z;) with z; one of the parabolic fixed points of I". We then
define the map ¥:T,,—C" 3 by

(Wo ®)(p) = (W, ..., wh)eC" 3, 4.3)

As is shown in [13, 32] this map defines a complex analytic cover of T, , by W,,
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i.e. the image of (3.48) in C"~? is the set W,, and locally it is an diffeomorphism.
On the space W, we have of course the action of the symmetric group Sym, acting
on the n punctures. The factor space W,/Sym, is isomorphic to the moduli
space .4, ,. The most notable feature of the map is that it is a finite cover.

On W, we have the canonical flat metric. The result we need from [13] is the
fact that the Jacobian of the transformation relating the WP metric T, with the
metric on W, is given by the Liouville action functional for the conformal factor
o, evaluated at its extremum, and the accessory parameters on X lifted to T ,.
The Liouville action enters the problem, via its field equation and its relation to
the uniformization of the surface X. Namely recall that the unique hyperbolic

metric on X is obtained from the Poincaré metric _dzdz_ on the upper-half plane
projected on X which is of the form (Im 2)*
|~ (w)?
(Im J~}(w))*’
where a(w) is the solution 0,,0,0 = 1exp 0. With suitable asymptotics, this solution

is unique. The formula for Ty can be written in terms of the chiral part of the
stress-energy tensor of the Liouville theory:

Ty =020 —10,0)% 4.4)

exp (a(w))|dwl?, exp(o(w)) =

obtained from the action
S[al=[(|0,01> +exp a(w))dw A dw. 4.5
X

The map (4.3) can be used to define the field o(w) on W, so that (4.5) is defined
on W, as well. It is shown in [13] that the accessory parameters of X (present in
the function Ty) can be obtained from the Liouville action:

_0S[a]

Ci(Wy,...,w,) = . (4.6)
J

with ¢ satisfying Liouville’s equation. Of course, the accessory parameters
transform under I'. This is used to show that upon taking a second derivative one
obtains a volume form on W, which in fact can be pulled back to the
Weil-Petersson Kéhler form on Ty,

dc; 0*S[o]
— = ——dw; Adw, = w, .
ow,  Ow;0w, A E= e “.7)

where wj, denotes the Weil Petersson Kéhler form on T, , projected on W,. Upon
modding out the action of the symmetric group one obtains the WP form on the
moduli space of n-punctured spheres. Thus we see that the Liouville action (4.5)
corresponds to the Jacobian of the transformation (4.3).

The relation between the accessory parameters and the WP metric is useful
for the following reason. It follows from [12] that there is a relation between the
cohomology class of the WP-Kiler form with the (metrized) line bundle det n, wy, 4
which played a central role in the Polyakov measure. More precisely, the WP
class is isometric to some power of the determinant line bundle det), wy, , equipped
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with the Green’s metric (with respect to the hyperbolic metric on X):'°

1
2472

Let us now analyze the behavior of (2.42) for large extensions K. It is useful in
this context to recall that the height h(X) is a distance function, measuring the
logarithmic distance to the closest K-algebraic point in .#. Since we have to take
the square of the expression (2.42) for the complete partition function we conclude
that exp A(X) measures the surface density of K-rational points in the moduli space.
However, we must take into account a symmetry factor for each rational point
as well as corresponding to the symmetry group of the triangulation. In order to
analyze the behavior of (2.42) for large extensions we therefore rewrite (2.42),

lim XA (k, x) exp (uh(X)), 4.9
k— o

ww‘p_ = det Tc*wx/‘//{. (4.8)

where we introduced a multiplicative (complex) parameter p in the exponent to
improve convergence; eventually we have to take the limit to some critical value.

The object A'(k, y), depending on the degree of the extension k =[K:Q] and
the Euler number y =2g —2 of the surface, measures the number of algebraic
points over K in the moduli space of X. Now, in order to find the asymptotics of
A'(k, x) we make two assumptions which in fact are generally believed to be true
but for which there is no rigorous proof:

1. the number of vertices in the triangulation necessary to describe a curve
defined over K grows with k! in the limit of large extension;

2. the area density element 4 of K-algebraic points on the moduli space grows
as a power equal to the euler number of the surface. Thus, for low genus the
number of algebraic points is large, while for high genus the number is
low.

Let us fix a large degree of extension, k, and consider only hyperelliptic surfaces.
So, on a hyperelliptic curve over a large but fixed extension we need according to
the assumption roughly N = k! points on the sphere to describe the associated
triangulation. The number A/(k, x) thus gives the correct weight of equilateral

triangulation possible for N points:
N(k,y) = (4.10)

ief|Gi|,

where ¥, is the symmetry group of a triangulation labelled by i€, as in (1.3).
This quantity behaves for large N as

1
N (N, x) ~ N”"le“C"’Cl(l + @<Tv>>’ (4.11)

10 This formula can be extended to the boundary of moduli space, in which case on has to add
on the right-hand side the compactification divisor A. This inclusion gives rise to a divergence
in the metric on the right-hand side and correspondingly in the sum over all Q algebraic points
in (2.42). This divergence corresponds to the tachyon in the spectrum of the critical string [20].
In terms of triangulations such a singularity corresponds to a degenerate triangulation in which
some of the vertices coalesce
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where the constants y and C, are universal.'’ As will become clear below, we
deliberately used the same notation for the constants as in matrix model analysis.

At this point we recall that the number vertices N is at the same time the
measure for the area 4 of the triangulation. So the limit N — oo corresponds in
fact to a surface integral:

lim A'(N,7) & C, [ dAA™" 1wt 4.12)
N—- o 0

We now want to substitute this result in (4.9). However, we have to reach a decision
on what part of the height function we want to take. As can be seen explicitly
from the expressions the height there is a relative sign difference between the
contribution to the height from the finite places and the infinite places. This means
that if one insists on a real constant y. one cannot control the sum for both parts
simultaneously. So let us for the moment consider the part coming from the infinite
places. Since the height as it enters in (2.42) describes a surface area as well, the
large N behavior of (2.42) can be expressed as

Z,=C, [dAA Te™ WA = C [(3)|u— | 4.13)
(4]

The result suggests the definition of a double scaling limit, namely if one performs
the summation over all genera the expression

X

u— U
A

is well defined provided the multiplicative constant on the right-hand side is kept
fixed in the process of taking the limit. On the other hand one may consider the
finite part of the height, and taking — u as the constant in (2.42). This leads formally
to the same scaling behavior. One may include both cases at the same time by
taking a complex coefficient u. Then (2.42) behaves more like a Zeta-function
which at least from the point of view of “computing volumes” is more comfortable,
(see e.g. [9]). In matrix models one identifies the constant p with the (bare)
cosmological constant and is thus usually taken to be real.

Let us make a remark at this point. Note that because of the Gamma-function,
(4.13) grows roughly with (2g)! This growth behaviour is confirmed also by
calculations done in the DT approach [41]. Recall, however, that our approach
is geometrical, in the sense that it does not rely on a potential in a matrix
model.

(4.14)

F=) 1, =) ()
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