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Abstract. We describe the quantum-group structure of two-dimensional JV = 1
supergravity in the conformal gauge. The operator-algebra of this (super-
Liouville) theory is shown to correspond to a quantum deformation of the super-
Mobius group, which provides a new solution of Yang and Baxter's equation. This
structure is used to investigate the strong-coupling regime of the theory (1 ^d^9).
For d = 5, a unitary truncation theorem - similar to the one of the bosonic case - is
derived for the fundamental representation.

1. Introduction

In recent articles [1-5], the algebraic connection between two-dimensional gravity
and the quantum group Uq(sl(2)) has been unravelled. The intimate connection
between the former and the latter has led to significant progress, and, in particular,
has allowed one of us to derive the unitary truncation theorem [4,5] for the strong-
coupling regime, thereby proving a long-standing conjecture [6,3], and showing
that strongly coupled 2D gravity makes sense for central charges C = 7,13, and 19.
The extension of this discussion to bosonic Toda theories (corresponding
probably to PF-gravity in the "conformal gauge") has led [7] to new quantum
deformations of the Lie algebras AN for N>1, that describe their underlying
algebraic structures. Partial evidence for the existence of a unitary decoupling
theorem, similar to the one of [4,5] have been obtained [3] for the Λ2 Toda theory.
So far, however, these recent algebraic techniques have not yet been applied to
supergravity in the conformal gauge, that is to the N = ί super-Liouville theory,
which has been extensively studied [8-10] in the early period after Polyakov's
work on the Weyl anomaly [11], using the methods initially developed for the
Liouville theory [12-15, 6, 16, 17]. More recently striking properties have been
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derived for the associated non-critical superstrings [18-20], assuming the
existence of a unitary decoupling theorem similar to the one of [2,4]. Moreover,
the recent developments of matrix models do not seem to apply straightforwardly
to the case of supergravity which must be studied in the continuum. It is thus
interesting to apply the quantum-group techniques of [1-5] to this problem, and
this is the aim of the present article.

In Sect. 2, we recall the basic operator-algebra in the Bloch-wave basis where
braiding matrices and fusion coefficients depend upon the quasi-momentum
(eigenvalue of the monodromy matrix). In Sect. 3, a new basis of fields is
introduced so that this dependence disappears, and a quantum-group structure of
the usual type comes out. This allows us to derive the corresponding quantum
deformation of the super-Mόbius group, its universal R matrix, and co-products.
One arrives at a new solution of Yang and Baxter's equation, whose differences
with the one previously associated [21,22] with quantum osp(ί, 2), are spelled out.
In the next section, this structure is used to investigate the unitary decoupling for
central charge1 C = 5. The decoupling is proven for the fundamental family of
fields, which generates the full operator algebra by fusion. Concluding remarks are
made in Sect. 5. Some background-material is recalled in Appendix A, while
Appendix B contains technical details for the change of basis discussed in Sect. 3.

2. The Basic Exchange Algebra for the Chiral Fields

Our starting point will be the exchange algebra derived in [10] for the superfields
that appear in the chiral decomposition of the super-metric and are eigenstates of
the monodromy matrix (Bloch waves). Some details are recalled in Appendix A
where our notations are spelled out. At the present stage of the discussion, each
chirality is studied separately, and we consider only one of them, explicitly, since
they are similar (up to subtleties that are discussed in [23] for the bosonic case).
The basic objects are super-fields ψj{σ,θ\ j = l, 2, and 3; where 0 ^ σ ^ 2 π is a
coordinate on the unit circle, and θ is a fermionic variable such that 02 = O. As
recalled in Appendix A, the fields ψj may be expressed in terms of one bosonic and
one fermionic free fields. The latter may be chosen as periodic on the unit circle (in
the Ramond sector), or antiperiodic (in the Neveu-Schwartz sector). The fields ψj
are periodic up to a multiplicative constant:

ςθ), (2.1)

ψ3(σ + 2π, θ) = eihe2ihmψ3(σ, ςθ).

The parameter ς is equal to 1, in the Ramond (R) sector, or —1 in the Neveu-
Schwarz (NS) sector. We shall most of the time work in the Neveu-Schwarz sector.
The modifications needed to deal with the Ramond sector will be indicated at
suitable places, h is an arbitrary parameter related to the coupling constant. It will
be shown to be the quantum-deformation-parameter of the super-Mόbius group.

1 This definition of central charge is usually denoted by £, but in this article hats have a different
meaning so that we use C instead
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The central charge of the super-Virasoro algebra is given by

m is a quasi-momentum operator which is shifted by the ψ fields. Many operators
we shall encounter are functions of w. It will be important to keep in mind that for
any function /, one has

Ψj{σ, θ) f(m) =/(tπ + 8j) Ψj{σ, θ), (2.3)

where

e 3 = ^ ε i = l> and ε2 = 0. (2.4)

Some details about the origin of these operators in the super-Liouville theory are
given in Appendix A, following [8-10], for completeness. They are not really
needed to understand the forthcoming discussion, if one takes for granted the
existence of the exchange algebra, to be recalled next. For definiteness, we restrict
ourselves to the half circle 0 ^ σ S π> where the ψ-fields obey the exchange algebra

Ψj{σ, θ) Ψk(σ\ θ') = Σ Sιj£(σ - σ\ m) Ψι(σ\ θ') ψn(σ, θ), (2.5)
ί,m=l,2,3

where, in the Neveu-Schwarz sector

e

•^Λ 2sin(ft/2)sin(A)sin[A(B7-l)]

S2

2

2

2(x,m)=-

and

cos[Λ(tϋ-1/2)] cos[h(m+1/2)]

sin2/ι

12(x,w)-S32

_\_o32/ \ _ ,

,w)-S32{x, -w)- - ί ε

(2.7)

COS[/ί(C7-l/2)]'
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and where ε(x) is the sign of x. In the Ramond sector, the exchange matrix is given
by the same expressions, with the substitution tσ-»(tσ + π/2A). Therefore, all the
manipulations which we shall describe in the following sections are valid in both
sectors. For simplicity we shall describe them explicitly in the Neveu-Schwarz
sector only, but one may find their Ramond sector analogs by making the above
substitution in all the functions of w involved.

The algebra (2.6,2.7) was derived in [10] from the operator super-Schrόdinger
equation, which is the quantum version of Eq. (A. 12), satisfied by the t/ -fίelds. The
normalisation of the operators was left arbitrary. We have specified it so as to
simplify the above braiding matrix as much as possible. Some details are spelled
out in Appendix B. This structure is directly applicable to the physics of two-
dimensional super-gravity if h is real (more about the case of complex h below).
Then the spectrum of eigenvalues of m is real, in agreement with the fact that the ψ
fields shift w by real numbers, as shown by Eqs. (2.3,2.4). In this case, w is a
hermitian operator. One may verify from their expressions [10] that the fields ψ
then satisfy the hermiticity conditions

ψ\=ψ3, ψl = ψ2- (2.8)

One may directly verify that this conjugation is consistent with the present
operator algebra. First it agrees with Eq. (2.1) if one takes account of the fact that w
is an operator that does not commute with the ψ fields. For instance, taking the
hermitian conjugate of the first line of (2.1) gives ψ\(σ + 2π,θ) = e~ihψ{(σ9ςθ)e2ihw.
According to (2.3), this is equivalent to ψ\(σ + 2π, θ) = eihe2ihwψ\(σ,ςθ); so that ψ\
and ψ3 have the same monodromy properties, in agreement with (2.8). Second,
taking the hermitian conjugate of Eq. (2.5), one obtains

ψl(σ\ θ') φ](σ, θ)= £ ψt(σ, θ) ψftσ', ff){Sf{σ-σ',m))* (2.9)
ί , m = l , 2 , 3

so that, according to Eqs. (2.3), and (2.8), one should have

S σ ' , f u - β I - f i J ) = S?>V-σ,iu), (2.10)

where indices with primes are such that Γ = 3, 3' = 1,2' = 2. It is straightforward to
verify that the expressions (2.6) and (2.7) satisfy this relation for h real and w
hermitian. One thus sees that (2.8) is indeed an antilinear automorphism of the
operator-algebra.

Before leaving the preliminaries, an important point should be stressed.
Solutions of the Yang-Baxter equations associated with super-braiding matrices
have already been extensively discussed in the literature [24, 21, 25, 22]
introducing matrices with a non-trivial grading. This is, in particular, systemati-
cally discussed in [24]. Our starting point is the explicit realisation just recalled of
an exchange algebra by super-operators, where the elements of the exchange matrix
S do not depend upon the θ variables, and are thus of a bosonic nature. It follows
that contrary to the common practice for the superalgebra, no grading is assumed
for any matrix we shall write later on. Tensor products are always assumed to
commute. This is consistent with the Yang-Baxter equation which comes out from
the associativity of the products of ψ operators:

Σ ^ 2 ^ ^ 3 ^
ρ,λ,μ

= Σ Sfj{ω,σι-σ2)S^{ω + εμ,σ1-σi)S%{ω,σ2-σi), (2.11)
ρ,λ,μ
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where the summations run over 1, 2, and 3, and the shifts Sj are given by Eq. (2.4).
These equations have exactly the same form as for the Liouville theory which is
purely bosonic [15], and associated [1, 2, 4, 5] with Uq(sl(2)). They are thus non-
graded Yang-Baxter equations, in agreement with the general philosophy followed
in this paper. One will see that ̂ -deformations of a super-Lie-algebra nevertheless
come out, since the co-product will enjoy unusual properties.

As is always the case, with operators that are periodic up to a phase, the
exchange matrix is an explicit function of the quasi-momentum w which is an
operator that does not commute with the ψ fields. Thus the Yang-Baxter equation
does not take the form which is usual for quantum groups. This question has
already been extensively discussed in the bosonic case [1, 2, 4, 5, 3].

3. Connection with the Quantum Super-Mόbius Group

In the previous section, we have recalled the exchange properties of the super-
Virasoro primary fields which generate the operator-algebra of two-dimensional
supergravity. The corresponding braiding matrix has a non-trivial dependence on
the quasi-momentum w, which implies in particular that it does not commute with
the fields. In this section, we shall describe a new basis of fields, whose braiding is
independent of w; moreover the new braiding matrix so defined will turn out to
correspond to a quantum deformation of the super-Mόbius algebra, previously
exhibited in [21,22]. The new fields ξa are linear combinations of the fields ψj
which we have discussed above, with tπ-dependent coefficients:

ξΛ=Σ uίMψj, α = l,2,3. (3.1)

The exchange properties of these new fields are described by a matrix ρ such that

ξjiσ, θ) ζp(σ', θ')=ρlδ

β ξy(σ', θ') ξδ(σ, θ). (3.2)

Thus the quantities u{{m) must be such that

Σ ρlδ

β(σ - σ') ufa) uk

δ(m + ε,) = Σ Sl(σ - σ', w) uι

x(π) u^{w + ε,), (3.3)
γ,δ I, m

where ρlδ

β may depend on (σ — σ'\ but not on the quasi-momentum w. In [2,7] a
systematic method for deriving similar changes of field-basis was described in the
context of two-dimensional gravity and Toda conformal field theories, respec-
tively. In the present case, the use of this method provides only a partial answer to
the question. As explained in detail in Appendix B, the derivation of a m-indepen-
dent braiding matrix requires some extra work; the final answer turns out to be:

(3.4)

and

u\(m) = uliw) = Jφ7)j/2sin(ft/2)
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where a(m) is a "cocycle" such that

a{w)2 = \ and φ + l)/φ)= - 1 . (3.6)

For ε(σ — σ') = l one finds

Qίi==Q33 = e ~ ι I Qi3==Q3i=el \

22 31 22 >\h/2 ih -ih ( 3 7 ^
C?22 = = j Q 22 == Q 31 ~= ̂ ^ \^ ^ / '

21 12 32 23 Ί . 21 32 / ih — ih\

Q12 — ̂ 2 1 — ί? 2 3 — ί? 3 2 — ' ί? 21 — ί? 3 2 — \β — ̂  /

and the other elements vanish. In matrix form the result is

12 21 13 22 31 23 32

21 / - I e-ih-eih . . . . \

12 - 1

31 eih -

22 . . - 1 -2eih/2sinh

13 . . . . eih .

32 1 . . . . . - 1 e~ih-eih

23 \ . . . . . - 1 /

(3.8)

where we have omitted the trivial subspace (11,33). All dependence on the quasi-
momentum has been eliminated, and the above braiding matrix satisfies the Yang-
Baxter equation without the w dependence appearing in (2.11). Moreover, this also
implies that the value of the braiding matrix ρ in the Ramond sector is identical to
that in the Neveu-Schwarz sector, since the two sectors correspond to each other
by a shift of w.

Before going further in our discussion, let us quote two important properties of
the transformation (3.1). First it is such that, for h real and w hermitian, the ξ fields
are hermitian. This is easily verified, from Eq. (2.8) by writing

3 3

£ ί = Σ Ψy (uί(w))* = Σ (Ma'(w + fi./))*V/5 (3-9)

and checking that (uζ(m -f ε7))* = uj

a(w). This last part is easily verified using (3.4),
(3.5), and (3.6), choosing a(m) to be hermitian, as we shall do. It follows that, for the
ξ fields, the equivalent of (2.10) reads

(nyδ\* X?δ (Ί 1 (\\
\Qaβ) —Qβa-> (D.lU)

where ρ, which is such that

V r>yδ R^]i Si Z /o i i \

βy

is the exchange matrix for ε= — 1. The other important property concerns the
inversion of the transformation (3.1). Following a path [5] similar to the case of
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Uq(sl(2)% one verifies that the w's satisfy pseudo-orthogonality relations of the form

= δJtkCίπ)9 (3.12)

(3.13)

where

C^m) = 4 sin (Am) cos [A(m -1/2)]

C3(m) = - 4 sin (Am) cos [A(m +1/2)]

C2{m) = 2 cos [A(m -1/2)] cos [A(m + l/2)]/sin(A/2).

The significance of Eq. (3.12) is that it allows us to invert (3.1) and obtain

(3.14)

We now show that the new basis of fields provides a direct relation to a
quantum deformation of the super-Mόbius group. For a closer correspondence
with previous authors [21, 25, 22], we first redefine the generators of the super-
Mόbius algebra introduced in Appendix A, to map it to the osp(l,2) algebra:

(3.15)

These operators indeed realize the osp(l,2) algebra:

+ ,K.] + = -±ff; (3.16)

[ J ± , F ± ] = 0 ;

The finite-dimensional representations of this algebra are decomposable in sums
of irreducible ones, which are characterized by their integer or half-integer spin J,
and have dimension 4J + 1. The fundamental representation (J = l/2) has
dimension 3; we may choose a basis (| —1/2>, |0>, |l/2» in which H is diagonal:

= M|M>;and

F+|0> =

F + | l/2>=0

F_ |- l /2>=0

(3.17)

The enveloping algebra is generated by (H, V+), its quantum deformation consists
in a modification of the anticommutator of V+ and F_:

(3.18)

(3.19)

where the notation [ J denotes the usual g-analog (for q = eih\

sin (Ax)

sin A
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and the commutators of H with V+ are not modified. The comultiplication
corresponding to this quantum deformation of the algebra reads2

f A(H) = 1®H + H®1

V®e-«hT«)H' { }

We have derived this result as follows. First the co-product was determined in the
spin 1/2 representation by requesting that it commute with the braiding matrix
(3.7). Second, assuming that the algebra is undeformed in the spin 1/2 represen-
tation, and using the co-product, we derived the deformation (3.18) of the
enveloping algebra. The realization of the algebra in the fundamental represen-
tation is indeed undeformed because [2x] = 2x for x = 0, ±1/2. From the ex-
pression in Eq. (3.17) and the coproduct (3.20), one may obtain the realization of
the quantum algebra in higher-dimensional representations. This realization
involves a second g-analog, defined for integer or half-integer values of x:

gihx _ / _ j \2xe - ίhx

The eigenvalues of H in the spin J representation are M=—J,
— J + l/2,..., J —1/2, J; the action of the generators on the states reads

= M|J,M>,

if J-M is integer, (3.22)

=\]/[_J + M] +1J ± M + 1/2JI J, M ±i> if J - M is half-integer.

By exchanging the role of the two vector spaces whose tensor product appears in
Eq. (3.13), one obtains a second coproduct:

+ V±®eiihTπ)H' K }

Before going on, we note an unusual feature of our co-products: they do not
become trivial when h-^0. As a matter of fact, this is consistent, since we are using
ungraded tensor products. The h = 0 limit of A and A precisely re-establishes the
graduation which is needed for taking tensor products of representations of the
undeformed osp(ί, 2) superalgebra. A related point is that, when /z->0, our braiding
matrix tends to the exchange matrix Ey

a

δ

β = (5α dδβf y multiplied by unexpected minus
signs, since ξx and ξ3 become commuting and ξ2 anticommuting, but ξu and ξ3

anticommutes with ζ2 in this limit. There seems to be no way to re-establish a more
standard statistics. This is one of the reasons why we did not introduce any
gradation: none seems to be natural. Note that the ξ are super-fields involving a
bosonic and a fermionic part to begin with.

We have generalized the braiding matrix (3.7) to all representations by
imposing that it relate the two co-products in the usual way. Its expression in terms
of the Uq(osp{l, 2)) generators reads:

~β )y (4jW J)«(»~ l)/2gi7m(n+ l)/4 \e ~

(3 24)

2 Notice that, as explained in Sect. 2 our conventions regarding the tensor product of
representations of graded algebras differ from those of [24] in that we do not assign a minus sign to
the permutation of odd states; more about this below
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where

Vnβ\ + ! = ln/2] + L(FI - 1)/2J + ... [1J + U/2J + . (3.25)

This K-matrix is such that

RΛ = ΛR. (3.26)

Its evaluation in the fundamental representation of 0sp(l,2) via
N^ (3.27)

gives back the braiding matrix of Eq. (3.7), up to the identification α = 2M + 2.
Note that the relation (3.27) between R and ρ involves a permutation of two
indices; thus, as used above, ρ simply commutes with the co-product Λ, without the
occurrence of Λ:

ρA = Aρ. (3.28)

Finally, we compare in detail our result with the known expressions for the
g-deformation of the graded algebra os/?(l,2), which we distinguish by a tilde. We
shall use the notations of [22] for defϊniteness. Our matrice ρ Eq. (3.7) satisfies the
non-graded Yang-Baxter equation. Thus it is analogous to the matrix $ of [22].
Comparing our co-product with Eq. (10) of [22], one is led to relate the two
structures by letting q of [22] equal to e~

ι{h~π). There appears an overall minus
sign, which is irrelevant for the Yang-Baxter equations. Calling — ρ, the braiding
matrix so derived, one finds that it is given by

^11 _^33__/,-ι7ι. -31 ^13 Jh.

;?21 _ ~12__ ~32_ ~ 2 3 _ Λ. ^ 2 1 _ ^ 3 2 _ (Jh »-ih\
Ql2—Q2l-Q23~Q32-—1> Q21=Q32=—{e ~ e )'

The differences between (3.7) and (3.29) are only in ρ }̂, ρ\% and ρl\, where one sign
has changed in each case. One may of course directly verify that both matrices
satisfy the Yang-Baxter equations, since the latter leave this sign undetermined.
Concerning the co-product, Eq. (3.20) trivially gives

(3.30)

where

f±_pi(h + π)(β-2)/2 ± _ -i(hTπ)(α-2)/2

In order to compare with [22], one puts its formula (4), with q = e~ί(h~π\ under the
form (3.30). Remembering that it uses graded tensor products, one obtains

?:β=f:β{-ψβ\ g i=gi ; ι~β=-fah g«>-g«+,(-i)p(α), (3.32)
where P(α) is the graduation-function of [24], which is equal to 1 for α = 2, and
vanishes otherwise. Again there are various sign changes. Although the two sets of
formulae are very similar, their quantum-group meaning is quite different, since
the matrices ρ and ρ do not have the same eigenvalues. This may be checked by
comparing their traces £ ρfβ and £ ρfβ.

aβ <xβ
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4. Strong Coupling Regime with C=5

The previous discussion is directly applicable if h is real. This is the case for the
weak-coupling regime of supergravity (C>9), and for super-minimal-models
(C< 1). In the region 1 < C<9, h is complex and we have to work more, since the
continuation of the formulae just written gives meaningless complex results in
general. For this we have to consider the two possible deformation-parameters h
and ft given by Eq. (A.22) together, since they are complex conjugate. In preparing
this section, we were aiming at unitary truncations similar to the ones of the
bosonic cases [6,3-5], where three equally spaced special values came out. So far,
however, we have only been able to treat the case of C = 5 (analogous to C = 13 for
quantum gravity) only, and this is the subject of the present section. The difficulties
with the other choices (C = 3, and C = 7) will be explained at the end.

In general the two possible quantum modifications are related by

hft=π2, Λ + /ι=f(C-5), (4.1)

so that, in the present case, we have h + ft= 0, and h and ft are pure imaginary. Let
us recall that the operators corresponding to ft are denoted ψ, and that all
quantities involving ft instead of h are distinguished by a hat. For instance, the
exchange properties of the ψ fields are given by

φ/σ, θ) i£fe(σ', ff) = Σ S*(° ~ σ'> <*) U*, &) φ > , θ), (4.2)
ί , m = l , 2 , 3

where §ι]£ is deduced from Eqs. (2.6, 2.7) by replacing h by ft and m by w. We also
introduce fields ζa given by the hatted versions of Eqs. (3.1, 3.4, 3.5). As recalled in
Appendix A, the fields are defined in spaces that are direct sums of Verma modules
with highest weights of the form

(^) \ { YW fiί}2 (4.3)

with v and v integers. In the present regime, this formula is complex in general. On
the other hand, the representations of the Virasoro algebra in each Verma module
are unitary iff Δo is real and positive, since the central charge is larger than one. In
view of (4.3), this is the case if v and tf are such that (w{0) + v)]/h/π -f v|//z/π is pure
imaginary. Since h and /Tare complex conjugate, this requires that v + v = v0, where
v0 is a constant, and (tn(0) + vo)|//ϊ/π is pure imaginary. The representation of the
Virasoro algebra will be unitary, iff we are able to restrict ourselves consistently to
a set of w satisfying these conditions. This restricts the set of operators which can
be included in the operator algebra; in particular, ψ or ψ fields alone are forbidden
to appear. The simplest possible operators are linear combinations of operators of
the form

and Wii^WiΦi, (4.4)

where ~ means that one takes the leading order in the operator-product
expansion. We take the same normalisation-convention in defining ty)13, ψ3ί, and
ψ229 so that it becomes irrelevant. These three operators shift the quasi-momentum
from (v, D) to (v — 1, v +1), (v +1, v — 1) and (v, v), respectively.

It will be more powerful to use the ξ fields and introduce

£i3~£i<f3> £3i~£3<fi> and £22~ξ2<f2. (4.5)
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However, we shall start by using ψjk fields as a warming up. They are not so
suitable to carry out the complete proof, but are simpler to begin with. The ansatz
for the physical field is (we use the same convention for indices with primes as in
Sect. 2, that is l' = 3, 3' = 1, 2' = 2)

χ(σ)=ΣvJ{w)ψjr(σ), (4.6)

where v3{w) will be determined below. The braiding properties of the ψjk fields
follow from the ones of the ψ and ψ fields, and from the fact that the braiding of a ψ
field with a ψ field is trivial:

φ/σ, θ)ψk(σ\ &) = - ψk(σ\ θ')Ψj(σ, θ). (4.7)

One has

h,l2,tni,ni2= 1, 2, 3

m2(σ,θ). (4.8)

Going back to the χ-field, one considers the product χ{σ)χ(σf), say for σ>σf, and
applies (4.8) to each term coming from the expansion (4.6). Closure requires that
the result be rewritten as a sum of products of operators of the type (4.6) (at this
stage, one does not know how many physical operators are present). In any case,
one has to check that, on the right-hand side, all terms that involve operators ψjk

with k =t=/ have vanishing coefficients. There are many conditions, and we shall
only look at a typical one, since a complete proof will be obtained later on with a
more sophisticated approach using ^-fields. The vanishing of the coefficients of

and ψ^ΊWi?^) give, respectively,

v2{w - (1 - π/h)) §l2

2(w) S2Λ(m) + Όl(m) v2(w) Sll(m) S2

2\(w) = 0

The determinant of this linear system must vanish. This is equivalent to the
relation

sin2 ft = cos [fttft -1/2)] cos [fltft + 3/2)]

sin2 h cos [h(m +1/2)] cos \h{m - 3/2)] ' l * j

Since h + fι = O, the ratio is one. The equation may be transformed into the
condition

0 = cos[Λ(2fi7-l)]-cos[ίi[2fft + l)] = 2sin

(4.11)

The condition of positivity for A0(m) is satisfied only by the vanishing of the second
term, so that fiw — hw = (π — h)m must be a multiple of π. Since, it follows from (4.1)
that (π — h) (1 — π/h) = 2π, this is equivalent to the condition

(4.12)

This determines the spectrum of highest weight, r is an integer which should be
restricted to the values 0 and 1 to avoid redundancy. We shall call J^phys the Hubert
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space

^Phys= Θ Θ ^ K ) . (4.13)
r = 1,2 v

It only involves real positive highest weights, which correspond to unitary
representations of the super-Virasoro algebra, and has a positive-definite metric.
This is the Hubert space where the exchange-algebra of the χ-field will be shown to
possess a consistent restriction.

One could go on to prove the truncation using φ-fields, but the calculation is
cumbersome and not very illuminating. We shall instead use the ξ-fields following
the path of [3-5]. One proceeds in two steps. First one looks for linear
combination of ξaa> that commute at different σ. For this, one relates the matrices ρ
and ρ. One finds3

ρlδ

β = ρ a ; β

δ : ί P { Λ ) + P { β ) ~ P i y ) - p i δ K (4.14)

This relation is easily derived by explicit computations. It is understandable that,
since h and /Tare opposite, ρ is related to the inverse of ρ, that is to ρ. Next consider
operators of the form

^ ) = Σ / ( Φ ' f W ^ (4.15)

It follows from Eqs. (4.14) and (3.11) that

X/iσ)χA°Ί = xA<S)χj(σ), (4.16)

if we assume that

f(*)f(β)=f(y)f(δ), if 4 * 0 . (4.17)

The second step is to choose / so that the physical Hubert space (4.13) is left
invariant. For this, / should be such that it be possible to re-write the field χf in
terms of ψjr-fiQlds only. The appropriate choice is found by deriving an
orthogonality-relation between u and ύ similar to the one derived in [5] for the
bosonic case. One starts from the relation (3.12), and deduces from the explicit
expressions (3.4), (3.5) that

Sj). (4.18)

In deriving this relation, one makes use of the fact that Qxp(2i(ίϊm — hm)) = \ in
agreement with (4.12). Combining the last equation with (3.12), one deduces

£e-ί<*+«)<«-2)/2βi<to-M«^

The last point is that we have to take account of the shifts of quasi-momenta. One
may check that

ύfttfr + Sjh/π) = ( - ψε«ύk

a,(m), (4.20)

so that if we choose
fίQΛ = e-Hh + π){a-2)/2 ei(hύj-hw)a ιP(a) (4 21)

w e find

^ ' ? (4.22)

i is always the root of — 1, not an index
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which leaves the physical space invariant. This completely determines the physical
operator χ which we began to investigate above using the braiding of the tp-fields.
This operator is similar to the one which was first constructed [16,3] for the
bosonic case. Although the complete proof of the corresponding unitary
truncation theorem remains to be given, it is likely that it holds: there probably
exists a physical family of operators which, acting on Jfphys are closed by fusion and
braiding, and leave this unitary Hubert space invariant. Thus supergravity should
make sense for C = 5, as was anticipated, in particular, in [18].

For the bosonic case, a more general result has been obtained
[6,3-5], namely, it has been possible to treat the case where h + fc=sπ, s= ±1
along a similar line as for s = 0. Here the situation is more complicated if s Φ 0 as we
now explain. Starting with the ψ fields, one derives Eqs. (4.9,4.10) again. The ratio
is still one and Eq. (4.11) becomes

\ 0. (4.22)

This condition is realized if fιw — hw + sπ is a multiple of π. However, in pursuing
the calculation further, one finds many equations that are impossible to satisfy.
From the viewpoint of the ξ fields, one gets stuck as well, of course. There, the
practical problem is that the matrix ρ involves eih'2 which does not transform
simply if h is replaced by fi=sπ — h. On the other hand, the striking properties of
the super-Liouville string model in three dimensions seem to indicate that a
unitary truncation theorem does hold at C = l (s = 1); it is not a straightforward
extension of the case already worked out, however.

5. Outlook

We have determined the quantum-deformation of the super-Mόbius group which
underlies the super-Liouville theory. In the same way as in the bosonic case [2, 4,
5], the quantum group structure will determine the fusion and braiding of the
general chiral fields that appear in the chiral decomposition of powers of the
metric. This will be instrumental in deriving the operator algebra of JV = 1
supergravity in two dimensions. For this purpose, there remains to study the
ξ-fields belonging to higher representations, but this should be straightforward. A
more tricky problem is to extend the discussion of Sect. 4, if possible, to the values
C = 3, and C = 7 in the strong coupling regime, that are analogous to C = 7, and
C = 19 of the bosonic case. The value C = 7 is especially needed, since evidences
have been given in [19], indicating that the corresponding non-critical string in
three dimensions is related with the Ising model. On the other hand, our result for
the case C = 5 fully supports the validity of previous studies of the five-dimensional
Liouville superstring [18], where the unitary truncation theorem was assumed to
hold by analogy with the bosonic case. In particular, the relationship between the
eigenvalue spectra of the quasi-momentum in the Ramond and Neveu-Schwarz
sectors, which appeared in our discussion, is in agreement with the GSO projection
which was used in [18] to construct the torus partition functions. The connection
of the present point of view, and in particular of the special values of the central
charge, with the occurrence of extended superconformal algebras in the corre-
sponding world-sheet theories [18, 26, 27] is worth further investigation.
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It is our hope that the quantum-group structure unravelled in the present paper
will help in explicitly building the string-scattering amplitudes, thereby solving a
long-standing problem. From the practical viewpoint, one may see that going from
the Bloch-wave basis to the ξ-fϊeld basis leads to great simplifications. This is
especially welcome because, as usual, the supersymmetric case is much more
complex than the bosonic one.

From the viewpoint of quantum groups, it is of course interesting to study our
structure per se. The simplest braiding matrix is nine-by-nine, and comparing our
solution of Yang-Baxter equation with the analogous one previously associated
with osp(l, 2), we have seen that that there exist two solutions differing by signs in a
few places, a fact which was unnoticed before to our knowledge. This illustrates
once more the virtues of the present approach to quantum groups: since one
explicitly constructs the operators whose braiding relations are given by the
R-matrix, one may uncover unexpected novel solutions of Yang-Baxter's equa-
tion, and quantum-group structures. (This was also the case [7] for the Toda
theories associated with Lie algebras of rank larger than 1.) Their common
mathematical feature is that they ultimately follow from the monodromy
properties of quantum operator-differential-equations. One may expect that there
will be interesting developments in this direction, as well.

Appendix A

In this appendix, we recall some background-material contained in [8-10]. With
our notation, the super-Liouville action reads

^ ^ j (A.I)

Φ is a bosonic field, and Ψ is a Majorana spinor. Introducing the fermionic
coordinates θa one defines the superfϊeld

Φ = Φ + iUΨ+±σθF. (A.2)

The general solution of the classical field equation may be written as follows [8].
Introduce the light-cone coordinates u = σ + τ, v = σ — τ (we work with the
Minkowski metric) and the standard covariant derivatives

k4 ί <A3)

The field-equation may be written as

D1D2Φ + ieφ = 0. (A.4)

Superconformal transformations [28] are of the form [8],

u' = gί{u,θ2), θf

2 = aί(u,θ2)i with D ^ + 2 1 ^ 0 ^ = 0 , (A.5)

^ = g 2 M i ) , 0Ί = α 2 M i ) > with D2g2 + 2ioc2D2(x2 = O. (A.6)
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An easy computation leads to the chain rule

where ηί = — η2

 = l, so that the covariant derivatives are indeed covariant. The
field-equation (A.4) is invariant under (A.5, A.6) if Φ transforms in such a way that

β φ - β φ ( - D i α i ) ( D 2 α 2 ) . (A.8)

One may show [8] that the field-equation (A.4) is equivalent to two relations of the
form

1 ) > - φ = 0 . (A.9)

The general solution of the field-equations (A.4) may thus be decomposed as

e"*= Σ Λ (M 2 )J>A), (A.10)
j = l , 3

where the left (respectively right) chiral components f-} (respectively fj) are any set
of three independent solutions of the first (respectively the second) equation (A.9)
which only depend upon one bosonic and one fermionic coordinates as indicated.
Equation (A. 10) is invariant under superconformal transformations, if, according
to Eq. (A. 8), the /'s and /'s behave as

frfji-D^)-1, Tj^TjiDi*!)-1. (A.11)

Since these two chiral components have similar properties at the present stage of
the discussion, we consider only one of them, say / ; , and simply denote θ2 byθ,Dί

by D, and Yγ by Y hereafter. As we have just recalled, the /'s satisfy the
supersymmetric Schrόdinger equation

A simple computation shows that D3 = 2id2/dudθ + 4θd2/{du)2 so that if TΓ = 0, the
solutions are simply /ίO) = 1, f2

{0) = \/2ίθ, and /3

(0) = u. TWO are thus bosonic and
one is fermionic. There is always a choice of independent solutions so that this is
true in general. By convention, the lower index 2 is reserved for the fermionic
solution. If we write the three solutions of (A.9) as column-vectors / and J, one sees
that Eq. (A.10) is invariant under the transformations f-+Mf, f-+(Mτ)~ ιJ, where
M is a three-by-three matrix. This amounts to taking different solutions of (A. 12). If
one wants to preserve the commuting characters of the solutions, M has five
commuting and four anticommuting entries. An important subgroup of matrices
M is the one of super-Mόbius transformations. It appears as follows. Consider the
case where i r = Q. In infinitesimal form, the subset of constant or linear super-
conformal transformations is generated by translations (u->w + ε, #-•#), dilata-
tions (u-+u — εu,θ^>θ — εθ/2), inversions (u->u — εu2,θ-+θ — εθu), constant super-

symmetries

linear supersymmetries

(u-+u-\/2ίηθu,θ^>θ-ηu/\/2Ϊ).
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The quantity ε (respectively η) is an infinitesimal parameter that commutes
(respectively anticommutes) with θ. One easily verifies that, according to the
transformation law (A.ll), for f̂  = 0, these super-Mόbius transformations
amount to taking linear combinations of the solutions fj0) of (A.4). Writing them
as a column vector with /3

(0), /2

(0), and /1

(0) in downward order, one sees that the
transformations may be written as

/<°U(1 +εL0)/<°\

)/<°>, and / ( 0 M

respectively, where the action of the infinitesimal generators (L 0 ,L ± 1 ,G ± 1 / 2 ) on
the column vector / ( 0 ) is that associated with the fundamental representation of
the super-Mόbius algebra, i.e. that obtained by combining (3.15) and (3.17). For
general "Γ one may consider the same linear combinations of the //s, so that the
super-Mόbius group is indeed realized by particular choices of the above
matrices M.

Since we are dealing with functions of u only, we may equivalently work at fixed
time τ, say τ = 0, and replace u by σ everywhere as we have done in the main body of
the paper. Thus we are working on the unit circle. If we write

r(σ9 θ) = G(σ) + ΘT(σ), /(σ, θ) =f°(σ) + θf \σ) (A.I 3)

Eq. (A. 12) becomes

where primes denote derivatives with respect to σ. The boundary conditions are
always such that T and G obey (anti)periodic conditions with period say 2π. One
has

T{σ + 2π) = T(σ), G(σ + 2π) = ςG(σ), (A.I 5)

where ς = 1 in the Ramond sector, and ς = — 1 in the Neveu-Schwarz sector. The
last equation gives ir(σ + 2π9θ) = ίr{σ9ςθ), and there exist three Bloch-wave
solutions noted ψj which are periodic up to a phase so that

ψ2{σ + 2π, θ) = ςψ2(σ, ςθ), (A. 16)

The quantity m so defined is related to the quasi-momentum of the Bloch waves.
Next, free-field decomposition is achieved by writing ψj(σ, θ) = ψ%σ) + θψ)(σ\ and
letting

for 7 = 1, and 3. The fields so defined are (anti)periodic:
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where the second sum runs over integer (half-integers) in the Ramond (Neveu-
Schwarz) sector. The modes satisfy the free-field Poisson-bracket relations, for
fixed j=l, or 3,

as a consequence of the canonical Poisson-brackets associated with the action
(A.I) [8]. The potentials T and G are the density of conformal and superconformal
transformation generators respectively, and one may check that (A.I 8) does lead to
the corresponding Poisson-bracket algebra with central charge C = 2/γ. The
Poisson-brackets of p{

n

1] with p^ } or of b^ with b™ are complicated and not very
illuminating. The interesting structure comes out by looking at the Poisson-
brackets of the τ/;-fields. They form a closed algebra in the sense that one has

{ψj(σ9 θ\ ψk(σ', 0')}B.P. = Σ ήίiσ - σ', m) Ψι(σ', Θ') xpjσ, θ). (A.20)
l,m

Finally, quantization is achieved after replacing (A. 19) by the corresponding
commutators. There is a way to define the ψj fields so that a quantum-version of
(A. 12) holds. For this purpose quantum-modifications must be introduced in the
classical formulae recalled above. There are two possibilities so that the number of
fields doubles. In particular there are fields ψ® and ψ® with j = 1, and 3 which are
given by

j j j = 1 , 3 .

where φf: = pu\ and

h=-(C-5-γ(C-9)(C-l))i ί=-(C-5 + |/(C-9)(C-l)). (A.22)

The fields with quantum-modifications h and fi are noted ψj9 and ψj respectively.
For C-*co, h~2πy, and the unhatted fields describe smooth modifications in the
classical limit. The hatted fields, on the contrary are non-perturbative solutions.
The quantum-version of the monodromy properties (A. 16) is

(A.23)

with similar formulae for the hatted fields. From (A.21) it follows that w and w are
related to the zero-modes of tlje ^-fields by

τ> t & = Φo 1 )l/r; m = w-; m = τ&-. (A.24)
n y n π π

The quantum version of the Poisson-bracket relations (A.20) is derived from the
monodromy properties of the quantum-equivalent of (A.12). One has [10]

φ/σ, θ) ψk(σ\ θ') = £ Sj«σ - σ\ w) Ψι(σ\ θ') ψjσ, θ), (A.25)
I , m = l , 2 , 3
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where4

S 1 3 (x, W )-S 3 1 (x, - 0 7 ) -

l3ίsin[h(w + ί)] ihε

1 '

22/ \_c.22/ \ _ , Γ^22 Sin(w)c22/ \_c.22/ \ _ , Γ^22

S1 3ίx τπ)-S*Hx - a r t - -iελl3
S22(x,m)-S22{x, w)- I ε ^

X,w)=-\ 1 +2 2 V~' w ; ^ ' cos \h{m +1/2)] cos lh(w -1/2)] '

and

Cl2/ ^ - ^ 3 2 / \_ Sm(h) -jh(m-ll2)B

S2Hx π)-S23(x w\-Hx π)-S(
1 2 (x,tπ)-S 3 2 ( j [ M / ) ]

rw (A.27)
• Sin(/ί) j/i(CT-i/2)e

e l 2 Γ , , 3 2 , A 2 1 COS[ft(tZJ-3/2)]
2 1 2 3 λ 1 2 cos[/ι(τσ —1/2)] '

According to (A.24), the set of quasi-momenta may be equivalently described in
terms of m and w. In terms of the former variable, the shift of w and ψ are such that,
for any function /,

jtp/σ, θ)f(m) =f(m + β j) φ/σ, β)

where

ε 3 = - ε 1 = l , and ε2 = 0. (A.29)

Denote by J^(m) the Fock space of states created by powers of the operators p£\
and b™ (or equivalently of the operators p{*\ and b^X with m and n negative,
acting on the highest-weight state5 |tσ,0^. It is the eigenstate of w which is
annihilated by the p^\ and b^ (or equivalently by the operators pj,3), and b^) with
m and n positive. The corresponding highest weights Δ0(w) such that L0 |tσ,0>
= J0(aj)|tz7,0> are given by

- ^ m 2 . (A.30)

4 Our notations are such that 2hw and /z are equal to ηω and π % 2 of [10] respectively
5 This special notation for the kets is used to avoid possible confusion with the group-theoretic
states I J, M > used in Sect. 3
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It follows from (A.28, A.29) that the fields ψ and ψ live in spaces of the form

\ j

where v and v are integers, and w(0) is an arbitrary constant. The spectrum of
highest weights is given by

^(^j l ^ /ϊ/W^J. (A.32)

According to (A.22), Kac's formula reads, with our notations

(A.33)

where m and n are positive integers. Comparing with (A. 32) one sees that the two
expressions coincide if we let

m(O) = m(OO)=i(l+π/ft) (A.34)

and 2v = n — 1, 2v = m — 1. wi00) is the quasi-momentum of the Sl(2, C)-invariant
vacuum which is such that zlo(t?7(OO)) = 0 in the Neveu-Schwarz sector. In the
Ramond sector, tσ(OO)=0 is the analogous value, giving zlo(tf7

ίOO)) = 0 as well; more
generally, it seems natural that the Hubert space associated with the Ramond
sector should be as in (A.31), with v and v half-integers instead of integers. This
correspondence is related to the shift of quasi-momentum occurring in the
comparison of the exchange matrix for the Bloch waves in the two sectors. This
seems to imply that, in a future formulation of the theory, the spin fields Sf
(respectively &) - whose insertions create endpoints of two-sheeted branch cuts for
ψ (respectively ψ) - should also shift w by π/2h (respectively πβft). Different choices
of m{0) are introduced in addition, for various reasons, in particular in the strong
coupling regime [see Eq. (4.12)].

Appendix B

In this appendix we give a more detailed description of the change of basis from the
ψ fields which appear naturally in the operator algebra of two-dimensional
supergravity to the ξ fields which exhibit its relation to the quantum super-Mόbius
group. The first step consists in choosing a more convenient normalization of the ψ
fields, in order to simplify the exchange matrix of Eq. (A.26, A.27) and in particular
to eliminate its dependence on the quantities λjk. In other words we make a
different choice of the functions dj appearing in Eq. (A.21). Indeed let us set

; j = 1,2,3. (B.I)

Under such a change of normalizations the braiding matrix transforms via
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μί(w) =

μ2{w) =
1

μ3M=-τ

λ21(w)coslh{w-\/2)y

1

(B.3)

sin (

In order to show that with this new normalization the quantities λjk indeed cancel
from the braiding matrix, it is necessary to use the following identities, valid for
some choice of the normalizations of [10]

1 , _x , , v Ί i s M sin [At*]

) = λ2ί(-w+l);

λ22(m)(λ2ί(rn))2 =

λ12(~m)'

2 _ cos[Λ(m+l/2)]

(B.4)

The identities of the first line of Eq. (B.4), as well as Ihe first one of the third line are
explicitly stated in [10] [below Eq. (5.11)] those on the second line can be derived
from the expressions6 for λX2 and λ21 given after Eq. (6.8) of [10]. Finally the
second identity on the third line can be derived from the expressions for λ22 [below
Eq. (5.11)] and λ21. Regarding this last identity it may seem at first sight surprising
that the rational factor in the expression for λ22i in which w appears without its
usual factor h, may be eliminated, however it turns out that the ratios of gamma
functions which appear are precisely taylored to cancel it (to prove that, one must
make use of the second degree equation which h satisfies). To summarize, the
identities (B.4) imply that, with the normalizations of Eq. (B.3), the braiding
algebra of the ψ fields becomes, as quoted in Sect. 2 (we omit the tildes)

sin (h) cos (h/2)

cos \h{m ~ 1/2)] sin [fttσ]
p-ih(2m~l)ε
C 5

sin[/ι(tu + l)]cos[/ι(π7 + l/2)] ίfιε

sin[Λtπ]cos[Λ(f!J-l/2)] β '

fc cos(A/2) cos [Λ(oj +1/2)] e-ih{w.1/2)ε

sin [Λtσ] cos [fe(tu -1/2)]
(B.5)

' cos \h{xπ -1/2)] cos [h{m +1/2)]

sin2 ft

j + l/2)]cos[Λ(tσ--l/2)]/'

6 Warning: these two expressions contain a misprint, the numerators and denominators of the
fraction appearing on the right-hand side should be exchanged
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and .
o l 2 / v r _\_ c 3 2 / v _\ SHI (ft) -ih(m-H2)ε

S12{x,m)-S32(x, -w)~ -^cosWmί/2)f

cos lh(w-1/2)]'

Sί2(x m)-S32(x m)- C 0 S [ f e ( C T ~ 3 / 2 ) ]

S21{x,w)-S23{x, -π)- c o s ί h { w

As announced the quantities λjk have been eliminated, moreover in the new
normalization the exchange matrix has a number of useful properties, on which
relies the construction of the new basis of fields. Indeed it follows from Eq. (B.5,
B.6) that Σ s j ^ w ) = e_ihe for a Π y a l u e s o f ^ f c ) ( β ? )

Following previous studies of similar problems [2,7] we recall that such identities
signal the possibility of constructing combinations of the ψ fields whose braiding
will be especially simple. Namely if we consider

£ > , θ) = e~ Y«™(Σ v/σ, θ) eci) eγ"™, (B.8)
U /

then the braiding of ξa with itself involves precisely the quantities appearing in
Eq. (B.7); indeed

ξJiσ, θ)ξx(σ', θ') = e-γ"(Σ eci+ciSι^{x, w)φ,(σ',θ')ψk(σ, θ))er- (B.9)

so that Eq. (B.7) implies

provided the quantities C{ are such that

whenever ^(x,m)Φ0. (B.ll)

In order to study the braiding of ξa and ξβ for α + β we will have to derive a number
of other identities satisfied by the braiding matrix of Eqs. (B.5, B.6). Indeed, when
studying the exchange of ξa and ξβ9 it is convenient to separate the terms involving
^ α ± ^ b y writing

ξJίσ,θ) ξβ(σ\θf) = e e fc^θ)e e

L \J ) J

Σ V f c ( ^ (

As a first step, we would like to derive an exchange equation of the form:

2 1 ,fcψk(σ,θ)ecΛ e-(γy-Y^21, (B.I3)
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which only involves the differences Yγ — Yδ. The sums Yy + Yδ are determined as
follows: Looking at Eq. (B.I2) with α and β replaced by y and δ respectively, one
sees that Eq. (B.13) will take the form of the exchange algebra (3.2) for the fields ξ if
the terms which appear in the summation are such that

Ya+Yβ=Yy+Yδ, (B.14)

(up to an irrelevant constant caβyδ) so that e

±^γy + Y^l2

 a r e common factors and may
be freely multiplied on the right and on the left. To proceed further we consider the
ansatz:

(B.I 5)

and set

^ φ (B.16)

where vaβ = vα — v̂ . Substituting (B.I 5) into (B.I 3), we find an equation of the form

Σ DSjRx, UJ) exp(ihvaβw(εj - εk) + φ%) Ψι(σ\ θ') xpm(σ, 0)]
jk, Im

= Σ β2SΣ[exp(φ5S + i ^ t K e , - e J ) V ^ β 0 Vw(σ,β)] . (B.I7)

For any value of (/, m), the coefficient of ψt(σf, θ')ψm(σ, θ) on the right-hand side of
Eq. (B.17) has a finite number of Fourier components with respect to m. This shows
that an equality such as (B.17) is rather non-trivial since most of the S-matrix
elements appearing on the left-hand side have poles for some values of w, thus the
essential idea behind our construction is that it is possible to define combinations
of these matrix elements for which these poles cancel, and moreover which have
only a finite number of Fourier components with respect to w. Fourier analysis
shows that vyδ is an integer. No vyδ may vanish, since otherwise the determinant of
u{ would be zero for any w. Thus all vα's must be different. We now consider
separately the quantities appearing on the left-hand side of (B.I 7) as coefficients of
ψι{σ\ θ')ψm(σ, θ) for the various values of (/, m).

The case / = 2, m = l. The quantity

must have a finite number of Fourier coefficients, in particular the poles in z = eίhw

must disappear. This is true if

Assuming this condition to hold, one finds by explicit computation

e

where the terms are arranged so that the Fourier decomposition is immediate.
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The case Z = l , m = 3. Consider

The poles in χ=e2ιhm disappear if

ψll=ψlβ ψlβ = ψlβ + ̂ ( f c + π ) ( B 2 2 )

One finds

* Y*

I — X

e~3ih

o — 2ih(\ 9/7~^Wv

l-e2ίh \-{~xe~ih) l-e2ih

1 V Λ -2tΛ

l+<
ίft

The case 1=2, m = 2. Consider

? ? / ( V = e2ihv^+φ^S2

3

2 + e-2u"«+*®S2

1l + eφih22. (B.24)

The poles in x disappear under the same condition as above and one finds:

—x

IJ^ (B.25)
\ pihY + 2

The above formulae, with v = 0 give:

Ta

2

a\0) = e^e-i\ (B.26)

Tal?(0) = e<3°e-ih, (B.27)

Ti2(0) = β ^ e - Λ , (B.28)

so that we recover the formulae we have used to derive the braiding of ξa with itself.
A closer consideration of the case l = m = 2 shows that the method of [2,7]

cannot give a complete answer to our problem. Indeed the l = m = 2 term on the
right-hand side of Eq. (B.I 7) is obviously independent of m, whereas the quantity
T2

β

2(v) of Eq. (B.25) is w independent for v = 0 and 1 only, so that we cannot define
all three ξ fields of the form of Eq. (B.8). It turns out that the solution is to define
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two of the fields (say ξlt3) of the form (B.8), with

(B.29)

From these values, which satisfy the constraints (B.19, B.22, B.ll), and Eqs. (B.8,
B.I 5) one easily recovers the quantities M{ 3 of Eq. (3.4). Moreover one may use the
identities given above for v= +1 to derive the braiding of ξ± with ξ3. In the case
v = 1 one finds that the result can be cast in the form of Eq. (B.I7), with ρ\\ as the
only non-vanishing matrix element appearing on the right-hand side. On the
contrary, in the case v = — 1, one finds that the third field ξ2 inevitably appears on
the right-hand side, which turns out to contain three terms, proportional to ρ\\,
ρll, and ρl{, respectively. This computation fixes ξ2 up to a normalisation
constant, and reduces to (3.5) for a convenient choice of this constant. One may
then use Yang-Baxter's equation to determine the other non-vanishing elements of
the matrix ρ, and their values, up to some minor indetermination. Finally an
explicit computation lifts this indetermination and shows that the previously
determined <fs indeed satisfy the exchange algebra of Eq. (3.7). This computation
makes use of the identities we have described above, and of others, most of which
can be expressed as combinations of the former, but are in some cases simpler to
derive directly from the explicit expression of the S-matrix; for instance:

cos(M (S%(x9 w) +1) - WhmS2Λ(x, ™) + e~ ihwSl\{x, m)) = 0. (B.30)
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