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Abstract. We consider the Einstein/Yang-Mills equations in 3 + 1 space time
dimensions with SU(2) gauge group and prove rigorously the existence of a
globally defined smooth static solution. We show that the associated Einstein
metric is asymptotically flat and the total mass is finite. Thus, for non-abelian
gauge fields the Yang-Mills repulsive force can balance the gravitational attractive
force and prevent the formation of singularities in spacetime.

1. Introduction

It is well-known that there are no non-singular symmetric static solutions of the
vacuum Einstein equations, Rij—^Rgij = 0; indeed, the unique static solution is
the celebrated Schwarzschild metric which is singular at r = 0 [1]. Similarly, the
pure Yang-Mills equations d*F= 0 have no static regular solutions [3,4] and if one
couples Einstein's equations to Maxwell's equations,

Rij-ίRgt^σTtj, d*Ft~0

(where Ttj is the stress energy tensor associated to the electromagnetic field
Fijdx* A dxj), then the only static solution is the Reissner-Nordstrom metric which
is again singular at the origin [1]. Finally, in [5] it is shown that for any gauge
group, in 2 +1 spacetime dimensions, the Einstein/Yang-Mills (EYM) equations
likewise have no regular static solutions. Deser has asked the question as to
whether there exist non-singular static solutions in 3 +1 spacetime dimensions. In
this paper we prove that in 3 +1 spacetime dimensions with SU(2) gauge group, the
EYM equations admit non-singular static solutions, whose metric is asymptoti-
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cally flat Minkowskian. Thus for non-abelian gauge fields, the Yang-Mills
repulsive force can balance gravitational attraction and prevent the formation of
singularities in spacetime. Viewed differently, from a mathematical perspective, it
is the nonlinearity of the corresponding Yang-Mills equations which precludes
singularities.

The problem of finding static non-singular solutions of the EYM equations,
with SU(2) gauge group reduces to the study of a coupled system of ordinary
differential equations of the form

r2AW + Φ(w, A, r)W + w(l - w2) = 0,

solution develops a singularity at some finite rλ~-9 with w(rλ)>0. That is, W is

rA' + (1 + 2W2)A = 1 - ^ =-^-
r

in r^O, where Φ(w,A,r) = r(l— A)—(1 — w2)2/r, and the unknowns are A = A{r\
and w = w(r). Together with these equations, we are also given a one-parameter
family (λ^O) of initial conditions which are chosen precisely so as to avoid a
singularity at r=0. The problem is then to find a particular parameter value λ for
which the corresponding solution (wλ(r), w'λ(r), Aλ(r)) has a finite limit as r-> oo. (We
note that such solutions were previously observed numerically, by Bartnik and
McKinnon, [2] they also derived the above system of equations. This important
paper was the starting point of our investigations.)

In the appendix (Sect. 7) we show that given any λ > 0, the above system has a
unique solution, defined on an interval 0 < r < R(λ), satisfying the initial conditions
w(0) = l, w'(0) = 0, w"(0)=— λ. This gives us a one-parameter family of local
solutions which are non-singular at r = 0. However, for large values of λ, the

\_

V
unbounded near rλ9 and lim^(r) = 01. It follows that the solution cannot be
continued beyond rλ. Furthermore, at rλ, the associated Einstein metric becomes
singular, and the solution is no longer of physical interest.

We now briefly describe the contents of the paper. Section 2 is devoted to a
quick derivation of the equations, whereby we also put them into a form suitable
for our purposes. In the next section, we find a range of parameter values for which
A stays positive and W remains bounded. We also analyze the solutions for small λ.
In Sect. 4 we show that for λ>2 the solution develops a singularity in the region
w > 0. In Sect. 5 we give a rigorous proof of the existence of some X< 2 for which
the equations have a bounded solution. In the final section, we show that for our
solution, the corresponding Einstein metric is asymptotically Minkowskian, and
the total mass is finite.

Added in proof. We have learned through a preprint of G. W. Gibbons (Self-gravitating magnetic
monopoles, global monopoles, and black holes), that H. P. Kunzle and A. K. M. Masood-ul-Alam
[J. Math. Phys. 31, 928 (1990)] have also considered these equations and have done both
theoretical and numerical studies; they conclude that for λ>l.l, w' becomes infinite before w
reaches —1. However, they do not provide a theoretical proof of the existence of a bounded
solution as indicated numerically in [2].

Next, Straumann and Zhou [Phys. Lett. B 237, 353 (1990)] have numerically investigated the
linearized stability of our solution. They have indicated that there is a small positive eigenvalue.

1 This, too, was first seen numerically in [2]. We shall give a rigorous proof of this fact (for λ>2)
in Sect. 4 (Theorem 4.1)
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2. The Equations

The EYM equations with SU(2) gauge group have been derived in [2]; for
completeness, we shall give a short description of the derivation.

Let τ 1 ,τ 2 ,τ 3 denote the standard basis for su(2\ the Lie algebra of Sl/(2); i.e.

_ ί(° Λ _ ί(° ~l\ _ i(ί °
Using gauge invariance, and seeking solutions of a particular form, the su(2)
connection takes the form

SI = wτγdΘ + [cos θτ2 + w sin Θτ2']dφ,

where w = w(r). The Yang-Mills curvature F, associated to this connection, is
obtained from the usual formula JF = έ/Sl + SI Λ SI, and can be written as

F = w'τidr A dθ + w'τ2dr A {sinθdφ)-{\ -w2)τ3dθ A (sinθdφ), (2.1)

where "prime" denotes differentiation with respect to r.
The static, spherically symmetric metric can be written as

ds2=-T- 2dt2 + R2dr2 + r 2{dθ2 + sin2 θdφ2), (2.2)

where Tand R are both functions of r. If \F\2=gikgjlFijFkι, then an easy calculation
gives

The Yang-Mills equations, d*F= 0, in this set-up reduce to the single equation

VY R ,

The EYM equations are derived from the action

where 3% is the scalar curvature associated to the metric (2.2). These equations,

become

T V 2RΪ 2W2 R 2 ( l-w 2 ) 2

+ •

-(RT)

RT2) rR r2 r4

T Y ΪT 2w'2 J?2(l-w2)2

RT2 rT r
,2 (2.5)

If we define

A = R~2,
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then (2.5) reduces to the two equations

rA' + (2w'2 + i μ = 1 - ~~^-, (2.6)

T' M _ w

2 ) 2

[ W} •'< -2W2)A-\. (2.7)

In this notation, (2.4) becomes

- r(ί-A)-{ ~W '- |w' + w(l-w2) = 0. (2.8)

Equations (2.6H2.8) constitute the entire system. Observe that remarkably, (2.6)
and (2.8) do not involve % so we can first solve these for A and w, and use (2.7) to
obtain T.

Next if

Iim4(r) = l , (2.9)
r-*αo

then R(r)-*ί as r->oo so the metric (2.2) will be asymptotically flat if in addition
T(r)->1 as r->αo. Also, if

lim (w(r), w'(r)) is finite, (2.10)
r-*oo

then we show in Corollary 6.4 that the total mass is finite. Thus we seek solutions of
(2.6) and (2.8) having asymptotic behavior (2.9), (2.10).

There are two explicit solutions of our system (2.6)-(2.8); namely, if w = 1 we
recover the Schwarzschild solution, while if w = 0, we obtain the Reissner-
Nordstrόm metric with w(l)-valued YM curvature,

7 = ~dr Λdθ + dθΛ (sinθdφ) τ3 .

The conditions at r = 0 needed to ensure that we formally have non-singular
solutions at r = 0 are easily obtained:

w(0) = l , w'(0) = 0, i4(0) = l . (2.11)

But Eqs. (2.6) and (2.8) are nonlinear and singular at r = 0. However, it follows from
the local existence theorem outlined in the appendix that the non-singular
solutions are parametrized by w"(0); we make this explicit by writing

w "(0)=-A, λ>0. (2.12)

That is, in the appendix we outline a proof that given any λ > 0, there is an interval
Iλ: 0^r<Rλ, for which the corresponding solution of Eqs. (2.6), (2.8), together
with the initial conditions (2.11)? (2.12) has a C2+a solution on Iλ which is analytic
on the interior and which depends continuously on λ.

Thus our problem is to prove that there is a λ>0 for which the system (2.6) and
(2.8), subject to the initial conditions (2.11) has a solution which satisfies both (2.9)
and (2.10). In fact, we shallprovejthat Eqs. (2.6) and (2.8) admit a "connecting
orbit"; i.e., a solution (w(r9λ),w'(r,λ)) satisfying both (2.9) and
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We will then show that T(r)->ί as r-+oo. Furthermore, if we define the quantity μ
by

) = r(l-A(r)), (2.13)

then we will prove

lim μ(r) = m < oo
r- +oo

i.e., that the "total mass" is finite (cf. [2.6]). We note that [cf. (2.6)], μ satisfies the
equation

(\ — W

2 ) 2

μf = 2Λwf2+- j - ± - . (2.14)

3. The Case A £ 1

We rewrite Eqs. (2.6), (2.8):

2 ί-K- 2-^", (3.1)

τ2Aw" +\r(\-A)- ^ W ^ w' + w(l - w2) = 0, (3.2)

subject to the initial conditions

w(0) = l , w'(0) = 0, w"(0)=-/l<0, A(O) = ί. (3.3)

Our main objective in this section is to prove that for λ ̂  1, the solution develops
no singularities in the region w 2 ^ l ; that is, w' stays bounded, and A>0.
Furthermore, we shall also show that for λ near 0, all orbits (w, w') exit this region
through the line w= — 1.

We shall often have occasion to use the following "self-adjoint" form of the
above equations:

/ (\ _™>2\2\

\ (3.4)

(3.5)

where

It is also desirable to define the important function Φ by
M _ W 2 \ 2

Φ(r) = r(l-A)-{

 r

 ] . (3.6)

Then (3.1) and (3.2) can be rewritten as

A = Φ/r (3.1)'

r2AW 4- Φw' + w(l - w2) = 0. (3.2)'
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As we have remarked above, in the appendix, we show that given A, 2 ̂  λ ̂  0, there
is an R > 0 such that the problem (3.3)—(3.5) has a (unique) smooth-solution (Aλ, wλ)
defined on 0 < r < JR, and Λλ(r) > 0 on this range.

Our first goal in this section is to show that | w'| is bounded and Φ > 0 if λ ̂  1. We
will then show (in Theorem 3.1) that Λ>0 in the region

Γ = {(w,vt/): w 2 g l , w '^0} . (3.7)

Theorem 3.1. Fix λ^l; then in Γ, A(r,λ)>0, and \W{r,λ)\ is bounded.

This theorem will follow from a series of lemmas. First, we define g by

g(r) = cr2 + w 2 - l ; (3.8)

we then have

Lemma 3.2. If c = l, λ^l, and A(r)>0 on0<r<Rl9it follows that g(r)>0 and
g'(r)^0 on this interval.

(In Sects. 4 and 5, we will use this function with c = 2 and c = \, respectively.)

Proof. We have

g'(r) = 2cr + 2wwf, (3.9)

so

g(0) = 0 = g'(0). (3.10)

Also

g"(r) = 2c + 2w'2-f2ww", (3.11)

so that

g"(0) = 2(c-A). (3.12)

Next, a calculation yields the following differential equation for g:

r2Ag" + Φg' = 2[g + r2^lw/2 + (1 - c)(l - w2)2] . (3.13)

Now if A < 1 and c = 1, then from (3.12), g"(0) > 0 so g and g' are positive for r near 0;
then (3.13) shows that were there a smallest f, 0 < f < J R 1 , for which g'(r) = 0, then
g"(r) > 0. It follows that g' > 0 and 0 < r < R1. Thus our result holds if λ < 1. If λ = 1,
then g' ̂  0 follows by continuity. •

Corollary 3.3. Let0<λ^ 1,αndassume A{r)>0αrcd w(r)^
on this range, w'(r) ̂  — r/ε

Lemma 3.4. Lei 0 < A ^ l , and define

h(r,λ) = A(r,λ)-w2(r,λ). (3.14)

TTien h>0 as long as A>0 w ί/ze region w>0.

Proof. We have ft(0)=0 = h'(0), and that /ι//(0) = 2A(l - λ ) > 0 if A< 1. Moreover, h
satisfies the equation
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[cf. (3.8) with c = 1]. Then if h(r) = 0, (3.15) shows that h'{r) > 0; hence h(r) > 0. Thus
our lemma holds if λ < 1. If λ = 1, then h ̂  0 follows by continuity. If h(r) = 0, then
(3.15) shows h'{r)>0, since g ' ^ 0 and 0 < w < l , and this would be a
contradiction. •

Corollary 3.5. If λ^ί, then ,4 ( r )^ε 2 >0 in the region w(r)^ε>0.

We now obtain some properties of the function Φ; cf. (3.6).

Lemma 3.6. Let λ ̂  1 and assume A(r) >0on0<r<R1. Then Φ(r) > 0 and Φ\r) ̂  0

on this range.

Proof. An easy computation shows

r2

— Φ\r) = (1 - w2)2 + 2w(l - w2)(rw') + A(rwf. (3.16)

Notice that Φ' > 0 if w ̂  0. If w > 0, then we consider the right-hand-side of (3.16) as
a quadratic form in u = \ — w2 and v = rw'; i.e.,

r 2

— Φ\r) = u2 + (2w)uv + ̂ i ; 2 .

r2Φ'β is clearly positive if u ~ 0 and t> > 0, and using Lemma 3.4 its discriminant is
4(w2 — ̂ 4) < 0. Hence the lemma is proved if λ < 1, and the case λ = 1 again follows
by continuity. •

Note that Corollaries 3.3 and 3.5 imply that if λ ̂  1, w' is bounded from below in
the region w ̂  β > 0. The next lemma shows that w' is always finite in Γ. For this, we
introduce the following notation: Let ro = ro(λ) be defined by

(Note that r0 is well-defined since W < 0.) We can now complete the

Proof of Theorem 3.1. By the local existence theorem in the appendix, there is an
JR > 0 such that w, wr, and A are all continuous on [0, K], A > 0 and W is bounded
from below on this interval; say w'(r)> —K. We shall show that w' is bounded
below up to the first zero of A, and then that A is never zero in the region w2 ̂  1,
W ^ 0. Thus if W were unbounded in the region where A > 0, we could find a
sequence of points {rn} such that ^4(rJ>0, w'(rM)= — n, and w"(rπ):g0 [if w"(r)>0
whenever wr(r)= — n, then wr would be bounded below by — n]. If n is large, say
rc>M, then rn>R and thus by Lemma 3.7, Φ(rn)>Φ(R)>0, so Φ(rπ)w'(rJ
< —nΦ(R). Then using (3.2)', we have

r2

nA(rn)w"(rn) + Φ(rn)wf(rn) + w(rn)(\ - w2(rn)) = 0. (3.17)

But this cannot hold for large n since the left-hand side of (3.17) tends to — oo as
tt-> oo. Thus no such sequence {rn} can exist, and w' is bounded below up to the first

zero of A. On the other hand, if lim A(r) = 0, we set A(f) = 0 and A is continuous on

[0,f]; we thus conclude that lim,4w'2 = 0. Then for small ε>0,

- A(r- ε) = A(f) - A(r~ ε) = A'(ξ)ε > 0

from (3.iy, where ξ is an intermediate point. This contradiction shows that A>0
inΓ. •
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Thus there is no blowup for λ ̂  1 in the region w2 ̂  1, w' rg 0, and A > 0 here. But
for λ > 2 things are quite different, as we shall see in Sect. 4.

We shall next show that for λ near zero, the corresponding orbit exits the region
Γ through the line w = — 1. To this end, we make the following change of variables
in Eqs. (3.1, (3.2)

μ(r)= j(l-A(r/\ft))9 w(r) = w(r//λ), (3.18)

and find that μ and w satisfy

r 1 —

together with the initial conditions

μ(0) = 0, w(0) = l ,

(3.19)

(3.20)

(3.21)

We have thus transformed our equations to a new system in which the parameter λ
appears explicitly in the equations but not in the initial data. Now as we have
shown in the appendix, the solutions depend continuously on λ, so here, too,
solutions of these equations depend continuously on λ, provided that λ ̂  1 (so that
the coefficient of w" doesn't vanish for r > 0 in the relevant region w2 ^ 1, w' ̂  0).
We can consider Eqs. (3.19), (3.20) in their own right, for a moment, without
reference to our original system. Thus consider (3.19), (3.20) for λ = 0, together with
the initial conditions (3.21); then these become

w(O) = l ,

, (1-w 2 ) 2

μ(0) =

(3.22)

(3.23)

f) = z(t), then (3.22) goes overIf we make the change of variables t = In r, w(r) = vv
into

z"-z ' + z( l -z 2 ) = 0, z(-oo) = l , z'(-oo) = 0 = z"(-oo).

If we write the equations as a first-order system z' = y,y' = y — z(l— z2), and define
1 / z4 \

iί(z,)/) = -I z2— — + y2 I, then H' = y2, so fί increases on orbits. The orbit (z,y)

satisfying the boundary conditions z = l , j ; = 0 a t ί = — o o cannot ever return to
y = 0 since the graph of H(z,0) has the form as depicted in Fig. 1 below; this orbit
must then exit the region z2 ̂  1, z' ̂  0 through z = — 1, z' < 0, at some finite time
Γ>0; see Fig. 1.

z=-1

H(z.O)

Fig. 1A and B
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Thus for λ = 0 the solution to (3.19H3.21) exits the region Γ throughthe line
w = — 1 moreover, the orbit crosses this line transversally at some finite t because
W <0. Hence for small λ>0, the solution to (3.19H3.21) must also exit Γ through
w = — 1 at time t near Γbecause A > 0. Transforming back to (3.1)—(3.3), we see that
for 0<λ^ε, the orbit exits Γ through the line w = — 1. Thus we have shown

Lemma 3.7. The set of all λ^l for which there is a solution (w(r,λ),Λ(r,λ)) of
(3.1H3.3), for which the orbit (w(r,λ),w\r,λ)) exits Γ through w= - 1 , w'<0, is a
non-void open set.

Numerical approximations to the solution for λ = l indicate that w' goes
positive in the region — 1 < w < 0. If this could be established rigorously, it would
follow that the set of λ for which the corresponding orbits exits Γ through w' = 0 is
again an open non-void set. Thus there would exist a X, 0 < λ< 1 for which the
corresponding orbit stays in Γ for all r^O. This would solve our problem as
originally stated [cf. (2.10)]. In fact, we shall prove in Sect. 6 that for some X<2,

cf. Theorem 6.1.

4. The Case λ>2

We shall show that for λ > 2, the solution must become singular in the region w > 0.
In fact, we have the following theorem.

Theorem 4.1. If λ>2, then the solution of (3.3)—(3.5) cannot exist up to w = 0.

Proof. Thus suppose that λ > 2, and the solution of (3.1)—(3.3) exists up to r 0 = ro(λ).
That is, for 0 ̂  r ̂ r 0 , w and A are defined, A >0, and Eqs. (3.3)—(3.5) are satisfied.
[Recall w(ro(λ\ λ) = 0.]

We recall the functions g and h [cf. (3.8) and (3.14)], which we now consider on

h(r) = A(r)-w\r) (4.1)

and

g(r) = 2r2-(ί-w2(ή). (4.2)

Thus, from the proof of Lemma 3.5, h(0) = 0 = ft'(0), and ft"(0) = 2/1(1 -λ); hence

h(r)<0 for r near 0, if λ>\. (4.3)

Moreover, g(O) = O = g'(O), and g"(0) = (2-λ); thus

g(r)<0 for r near 0, if 2 > 2 . (4.4)

Concerning these functions, we have two lemmas, the first of which is

Lemma 4.2. Let λ>\; then h(r)<0 as long as g(r)<0.

Proof. Suppose g(r) < 0 , 0 < r ^ f : g r o , and h(f) = 0, f being minimal with respect to
this property, 0 < f ^ r o . Then using (3.3),

„ , 2uΛ4 Φ
h — — 2ww H h -5-,

r r 2
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SO

h'(f) = -2ww' - l(ww')2 + %.w fy ' f2 (4.5)

Now consider the right-hand side of (4.5) as a formal quadratic form in s = (wwf).
We will show that the discriminant is negative; the form is clearly negative for large
5, and hence the form is everywhere negative.

The discriminant A of the right-hand side of (4.5) is

= 4 1 +
2(1 -w2) 2(1-w2)

2 ) 2

=4

<4 l -

l-w:

again because g(r) ̂  0. Thus h'(r) < 0, and this is impossible. It follows that no such r
can exist. •

Lemma 4.3. Let λ>2; then g'(r)<0 as long as h(r)<0.

Proof. Suppose h(r) < 0 , 0 < r ^ f ^ r o and g'(r) = 0, r being minimal with respect to
this property, 0 < r g r o . We will show that g"(r)<0, so that by the mean-value
theorem, no such r can exist.

We recall that g satisfies the differential equation

β v / r2A° ' r2A

Now at r=f, we have w2>A, since h(f)<0, and — wn'' = 2r, since g'(f) = O. Thus

2

-f 2 l [ ' - r w w ~^

,2\2

f2A
[ 4 ? 4 - ( l - w 2 ) 2 + g ] r = ?

since g(r)<0. Thus no such r can exist. Π

We now can complete the proof of Theorem 4.1. First, note that h(r)<0 for r
near zero, and h(r0) = A(r0) > 0. Hence h{r) = 0 for some r < r0 let r x be the first zero
of h. Similarly, g\r) < 0 for r near 0, and g'(r0) = 4r0 > 0, so let r2 be the first zero of
g';thusg(r)<0, 0 < r ^ r 2 .

Now since g(r2) <0, Lemma 4.2 implies rγ > r2. On the other hand, Lemma 4.3
shows that r2 ^r γ. It follows that for λ>2, w(r, A) cannot reach the line w = 0. •
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5. Existence of a Connecting Orbit

In this section we shall prove the existence of some λ ̂ 2 for which the
corresponding solution of (3.3)—(3.5) satisfies

The basic idea of our approach is easy to describe. Thus, as we have shown in
Lemma 4.1, for λ near 0, there is an rλ>0 such that the following statement holds:

w(rλ,λ)=-\, and for 0<r£rλ9 w'(r,λ)<0 and A(r,λ)>0. (5.1)

Next, from Theorem 4.1, it follows that for λ > 2, the solution (w(r, λ% A(r, λ)) cannot
satisfy (5.1). Define the set A by

A = {λ^0: there exists an rλ>0 for which (5.1) holds},

and set
X=supΛ.

We will prove that the X-orbit is the desired solution. We first list the a-priori
possibilities for the behavior of this orbit; then we shall eliminate all but the
desired case.

Now for the solution (Λ(r, X)), w(r, X)), one of the following six possibilities must
hold:

1) XeΛ.
2) There exists an f > 0 such that w'(r, λ) = 0, w(r, λ) ̂  - 1 , and W{r, λ) < 0, Λ(r, λ)>0
for 0 < r < r.
3) There exists an f > 0 such that lim A(r, λ) = 0, w'(r, λ) is bounded from below on

0^r<f, and w(r,I)^ - 1 , u/(r,X)<0, ,4(rLX)>0 on 0_<r<r.
4) There exists an r > 0 such that lim A(r, λ) = 0, w'(r, λ) is not bounded from below

r^rf

on 0 ^ r < r , and w(r,λ)^ —1, w/(r,X)<0, A(r,λ)>0 on 0 < r < r .
5) There exists an r > 0 such that the solution (w(r,X), A(r,X)) is singular at r; i.e.,
w'(r, X) is unbounded on 0 g r < r.
6) For all r>0, w(r,λ)> - 1 , w'(r,X)<0, and yl(r,X)>0.

To see that these are in fact all the cases, we note that if A is always positive, the
solution can be continued unless \w'\ becomes unbounded for some finite r. (We
shall show below, in Proposition 5.2, that lim A(r,X) exists.)

Before discussing these cases, we shall need two propositions (which will
repeatedly be used throughout this section), the first of which is

Proposition 5.1. There is a constant L > 0 such that if 0 5Ξ λ ̂  2, and w(r, λ)2 ^ 1, then
(Awf2)(r,λ)^L.

Proof. Let f=Aw'2; then / satisfies the equation

r2f + (2rf + Φ)w'2 + 2wwr(l - w2) = 0.

By the local existence theorem in the appendix, there exists an R > 0 such that the
solution to (3.1H3 3) is non-singular on O^r^R, and 0^/1^2. Thus / is
continuous, and hence bounded on this compact set; say f^L1. If n > L l 5 then
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either f(r,λ)^n for all r and λ^2, or else there exist rn>R, λn^2 such that
f(rn,λn) = n, and f'(rn,λn)^0. Since

(\-w

2)2 l l
Φ{r,λ) = r(ί-A)~- L > ~ - > - ^ ? for r>R,

r r R
We have r2j\rn, λn) ̂  0, and 2rJ(rn, λn) + Φ{rn, λn) ̂ 2Rn-^>2, for n large. Since

K

w(l— w 2)^ — 1, and w/2(rn,AJ>|w'(rn,/lrl)|, we would have

fif'(rm λn) + (2rJ{rm λn) + Φ(rπ, λn))W\rn, λn) + 2W(1 - w2)(rn, λn)>0.

This contradiction establishes the result. •

Proposition5.2. A(r,λ) is continuous for O ^ K l m the region w25Ξl.

Proof. It suffices to show that A is continuous at (r, X). If lim A(r, X) φ 0, then by the
last result, w'(r,λ) is bounded on O^rrgr, so the solution (A9w) of (3.1)—(3.3)
continues beyond r, and depends continuously on the parameter λ. Thus it only
remains to consider the case where lim A(r, λ) = 0. If we set A(r, λ) = 0, then we see
that A is a continuous function of r.

We now claim that A is continuous in λ at λ = λ. For this, it suffices to show that
μ(r,λ) is continuous at X[cf. (2.13)]. Thus, let λ<X, and choose r<r; then

0 < r-μ(r9 λ) = μ(r, I) - μ(f, λ)

= μ(f, I) - μ(r, I) + μ(r, I) - μ(r, λ) + μ(r, A) - μ(r, λ)

I) - μ{r, λ),

because μ'>_0 [cf. (2.14)]. Now given ε>0, choose r<F so close to r that
|μ(r,X) —μ(r, J)|<ε/2. For this fixed r, choose δ>0 such that 0<X— /ί<<5 implies
|μ(r, X) — μ(r, λ)\ < ε/2; then for these λ, |μ(r, X) — μ(f, λ)| < ε, and this proves our claim.

Next, we show that A'{r, λ) is bounded for (r, λ) near (r, A). Thus, from (3.2)r,

A'= +Φ/r2.

Since Aw'2 is bounded (Lemma 5.1), and r ̂  Φ ^ , we see that Φ/r2 is bounded
for r near f thus A' is bounded.

We can now complete the proof of Proposition 5.2; namely, let ε>0 be given,
and let k be a bound for \A'\. Let <5 = ε/6/c, and choose |r-f|<(S. Choose r^f—δ
< r! < f so that |v4(f, A) — ,4(r1? X)| < ε/3. Then choose τ such that 0<λ — λ<τ implies
\A(ruλ)-A(ruλ)\<εβ. Then

ε/3 + ε/3

2ε

if \r—f\<δ, and 0<X—>l<τ. This completes the proof of Proposition 5.2. •

Corollary 5.3. Let v{r, λ) = (AW){r2λ\ and define v(f,λ) = 0. Then v is continuous in
the region w 2 ^l , and if O^λ^λ, v is bounded in this region.
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Proof. We need only investigate the behavior^ of v near (r,X). Since v2 = (Awr2)Λ,
Aw'2 is bounded, and A(r,λ)-^0 as (r,λ)-+(r,λ), the results follow. •

We are now in a position to discuss the various cases l)-6) above. First, if Xe A,
then by transversality, there are λ>λ such that λeA, thereby violating the
definition of X; thus case 1) cannot occur. Next, in cases 2)-5), we may assume that r
is the smallest such r - since w'(r, λ)<0 for r near 0, and A(0, X) = 1, such an r exists.
Now^ consider case 2). If A(r,λ) = 0, we are then in case 3); thus we can assume
A(r,λ)>0. If w(r,λ) = — 1, it follows from standardise, theorem^that w(r,X)= 1,
and this violates w(0,λ) = l. If w'(r,λ) = 0, A{r,λ)>0 and w(r,X)>_-l, then if
w"(r, λ) φ 0, an easy transversality argument shows that for some λ<λ, and some r
near r, that w'(r, X) = 0, thereby violating the definition of X, while if w"(r, X) = 0, we
find from (3.2) that w(r, X) = 0, or w(r, X) = 1 both of these violate w"(0, X) = - X< 0.
Thus case 2) is subsumed by case 3). Next, consider case 5). At the singular point r, if
4̂(F,X)Φ0, this would violate Proposition 5.1. Thus A(r,λ) = 0, so case 5) is

subsumed by cases 3) or 4).
Thus, we may assume that only the following two possibilities occur:

(A) A(rJ) = 0, andfor 0^r<f, w(r,X)>-l, w'(r,X)<0, A(r,J)>0,

or

(B) for all r > 0 , w(r,X)>-l, w'(r,X)<0, and A(rJ)>0.

We shall prove that only Case (B) can occur, by ruling out Case (A), taking into
account the two possibilities; namely, that wr(r, λ) is bounded or unbounded near r.
We now assume in what follows in this section that Case (A) holds, and we shall
arrive at a contradiction. This will be accomplished by eliminating all the
alternative cases; namely,

Case 1. wj>0, wf(r,λ) bounded for r near r.

Case 2. w<0.

Case 3. w>0, w'(r,λ) unbounded for r near f.

Case 4. w = 0, w\r, X) unbounded for r near r.

We will find it convenient to define ra(λ) by

w(ra(λ%λ) = a, for - 1 < Λ < 1 . (5.4)

Note that if A^l, then A(r,λ)>0 in the region Γ = {w2^l, tt/^0}, cf.
Theorem 3.1. Since we are in Case (A), we may assume 1 < λ ̂  2. We now have the
following result.

Lemma 5.4. Let 1^A^2; then there exists σ>0, and wu — l < w t < 0 such that
Φ(f>λ)^σ whenever — 1 <w(r,λ)<wί.

Proof. By the local existence theorem in the appendix there exists an R > 0 such
that the solution is defined on [0, # ] for 0 g λ ̂  2. If 1 <; λ S 2 and μ(r, A) is defined
by μ(r,λ) = r(l-A(r,λ)) [cf. (2.13)], then μ(0,A) = 0, and (2.14) implies that
μ'(r,λ)>0; thus by compactness, we can find σ>0 such that μ(R,λ)^2σ>0, for
1^A^2. Now as
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we have, for r > R,

R

If σ ̂  —, then Φ(r, λ) ̂  σ, so wx can be chosen to be any number in (-1,0) . If σ < —,
JK R

then there is a unique w1? - k w ^ O satisfying 2σ— —=σ. Then if
iv

— 1 <w(r,λ)<wι,

this completes the proof. •

Lemma 5.5. Fix λ^2, and suppose that there is a σ>0 such that Φ(r,λ)^σ for

', we ,

\, (5.5)

. Since λ is fixed, we suppress it. From (3.2)' for r1^r^r2, we get

„ — Φw' w(l — w2) — Φw'
W rΎλ

so

W" ^Φ(-W)^ a

Integrating from r1 to r2 gives

- 1 1 Γ2 w" σ r 2

w(r2) W(rj) r\w'2 LrlrY

H e n c e

SO

r 2

2 Λ - ' - 1 ) - w(r2))~1 ^ ~ w'(r2), (5.6)

and this is (5.5). Π

In order to obtain the desired contradiction, we shall often prove that the
function v defined by

υ(r,λ) = (Aw')(r,λ) (5.7)

is zero for some λ<λ. We have shown in Corollary 5.3 that v is continuous at (f, I).
An easy calculation shows that v satisfies the equation

0w>2 wίl-W2)

— Γ+—J—0. (5.8)



Smooth Static Solutions of Einstein/Yang-Mills Equations 129

We now choose numbers w0, w2, w3 satisfying

— 1 < w3 <w2 <wί < w0 < 0

(where wx is obtained from Lemma 5.4), and let

c 2 = min{-w( l-w 2 ) : w 3 ^ w ^ w 0 } . (5.9)

We recall that there exists L > 0 satisfying (cf. Proposition 5.1)

(Aw'2)(r,λ)^L, if 1^/1^2, (5.10)

for all orbits under consideration. We shall now prove some lemmas.

Lemma 5.6. Let λn S X, and suppose that there are positive constants B, τ, and a
sequence {rn} of positive numbers satisfying the following conditions:

(5.11)

"('"π.λ.HO α s «-» °o, (5.12)

< w{rn, λn) < w0 for large n, (5.13)

(cf.(5Λ)). (5.14)

Then there exists an integer N such that if n>N, v(r,λn) = 0, and w3 < w(r,λn)<vv0,
for some r = r(ή).

Proof. From (5.7), for rW3(λn)^r^rn, we have

, -2w / 2 w(l-w 2 )
υ'= v =

Thus, integrating gives

= v(rn,λn) + c

^^ fir
J - j
rn r

2 v W3 ^n)

Now if for some k>0, rW3(>ln)^k for infinitely many n, then

c2τ
v(rW3(λn\ λn) ̂  v(rn, λn) + ^ r > 0,

for sufficiently large n. This inequality means that we may assume rW3(λn)-χχ>.
Thus for large n, rW3{λn)^2B. Then

1 1
W3 n> n ^ rwβn)

for sufficiently large n. This completes the proof. •
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We can actually strengthen the last result by eliminating hypothesis (5.14).

Corollary 5.7. Let λn/*λ and suppose that there is a positive constant B and a
sequence {rn} of positive numbers satisfying the following conditions:

rnύB, (5.11)

v(rn,λn)-*0 as n^oo, (5.12)

™i < yψn> K) < Wo for large n. (5.13)

Then there exists an integer N such that if n>N, v(r, λn) = 0, and w 0 > w(r,λn)> w3

for some r = r(ή).

Proof We need only show that (5.14) holds. If rW3(λπ) — rn §: 1 for infinitely-many n,
then Lemma 5.6 applies; we may thus assume (without loss of generality) that for
all Ji

rW3(λn)-rn<l. (5.15)

Now from Lemma 5.4, Φ(r, λn) ^ σ whenever - 1 < w(r, λn) < wx. From Lemma 5.5,
with r^r^λά r 2 = rW2(λn), we have W{rW2(λJ,λn)^ -krW 2{λn)2, where

fe=—(Wl-w2)"1. Since w ^ O , w//(r,λB)>0 if r>rW2{λn); it follows that W{r,λn)

^-krW2(λn)
2.Ύhus

rw3\
An) rw2\

λn) — w , /

for some ξ = ξ(λn), rW3(λn)>ξ>rW2(λn). Hence

r W 3 0 U ~ γn ̂  rW3(λn) - rW2{λn) ^

But from (5.15) and (5.11)

r^iλjKr^

so that

2 3

This completes the proof. •

We can now show that Cases 1-4 above, are impossible. We begin with the easy
case.

Proposition 5.8. Case ί fw^O, w'(r,X) bounded for r near r) is impossible.

2w'2(r)
Proof For λ=λ, set Q'(r)= —, 6(0) = 0. Then β(f)<oo, and from (5.7), for

r<r,

On the other hand, eQ{r)v(r) = 0 for r = 0, and r = r (Corollary 5.3), so (eQv)' must
vanish for some r between 0 and r. This contradiction establishes the result. •

We next eliminate the case w<0.
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Proposition 5.9. Case 2 (w<0) is impossible.

Proof. First, suppose w= — 1 . Since Lemma 5.4 implies that Φ(r)>0 if
— lrgw(r)<w l 5 we see that r2Aw" = — ΦW — w(l — w 2 )>0 for —l^w(r)<w 1 .
Hence w'(r, X) is bounded for r near f, and

lim A'(r) = A\r) = Φ(r)/r2 > 0,
r^rf

which is impossible. We may thus- assume w> — 1.
We shall use Corollary 5.7 to show that v{r, X) = 0 (cf. Corollary 5.3) implies that

v(r,λ) = 0 for some λ<X, where w(r,λ)> — 1.
By Lemma 5.4, we choose vvx < vv such that Φ ^ σ o n — l ^ w ^ v v ^ Now choose

Wo>w2>w3 s u c r i that — 1 < w 3 < w 2 < v v 1 < w < w 0 < 0 . We shall now verify the
hypotheses of Corollary 5.7. To this end we set rn = f for all n, and let λn 7* X. Then
(5.11) holds, and from Corollary 5.3, (5.12) also holds. Furthermore, as w{f,X) = w,
we see that (5.13) holds. Thus all the hypotheses of Corollary 5.7 hold, so that for n
large, v(r,λn) = 0, and w(r,λn)> — 1 . This completes the proof. •

In order to rule out the remaining Cases 3 and 4, we need the following result.
(Recall that we continue to assume that we are in Case A.)

Lemma 5.10. Assume that W(r, λ) is unbounded for r near r; then Φ(r, λ) rg 0.

Proof. If Φ(f,X) = θ > 0 , we choose rnsr such that w'(rnj)= -n, w"(rπ,X)^0 [if
w"(r, X) > 0 whenever w'(r, λ) = — π, then — n would be a lower bound for wf(r, X)].
Since Φ(rn, λ)W{rn, X)-> - oo, this would violate (3.2); hence Φ(f, X) ̂ 0 . •

Our next goal is to strengthen this last result.

Proposition 5.11. Assume that w ̂  0, and that w'(r, X) is unbounded for r near f; then
Φ(r,X) = 0.

Before giving the proof, we will need the following lemma. [This lemma would
be trivial if Φ were a continuous function of w and λ. But we must work harder
because w' is unbounded near (r, A).]

Lemma 5.12. Assume that w^O, W{r,λ) is unbounded for r near r, and Φ(r,λ)
= — 20<0. Then there exists ε>0, and δ>0 such that 0<λ — λ<δ, and
Iw(r,λ) — w|<ε, imply Φ(r,λ)<—θ.

Proof. Consider first the case vv>0. Let λ<λ, and consider (3.16) in the region

, (5.16)

γ

where we have used (5.9). Choose rί9 r>rt> - such that both of the following
hold: 2

— 7 4k
Φ(r 1 ,A)<—0, and -w'{ruλ)>—. (5.17)
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Choose (5>0 such that 0<X-λ^<5 implies that the following hold:

Φ(r 1 ,A)<-fβ, (5.18)

2k
- w ' ( r 1 , A ) > - , (5.19)

w(ruλ)>w. (5.20)

For 0<λ~λ^δ, define ro(λ) by [cf. (5.4)]

w(ro(λ),λ) = 0. (5.21)

[Note that this implies that (5.16) holds for r^ro(/l).]
Now suppose that for some r, rt ΞΞ r 5Ξ ro(λ), 0<λ—λ^δ, wehave Φ{r, λ)=—θ;

let r2(λ) be the first such r-value. Then ΐor rι^r^r2(λ), and 0 < A—λ^δ, (5.16) and
(5.18) give

W - Γ ! ) , (5.22)

with fc = 2L+8/r2, and where we have used the fact that r'^.r1 > - . Now on this

A-range,

- 1 < w(r2(λ), λ) - w(r, λ) = w'(ξ, λ){r2(λ) -rx)

for some ξ = ξ(λ), rt<ξ< r2(λ). Then on this interval, Φ(r, λ) < 0, and so (3.2)' shows
that w"(r,λ)<0, so w'(r1;A)>w'(^),A). Thus from (5.22), for I

2 w'(ξ,λ)

3 Λ k

= 2 w'{ri,kλ)

~~2θ~4k

where we have used (5.19). This is a contradiction. Hence for 0<X—λ^δ,

Φ{r,λ)<-Θ if r^r^ro{λ), 0<λ-λ^δ. (5.23)

On the other hand, from (5.20), we see that for 0<λ — X^<5, w(rί,λ)>w, and
w(r1,X)>w because r^Kf. If we set

then W!>w, and thus from (5.23), iϊθ<λ-λ^δ, Φ(r,λ)< -θ if 0^w(r,
This completes the proof of the lemma in the case w > 0.

If H> = 0, we make the following modifications in the proof. We choose rx as
before, satisfying (5.17), and in addition, so as to also satisfy w(ruλ)<^. Then we
can find a <5>0 such that if 0<λ-λ^δ, (5.18H5.20) hold, and in addition

. (5.24)
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Now choose ε > 0 so that both of the following hold:

1 8ε2

ε < - and -^- < 0/4.
4 r

Then from (3.16), for w{r,λ)^ - ε , and r^ru

( 2(1—W2)2\
φ(r, λ) = Φ(ru λ) + J ί 2wf2Λ + V ^ } j dr

'<></> 4w(l-w 2) ,_ ' 4w(l-w 2) /Jf+ J — -w'dr + J —^ -w'dr
ri ^ ro(λ) Γ

^ w ' d r . (5.25)
^ ι o(λ) r

Suppose that for some r>rx with w(ruλ)^ε, we have φ(r,λ) = — 0; let r2(A) be the
first such r-value. Then for r 1 ^r^r 2 (A), as before

1 0 0

Thus from (5.25), with r = r2{λ\

P 0(A)

4 w ( l w ) J

where we have used (5.24). This contradiction shows that if w = 0, then Φ(r, λ)<—θ
if — fi^w(r,A)gw!, for 0<X— A^^, where wx is defined as before (in the w>0
case). This completes the proof of Lemma 5.12. •

Notice that under the hypotheses of Lemma 5.12, we have found an ε > 0 such
that if w^O, then

Φ(r, λ)£-θ, whenever VP - ε ̂  w(r, λ)£w. (5.27)

To complete the proof of Proposition 5.11, we need one more lemma.

Lemma 5.13. Suppose that for 0<X—λ^δ, there are constants a>b, k>0, and
Rί>0 such that the following hypotheses hold:

Φ(r,λ)<-k if b^w{r,λ)^a, (5.28)

rJίλ)ύRi, (5.29)

Ίϊm - W{ra{λ\ λ) = + oo . (5.30)

Then there is a λ<λ and an r3 = r3(λ) such that b<w(r3,λ)<a and
lim — w'(r,λ)= +oo.
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Proof. The idea is to use the fact that given any εx >0, solutions of the inequality
2y2 blow up in time ^(ε1 + t0\ provided that y(t0) is sufficiently large.

We can find a convergent sequence ra(λn)^ρ ^ i ^ , for which lim — w'(ra(λn\ λn)
«—• oo

= + oo. Now choose N so large that n>N implies that

- w'(rα(AM), λn) > m a x ί -, a - b J .

Then at r = rΛ(AM), (3.2)'gives

ra(λn)
2Aw" =-Φwf- w(l - w2) < kw' +1 < 0

hence w"(ra{λnlλn)<0 so w"(r,AJ<0 for b<Zw(r9λ^a, and -w'(r,An) satisfies

- w^r,AJ> max (j^,α-&Y (5.31)

for r 6 μ π ) ^ r ^ r α μ w ) . Then for some ξ, rb(λn)>ξ>ra(λn),

and thus (5.29) implies

r f r μ B )<R 1 + l , (5.32)

for n>N. Using (3.2)' again, for n>N, and rb(λn)^r^ra(λn),

w(ί-w2)

<hS_ _ w' -Φ/2

k W2

where we have used (5.9) and (5.31). Note that c2 is independent of A. Thus if we
take n sufficiently large [so as to make — w'(ra(λn), λn) as large as we please], we see
that —w'(r,λn) will blow up for some r with rb(λn)>r>ra(λn). This completes the
proof of Lemma 5.13. •

We can now complete the proof of Proposition 5.11. Assume Φ(r, A) = — 2Θ < 0.
The idea is to use Lemma 5.13. For this, we set a = vv, and b = w — ε, see (5.27). Then
(5.28) holds (with k = 0, from Lemma 5.12) and (5.30) clearly holds. To show (5.29),
we choose N > 0 such that — Nθ +1 < 0. Then choose ε > 0 and r, r > f > r/2 so that
wr(f, I)<—2N and vv < w(r, A) < w + 2ε. Then choose δ so that 0<λ — λ<δ implies
that w'(r, λ)<—N and — 1 < w(r, λ)<w + ε. From (3.2)r, we have at r = f, for these A,
f24w" = Φw'-w(l-w 2 )<-fcJV + l < 0 . Thus w"(f,A)<0, and so w'{r,λ)<-N
provided that b^w(r,λ)^w. Thus for 0<A — A<<5,

<ϊv'
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2
where r<ξ<ra(λ). It follows that for 0<Λ — λ<δ, ra(λ)<r+ —, and this proves

(5.29). We have thus verified the hypotheses of Lemma 5.13. The conclusion of this
lemma gives us the desired contradiction. This completes the proof of
Proposition 5.11. •

We can now rule out the case w > 0 with w'(r, I) unbounded for r near r. We will
apply Lemma 5.13 to show that — w'(r,λ) blows up for some λ<λ.

Proposition 5.14. Case 3 (w > 0, w'(r, λ) unbounded for r near f) is impossible.

Proof. From Proposition 5.11, we may assume that Φ(r,X) = 0. Choose η, so that
0 < η < w. We now prove some lemmas which we shall use to verify conditions
(5.28H5.30) in Lemma 5.13.

Lemma 5.15. // w > 0, and w'(r, X) is unbounded for r near f, then given N > 0, there
exist ε>0, and δ>0 such that if 0<λ — λ<δ, and η^w(r,λ)^w + ε, then W(r,λ)
<-N andw"{r,λ)<0.

Proof Choose Nt so large that both of the following hold [cf. (5.9)]:

^ and 2L+^-^-<-2. (5.33)
i y 1

We claim that for r/2^r^2F, and λ<λ, that if w'(r,λ)< -Nl9we have Φ'(r,λ)

< — 2 provided that w(r,λ)^η. ί To see this, note that from (3.16)

7.(1-w2)2 4 w ( l - w V

r r
in view of (5.33). I Next we claim that for λ<λ, if for some rί,-<rί<f, W(rl9X)

<—Nl9 w"(rl5/l)<0, and w(ruλ)>w, then for r>ru w'(r,λ) decreases as long as
w(r>Λ<)̂ 7? To see this, suppose that there were a first point r2>rx for which
w"(r2,λ) = 0. Then

so that f/2<r2<2f, in view of (5.33). Then differentiating (3.2); gives
(suppressing λ)

r2

2A{r2)W"{r2) + [_Φ'{r2) + (1 - 3w 2(r 2))] W{r2) = 0 .

Since wf(r2,λ)< — Nί9 our earlier claim gives Φf(r2,λ)<— 2 so that
[Φ'(r2) + l-3w 2(r 2)]< - 1 and thus w"'(r2,λ)<0. This contradiction shows that
no such r2 exists, and proves our second claim. _

Now given N>Nl9 we can find ε>0 such that w/(rίi;+ε(X),X)< — 2N and
w"(rw+ε(4ϊ)<(). Then for λ near λ, say 0<λ-λ<δ, w'(r*+ε(/l),Λ)< -JV, and
w"(rw+εW, λ)<0. Applying our last claim (with Nx replaced by N) shows that for
0<λ-λ<δ, w'(r,λ)< -N if rη{λ)^r^r^+ε{λ). Q

Lemma 5.16. If w >0, and w'(r, X) is unbounded for r near f, then there exists ak>0
such that if 0 < λ — λ<δ then Φ(r, λ)<—kifθ^ w(r, λ) ̂  η. (Here δ is as in the last
lemma.)
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Proof Since A(r,λ) = 0, we have [cf. (3.6)],

By continuity, there exists ε1 >0 such that if |r —f|<ε l 5 then r — (1 — η2)2/r< —k.
Thus for 0 ̂  w ̂  ?/,

provided that |r — f|<ε 1. Choose N, such that — < -ε l 9 and — iVfc + 1 <0. Now

from Lemma 5.15, for 0< λ —

w\rn{λ\ λ)<-N and w"{rη(λ), λ)<0.

Thus w\r,λ)< —Nϊorr slightly larger than rη(λ); say rη(λ)^r<r1. Then as

2
1 η ~ N ί '

we have Φ(r,λ)< —k for rη(λ)^r^r1 and thus for 0<λ — λ<δ, and
(again suppressing λ)

;"(r) = - Φ(r)wXr) - w(r)(l - w2(r))

hence w"(r,Λ)<0, so w'{r,λ)< —JV, and we may repeat the argument to conclude
that Φ(r, λ) < - k for 0 ̂  w(r, A) ̂  *?, provided that 0<λ-λ<δ. •

We can now complete the proof of Proposition 5.14. In order to apply Lemma
5.13, we set b = 0, and a = η. From Lemma 5.16, for 0 < λ — λ < δ, we see that (5.28)
holds, and Lemma 5.15 implies (5.30). Thus the proof will be complete provided
that we show rη(λ) is bounded above, on this range of λ's. But this is easy;
namely, since r^+ε(λ) is bounded for ί^λ^λ, and

_ w + s — η 1

[where ξ = ζ(λ) is an intermediate point], we see that (5.30) holds. Thus using
Lemma 5.12, we obtain the contradiction — W{r,λ) blows up in the region
O^w^η. The proof of Proposition 5.15 is complete. •

Finally, we shall rule out the case w = 0 and w'(r, X) is unbounded for r near r.

Proposition 5.17. Case 4 ( w = 0, w'(r, λ) unbounded for r near r) is impossible.

Proof. From Proposition 5.11, we may assume that Φ(f, I) = 0. Notice that A(r, I)
= 0 = w implies that r = 1. Under these hypotheses, we have the following lemma.

Lemma 5.18. // there is anη>0 such that w(rn,λn)= —η for some sequence (rw,λn\
where λn ? X, and the rn's are bounded, then for sufficiently large n, there exists an fn

such that (Aw')(rn,λn) = 0, and — 1 <w{rmλn)<0; i.e., Proposition 5.17 holds.

Proof. We shall show that the hypotheses of Corollary 5.7 hold. Thus, by
hypothesis, there is a B>0 such that rn^B; hence (5.11) holds. Now choose w0
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satisfying — η<wo<0, and w 3 < w 2 < w 1 < — η, where wx is obtained from
Lemma 5.4. Then clearly (5.13) holds. It remains to prove (5.12). Now if w(l, λn) ̂  0
for infinitely-many n, then since (5.6) implies that v'(r9λn)>0 if r>ro(λn\ we have,
for large n, 0 >υ(r, λn)> v(l,λn). Since v is continuous (Corollary 5.3), v(l, λn)-+0 so
(5.12) holds. We may thus assume that w(l, λn) > 0 for all n. Now let ε > 0 be given.
Choose δ>0 such that w(l — δ,λ)<ε/2; then for n large, w(l— δ,λn)<ε. Hence

0 ̂  v(rn, λn) > v(ro(λn% λn) = v(ί, λn) + T υ'dr
1

ro(λn) _wn_w2\

>υ(Uλn)+ J [

r2

 }dr
ro(λn)

>v(Uλn)+ j -wdr
1

>v(l,λn)-Bw(l,λn)

>v(l,λn)-Bw(l-δ,λn)

>υ(ί,λn)-Bε.

Since t;(l,AJ->0, and ε was arbitrary, we see that v(rn9λn)-*Q. Thus Corollary 5.7
can be applied to show that for n large, there is an fn such that υ{rm λn) = 0, with
— 1 <w(rn,λn)<0. This contradiction completes the proof. •

We now return to the proof of Proposition 5.16. Injiew of our last lemma, we
may assume that if rn is a bounded sequence and λn / λ9 then lim w(rπ, λn) ̂  0. This
can be used to give the following statement:

If rn is a bounded sequence satisfying Km rn > 1,

and /L/X, then lim w(rw,/L) = 0. (5.35)
n-*co

[For, given ε>0, there exists a δ>0 such that w(l — δ,X)<ε/2. If n is large,
w(l — <5, >ln) < ε, and rn > 1 so that w(rM, An) < w(l, λn) < w(l — <5, An) < ε. On the other
hand, our earlier statement shows that ]unw(rn,λn)^0> — ε.] We now
have.

Lemma 5.19. Given any sequence λn/λ, and any B>\, there is a subsequence
λnk, and a sequence rk->B such that (w(rk,λnj), w'(rk,/lΠk))-»(0,0) as k^oo.

Proof. We have, for any fceZ+,

w(B, λn) - w (β - 1, λn^j = 1 w'(^, Aπ),

for some £*, B-γ<ξk

n<B. For large fc, 5 - - > l , so that (5.35) implies that

W{ξk

n, λn)-+0 as n-» oo. Thus there is a subsequence {£ΠJ C {ξty such that |w'(ίnk, λnj)\

< -. Thus ^ ( ^ , ^ = 0 and since lim ξ$ = B, we have lim ξk

n=B; thus (5.35)

implies that lim w(ξn,λn) = 0. This proves the lemma if we set rk — ξ . •
fc->oo

Using this last lemma, and passing twice to subsequences, we produce
sequences λn,rmsn satisfying rw->2, 5π-»3/2, λnsλ, and such that both of the
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following hold:
(4,l>Kϋ)->(0,0), (5.36)
(w(rn,An),w'(rBΛ))->(0,0). (5.37)

We thus have (by passing to a further subsequence, if necessary) a sequence (rn, λn)
such that

(w(rn, λn\ W(rm λn)\ A(rn, λn\ rJ->(0,0,1,2).

Consider first the case Ά>0; i.e.,

limA(rn,λn) = A>0. (5.38)
n-»oo

In this case we have an explicit solution to Eqs. (3.1)', (3.2)'; namely, we(r) = 0,
\ c 5

w'e(r) = 0, Ae(r) = 1 + -j , where c = - — 2 A This solution is even defined for all
complex r Φ 0. We shall obtain a contradiction by showing that on the one hand

(this is merely the continuity of w as a function of λ), and on the other hand,

From standard results, the solution (A, w) of (3.1), (3.2) is an analytic function of
both r and A, if A>0, see e.g. [6, p. 73], and the appendix.

We proceed now with the details. The orbit of the explicit solution through the

point pe = (0,0, A, 2) in (w, w', A9 r)-space is ( 0,0,1 + - j — , r J, where c = - - 2A
V r r / 2

- ^ c ^ - . If we consider r as a complex variable, then the two-point set <re(C:

1 c ) 1
1 + -^ =0> does not separate the point r = 2 from the point r = —. Hence we

r2 r ) 10

may choose a compact contour 7 joining r = 2 to ^=77^ and such that Ae(r)

1 c
= 1 + -2 φ 0 for r e 7. If p is any point in R 4 sufficiently close to pe, then the

orbit through p, (w(r), wr(r), y4(r), r), will be close to the explicit solution for r e y by
continuous dependence on initial conditions [6, p. 73]. In particular, the orbit

) (through p will have A(r)>0, and Tn ) ~ We (Tn
s m a ^ Taking λn close to λ

yields pn = (w(2, λn), w'(2, λn\ A(2, λn), 2) arbitrarily close to pe, and hence w ί —, ,,n

arbitrarily close to we ί — I = 0. But w ( —, λn I is also close to w I —-, λ I > 0. This

is a contradiction. This completes the proof in the case Ά>0. Now consider the
case 4̂ = 0; i.e.,

UmA(rn9λn) = 0 (rB->2). (5.39)



Smooth Static Solutions of Einstein/Yang-Mills Equations 139

Now if lim A(sn, λn) > 0, then just as above, we can arrive at a contradiction; hence

we may assume that we also have

\imA(sn,λn) = Q fo,->3/2). (5.40)
«->oo

We will show that it is inconsistent to have both (5.39) and (5.40), by using (3.4),

9 9

and showing that — w\r, λn) ^ const on the interval 3/2 ^ r ̂  2, for large n. For this

we need the following lemma ί cf. (3.8) with c= - I.

Lemma 5.20. Define g ( r , λ ) = - r 2 —(1—w2(r,A)); then for large n, the following

statements hold:

( 2 \

(ϋ) ( g+-(ί—w2)2 + r2Aw'2 | (r,2 n )^fc>0, if 1.1 ^ r , where k is a constant inde-

pendent of n and r.

Proof We have

But from Lemma 5.18 passing to a subsequence if necessary, we may assume that

lim w2(l,λn) = 0 = lim w 2 (l. l , l π ),
n»oo \J } nκχ

n-κχ>

2and thus (i) holds. For (ii), writing u = l—w2 gives at (r,λn\

2 r2 2
g + - u2 + r2y4w/2 ^ — — u+ -u2

^9.68-9^ 0.68

2 3
if r ^ 1.1 because -u2 — u^~ - i f O ^ w ^ l . This proves (ii) and completes the proof

3 o
of the lemma.

As a consequence of part (i) of the last result, we have the following corollary.

Corollary 5.21. g'(r,λn)>0 for - ^ r ^ 2 if n sufficiently is large.
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Proof. From part (i) of the last lemma, we see that for sufficiently large n, there is a

ξn91.1 < ξn < -, for which g'(ξn, λn) > 0. Also, from (3.13), with c = -, we have that g

satisfies the equation

Γ 2 Ί
r2Ag" + Φg' = 2\ g+-(l-w

2) + r

2Aw'2 ,

so that if F = Φ/r2Λ, we may write

Using part (ii) of the last lemma, we see that (epgj > 0 if r > 1.1. Thus for large w, say

n>N, g'(r,λn)>Q if - ^ r ^ 2 ; i.e., for n>N,

r>-3(ww')(r,λn), if \ύrύ2. D (5.42)

Now consider the function Φ. Using (3.16) we have, for λ = λn, and - ^ r ^ 2 ,

r2
m-wv

2(l-w 2) 2 4 w ( l - w > '

where we have used (5.42); thus

~ , if \ύrύ2. (5.43)

Now as Φ(r) = r(l — ̂ 4)-(l — w2)/r^r(l — ̂ 4) , we have

k
> 5 _ 3
= 6 ~ 2

Thus for - ^ r ^ 2 , if n is large, we have for some σn, - <σn<2,

rA)^ I - \A{^, λ}j +Φ'(σn,λn)(r- \

5 3 /3 \ 4/ 3
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where we have used (5.43) and (5.40); here δ is independent of n. Now for large n,

say n>Nx>N, — wf\-,λn) < - , so if - < r ^ 2 , and λ = λn, n large, we have
\2 J δ 2

from (3.2)',

r

2Aw" = - ΦW - w(l - w2) > δ( - w') - 1 .

1 3
Thus if w'(r, λn) = - for some r, - < r ^ 2, then W\r, λn) > 0 and this is impossible. It

o 2

follows that -w'{r,λn)< -iϊ-<>r<*2, and n>Nx. Then if
o 2

r 2W2

Q(r,λ)= J ds,
3/2 S

we have, from (3.4) for λ = λn, and - ^ r ^ 2 ,

3
Thus for - < r ^ 2 , and λ = λn,n large,

so that for large n

But as — w'(2,λn)< - , we see that Q is bounded near r = 2, and hence
o

thereby violating (5.39). This completes the proof of Proposition 5.16.
We have thus proved that Case (A) cannot occur. Thus Case (B) holds so that

the orbit (w(r, X), w'(r, X)) stays in the region Γ = {w 2 ^l, w'^0} for all r > 0 , and
A(r,λ)>0 for all r^O. In the next section we shall prove that

lim(w(r,X),wXr,XM(r,X)) = (-l,O,l).

6. Concluding Remarks

In this final section, we shall show that when λ = λ, the corresponding Einstein
metric is asymptotically Minkowskian, and the total mass is finite.

* _ _
Proposition 6.1. // (w(r, λ), w'(r, λ)) is α bounded non-singulαr orbit of (3.3)—(3.5),
which stays in w 2 ^ l , w '^0 for r > 0 , then
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Proof. Since X is fixed, we shall suppress the X-dependence in what follows.
Since w'(r)<0 for all r and w2(r)^ 1, we see that lim w(r) exists, and lim w(r)

r-*oo r-*oo

^ - 1 . Also as Φ(r) = μ{r) - ( 1 ~ W ) [cf. (3.6)], and μ' > 0 [cf. (2.14)], it follows that

for some σ > 0 , for all sufficiently large r. From (2.14), μ satisfies the
equation

2 2

Thus since w'(r)^ — c 2 for some c>0 and all r^0,

. 1

μ(r) ̂  μ(r0) + 2c2(w(r0) — w(r)) H
ro

1

so that the total mass is finite; cf. Sect. 2. Thus

Now suppose that lim w(r) ̂  0; we shall show that this is impossible. Thus if not,
note that from (3.5), (epwj <0, and also e pw'<0, so epw' has a negative limit as
r->oo. Since μ is bounded, it follows easily that Φ is bounded [cf. (3.6)], and as
A-+ί, eP{r) is bounded. Hence epw' has a strictly negative finite limit, and thus w'
tends to a (finite) negative limit as r->oo; say w'(r)^> —L2. But then as

w(r)-w(ro)=]w'(s)ds<-L2(r-ro)
ro

we see that w cannot stay positive. This contradiction shows that the orbit (w, w')
cannot stay in w ̂  0 for all r. It follows that

lim w(r)<0.
r-+oo

Now since w" > 0 for large r (since Φ > 0), we see that lim w'(r) exists, and this limit
r-*oo

is ^ 0 . But by what we have just seen,

lim w'(r) = 0.
r-*oo

Also, lim w(r) > — 1 cannot hold for if it were true, then as follows from (3.4) for
r->oo

large r, we would have

r2AW =-ΦW- w(l - w2) ^ - w(l - w2) ^ const > 0.

c2

Thus as 4̂ is bounded from below, w"{r)^ - j for large r, where cφO. Then for
large r, r

_ w ' ( r ) = w'(oo)-w/(r)= Jw"(s)ds^ j ~ d s = — ,
r r S V
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but this is impossible since it implies that W is non-integrable. Hence

lim w(r) = — 1,
/•-•oo

and the proof is complete. •

Corollary 6.2. If λ = X9 then lim R{r) = l (cf Eq. {22)).
r —*• o o

/ μ(r)\~112

Proof We have seen that μ(r) is bounded, and as R(r) = ( 1 I , the result

follows.
As a consequence of this last result, we see that the metric (2.2) will be

asymptotically flat provided that for λ = λ, the solution T of Eq. (2.7) satisfies

limΓ(r) = l .
r-+oo

This will be demonstrated in the next theorem.

Theorem 6.3. Let (w,A) be the solution of (3.3)-<3.5) satisfying (4.1). Then the
corresponding metric (2.2) is asymptotically Minkowskian; i.e., Γ(0) can be chosen
such that

limΓ(r)=l = limΛ(r).
r->oo r-* oo

Proof. To see that T(r) -• 1, we first recall that T satisfies (2.7). If we write (as before)
Λ = l —μ/r, then the equation for T is

2rAV =

= l-2AW2-Φlr]T. (6.1)

An easy calculation shows that T(0) = 0, but T(0) is free. If

^ ^~ -2AW2 + {A-1)

φ/r

1

then it is not difficult to show that ip 61/(0, oo), and (6.1) implies

T(r)=T(0)exp]ψ(s)ds.

Thus choosing Γ(0) = exp — J ψ(s)ds , implies that T(r)->1 as r-^co. Π
L o J

Corollary 6.4. For the solution (w(r, X), A(r, X)) of (3.1), (3.2), the corresponding total
mass is finite.

Proof. This is merely the statement that μ(r,X) has a finite limit as r-^oo.

7. Appendix

We outline here a proof of the local existence of solutions of (2.6), (2.8), (2.11),
(2.12), for each λelR. (This is not a trivial exercise since these nonlinear equations
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are singular at r = 0.) We shall also show that the solution depends continuously on
λ, and is analytic in r > 0 .

We set

- = v',

and then write our differential equations in the form

(7.1)

In what follows, we assume λ>0 is fixed. We assume that veClo£[0,R],
z,μe CQO α[0, # ] I here the zero subscripts denote v(0) = ι/(0) = v"(0) = 0, and so on.
We rewrite (7.1) as integral equations, and seek a local solution via iteration:

r

v(r)= $z(s)ds,
o

z(r)= I
0 s2 l - :

ds, (7.2)

ds.

We abbreviate (7.2) as (0, z, μ) = T(ϋ, z, w). Let X = (C^ o

α x
define norms on X as follows: Fix α,b in (0,1), then set

a)[0, R], and

\v\2+a = b sup

| z | 1 + α = sup

| μ | 1 + β = sup

v"(r2)-v"(rι)

and

(v, z, μ)|| = \\{υ, z, μ)\\x = max(|t>|
2 + α

„ \μ\ t

Fix a real number ρ > 0 , and assume ||(i;,z,μ)|| < ρ ; i.e., {υ, z, μ)eBβ(X). We shall
indicate that for small R (R independent of λ on compact i-intervals) the following
hold:

a) T(Be)cBe,
b) T is a contraction;

these will imply local existence in the space X.
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To show a), we first note that it is straightforward to verify that (v, z, μ) e X. To

show a) and b), we observe that by LΉospitaΓs rule, ί 1
we need the following lemma. \ r

asr->0. Next

Lemma 7.1. a) // ueCgία[0,Λ], then

b) IfυeCb+al0,K]9 then
\υ\

31 ^ 6(l+α)(2 + α)
l + α

( l+α) '

l + α
c)

d) Ifgeσol0,K],then
e) If feC<>[O,R-] and a<β, then \f\aRβ'Ίf\p.
f)

Proof. For a), we have

1 1

= J I tr v"(str)dsdt9

so
0 0

1 1
f \t[υ"{str2)-v"{strγ)~]dsdt

so that

r\

1 1

The proofs of the other statements are similar. •

Using this lemma, it is straightforward tλshow T(Bρ)cBρ if R is small (#
independent of λ on compact A-intervals); we omit the details. To show that Γis a
contraction for small r, we consider the differential dT evaluated at a point
{v, z, μ) G X, and show that || dT \\ ^ c < 1, if R is small (again R is independent of λ on
compact A-intervals); here \\dT\\ is defined by

= sup
ll(«.?.y)ll

= max
i = l , 2 , 3

sup
ί)||

where 0 = π1 o T(ι;,z,μ), z = π 2

o T(t;,z,μ), μ = π3 o T(ι;,z,μ), and
illustrate, we have πx o T=£? so

. To
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SO

Also π 2 ° T= μ, so

We may write

$β(s)ds

dv dz

= dfi(v, z, μ)(0,0, y) = j t μ(v, z,μ + tγ)
- 2 y ,

,=o
= £y=\^{z-λsfds,

and

2(z-λs)2 γ

l/s
+ 4 +4

(1—w 2 ) αw
(7.3)

We can estimate each of these terms separately. (In what follows, Cs will denote
constants depending only on ρ, and λ) For example,

(1 — w2) ocw

r r

(l-w2)w w(l-w2)
(7.4)

N o w as w = l — -r2 + v, ( 1 — w2)/r= — r 2 + -^ — λrΛ λrv, and since

(w2 — l ) / r e C 1 + α , we see |w(l —w^/rl^^C. Then using Lemma 7.1c and e,
1 R

S - | α | 1 + α ^ 7 |α | 2 + α ; thus the first term in (7.4) is bounded by CR.

Similarly, as

α + 1
(1-w 2 )

-w <R
(i-w2)

-W\ ^CR, and
l + α

l l+α

(where we have used Lemma 7.1 d and c), we see that the second term in (7.4) is
bounded by CR. Thus the third term in (7.3) is bounded by CR. Similar estimates
can be made on the first two terms in (7.3). Next, as

we can use similar techniques to show that this term is bounded by CRa\
we leave these straightforward estimates to the reader. Thus since
\T{v1,zl9μ1)-T(v29z2,μ2)\^\\dT\\ H ^ - ^ H * , it follows that T is a contraction,
and hence that given any /leR, Eqs. (2.6), (2.8), (2.11), and (2.12) have a unique
solution in X onO^r^R, where iΐ is independent of λ on compact 2-intervals.

Next we note that λ = 0 implies w = 1 and μ = 0; this holds since w = 1 and μ = 0
solves our equations and initial conditions, and our solutions are unique.
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We now show that the solution depends continuously on λ. To see this let
, and define the fiber bundle E over [Ao — δ, λ0 + <5] by

lλ0 -δ, λ0 + <5] x C£o+oα[0, K] x Cέo+α[0, K] x Cj o

+ α [0, K] Λ μ 0 -

We define a mapping S:E-*E by S(λ9v9z9μ) = (λ9T(υ9z9μ)) = (λ9υ9z9μ) 9 cf. (7.2).
Now S is continuous, preserves fibers, and has a /weed section s(Λ) (i.e., a section
which is fixed under S), because we have a unique fixed point of T for each λ. To
show that 5 is continuous, we let λn->λθ9 and we shall show s(λn)-+s(λ0). Thus let
p{λ) be any continuous (local) section of \_λ0 — δ9λ0 + δ]9 with p{λ0) = s(A0). Let d be
the maximum distance from p(λ) to T(/?(2)).

T ( p U ) )
S(λ)

Fig. 2

Let ε > 0 be given, and let | |dT| | ^ C < 1 . For any integer N

CNd

dist(TN(p(λ)), s(λ)) £ j - ^ , λ e lλ0 - <Uo + δ 0 ]

Now choose N so large that

C H ~ and

Λo

1 - C 2

then

dist(5(Aπ),

so s(λn)-*s(λ0)9 and the solution depends continuously on λ.
Finally, we note that, given any λ, as follows from the Cauchy-Kowaleski

theorem the solution is an analytic function of r on its domain of definition, 0 < r
<R(λ)9 provided that A{r9λ)*0.
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