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Abstract. We study the propagation of phase space singularities for the time
dependent Schrodinger equation with potential having Coulomb-type singularities
in space dimension equal to three. We prove that the singularities (frequency set)
of the solution are reflected by a Coulomb center exactly as in the classical problem,
i.e. the frequency set follows the regularized trajectories of Classical Mechanics
after a collision.

1. Introduction

In this paper we study the problem of diffraction of singularities by Coulomb
centers for solutions of the time dependent Schrodinger equation:

ihdtu = Hu

Here H is a semiclassical Schrodinger operator of the form H = —h2Δ+ K(x), on
L 2(R 3), where V(x) is a real potential having Coulomb-type singularities at some
points x* in R 3 .

We want here to understand an important difference between Classical and
Quantum Mechanics for Coulomb potentials. Namely in Classical Mechanics,
there exist collision trajectories, i.e. trajectories which hit a singularity of the
potential in finite time. To extend the trajectory after the collision, one must use
a procedure known as regularization. On the contrary, in Quantum Mechanics,
the evolution is defined for all times for Coulomb potentials, which can be seen
as a manifestation of the uncertainty principle. So it is interesting to study the
semiclassical limit h -> 0 of the quantum evolution for times and initial conditions
which would give rise to a collision for the classical problem. This is what we
study in this paper.

The Frequency Set. Let us first precise what we mean by singularities of the
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solution e~itHlhu0 of (1). We consider in this paper the notion of singularities in
phase space which is natural in semiclassical problems, namely the notion of
frequency set. Let us first recall the definition of frequency set denoted in this
paper by FS (see Guillemin-Sternberg [Gu-St]). We denote by Hk(Ω) the usual
Sobolev space of order k on some open set Ω.

Definition 1.1. Let w,,eD'(]R") be a h-dependent distribution such that for any bounded
open set ΩaJR" there exist some iVoeN with

Then a point (x0, ξo)e T*(R") is not in FSuh if there exist a function χ(x, ξ)eC%(T*(Rn))
with χ(x0, ξ0) Φ 0 and χ(x, hDx)uh = O(Λ°°) in L2(R").

In the definition and in all the paper, χ(x, hDx) will denote the Weyl quantization
of the symbol χ(x, ξ\ defined by:

So the frequency set characterize the set of points in phase space where the
distribution uh is strongly oscillating when h tends to 0.

If H = — h2Δ + V(x) and V(x) is a smooth potential it is well known (see for
example Robert [Ro]) that with the notations of (1) one has:

where φt is the Hamiltonian flow exp(ίi/p), and p = ξ2 + V(x).
The problem we address in this paper is to extend this result to potentials

having Coulomb type singularities when the space dimension is equal to three.
More precisely, we want to describe for example the frequency set of ut when u0

has frequency set near a point (x0, ξ0) such that the trajectory starting from this
point arrives at a Coulomb center in a finite time (i.e. giving rise to a collision for
the classical problem).

The Potential and the Regularized Trajectories. We will now precise the hypotheses
on the potential V and describe the regularized trajectories which will allow us
to extend the result known for smooth potentials.

Hypotheses on the Potential. Our main interest in this paper will be the physically
important example of the Coulomb potential with many centers:

where x1,..., xn are points in R 3 , and V is a smooth real bounded potential. Our
approach will be to apply to the quantum problem a method of regularization
used in the corresponding classical problem in Celestial Mechanics. This method,
known as the Kustaanheimo-Stiefel transformation, will be introduced in Sect. 2.
Even though this method was introduced in Celestial Mechanics to regularize
collisions for Coulomb potentials, one can apply it to a larger class of potentials.
We will prove our result (Theorem 1) only for Coulomb potentials, but the proofs
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extend directly to the class of potentials satisfying the following hypotheses:

(HI): V(x) is real and smooth outside a finite set of points x1,..., x"eIRA
(H2): V is A bounded with relative bound strictly less than 1, so that H is selfadjoint
with domain Jf 2 (R 3 ) (this is probably not really necessary but simplifies the
problem).

We will now describe the type of singularities of V allowed near a point x\
Near a singular point x( for 1 ^ i <; n (we may assume that xι = 0) we assume that
the singularity of V is of the following type: if x = (x 1 ?x 2,x 3), we put: x = Λ(z)z,
where:

(zx - z 2 - z 3 z 4

Λ(z)=\ z2 zx - z 4 - z 3

1^3 *4 Zί ?2

Note that one has: r = (x\ + x* + x 3 ) 1 / 2 = z2 + z* + z\ + z2. Then we ask:

(H3): W(z) = z2V(Λ(z)z) is a smooth function of the variables z e R 4 such that
lim W(z) = ct*0.
z-+0

For example we can replace in (2) the Coulomb potential by the Yukawa
potential \x\'ίe~μ^ for μ > 0 .

We will now define the regularized trajectories for this class of potentials. It
clearly suffices to extend a trajectory of the Hamiltonian flow after a collision with
a singular point x1 which we suppose to be at the origin. The problem of regularizing
collisions is a very old one in Celestial Mechanics (see for example Stiefel-Scheiίfele
[S-S], Saari [Sa]). We will follow the method of the Kustaanheimo-Stiefel trans-
formation (see Stiefel-Scheiffele [S-S] for more details).

To find the regularized trajectory starting from a point (x0, ξo% with x 0 Φ 0,
one first chooses a point z 0 such that x 0 = Λ(zo)zo, and a point Co s u c h that
ξ0 = (2ZQ)~ 1Λ(z0)ζ0. Such points are of course non-unique but the regularized flow
does not depend on the choice of (z0, ζ0) (see [S-S]). Let us denote by (x, ξ) = Λ*(z, ζ)
this transformation. One then denotes by (z(s),t(s),ζ(s),τ(s)) the trajectory in
T*(IR4 x lRf) for the Hamiltonian p = z2τ — ζ2 — W(z) starting from the point
(z0,0, Co, τ0), where z2

0τ0 - ζ2

Q - W(z0) = 0. Then we define:

Definition 1.2. The regularized flow denoted by φt: Rt x Γ*(K3\{0})-> T*(R3\{0})
is the mapping:

φt(xo,ξo) = Λ*(z89ζa),

where s satisfies t(s) = t.

Remark 1. This definition can be understood more simply if one thinks of the
transformation x ->z as a kind of blow-up around the singularity. Then the change
of parametrization of the Hamilton orbits due to the term z 2τ in p amounts to
introduce a slow time near the collision for which the velocity will stay bounded.
For a purely Coulomb potential, the regularized trajectory is obtained by following
backwards the incoming collision trajectory.

Remark 2. It is easy to see that outside the collision, the regularized flow is the
same as the usual one. One can also introduce the regularized flow in a more
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topological way by introducing a new phase space obtained by blowing up each
singularity of the potential and by extending suitably the flow at the singularity
(see for example Moser [Mo], Easton [Ea]).

Results. We now state the results of this paper. For a given open set Ωa Γ*(]R3\{0}),
and for f eR, we denote by Collr(ί2) c Ω the set of points (x, ξ)eΩ such that there
exists i with πxφs(x, ζ)-+xi when s->ί~. So Collf(ί2) is the set of initial conditions
in Ω which will give rise to a collision for the classical flow, (extended by
regularization across possible previous collisions). Then we have the following
theorem:

Theorem 1. Let woeL2(IR3) such that:
i) there exists some ΛfoeN with:

ii) there exists a cutoff function χo(x, ξ)eC£ supported away from {x1,..., xn} x 1R3

with:

Here OH2(/t°°) means that the remainder term has a H2 norm of size O(Λ°°). Then
one has:

1 } FSe-itHlhu0 n T*(R 3\{x 1,..., x"}) = φt(FSu0\Co\\t(FSu0)%

2) if Collt(FSu0) = 0 then:

To illustrate this result, let us for example consider what happens when
FSu0 = (x0, ζ0) and when for simplicity the only Coulomb center is at 0. Then if
the trajectory φt(x0,ξ0) never reaches 0, the frequency set of e~itH/hu0 is equal to
φt(x0, ξ0) as for smooth potentials. If the trajectory φt(x0, ζo) hits 0 at time Tc,
then for t Φ Tc, the frequency set of e~itH/hu0 is equal to φt(xOi ξ0). For t = Tc, one
just knows that the frequency set of e~iTcH/hu0 is concentrated above 0.

Remark 3. It seems quite likely that the correct notion needed to study the
singularity oϊe~iTcII/hu0 is a version of the second microlocalization above 0 which
is adapted to the Kustaanheimo-Stiefel transformation.

Remark 4. Using the arguments of the proof of Lemma 3.1, we easily see that if
uo = x(H)Xo(x)uuior ux G L 2 ( R 3 ) , X O ( X ) G C - ( R 3 \ { X 1 , ..., x"}) and χ(λ)eC?(R), then
there exist some cutoff function χo(x,ξ) supported away from {x1,...^"} x R 3

such that:

so one can apply Theorem 1 to u0.

Remark 5. It is interesting to see if the results of Theorem 1 extend to the case of
analytic frequency set (see Martinez [Ma] for a definition), where roughly Oty™)
estimates are replaced by O(e~c/h) estimates. For example in the case of scattering
by an obstacle, it is known that C* and analytic singularities propagate differently
(see for Sjόstrand [Sj], Lebeau [Le]). If the transformed potential W is analytic
then it is straightforward to see that part 1) of Theorem Γ extends to analytic
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frequency set. To extend part 2) one would probably need to construct a version
of the functional calculus of Helffer-Robert [He-Ro] adapted to analytic theory.

Let us give now the plan of this paper. In Sect. 2, we quantize the Kustaanheimo
Stiefel transformation to reduce the time dependent Schrodinger equation to an
equation with smooth coefficients. In Sect. 3, we prove Theorem 1.

2. The KS Transform

In this section we will quantize the Kustaanheimo-Stiefel transform to reduce the
time dependent Schrodinger equation to an equation with smooth coefficients.
Recall that the KS transformation: z e R 4 - » x e R 3 is given by x = Λ(z)z, where:

Λ(z) =

- z 2 - z 3 z 4

z1 —z*. — z 3 I

v z 3 z 4 zι z2

We begin by finding local inverses to the KS transformation if we add to x e R 3

a dummy variable θeS1. Over x Φ 0, x1 > 0, we denote by χ+ : R 3 x Sι - ^ R 4 the
following map:

z2 = /

/ 1 / 2(x 3 cos θ - x2 sin θ\

Over x Φ 0,*! < 0, we denote by χ_ : R 3 x S1 -*IR4 the following map

z1 = y/2" ι(- xt + r)~1/2(x2 cos θ + x 3 sin θ),

z 4 = ^/l~ \ - xx + r)~ 1 / 2(x 3 cos θ - x2 sin θ\

Here r = (x\ + x\ -h x 2 ) 1 / 2 = z2 -h z2 + z2 -f z\. It is a straightforward computation
to check that:

dzίdz2dz3dz4 = Cor~Λ dxγdx2dxzdθ. (3)

Then if x #0, ± x t > 0 and z = χ±(x, 0), one has: x = Λ(z)z, eiθ = 2lj2(xi + r ) " 1 / 2(z t +iz 4)
in the + case and eiθ = 21 / 2( — xx + r)~ 1 / 2(z 2 + iz3) in the — case. One also notices
that in | x | ^ ε , χ ± is actually an inverse to the KS transformation not only in
± x1 > 0, but in ±xί> —ε.

We consider now the Hamiltonian H = -h2Δx-\x\~ί + V(x) on L2(IR3),
where V is a real smooth bounded potential. H is selfadjoint with domain // 2 (R 3 ),
and for an initial data w0e//2(lR3), we denote by u(x,t) the function e~itH/hu0.

Then u belongs to C°(R ί? i/ 2 (R 3 )) n Cx(Rt, L2(R3)), and since H 2 (R 3 ) cz C°(R3),
we can define the transformed function w(z, t) by:

u(z, t) = Ku(z, t) = u(z\ ~z2

2-z2

3 + z2,2(ZiZ2 - z3z4\2(zίz3 + z2zA\ t).
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We will prove the following proposition:

Proposition 2.1. The function ύ satisfies the following equation in D'(Rf x R*):

ihz2dtύ = — h2Δzύ — u+ V^ύ.

Here V1(z) = z2V(Λ(z)).

Proof We begin by transforming the equation satisfied by u. Since CQ is dense
in the domain of H, we know that u satisfies the Schrodinger equation:

ihdtu = - h2Δxu u + V(x)u (4)
|x |

in distribution sense on R t x R x

3 . Indeed I x l ^ e L ^ R ^ + L ^ R 3 ) , so each term
in (4) is in C°(R f,L2(R*)). From this it follows also that u satisfies:

ίh\x\dtu = - h2\x\Δxu -u + \x\ V(x)u in D'{Ut x R3).

Let us now take a sequence of smooth functions un such that:

.By a direct computation we see that:

ΔzKun = \z\2KΔxun.

Since Kun -> Ku in C^R,, C°(R*)), we know that ΔzKun -> ΔzKu in C°(Rί?

We also have that Δxun^Δxu in C°(R ί,L2(R^)). We now consider w(x,ί) as a
function depending also on the dummy variable θeSx. Using (3), it is easy to get
that KΔxu and KΔxun are in C°(R t ,L 2 (R^|z | 2 dz)), and that:

KΔxun->KΔxu in C°(R ί 5L 2(R^|z| 2ί/z)).

So we get that:

\z\2KΔxun^\z\2KΔxu in C 0(R ί ?L
2

c(R^rfz)).

This proves that ΔzKu = \z\2KΔxu. By the same argument we get that since
3 fi4eC°(R f,L2CR^)),|z|23 ίδ6C°(R f,L2(R*)). The same is true from u and
|z | 2 F(yl(z)(z))w. So this shows that ύ satisfies the proposition. •

3. Proof of the Theorem

In this section we will prove Theorem 1. We begin by a few remarks. Recall from
the Introduction that we consider an initial data uo(x, h) (the h dependence of u
and u0 will often be omitted to simplify notations) such that | |M 0 | |L 2 = O(h)~No for
some No. We assume that if χo{x,ξ) is a cutoff function supported away from
{x1,..., x"} x R 3 , we have:

Let now χ(λ) be a smooth cutoff function such that χ(ξ2 + V(x)) = 1 for
(x, ξ)esuppχ 0. Then we have the following result:

Lemma 3.1.
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Proof. We begin by taking a smooth potential V such that V = V(x) on support

of χo(x, ξ). If H = —h2Δx+ Vy it is straightforward using the functional calculus

of Helffer-Robert [He-Ro] to get that:

It remains to check that (χ(H) - χiH^χ^x) = O H 2 (/Ϊ C O ), if V = V(x) on support of
χt(x). To do this we use a formula due to Helffer-Sjδstrand [He-Sj] to represent
χ(H). One has:

Here χ(z) is an almost analytic extension of χ(λ) with compact support in <C,
which satisfies 3z-χ(z) = O(|Imz|°°), so the integral converges in operator norm.
This formula gives:

{χ(H)-χ(H))χi(x) = ± l^fa-H)-1 -(z-ft-^dz AdL (5)

2π c oz

Then we have:

((z-H)-1-(z-HΓ1)χ1=(z-Hyί(H-H)(z-HΓ1χί

where W = V — V(x) is supported where χx = 0. Then we have:

V(Imz):

This can be iterated since {Fί,χ(\ = XI{^)[MΛ\\ where χ2 is another cutoff with
Wχ2 = 0. This way we get finally a term in the integrand of (5) of norm between
L2 and H2 equal to 0(hN(lmz)~N) for any N, which completes the proof of the
lemma since dΞχ(z) = 0(|Imz|)°°. Π

Before starting the proof of the theorem we make a few remarks. We will
denote the function e~ιtH/hu0 by u if we consider it as a function of (x, t) and by
ut if we consider it as a function of x alone. In Sect. 2 we introduced the transforms
χ± from {(x, θ)\x φ 0, ± x1 > 0} into {z\zφθ}. We have seen that if we consider
u as a function of (x, 0, t) (which is of course independent of 0), the transformed
function ύ(z) defined in Sect. 2 can also be viewed as the function ύ = χ% u. We
have the following lemma:

Lemma 3.2. For x Φ 0, one has:

(x, t, ξ, τ)eFSuo(z, t, ζ, τ)eFSύ9

where:
x = Λ{z)z, ξ = (2z2yίΛ(z)ζ.

Proof. We will for the moment consider u as a function depending also on the
variable θ. Since dθu = 0, we get:

F5w(x, 0, t) = {(x, 0, ί, ξ, 0, τ)|(x, t, & τ)eFSu(x, t)}. (6)
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Then above R3\{0}, we can apply the well known transformation rule of frequency
set by the diffeomorphisms χ± (see for example [Ro]) to get the result of the
lemma. The fact that one does not need to compute θ = θ(z) comes from the fact
that the conjugate variable to θ is always 0 in (6). •

Proof of Theorem 1. We will assume that the potential is a sum of Coulomb
potentials as in (2), but the proof extends immediately to potentials satisfying
hypotheses (H). We will first consider the scattering of singularities by a single
center, which we may assume to be the origin. We first consider the case of an
attracting potential (c < 0). We will put W(z) = c + Vx(z\ where Fx(0) = 0. Without
loss of generality we can assume that c = — 1.

The first step is to compute FSύ near t = 0. Let us denote by Λ^:(z,ζ)-*(x9ξ)
the map defined in Lemma 3.2. We know from Lemma 3.2 that:

FSun{z Φ0} = {(z,ί,C,τ)\(Λ*(z, 0,Uτ)eFSu}.

(To avoid to burden the notations, we will sometimes allow ourselves to denote
points in T*(R 3 x R,) by (x, ξ, t, τ) instead of (x, t, ξ, τ).)

Since u satisfies the equation:

ihdtu = - h2Δxu + V(x)u

which has smooth coefficients above x Φ 0, we know that for x φ 0, one has:

(x, t, ξ, τ)eFSuo(x, ξ)eFSuv τ = ξ2 -f V(x). (7)

To completely determine FSu, it remains to show that V(£0,τ0), (0,0,Co,τo)^FStϊ.
To do this we use that ύ satisfies:

- ίhz2dtu = - h2Δzύ - u + Vx(z)ύ. (8)

This implies that if (090,ζo,τQ)eFSu, then |COI = L If we consider now the
Hamilton orbit for p = z2τ — ζ2+l — Vι(z) starting from (0,0,(0,τ0), we see
that if (0,0,ζθ9τo)eFSu9 then there would exist a point (z1,tι,ζl9τί)eFSύ with
zί φθ,z1 and t1 arbitrarily small. Since over zγ φθ, we can apply Lemma 3.2,
there would exist a point (x l 5 tι,ξuτί)eFSu with xίΦ0,xί and tί arbitrarily small.

On the other hand we can apply the standard result of propagation of frequency
set for w, for small times and above R3\{0}. This gives that for t small, one has:

FSwf n(R 3 \{0} x R 3 ) = φt(FSuo).

But clearly this cannot be very close to 0 for small times since 0φπx(FSuo).
So we know that for ε small enough, one has:

FSύn{- ε < t < ε} = {(z,t9ζ,τ)\{Λ*(z9Q,t9τ)eFSu, ~ε<t<ε}. (9)

The proof of Theorem 1 will now consist in applying propagation of frequency
set on u and translate the results back to u by Lemma 3.2. However Lemma 3.2
cannot be applied above 0, so we first give a separate argument to describe what
happens near z — 0.

By Lemma 3.1, we can as well assume that:

χ(H)uo = uo. (10)

Indeed e'itHlhu0 = e~ί'i///1χ(/ί)u0 + (VίfT), so we get that FSe-ilHlhu0 =
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FSe~itH/hχ{H)u0. By the spectral theorem, we deduce from (10) that:

χ(-hDt)u=-u.

Since the transform u-^ύ does not affect the t variable, we also get:

χ(-hDt)ύ=-ύ. (11)

So we can rewrite (8) as:

Pu = - ihz2χ(-hDt)dtύ + h2Δzύ + w - V^u = 0. (12)

Since for \z\ < C o , - z2τχ(- τ) - ζ2 + 1 - F(z) is elliptic for \ζ\ > C 1 ? for Cx big
enough, we can construct a pseudodifferential operator Q(z,t,hDz,hDt,h) with
principal symbol in S«C> 2 , <£>~ 2 (dτ 2 + dζ 2 )) such that:

where K^ has a norm Oΐ/i00), and Kx(z, ί, (,τ) is a smooth bounded function sup-
ported in {(z,ί,ζ,τ)| |z | g C o + 1, ICI ̂  Q - 1} and equal to 1 in {(z, t ,£τ) | |z | ̂  Co,
ICI^C,} .

We recall that a function a(z,ζ) belongs to the symbol class

This and (11) give that if K2(z, t, £ τ) is supported in {(z, ί, £ τ)| |z| ̂  Co, |C| ̂  C 1 ?

| τ | ^ Cx}, then one has:

K2(z, ί, ΛDX, ΛDr)fi = OL2(R4 x Rt)(/ι°°). (13)

Actually because of (11), K2u is also O^0 0) in the norm C°(R f,L2(R*)). We will
use this remark later in the proof.

By the result of propagation of frequency set for Eq. (8), we know that
FSύ is the union of Hamiltonian curves for p starting from the points of
{(z,ί,ζ,τ)|(Λ*(z,O,ί,τ)eFSiι,-fi<t<ε}.

Let us first prove 1). The regularized trajectories are just the images under /I*
of the Hamiltonian curves for p (see Definition 1.2). Then above xφO, we can
apply Lemma 3.2 and the argument leading to (7) to get that:

FSutn{x ^0} = φt(FSu0\Collt(FSu0)). (14)

This proves 1).
To prove 2) it remains to prove that ut has no frequency set above x = 0. By

the definition of regularized trajectories, we know that u has no frequency set
above (0, ί0), so an application of (13) gives that χo(t,z)ύ is O(λ°°) in C°(Rί,L

2(R^)),
if XO^CQ is supported near (0,ί0). This implies by the arguments of Sect. 2 that
also χo(x,t)u is O(Λ°°) in C°(R f,L2(R^)). We use here that u is independent of the
variable θ. This implies of course that ut has no frequency set above x = 0. So this
completes the proof of Theorem 1 in the attractive case.

Let us now consider the case of a repulsive potential, i.e. the case when c> 0.
Then of course no collisions can occur so the regularized flow is nothing else than
the usual flow. The arguments used above for the case of an attractive potential
work as well, except that because of (8), ύ cannot have frequency set above 0, since
this is contained in the elliptic region for p.
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Finally the case of many centers can be treated exactly the same way. This
completes the proof of the theorem. •
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