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Abstract. In N = 2 string theory the chiral algebra expresses the generations and
anti-generations of the theory and the Yukawa couplings among them and is thus
crucial to the phenomenological properties of the theory. Also the connection with
complex geometry is largely through the algebras. These algebras are systematically
investigated in this paper. A solution for the algebras is found in the context of
rational conformal field theory based on Lie algebras. A statistical mechanics
interpretation for the chiral algebra is given for a large family of theories and is
used to derive a rich structure of equivalences among the theories (dihedralities).
The Poincaré polynomials are shown to obey a resolution series which cast these
in a form which is a sum of complete intersection Poincaré polynomials. It is
suggested that the resolution series is the proper tool for studying all N = 2 string
theories and, in particular, exposing their geometrical nature.

1. Introduction

In many respects, a viable physical theory is not unlike a basic mathematical one.
Apart from being experimentally correct, all good physical theories are marked
by a set of simple concepts and the depth and elegance of their results. The study
of nature, from this viewpoint, may be considered as the uncovering of the principles
from which it stems, with experimental data supplying the lead. String theory,
although as yet only partially understood and thus hard to confront directly with
the realm of particle physics and their interactions, passes the criteria above with
flying colors. So far, it is experimentally correct, in the sense that string theories
which closely imitate nature can be constructed. Equal in significance, it has been
offering depth and elegance that are perhaps unprecedented, fusing into its set of
notions many mathematical fields in a nontrivial fashion and giving rise to almost
miraculous interrelations among these.

The subject of this paper is N =2 string theory, first constructed in ref. [1]
which in its structure appears to embody the aforementioned properties (for a
review, see, ref. [2]). Its origin is in the pursual of semi-realism in the framework
of non-trivial string theory. The requirements of supersymmetry and sufficiently
large gauge group were shown to have a canonical solution. Namely, for any
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two dimensional quantum field theory with the so-called N =2 superconformal
invariance, there is a unique construction of a fully consistent string theory in four
dimensions which is space-time supersymmetric. It is further shown that the
requirement of modular invariance can be satisfied, in general, only if the underlying
gauge group is Eg X E4 or SO(26) x U(1). This class of theories has a very good
phenomenological potential. For example, a three generation string theory has
been studied in detail [3] and appears to be quite promising.

Owing to the severely constrained consistency requirements of string theory,
the fact that string theory can be constructed in such a generality is quite surprising.
Even more amazing is the fact that to each such string theory one can attach a
geometry, and that the entire massless spectrum of the string theory and many of
the interactions are completely geometrical in nature. This interplay between
geometrical and algebraic structures in N = 2 string theory is as yet only partially
understood. This paper is a step in the exploration of this.

The N =2 superconformal algebra, N, is a graded super-Lie algebra. The
commutation relations are [4],

C
[Lm’ Ln] = (m - n)Lm+n + 1_2(m2 - m)5n+m,0’
[Lm’ Jn] = _n']m+m

m
[Lma Gri] = <5 - r>Grf+r’

[er‘,n] =E5n+m,

3
[Jm9 G,:t] = iGmi-h-a
1
{Gr+’ Gs—} = 2Lr+s+(r_ S)Jr+s+ g(rz —Z>5r+s,0' (11)

The first equation is the usual Virasoro algebra for the moments of the energy-
momentum tensor. The J, generate to the usual Heisenberg algebra (U(1) current
algebra), while the G, are fermionic generators, obeying anti-commutation relations
among each other. ¢ is the central charge of the Virasoro algebra. The indices r
and s take their values either in Z (the integers), in which case this is called the
Ramond sector, or in Z + 1/2 which is called the Neveu—Schwarz sector. We shall
assume that all the representations are highest weight modules. Then the Cartan
subalgebra consists of J, and L. Accordingly, each such highest weight representa-
tion is labeled by the value of ¢ (the central charge), the value of L, (denoted by
A and called the conformal dimension) and the value of J, (the U(1) charge,
denoted by Q), when acting on the highest weight vector.

By an N =2 superconformal field theory we shall refer to a fully reducible
highest weight representation, #, of the product of two such algebras, N, x N,.
We shall refer to each as the left and right N =2 superconformal algebras. The
values of A and A as the left and right U(1) charges and the values of Q and Q
as the left and right U(1) charges. The representation is such that ¢ has a certain
value (it acts as the identity). We shall call the decomposition of an N =2 super-
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conformal field theory into its irreducible representations, the spectrum of the
theory. In addition we shall assume that this representation is modular invariant,
unitary, and that the representation Q = A= Q = A=0 appears exactly once in
the spectrum of the theory.

The property of modular invariance in this context is the following. Consider

the quantity,

Z(2) = Tr e2rintho-200g = 2ricia=28) (12)
H

which is a certain specialized character of this representation. Here 7 is an arbitrary
complex number in the upper half plane. Modular invariance is the condition that
Z(t)=Z(t+1)=2Z(—1/7). Z(7) is called the partition function of the theory,
corresponding to its Feynman path integral on the torus, and hence the modular
invariance property.

A conformal field theory is marked with an additional structure. Primarily,
one can consider the space of fields in the theory, each denoted by ¢,(z, z), where
z and 7 are complex numbers, which forms an isomorphic representation of the
N, x N, algebra, where the isomorphism sends the field ¢(z,Z) to the state
|¢> = ¢(0)]0), where |0) is the vacuum, i.e., the unique highest weight state with
A=A=Q=0=0. The action of N, x N, on the fields is related to super-
conformal maps on the variables z,Z and four Grassmann variables 8, and 0,
(superspace).

The fields in the theory which correspond to highest vectors of the super-
conformal algebra are called primary fields. The primary fields obey the inequalities

Agﬁﬁ and Zgﬁy, (1.3)

2 2
which is simplest to see by computing {$|[G] 2G4 2119520, implied by
unitarity. The fields for which the equality holds in Eq. (1.3) are special and are
called chiral primary fields. One can define a product structure on the set of chiral
fields which obey A = Q/2, A = (/2 via the operator products of the fields. Denote

by C; and C; two such chiral fields. It follows from the conformal properties of
the theory that

Ci(z,)Ci(zy) = ?jck(zl) +0(z, — z,), (1.4)

where the product is regular as z, —z,, and the constant term is itself a chiral
field with Q = Q; + Q;and 0 = 0, + Q. Thus, endowed with this product structure,
the set of chiral fields becomes a bigraded associative commutative algebra (see,
e.g., ref. [5,6,7]), called the chiral algebra. Similarly, one can define a product
structure for the fields which obey A=0Q/2, A= —(Q/2, called the anti-chiral
algebra. The other two algebras one can define are related to these two through
complex conjugation of the structure constants.

Since any unitary N, theory is a tensor product of a U(1l) current algebra
(generated by the Heisenberg algebra J,) and a unitary conformal field theory, it
follows that all the fields in such a theory obey the inequalities,

2 2Y
422 ¢

and A==, (1.5)
2c 2¢
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For the chiral fields this implies that there is a unique chiral field with maximal

U(1) charge, with Q = ¢/3. Bosonizing the U(1) current, J =i./c/30,¢, where ¢ is
a canonical free boson, this field assumes the form,

Crnax = €V, Cpay = €79, (1.6)

where we have similarly defined the right moving field C,,,,. The product of these
two fields, C,,,, Cynay is a field with the U(1) charges (c/3, ¢/3). This field might or
might not appear in the spectrum of the actual conformal field theory. From here
on we shall limit ourself to N, theories for which this field is indeed in the spectrum
of the theory. In case that ambiguity cannot arise we shall denote this field simply
by Cmax'

In all the known N, conformal field theories, the U(1) charges have a rational
value. Moreover, the set of charges appearing in a theory is of the form s/D, where
D is some fixed integer and s is an integer which depends on the field. It is natural
to conjecture that in all N, theories this is indeed the form of the charges, and
we shall assume it from here on. The existence of a chiral field of a maximal U(1)
charge, C,,., then implies that the chiral algebra € is finite dimensional. Hence
also all the fields other than the identity are nilpotent.

Owing to the presence of the field C,,, in the theory, one can define a trans-
position operation [8]. Let C be any chiral field. The transpose of this field is then
defined by

C'=Cpax CT, (1.7)

where the field CT is the complex conjugate of the field C, and the product above
is defined as the most singular term in the operator product of the two ﬁelds It

can be seen that the field C’ is a chiral field with the U(1) charges < Q, —— Q)

The transposition operation is a 1-1 map form the chiral algebra, €, onto itself
which is of order 2, (C*)=C

It is strongly believed, through the connection with complex manifolds
described below, that this pair of algebras completely determines an N = 2 super-
conformal field theory.

To every superconformal field theory with central charge ¢ =12, one can
associate a superstring theory. More precisely, it is a string theory in D + 2 = even
dimensions if the conformal field theory is a tensor product of a ¢ =12 —3D/2
superconformal field theory with D free bosons X* (the string coordinates) and D
free fermions (their supersymmetry partners). The physically interesting case is
D =2 which corresponds to a four dimensional string theory. By applying a certain
projection, the resulting string theory can be made space-time supersymmetric. As
a result of this projection all the U(1) charges become odd integers.

It is convenient to actually split the representations appearing in the theory
to smaller representations, which are representations of the algebra (which is not
a Lie algebra) generated by the products of any even number of the G;, which will
be denoted by N,. We can then define the full character of the algebra N,, of
some irreducible highest weight representation #,,

Xp(T’ z, u) =e” 2miu ;&' eZnino e27u't(Lo —c/24), (18)
P
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which is the generating function of the number of fields in the representation #,
with a given dimension and a U(1) charge. There is an action of the modular
group on the full character described by,

at+b  z mez?
, su+ = ). Sp.aX4(T, 2, 1), (1.9)
Xp(mr+n mt +n 6(mr+n)> ‘?‘ para
where S, , is some (unitary) matrix, and the sum ranges over some set of repre-

sentations, all with the same central charge c. Here a,b,m and n are arbitrary
integers such that an — bm = 1, i.e., the elements of the modular group SL,(Z). In
a string theory the central charge is ¢ = 12, as explained above, and we shall assume
this value from here on. Written in terms of the characters, the partition function
of the theory becomes,

Z(1)= Y. N, 42,(1,0,00%,(7, 0, 0)* (1.10)
p.q

which corresponds to the decomposition of the Hilbert space into irreducible
representations,

H=@N, H,x H, (1.11)

p.q

and N, , are some non-negative integers.

Now, given an N =2 theory with ¢ = 12 with a partition function as above,
we can project and make the theory space-time supersymmetric, while retaining
its modular invariance, by summing over the action of the operator (—1)"Q" =
(— 1)"e™®. The supersymmetrized partition function would then be

Z* (1) =}, N, ,8(p)3(9) 1™ (z, 0, 0)5"™(z, 0, 0)*, (1.12)
p.q

where d(q) is equal to one if the U(1) charge Q, is an odd integer, and is zero
otherwise. ;"™ is defined by

1.13
24 6 (1.13)

nt
BNz u) =) (- 1)"xp<r,z +ou-

n%ct znc)
neZ

Supersymmetry implies that the partition function so defined is equal identically
to zero, Z*"¥(t) =0, since there is an equal number of bosons and fermions at
each mass level and these appear with opposite signs in the partition function.
Thus, Eq. (1.12) is understood as a generating function for the spectrum when the
full dependence on z and u is retained. Modular invariance then follows from
Eq. (1.9).

A four dimensional string theory includes the space-time fermions and space-
time bosons X* and y*, where p = 1,2, as explained above. The inclusion is both
for the left and for the right movers. The theory can be made heterotic-like via
the replacement of y* (i.e., the right moving fermions with space-time index), with
internal fermions, representing either the level one SO(26) or the Eg x SO(10)
current algebras. In the latter case which is the one of physical interest since it
admits chiral fermions, the gauge group becomes Eg x E¢ X G, where G is some
enhanced symmetry group (which is generically empty). The massless spectrum
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can then be read from Eq. (1.12) and contains in the matter sector only particles
in the 27, 27 and the singlet representations of E4. All the particles are Eg singlets.

The particles in the 27 representation of E¢ (generations) correspond to all the
chiral fields in the theory with Q = Q = 1. Similarly, the particles in the 27 (anti-
generations) are described by the anti-chiral fields, Q = — Q = 1. In addition, the
Yukawa couplings among the generations are determined by the graded chiral
algebras introduced above, as follows [8]. Consider the three point Yukawa
coupling of some three particles in the 27 representation of E4. Then, each of these
correspond to a chiral field C; with Q; = Q; = 1. Multiply the three chiral fields,
C = C,C;C, with the product structure introduced above. The result is then a
chiral field with Q = Q = 3. However, this chiral field is a chiral field also of the
¢ =9 theory with Q = Q =¢/3 =3. Thus, C = ;3 C,,,, where C,,, is the unique
maximal chiral field of the ¢ = 9 theory and «; is some constant of proportionality.
The constant a;; is the Yukawa coupling of the three fields. Similarly, the Yukawa
couplings among the anti-generations are determined by the anti-chiral algebra.

This description of the chiral algebra is very close in spirit to the geometry of
manifolds with a vanishing first Chern class, although absolutely no geometrical
input was entered in the construction of this class of string theories. In particular,
in field theory compactifications on such manifolds ref. [9] the 27 correspond to
(2,1) forms and their Yukawa couplings to the wedging of three such forms, where
one extracts the coefficient of the unique (3,0) form. We thus have roughly the
identification of the chiral algebra with the Delbeult cohomology complex of the
manifold in question and the Yukawa couplings as the graded algebra structure
of this complex given by the wedging of forms.

Via a case study, this correspondence can be made very precise and detailed,
in particular, singling out the manifold which corresponds to each N =2 string
theory. For example, the discrete unitary series of the N, algebra has the central
charge ¢ =3k/(k + 2) for any positive integer k [10]. The chiral algebra of the
theories is given by the cyclical polynomial algebra, P(x)/(x**!), where (x**1)
denotes the ideal generated by x**!. Taking k + 2 such theories results in the
central charge ¢ = 3k, which can be used to construct a string theory in 10 — 2k
dimensions. It can then be seen that the corresponding manifold is [11],

k+2

Yzt =0, (1.14)

i=1
where the Z; are complex variables in CP**!, {Z;} = {1Z,}, for any complex 1.
The Fermat surface, Eq. (1.14), is a complex manifold with dimension k and a
vanishing first Chern class. The cohomology algebra of the manifold is then seen
to be identical to that of the corresponding N =2 string theory.

A theorem was conjectured in ref. [11] and proved in some cases (see [2] for
an account), that, indeed, all N =2 string theories are geometrical in nature, and
that their chiral algebras correspond to cohomologies of complex manifolds with
vanishing first Chern class. The purpose of this paper is to further investigate this
question in the context of a large class of N, theories.

To simplify our considerations we will assume that the N, theory before the
supersymmetry projection is left-right symmetric. Namely, we shall assume that
there are no anti-chiral fields and that all the chiral fields obey Q = Q. In this case
the bigrading of the chiral algebra becomes a unique grading accordingto Q = Q.
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Let C,,C,,...,C,, be a set of generating chiral fields in the sense that all the
fields in the chiral algebra, %, can be obtained by products of these. We can then
define the “normal order” map, t, as follows [8]. Consider the free algebra of
polynomials P = P(x, x,,...,X,), in which the x; are graded in the same way as
the chiral fields C,, C,,...,C,. Given a polynomial p = x{'x5?--x;"e P we define
t(p) to be the chiral field C%'C% --- C*, where the product is in the operator product
sense, Eq. (1.4). The fact the operator product algebra among the chiral fields forms
an associative algebra is crucial for the definition of the normal ordered map. This
map is a graded algebras homomorphism. The kernel of this map K = Ker(7)
consists of all the polynomials p(x;) for which 7(p) =0 and is a graded ideal of the
algebra P. The ideal K is generated by a set of a finite number of relations that
the generating chiral fields obey, syzigies in Hilbert’s terminology. The chiral
algebra itself is given as the quotient algebra € = P/K. The chiral algebra is
completely determined by this set of syzigies. Thus, if one knows which Yukawa
couplings among the chiral fields vanish, one can determine the precise values of
the non-vanishing ones, as well.

An important tool in the study of graded algebras (referred to as G-algebras)
is the Poincaré series [6,7, 12] which is a character of the algebra. Let M be any
graded module of the G-algebra A. We then define the Poincaré series of M as

Py()= Y, 1%, (1.15)

meM

where Q,, is the grade of meM. Since A itself is an A-module, one can similarly
define the Poincaré series of A, denoted by P(t).

Since the chiral algebras are finite dimensional, the Poincaré series becomes a
polynomial. The transposition map, Eq. (1.7), implies that dim(Q) = dim(c/3 — Q)
where dim(Q) is the dimension of the vector subspace of charge Q. Thus, the
Poincaré¢ polynomial of chiral algebras obey the duality property,

P({t)=1t3pP <%) (1.16)

The Poincaré series of G-algebras obey a number of properties [6,7,12]. Let
M, and M, be two graded A-modules. We can then define the direct sum module,
M =M, ® M, and the tensor product module N = M; ® M,. The Poincaré series
of M and N are then

Pp(t) = Py, (8) + Ppr, (1),  Py(t) = Py ()P, (0). (1.17)

The Poincaré¢ series of a free polynomial algebra, P = P(x,, x,,...,X,), is easily
seen to be given by

PO= ] -

i=1 1 '_'tdi,

(1.18)

where the d; are the grades assigned to the variables x;. A theorem of Hilbert and
Serre asserts that every Poincaré series of a module of a G-algebra is a product
of the series above P(t), where the d; are the degrees of the generators, times a
finite polynomial. The proof, which can be used to compute the polynomial, is
based on the identities above, Eq. (1.17), via the writing of an exact sequence of
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free modules which “resolves” the given module. This sequence is called a finite
free resolution.

The Poincaré series encodes much of the structure of the algebra and many
results have been established concerning the characterization of G-algebras through
their Poincaré series (see, e.g., ref. [13]).

An important class of G-algebras is the complete intersection algebras. The
polynomial algebra L,

L= P(x;,X3,...,X,)(0,6,,...,0,), (1.19)

where 0,,0,,...,0,is a set of syzigies among the x; and (6, 6,,...,0,) denotes the
ideal generated by these syzigies, is a complete intersection algebra, if the relations
form a A-sequence, i.e.,

0,,0,,...,6,)P#P (1.20)
and 6; is not a zero divisor modulo 6,,6,,...,0,_, forall 1 i< n.

If the degrees of the variables are d; and those of the syzigies are f;, then the
Poincaré polynomial of this algebra is

(1=t
—_— (1.21)
(1—1%)

i

LU
P
Ko

I

—

I
-

This is proved using the properties of the Poincaré series Eq. (1.17) [13,12].
Denote the ideal (6,,6,,...,0,) by K. Consider P as a K module. The complete
intersection condition implies that P is a free K module, and the basis elements
are given by the basis of the algebra L = P/K. It follows that P is isomorphic to
the tensor product of L and K as modules over the base field. The property
Eq. (1.17) implies that Pp(t) = P, (t)Pg(t). Since both P and K are free polynomial
algebras (using the algebraic independence of the 6; which follows from the complete
intersection condition) their Poincaré polynomials are of the form Eq. (1.18) and
the result follows.

There are many examples of complete intersection algebras. If 4 is a coinvariant
polynomial algebra of some complex reflection group, then it is a complete inter-
section algebra with n =m, d; = 1 and the f; are some exponents which depend on
the group. A well known theorem of Todd and Chevalay [14] asserts that G is a
complex reflection group if and only if its coinvariant algebra has this form.

Another example of complete intersection algebra is the local ring of a quasi-
homogeneous singularity [15]. In this case, the syzigies, ¢; are given by the
derivatives of the singularity. If an N, theory is described by a two dimensional
Wess—Zumino model (scalar field theory) [16, 17, 8] then the graded chiral algebra
of the theory is given by this local ring [8]. Namely, the algebra is of the form
P/(¢;), where V(x,, x,,...,X,) is some quasi-homogeneous potential, of degree d

%
and ¢; = It follows that in this case f;=d —d,.

In all these examples, the Poincaré polynomials have a very specific form: the
zeros and poles of the polynomial are all primitive roots of unity. The degrees f;

and d; can then be read from the polynomial uniquely, thus obtaining the algebraic
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information about the degrees of the generators and the syzigies and the fact that
they are algebraically independent. Such information can be obtained also in case
that the algebra is not a complete intersection algebra, however, some guesswork
might be involved. The advantage of doing so is that it is generally much easier
to compute the Poincaré polynomial than to study the algebra directly.

Our path in studying N =2 string theory is clear then. First the Poincaré
polynomial is computed and is cast in a form which reveals its algebraic structure.
This is the combinatorial part of the problem. Then this combinatorial informa-
tion is used to decode the algebraic structure of the chiral algebra. Finally, this
algebraic structure is used to find the associated geometry, by exposing a complex
manifold whose cohomology ring has this structure. This has been done in many
instances [11,17,8].

We shall use as our testing ground for these ideas a large class of N, super-
conformal field theories, the N = 2 coset models, which are based on affine current
algebra. These may be considered as the rational conformal field theories of the
N, algebra. The problem of classifying these theories, is, to a large extent, equivalent
to the classification of all rational conformal field theories. This classification, in
turn, proceeds by linking them with complex manifolds.

We find here the chiral algebra of these theories in complete generality. It is
then seen that the chiral fields assume a remarkably simple form, being in corres-
pondence with certain subsets of the Weyl group. We then proceed to calculate
the Poincaré polynomials.

It turns out that the generic Poincaré polynomial are never of the complete
intersection form Eq. (1.21), except for a few isolated cases. However, quite generally,
we show that the Poincaré polynomials of the theories can be written as a sum
of polynomials of the form Eq. (1.21), with some of the exponents being negative.
The exponents that appear are then seen 'to obey many remarkable properties,
which almost determine them completely.

It is thus suggested that the proper tool for classifying these theories, and
perhaps all N, conformal field theories, is to consider sums of polynomials of the
complete intersection type. We call such sums the resolution series of a theory.
Examples of resolution series abound in all known N, theories, but are not always
easy to calculate. This essentially solves the combinatorial part of the problem.
Unfortunately, less is known at the present concerning the algebraic and geometrical
part of it and some directions are outlined in the discussion.

2. N =2 Quotient Theories

Conformal field theories associated with quotients of Lie algebras, G/H, were
introduced in ref. [18,19] for abelian H, and generalized to other H in [20]. For
a special choices of G and H the quotient theory has and N =2 superconformal
invariance [21]. The N =2 quotient conformal field theories are constructed as
follows. One takes a Lie algebra G and a subgroup of it H. We shall assume
that rank(G) = rank(H) and that H is a diagram subgroup. Namely, H = H, X
H, x ---H,,, where each of the H, is either a semi-simple Lie subalgebra of G or
a U(1) subalgebra, and H is obtained by the removal of some nodes from the
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Dynkin diagram of G. Such a pair of (G, H) is called a reductive pair.

One then forms the quotient theory — sz x 50();
~ k+g—h X Hk+g——hz X X Hkm+g—hm
G, stands for a G current algebra at level k, whose currents are denoted by J*,
and n = dim(G) — dim(H). Similarly the SO and H; factors correspond to the current
algebras at the appropriate levels. g and h; are the dual Coxeter numbers of G
and H;. H is the diagonal subalgebra of this product (the H currents are the sum
of the G and SO(n) ones). The SO(n), current algebra may be represented in terms
of n free Majorana fermions, denoted by p% where o is a root of G.

The fields in the theory are obtained by decomposing a G x SO(n), into the
H current algebra times the quotient theory. Explicitly, let A and A stand for
integrable highest weights of the G algebra at level k and the H algebra at level
k + g — h. In addition, let s stand for the four integrable representations of SO(n),,
the singlet, the vector and the two spinor representations. The hallmark of a
quotient conformal field theory is the decomposition of fields g = ¢h, where g is
any field in the G current algebra, h a field in the H current algebra, and ¢ is a
field in the quotient theory [18,19,20,22]. In this context, a general field of the
quotient theory, denoted by @ is obtained from,

GV = OPH*, 2.1)

Here G4 V* and H* stand for any three fields in the corresponding representa-
tions of G, SO(n), and H. Equation (2.1) enables the calculation of the dimensions
and operator products of the fields in the quotient theory from those of the fields
in the current algebra.

The roots of G may be divided into positive and negative roots. It is convenient
to use the order relation on roots o > f if « — f is a positive root. The positive
(negative) roots are a sum of the simple roots with positive (negative) coefficients.
Consider the following field in the G x SO(n) current algebra

1
G = [z P A1 f“’”p“p”p’], 2.2)
VETgLeo Ly

where «, § and y range over the roots of G, A; which are not roots of H, acAg —
Ay=Agy, and G = G*1, ie, replacing i with —i in Eq.(2.2) and exchanging
“<” with “>"”. The fields G* are singlets under H and thus are also fields in the
quotient theory. It can be verified that the fields G* are the super-energy
momentum tensors of an N = 2 superconformal algebra and their moments obey
the commutation relations Eq. (1.1). The energy-momentum tensor of the quotient
theory is the difference, T = T + Tgo — Ty, Where Ty is the energy momentum of
the G current algebra, etc. The U(1) current is

, where

1
J=— 2 pp "+ —h, 2.3)
azo k + g

' If H; is a subalgebra of short roots, the level is actually 2(k + g)/0? — h;, where 6; is the
longest root of H in the normalization given by the embedding, which is the length of the
short roots. This is easy to see by writing down the current algebra commutation relations
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where h, is the element of the Cartan subalgebra of h dual to the root «. All the
sums over roots above are on the roots of G which are not roots of H.

Since T+ Ty=Tg+ Tso, and this is an identity as a tensor product of
conformal field theories as well, all properties of the theory may be computed.
The central charge of the theory is given by c¢=cg+ cgo —cy. Since cy=
kD¢/(k + g), where D is the dimension of G [23] we find

=DG—DHI_DH2"‘"'DH n DH k+g 1h1012)
2 k+g i=1 k+g

where for a U(1) factor we take 6% =h =0.
Using the strange formula of Freudenthal-De Vries,

C

, (2.4)

2 D 02
p_Ze7 @.5)
g 24
The central charge may be written more compactly as
etk + g) = (k + 9)Dim(Ag/n) — 4p6(ps — Pr), (2.6)

where p; and py are half the sum of positive roots for G and H respectively. We
used the fact that pgpy = pZ which is easy to prove since p obeys pa; = 3a? for
all the simple roots.

The dimension and U(1) charge of the field @+ can be read from Eq. (2.1),

AA+2pg) — A+ 2py)  a® 2
A= +—+4+n g=—-2sa+—(pg—pg)i+2m. (2.7
2k +9) 2 q sa k+g(PG Pu) m. (2.7)

s is the spinor weight of the SO(n) algebra, n and m are some integers. As noted
earlier, there are infinitely many different fields which correspond to the decom-
position Eq. (2.1) for a given A, A and a. The integers n and m are different for
each of these fields. For particular fields in the theory, these integers may be
computed using the actual dimension of the other fields appearing in Eq. (2.1), but
there is no simple formula for these integers, in general.

Recall from Sect. (1) that all the fields in an N = 2 conformal field theory obey
A = 1q|/2, where the chiral fields are the ones for which the equality holds.

As discussed in Sect. (1) the operator product algebra of the chiral fields gives
rise to a finite dimensional associative algebra. We shall now turn to the derivation
of these algebras in the framework of coset N = 2 theories which will be described
in this section and the next one. This result was announced in ref. [24].

To find the chiral fields we could, in principle, use the relation A= Q/2 along
with Eq. (2.7) for the dimensions. There is a problem, however, associated to the
fact that there is no good way to determine, in general, the integers appearing in
Eq. (2.7). Thus, we will need to make a direct study of the fields in the theory.

The method we will use to derive all the chiral fields is a direct extension of
that used in ref. [8] to derive a subset of the chiral fields. The chiral fields obey,

1
G_(Q)C(z)=0 (T) (2.8)
G (0)C(z) = 0(1). (2.9)
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For the coset N =2 theories the superpartners of the energy-momentum tensor,
G, are given by Eq. (2.2). Note that the fields G, are singlets of H, i.e., under
the decomposition into H the fields G, give the unit field in the H current algebra.
Now, a chiral field C is obtained be a decomposition of the field C in the G x SO(n)
current algebra,

C=Cxh, (2.10)

where h is some field in the H current algebra. The fact that G, decompose into
the unit operator in H implies that Egs. (2.8-2.9) are equivalent to the following
equations

6_(0CE) = 0(%) @11

G.(C(z) =0(1), 2.12)

which are equations purely in the G x SO(n) current algebra.
Let us make the following ansatz for the chiral fields. Assume that the chiral
fields are of the form

C=p~%p % p~ty, (2.13)

where the a; are different positive roots of the simple algebra G and g is some field
in the Hllbert space of the G current algebra. Let us also assume at first, for
simplicity, that H = U(1), where r is the rank of G. Under the ansatz Eq. (2.13)
each of the terms in G, must obey the conditions for chirality, Egs. (2.8-2.9),
separately. This is due to fermion number conservation for each of the adjoint
fermions.

Thus, each term in the expressions for G, gives a separate condition. Let us
analyze the condition for the terms of the type G, ;, = f_, ;.0 *p"p’, where o, f
and y are three positive roots. The requirement that f_, ; #0 is equivalent to
o= f+7y. Denote by N, the number of times that the field p~* appears in the
expression for C, Eq. (2.13). N, is either zero or one for each of the positive roots.

From the operator product of the free fermions, p*({)p ~%(z) = L and p*(0)p*(z) =
O({ — z), it follows that the operator product {—z

Gopy(O)C(2) = OL(L — 2+ NPT, (2.14)

Similarly, the degree of the singularity of G}, is —N;— N,+ N,. It follows that
a necessary condition for the field C to be cfnral is,

12Ng+N,—Ny,, 20, forall B,y,f+yed,, (2.15)

where we denoted by A, the set of positive roots of G. This set of equations
appears to be rather cumbersome, but in fact, as we shall now show there is a
very simple and beautiful solution to it. Let us define

N_y=1—N,, (2.16)

where f§ is any positive root. It is easy to check that with this definition, Eq. (2.15)
holds for all the roots of G and not just the positive ones. Define now

A={yeA|N,=0}. (2.17)
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The set A has the properties. 1) For every yeA either yed or —yed. 2) If B,yeA
then 8+ yed. This follows from Eq. (2.15) and is, in fact, equivalent to it.

Let us call an element ae 4 indecomposable if it cannot be written as a = f + 7,
where § and ye A. Denote the set of indecomposable elements by A,. From property
(1) and the definition, it is clear that every root y can be written as y = Zn o,
where a;€ A, and the n; are either all non-negative or all non-positive. From property
(2) it follows that the elements of A, are linearly independent. Thus A, is a basis
for the root system.

A standard theorem in the theory of Lie algebras (see, e.g., ref. [25]) gives a
description for the set of basis of the root system. Every basis is obtained by the
action of some element of the Weyl group, we W(G), on a standard basis. Thus,
A=w"1(A,), where w is some element of the Weyl group. Different Weyl elements
give different basis, since the Weyl group acts transitively on the Weyl chambers,
and thus the solutions of Eq. (2.15) are in a 1-1 correspondence with the Weyl
group. For any root a, N, = 0 iff w(a) > 0. To summarize, the chiral fields C must
be of the form,

C=p"g, (2.18)
where
p™= T p7= (2.19)
a>0
w(a)<0

and w is any element of the Weyl group. Different elements of the Weyl group
give rise to different fields in the G x SO(n) current algebra.

Let us turn now to the first term in G .. These are the terms of the type p~2J,,
where o is a positive (for G ) or negative (for G_). If « >0 is a root such that
w(a) > 0, then from-Egs. (2.11-2.12) it follows that

1
JDg2)=0(), J_,(0g(z)= 0<C—_—Z>. (2.20)

If w(a) < 0 then

1
J(Dg(z) = O<T>’ J_(0)g(z) = 0(1). 2.21)
Since the elements of the CSA are obtained as the commutators [J*, J ~*] it follows
that for all the currents of G, J% we have

JQg(z) = O<L> (2.22)
Thus g is a primary field of the G current algebra, denoted by G}, where A is a
weight at level k, k = A6, where 6 is the highest root, and 4 is some weight in the
representation with the highest weight A. Now, the conditions Egs. (2.20-2.21) are
equivalent to J,G'= 0 iff w(x) > 0. Since the representation is invariant under the
action of the Weyl group this implies that o + w(1)¢ L(A) for every positive root
a >0, and w(4) is the highest weight of the representation, A = w™(A).

We conclude that the chiral fields are all obtained from the fields,

CA=p™"Gliipy (2.23)
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in the G x SO(n) current algebra, where we W(G) and A is an integrable highest
weight. For each such A and w the field C2is chiral.

Due to the quotient by the H current algebra, some of the fields C/ give rise
to identical chiral fields in the G x SO(n)/H theory.

Let us recall some facts about field identification in current algebra (see ref.
[22] for a discussion and further references). Let ¢ be an automorphism of the
extended Dynkin diagram of the affine Lie algebra G. The simple roots of G are
the simple roots of G, denoted by ay,a,,...,o,, where r is the rank of the algebra,
along with the root oy = 6 — 0, where 0 is the highest root and ¢ is a null vector,
ov=0 for any root vector v. The external diagram automorphism is some
permutation of the simple roots o(a;) = a,; which preserves the scalar products,
o(o)o(o;) = o

Now, the dual to the root space is the weight space generated by the fundamental
weights of the simple algebra G, along with the weight A,. These obey Ao = 6;;07/2
fori, j=0,1,...,r. Thus also under the external automorphism o the fundamental
weights transform by the same permutation of the indices which holds for the
simple roots, 6(A;) = A, If lisa weight of G then ,15 k is the level of the weight
(we normalized 02 = 2). It follows that the weight 7 can be written as

A=(k—04)+ Z mA, (2.24)

i=1

where A=Y n;A, is the finite algebra part of the weight. A weight is integrable
i=1
iff all the coefficients appearing in Eq. (2.24) are non-negative integers, n;,eZ and
k=04
Under the action of the external automorphism o the weight 1 transforms as

@)= (k—20)A 0+ Y mA. (2.25)
i=1

If o is such an external automorphism then o gives rise to a change of basis
of the finite algebra G. Let f;=a, for i=1,2,...,r and , = — 6. Then this change
of basis is 6(8;) = B,;). Since scalar products are preserved, this is an automorphism
of the finite algebra and it follows that § is equal to a product of some element
of the Weyl group w, (which affects this change of basis) times a possible external
diagram automorphism of the finite algebra G. An external automorphism, o, for
which ¢ = w_eW(G) (i.e., it does not contain a finite diagram automorphism) are
called proper, and these are the only ones that interest us.

For proper external automorphisms it follows that

o(A) = a(0) + w, (L), (2.26)

where ¢(0) obeys o(0)=kA; and A,0=1. Such weights are called minimal
fundamental weights and for each such weight there is one proper external
automorphism. The external automorphism group is isomorphic to the center of
the group G, or equivalently to the weight lattice modulo the long root lattice.
The same group is also obtained from the Weyl transformations w,. We thus have
an embedding of the center group in the Weyl group given by o —w,. The external
automorphisms may be described as a twist of the algebra G by an element of the
weight lattice, which may be affected continuously [26].
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For example, take SU(n) ~ 4, _;. The Dynkin diagram of ﬁ,,_ 1 1s a circle with
n points. The proper auto_r}wrphisms are rotations of this circle, forming a Z,

group. The finite weight Y, m;A; at level k transforms under the automorphism
i=1

o to o(A)=tk—m;—m,—--m,_ A +m A, +myA;+---+m,_,A,_,. The other
proper automorphisms are powers of this one. We have w, = w, w,,---w where
wy is a Weyl reflection by the root B.

Consider now the fields of the G current algebra theory at level k. As was
discussed in ref. [19] one can decompose the currents into n free bosons and
“parafermions,”

an-1°

- Y*z503, 227)
®;
2k -
x,(x) = \/%calpue‘““’"&, (2.28)

where h; are the currents of the Cartan subalgebra, x, are the others and we are
using the Chevaley basis. The ¢, are cocycle factors. The highest weight states of
the G current algebra may be written as

Gl = s+ Ik pAA (2.29)
We also have Y, = @2;0. The parafermionic fields obey
oMt =0 =M (2.30)

where f is any element of the lattice kM, where M, is the lattice spanned by the
long roots. In addition,

PoA)a(A) = @,{‘,”‘ (2.31)

A+0(0),A+6(0) i
for any proper external automorphism, o.

Let us return now to the chiral fields C2 We will prove that the field
identification in the parafermionic theory implies that,

CA= Co? (2.32)

Wew?

for any proper automorphism ¢ and for any A and w. To prove Eq. (2.32) let us
decompose it into parafermions. Also, we can bosonize the fermions p* (for « > 0),

p*=e, prpTr=1i0,4, (2.33)

where ¢, is a canonical free boson.
Let us first prove,

Lemma (2.1). For any root > 0 and any proper external automorphism o: fo(0) = k
if and only if w; *(B) <O.

Proof. First, we can compute o(— w, '(a(0))) = 6(0) — w,(w; (5(0))) =0. Thus,
w1(@(0) = — o~ 1(0). (2.34)

Assume now that fg(0)=k. Then, from Eq. (2.34), k= — fw (o' (0))= —w_ '(B)o ™ *(0).
Since ¢~ !(0) is a fundamental weight, any root that has a negative scalar product
with it is a negative root and, in particular, w; () <O0.
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To prove the other direction, it is enough to show that if fo(0)=0 then
w, }(B)>0. Assume then that fo(0)=0. Note that >0 implies that § — >0,
where 6 is the highest root. Since 05(0) = k we have (6 — f)a(0) = k. From the first
part above as applied to 6 — 8, we find w, (6 — f) <0, or w; () > w_ '(6) (with
no equality). From the definition w; *(f) = — «,;, where o, is some simple root. Thus
w, 1(B) >0, completing the proof.

We need also a second lemma,

Lemma (2.2). Denote by 7 = Y, d¢,. For any proper automorphism ¢ and any
Weyl transformation w, *>0

p ™ = p "exp{—iw(¥)o " 1(0)/k}. (2.35)

Proof. Let us compare both sides of Eq. (2.34) for each positive root a. There are
three possibilities.

1) w(e)a ~*(0) = k. This implies w(x) > 0 (since ¢~ *(0) is a fundamental weight).
From Lemma (1), w,w(a) <0. Thus p~* does not contain p ~* but the exponent
on the right-hand side (of Eq. (2.35)) does contain p~* From w,w(x) <0 the
left-hand side also contains p ™%

2) w(a)o ™ 1(0) = — k. Similar to case (1), we now have w(a) < 0 and w,w(a) > 0.
Thus p~* does not appear in the left-hand side. Since p~* appears in p~* and the
exponent now contains p% on the right-hand side, we now have p™%p*=1 and
both sides do not contain p~*

3) w(®)o~}(0) =0. We now have two further possibilities using Lemma (1): a)
w(o) >0 and w,w(x) > 0. b) w(ax) <0 and w,w(x) < 0. In case (a) both sides do not
contain p~* and in case (b) both sides do contain it.

From the three cases above we see that the two sets of roots appearing in the
left-hand side and right-hand side of Eq. (2.35) are identical, proving this equation.

Let us return now to Eq. (2.32). From the definition of C,

CoW) = p=wow Gold) (2.36)

Wew w“w;‘o'(/\).
From the proof of Lemma (1), w, '6(0) = — o~ '(0), implying that
G =G4 (2.37)

w‘lwq_la(A) “YA-a~1(0))

where we used Eq. (2.26). We can now decompose G into parafermions according
to Eq. (2.29),

Gr M a=o- 10)) = €XP {igw™ (Ao~ 1(0))/\/E} Pl w-to-10ysw-ray  (238)

where we used Eq. (2.31). Since 67 1(0) = kA;, where A, is a fundamental weight,
o~ 1(0)—w o~ }(0)ekM,, where M is the long root lattice. Thus using Eq. (2.30),

G = exp{i&w— YA—o~ 1(0))/\//;} ) 1Ay’ (2.39)

w™lw la(A)

Combining now Eq. (2.39) with Lemma (2) it follows that,
Cz»(x = [p—w(p‘c_ 1(A) exP{id—)W- I(A)/ﬁ}]

-[exp{—i<$ﬁ+ Y o‘cqba)w‘la‘l(O)/k}] (2.40)

a>0
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To complete the proof of Eq. (2.32) we need only to show that the exponent in
Eq. (2.40) is equal to 1 modulo H.

To see this let us write the currents of H (= U(1)") in terms of those of G x SO(n).
Using the parafermions Eq. (2.27) and Eq. (2.33), these may be written as

hy=iJ/kad,$+ ¥ Eﬁaz¢ﬂ=i362<iﬁ$+ Y 7;’¢,,). (2.41)
B>0

>0

Thus the free bosons z\/ﬁ; + Y, B, are precisely the ones that vanish modulo
B>0

H. But this is what appears in the exponent in Eq. (2.40) and thus we proved

Eq. (2.32).

3. The Case of Nonabelian H

Let us turn now to the case when H is not abelian. We shall assume that
rank (H) =rank (G) =r, and that H is a diagram subgroup of G, i.e, H is the
subgroup spanned by a set of simple roots o, , a;,,...,;,, where m <r, along with
the elements of the Cartan subalgebra. As in Sect. (2), we shall make the ansatz
that a general chiral field is of the form,

C=p “p @ p™™G, G.1

where G is a field in the G current algebra and the a; are now positive roots of G
which are not roots of H, o;eA; — A (which we denote by 4 ;).
The same analysis as before for the term p~*J, shows that,

J(DG(z) = 0(1), if O<as#a or o= —o,

JG(2) = 0<—1~) otherwise. (3.2)

It follows that for any current of the G algebra J*({)G(z) is at most singular as

1 : . .
0( > and thus G 1s a primary field. Let us denote it then by G, where A is
—2Z

the highest weight and 4 is some weight in the representation.
Now, the currents of H act trivially on the fields of G x SO(n) (modulo H). Let
o be any root of H. The associated current is

J,=JO i3 f.. 0" (3.3)
B,y

We can form an equivalent chiral field to C by writing the operator product of

. . L 1
J, and C and picking up, say, the most singular term, which is of order 0<E—>
-z
We get the field C’' which is a sum of fields in which each of the g; is going to
o; + o (provided o; +a #a;) or A goes to 1+ a. Continuing to form operator
products in this fashion, we arrive at a unique equivalent field of the form,

E____p—mp—bz“.p—bnd);\, (34)
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where b;—a;eH and y— AeH. In addition, for any posmve root of H, aedy,
b+ aeAG 1mp11es that p~®**) appears in C, and that y + « is not a vector in the
representation L(A). This field is the highest weight vector with respect to the finite
algebra H. This also shows that for any chiral field C we can form an equivalent
one by adding roots of H to any of the a; and .

Let us thus assume that C is a highest weight of H. Consider the action of G,
on C. From the second term, of the type f,;,p"p” p’, we get, as before, the condition

lgNa-i-Np—Na.,.ﬂgO, (3.5)

where now a, 3, cx+ﬁeAG,H. Now define N, =0 if aeA;;. Equation (3.5) is still
valid, since if ae A}, and feH then a + fe A implies that N, ;= 1 as we assumed
that C is a highest weight vector of H. Thus N, + N;—N,,,=1 and Eq. (3.5)
holds. In other words, we can extend the map N to the whole of A; while preserving
this equation.

Thus, as in the case of an abelian H, it follows that N is obtained from some
Weyl transformation we W(G). We have N, =0 iff w(e) > 0. In addition, if ae4;;
then w(a) > 0. We denote p ™% p~%...p "= p~".

From the first term, of the type p~%J,, we have: 1) if ae Ay then 1 + a¢ L(A).
2) If oceAg/H and +w(a) >0 then A + a¢L(A). Thus for any positive roots of G, §,
we have w(4) + a¢ L(A) implying that 1 =w~(A).

To summarize, we have shown that all the chiral fields are of the form

CA=p"G 0, (3.6)

where A is an integrable highest weight and w is an element of the Weyl group.
Now, not all weW(G) will give rise to different chiral fields, due to the
identification modulo H. We will now show that if w,e W(H) then C/ = C{V‘Wh, and
these are all the identifications due to the quotient by H.
We first need a lemma,

Lemma (3.1). Any Weyl transformation we W(H) permutes the positive rootsin Ag .

Proof. Recall that we assumed that H is a diagram subgroup. Denote the simple
roots of H by a,,a,,...,a,. Since the Weyl group is generated by reflections by
the simple roots, w,, it is enough to prove the lemma for these. If fe Ay then

p= Z 50, where the s; are non-negative integers and some s; for i > m is positive.

Now wa‘(ﬁ Z sio + Z a,;. Since some s; is positive it follows that w(a;) > 0.

i=1 i=m+1
Using the lemma we find
p~= ] »7%= Tl p-W;I‘(é), (3.7
>0 >0
wwp(d) <0 w(d) <0

But w, '(8) = 6 + a, where ae Ay, and as discussed earlier adding roots of H leaves
the chiral field invariant modulo H. Thus,

p-h=p" (3.8)
Similarly, for the second term,
GA =GA

w;lw—l(A) w~Y(A)+a?

(3.9)
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where aeAy. It follows that, modulo H,

cr=ca (3.10)

wwp

It remains to show that C = CJ implies that w,w  'eW(H).

Lemma (3.2). Suppose that we W(G) obeys w(d) > Oforall de A i ThenweW(H).

Proof. Suppose that we W(G) obeys the assumption of the lemma. Denote by
Ay, = {6eAy|w(d) > 0}. 4}, is a positive root system for H and thus 4y, = w, '(4;)
for some wye W(H). Consider now the Weyl transformation wwg '. If de 47 ,; then
ww, '(6) > 0 (since w, ' permutes the positive roots in AG,H) If de4,; then from
the definition ww, (6) > 0. Thus for all 5eA; we have ww0 1) > 0. But the Weyl
group acts transitively on the basis, implying that ww™! =1, which proves the
lemma.

Thus, each we W(G) may be decomposed uniquely as w = ur, where re W(H)
and u preserves the positivity of the roots of H. From Eq. (3.10) it follows that
we can replace w by u. Then different u’s would give different fields, just as in the
abelian case, since these are in one to one correspondence with the basis of G
which contain 4.

Our discussion so far was independent of the spectrum of the theory, or the
particular modular invariant used to describe it. The same discussion holds also
for the right movers and for the left movers separately (except for the field
identifications which must be carried simultaneousy for the left and right movers).

For the sake of completeness let us digress here on the spectrum of quotient
conformal field theories. As discussed in ref. [22], the field identifications and the
restriction on the weights play a crucial role in the spectrum. Specifically, let G
and H be arbitrary algebra and its subalgebra. Then the fields in the theory, as
in Eq. (2.1), are given by @; Similarly, one defines the string functions, which are
the characters over each such block of fields, ¢;'(z) (see the discussion of modular
invariance in Sect. (1)). Under modular transformations ¢ 2 A(1) transforms as the
product of G characters times a product of the complex conjugate of H characters.
Let N, ;and M, ; be arbitrary modular invariants for the G and H conformal
field theories, respectlvely [27]. Then the partition function of the G/H conformal
field theory is given by

Z=Y N, iM, il (3.11)

A A.
(A,A)ed

where A4 is the set of cosets (A, 4), where A — 1 is in the root lattice of G (or the
appropriate generalization of this condition in case of non-simple G according to
the decomposition of representations of the finite algebras; this is the condition
C(A, 2) of ref. [22]) modulo the field identifications of the theory, the action of .
The sum above is understood in terms of picking one arbitrary representative from
each coset. The choice of representative is immaterial due to the field identi-
fications — all the representatives describe the same field. Due to the fact that
Nya).0h = N a, 4 for any modular invariant N of any algebra well and for any A
and A [9], it follows that the partition function Eq. (3.11) is indeed well defined
on the cosets.
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The partition function Z defined in Eq. (3.11) is modular invariant. To see this
note that it can be written as

1
2niA(A— A A) A
Z=— X eMEIGCN A, g (3.12)
a” Arap. AL
where a is the order of the field identification group. This is since the exponent
gives a delta function which is the condition C(A,4) and since c7(4)(c) = c;(x).
Modular invariance can be now shown using the explicit expressions for the

1
modular transformations (see ref. [27, 22] for details). In particular, S:7— ——
T

simply exchanges ¢ and p, implying the invariance of the sum over both. The
spectrum, as read from Eq. (3.12), is closed under the operator product algebra
since the fusion rules [27] obey a(4) X p =24 x o(u) = o(4 x p), where “x” stands
for the fusion rules, 4 and u are any integrable weights and ¢ is any external
automorphism [19]. Thus the fusion rules of the quotient theory are the same as
the original one, in terms of representatives modulo o. Hence this spectrum
represents a closed operator algebra if the original invariants N and M were so.
It follows that the spectrum of the most general G/H theory is given by the set of
cosets described above. Note, in particular, that this holds also when ¢ have fixed
points when acting on the pairs (A, ).

An important choice for the modular invariants N and M is the left-right
symmetric one, N, ;=6 , 3and M, ; =0, ;. From hereon we shall assume this
invariant, unless otherwise specified. This choice of modular invariant will be
referred to as the principal theory.

The entire discussion can now be summarized in the following theorem.

Theorem (3.1). The chiral fields in a quotient, G/H, N =2 conformal field theory
with the left-right symmetric modular invariant are given by Cr=p *p "G}
mod H, where weW(G) and A=w"'A. In addition, C}= C»/v‘w,.— Co\). In other
words, the chiral algebra is in a 1-1 correspondence with pairs (A, w), where A is an
integrable highest weight and we W(G)/W(H) (right quotient), identified by the action
of (o, w,).

Actually, our proof of this theorem assumes that the chiral fields are given by
the general form Eq. (2.13). This ansatz needs to be justified. To do so [24] we
can utilize the connection between the problem of finding the chiral field and the
harmonic forms of a Lie algebra cohomology. In the Ramond sector, the super-
conformal generators, G§ become a Lie algebra derivative with respect to some
Borel subalgebra of the afﬁne G and its dual with respect to the killing form.
The ansatz Eq. (2.13) is equivalent to assuming that the fields are in the ground
state of the fermionic theory. This cohomology problem was studied by
mathematicians in connection with the cohomology of loop groups [28]. When
translated into this context, it implies that the chiral fields are given by replacing

2 In case there are no such fixed points we can replace the partition function, Eq. (3.12),
with the sum over all (A, 1) and divide by a. (This is the partition function given in ref. [22].)
In case there are fixed points, it is incorrect to do so; in particular, the result would not be
modular invariant
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each of the objects by its corresponding affine counterpart. In particular the chiral
fields are of the form. C/}, where w is in the affine Weyl group and the appropriate
definition for p* is given. Decomposing w into T x W, where W is the Weyl group
of G and T is the translation subgroup, it can be seen that the translation is
irrelevant modulo H, and thus indeed the ansatz Eq. (2.13) is justified.

It is straightforward to generalize this theorem to other modular invariants,
as well to the anti-chiral algebra. Note that the complex conjugate of a chiral
field is an anti-chiral one. For a general modular invariant, the chiral fields are
of the type CAA=CACZ where A and A are the left and right highest weights
and w and w are two elements of W(G)/W(H), appearing in the spectrum a number
of times according to the modular invariant used. In addition, CJ:4= C74), 3(/3 for
every proper external automorphism o. A similar result holds for the anti-chiral
fields where for the right movers we take the complex conjugate of the cor-
responding chiral field.

It can be seen that in the case that the left-right symmetric modular invariant
is used for H, H, ;=90, 3, the field C,,,, discussed in Sect. (1), is in the spectrum
of the theory. This field is given (up to field identifications) by C2, where w is the
longest element in W,? ie., the element that reflects all the roots in A, > which
is of length dim A, and p —w™'p = p — py. It is not hard to compute, using Eq.
(3.20), that indeed for this field Q = ¢/3. It follows that, irrespective of the modular
invariant used for G, this field will be in the spectrum of the theory and the
transposition operation of Sect. (1) can be defined. Thus also the Poincaré
polynomials are always dual obeying Eq. (1.16).

Assume then that M, ;=4, ;. If the invariant used for G,N, 3, is not the
left-right symmetric one, then the chiral fields are still given by C/ each appearing
N 4, stimes. This follows from the fact that the equation w(A+p)—p=w,(A; +p)—p
has as the only solution w = w; and A = A, (this is fairly standard, see e.g., [29]).
If the modular invariant used for G is also the left-right symmetric one,
M, 3=10,4, 3 it follows that there are no anti-chiral fields. The relevant equation
in this case is, w(A + p) — p= — w,(A + p) + pmod A and this has no solutions.

When w, acts without fixed points on the pairs (A, w), the number of chiral
fields for the principal theory is

|W(G)|N¢
|Z| x |W(H)

where | W(G)| is the number of elements in the Weyl group, | Z| is the number of
elements in the center and N{ is the number of integrable highest weights at level
k. When Z acts with fixed points on the pair (A, w), the number of chiral fields is
strictly greater than the number above.*

Let us now turn to the decomposition into H of the fields C? of the G x SO(n)
current algebra. As was discussed earlier these fields are primary fields of the
diagonal H subalgebra. In addition, the foregoing discussion shows that the field

(3.13)

3 This observation is due to R. Cohen

4 Equation (3.13) was independently derived as a lower bound on the number of chiral fields
in ref. [30], where also the Poincaré polynomials of the level one h.s.s. simply laced theories,
Eq. (3.26), are described
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C2is a highest weight vector under H if and only if w(h)> 0 for all heA;;, and
that there is exactly one such h in each coset of W(G)/W(H). We shall denote the

G
set of such Weyl elements by W(E) Let us assume that we W<g> For such a
w the field CA decomposes according to Eq. (2.1) as

Cl=K2H%, (3.14)

where 1 is the weight of C under the diagonal subalgebra (since, C is the highest
vector), and H* is the field in the H current algebra with highest weight A and
weight A. The weight 4 is easily computed from that of the fermions and the G
primary field,

A=w A+ Y o (3.15)

o Lo

Since w(h) > 0 for he A, the sum above can be taken over all positive roots of G.
It is easy to see that,

Y a=p—w (o) (3.16)
w?:)So
since
i p)=Y wilw= Y B— Y B (3.17)
>0 >0 >0
w(B)>0 w(B)<0

where we substituted f = w ™ (a). Thus,
A=w" YA+ p)—p. (3.18)

We can now compute the dimension and charge of the field K #from Eq. (3.15).
We find,

A=W A=) oy (3.19)
2 k+g

and we see that the fields K are indeed chiral. n(w) is the number of positive roots

o > 0 for which w(x) < 0. The number n(w) is also equal to the length of w, denoted

by l(w), which is the minimal number of reflections by the simple roots from which

w is composed (e.g., ref. [25]).

As discussed in Sect. (1), a convenient way to summarize the various grades
in a graded algebra is the Poincaré polynomial, Eq. (1.15).

Consider the h.s.s. family of theories, where «, fe A, implies that o« + f¢AS ;.
These pairs of G and H may be characterized by the fact that the central charge
¢ =0 for k=0. Assume also that G is simply laced. Now, the fact that ¢ =0 for
k = 0 implies that for this value of k all the U(1) charges computed from Eq. (3.19)
must vanish. This implies that,

-1 .
n(w) = — 2w (p)—p)(p p). (3.20)
g

Thus for the h.s.s. family Eq. (3.19) can be written as,

o9 w0~ )
k+g k+g

(3.21)
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Consider, now the case of k = 1. In this case, since all the level one weights of G
are minimal (as G is simply laced) the field identification may be implemented by
assuming that A=0 (we are also assuming the left-right symmetric modular
invariant). Thus, for k =1 the U(1) charges are,

_ lw

g=—"" for weW(G), w(h)>0. (3.22)
g+1
Denoting by u =t!/¢* 1 the Poincaré polynomial becomes
Pou)= Y u'™. (3.23)
weW (G/H)

Define now the following polynomial,
Po= ) u'™, (3.24)

weW (G)
for any semi-simple Lie algebra. Note now that any we W(G) may be decomposed
uniquely as w'w,, where we W(H) and w’'(h) > 0. (The arguments are similar to the
ones described for Lemma (3.2).) This decomposition is unique and goes both
ways. Thus there is one-to-one map from such pairs of Weyl transformation to
the Weyl group. In addition, it is easy to see that [(w) = I(w') + [(w,) (use the fact
that /(w) = n(w) and the fact that w, permutes the positive roots not in H). Thus

we have proved,
Pg(u)

Py

Finally, there is a simple formula for Pg(u) which is closely related to the
cohomology of the manifold G/H [31],

am(U)= (3.25)

%M=H1—w: (3.26)

i 1—u

where the m; are the exponents of the Lie algebra. Using Eq. (3.26) we can compute
the Poincaré polynomial of the simply laced k =1 h.s.s. cases.

4. Dihedrality and Statistical Models

Consider the theory

U(n1 +n2+ +nl)k
U(ny) x Ulng)-- x U(m)’

at some level k. This is the most general theory which can be derived from SU(N),
and is obtained by the deletion of / roots of SU(n, + n, + --- + n), i.e., the roots
Opy> Opy 4 mp> -« s Oy +mp+ - +m_ - LNIS class of theories have many nice properties that
make its investigation easier, and thus provides a good testing ground. In addition,
most of the lower central charge theories come from SU(N), and thus play a bigger
role in compactification.

One property is that if gcd(n,, n,,...,n,k) =1 then the theory Eq. (4.1) has no
fixed points (see the discussion in Sect. (6)). If gcd(n,,n,,...,n) =1 then there are

T(k;ng,ny,...,n)= 4.1)
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no fixed points for any k, and these are the only such theories, simplifying consider-
ably their investigation.

Another, rather amazing property, is that k can be assumed to be equal to
zero, k = 0, without any loss of generality. This is due to the following equivalence
of theories,

Un, +n3+ - +n),, _ Ulng +ny + -ngg
Uny) x U(ng) x - x U(ny)  Ung) x Uny) x -+ x U(nl),

4.2)

where the first theory is at level n, and the second is at level 0. We shall prove
this identity (for any n; > 0) below. As we shall show this identity implies the
dihedrality of the theories of this type. Namely, the freedom of permuting
NysPgses Ny,

T(ny;ny,n,,...,m)= T(np(l); Np2)s Np3ys -« +» np(l))7 (4.3)

where p is any dihedral permutation, generated by either a rotation, p(i)=i+smod !
for some s, or a reflection p(i)=p(l+2—i)for2<i<1
First it is not hard to calculate the central charges of both theories in Eq. (4.1).
The results are the same,
A
Cc=— N,

, where S,= Y mn - (4.4)

1 iy <ize<iy

iz’

We shall establish the equivalence of theories Eq. (4.2) by describing a 1-1
map from the chiral fields of the one theory to the other, which preserves the U(1)
charges. Let R=SU(n, +n,+ -+ +n,),G=8SU(n, + ny+ --- +n)),H, = SU(n,) and
H=SU(n,) x SU(n;)---SU(n,). As Lie algebras, R > H; x G,G o H. According to

Theorem (3.1) the fields of the theory

at level k=0 are given by C°,

1 X
where we W( ) is the set of Weyl transformations of R, which leaves as

1 X
positive the positive roots of H; x H. The U(1) charge, is given according to
Eq. (3.19), by

(k+9)Q, =k +g)lw) ~ 2(pr — P, — Pu) 2, % (4.5)
a>0
w(a) <0

where we used Eq. (3.16), k=n, and g=n, +n3+ ---n,
The first step is to decompose w and we follow closely the proof of Lemma (3.2),
in which such a decomposition was established. Consider the set,

0, = {aeG|w(x) > 0}, (4.6)

where we use aeG to denote any of the roots of G. @,, is a positive roots system
for G and thus, @, =r"*(4;), for some re W(G), where A; denotes the positive

. e . G
roots of G. Since w preserved the positivity of H, it follows also that re W(E)
Define the Weyl element u = wp~ e W(R). Acting upon a positive root of G, f,

we find u(B) = wr~1(B) > 0, since r~*(f)e ®,,. Thus, ue W( and we found

H, xG
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a unique decomposition, w = ur,

W< R ):W( ¢ )xw(ﬁ). @7
H, xH H, xG H

Obviously this decomposition is 1-1, since r is defined uniquely from w (using the
property that the Weyl group permutes the Weyl chambers, acting transitively)
and onto.

Consider the set of positive roots that w reflects, @,, = {aeR|a >0 w(x) < 0}.
These can be separated to two disjoint subsets. The first subset consists of the
positive roots of G which are negated by r, denoted by @,. Other roots of G are
not reflected by w, since r maintains the positivity of the roots of G. The second
subset consists of positive roots of R — G. Since r permutes the positive roots of
R — G among each other, due to Lemma (3.1), it follows that these roots are of
the form r~*(®,), where @, is the set of positive roots which are negated by u. It
follows that

I(w) = l(u) + I(r), 4.8)

D, =0,0D, DNV, =, 4.9)

where Eq. (4.8) follows from Eq. (4.9) since the length is equal to the number of
positive roots which are negated.

Let us compute the charge Q, Eq. (4.5), in this decomposition. Equations
(4.8-4.9) imply that Q,, splits into two terms, Q,, = Q, + Q,, where

(k+9)Q, = (k+ g)l(r) = 2(px — Pu, — Pu) Zw % (4.10)
(k+9)Q, = (k + 9)l(u) = 2r(pg — pu, — pu) 2, - (4.11)

Now if ae®, then (pg — pg)o =0, since « is a sum of simple roots of G and each
of these has a product 1 with both pg and pg. Similarly, apy, =0. Thus we can
recast Eq. (4.10) as

(k+9)Q, = (k + g)l(r) — 2(pc — pu)(Ps — 1™ (Pg)). (4.12)
Consider now the second term Q,. First, note that
2(pg — pu, — Pe) = (k + 9) A, (4.13)

where A% denotes the i fundamental weight of R. For a proof see Sect. (6), Eq.
(6.16). Now each of the roots ae®, is of the form o, + ---, where the “---” refers
to other simple roots. Any of the roots of R contain o, either once or none at all
(since g;=1 for SU(N)). If it does not contain o, then it is a root of H; x G,
contradicting the fact that u preserves the positivity of these roots. Since the number
of roots in @, is l(u), and r permutes the positive roots of R — G, we find,

(k+g)l(w) = 2r(pg — pu, — Pg) 2. @ (4.14)

acdy

Combining Eq. (4.11) with Eq. (4.14), leads to
(k+9)Q,= —2r(pg — pu) ). 4.19)

acd,
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Let A= ) o, which is a weight in R. 1 may be decomposed as A =4, — A,,

acdy,
where A, is some weight of G and 4, is some weight such that A,a, =0 for i >k,
(where o; stands for the i'® simple root). Explicitly,
gtk
A== Y (Aa)ALk (4.16)
i=k+1

where A% is the i fundamental weight of G. Since r(pg — py) contains only roots
of G, it follows that

(k +9)Q, = 2(pg — pu)r ™ '(AL)- (4.17)
Combining Eqs. (4.12) and (4.17) we arrive at the following form for the U(1) charge,
(k+9)Q = (k+ 9)lr) + 2(pc — pu)[r ™ (Au+ pg) — Pg]- (4.18)

In this equation, A, is a weight of G = SU(g) and re W(%)

Let us compare this expression to the U(1) charge of the G/H theory at level
k. Again, from Eq. (3.19),

(k+9)Q =(k+9Ilr) + 2ps — pu)[w™ (A + p6) — pcl. (4.19)

G
where as before reW(E) and A is an integrable highest weight of G = SU(g).

Thus, the two expressions Eq. (4.18) and Eq. (4.19) are identical, with the identi-
fication w=r and A = A,. This is the map of chiral fields between the two theories,
which preserves the U(1) charges.

It remains to show that A, so defined is an integrable highest weight at level
k. This will be done by explicitly calculating it.

The positive roots of R are given by ¢; — ¢;, where 1 i < j <k + g and ¢, stands
for an orthonormal set of unit vectors, ¢;¢; = 6;;. The positive roots of H, or G
are of the same form where, respectively, 1 <i<j<kand k+1Zi<j<k+yg.

The Weyl group of SU(N) consists of all the permutations ¢;— ¢,;, where p is any

permutation. Thus W( consists off all the permutations p(i)eS, ., for

1 xG.
1 <i<k+ g, which obey (since it must preserve the positivity of the roots of H,
and G),

1=p()<p2)<--<pk)<k+g,
1<pk+)<pk+2)<--<pk+g)<k+g. (4.20)

Let a; = p(i). Then 1 < a, <a, <--- < a, < k + g. Each such ascending series defines

o)
H,xG)

) by a=1[a,,a,,...,a,], where

uniquely a permutation obeying Eq. (4.20) and thus also an element of W(

Hence, we shall denote an element of W(

the a; is such a series.

Each of the positive roots reflected by a are of the form ¢; —¢;, where i <k,
j=k+1 and p(j) £ a;. Since the p(j) also defines an ascending series, the latter
condition will hold iff j < ¢, where t; = a; + k —i. It follows that the total number

1 X G
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of such reflected roots is

k
lw=Y a—i 4.21)
i=1
and that the sum over the reflected roots is,
k atk—i
Yoa=Yy Y g—¢; 4.22)
a>0 i=1 j=k+1

u(@) <0

Now, &; —¢;=A’"*"* — A/~ ‘up to a weight of R which vanishes when multiplied
by the roots of G, and where we have conveniently defined, A° = A? =0 (this, if
you will, is the affine weight A°). We can now sum up the string of roots

ait+k—i ai+k—i
Y e—eg= ) AR AR = AR (4.23)
j=k+1 j=k+1
and thus
k
A=) AT (4.24)

i=1

The projection of 1 over the weights of H,, because of the symmetry of exchanging
H, and G, is given by the same expression with a; replaced by, where b, = p(s + k).

Now, the map that we have defined is not 1-1 as it stands. This is due to the
fact that we have not taken into account the field identifications. As explained in
Sect. (2) the chiral fields are C? modulo the field identification, C}= C7%), where
g is any external automorphlsm We need to show that the map so defined is one
to one and onto between the cosets modulo this identification.

). The elements of

Let us note then the action of w, on weW
H, xG

R . . .
W(H G> are described by permutations p(i) for 1 £i<k+g, as explained
L X

above, which obey the ascending chain condition, p(i) < p(j), where i < j and i, j
are in the same subgroup, H;. In this explicit notation, the decomposition that we
defined earlier, w = ur, can be described as,

u=l[ag,a,,....,q]=[p(1),p2),...,pk)],

and r correspond to the permutation q(i) of k <i =<k + g such that g(i) < q(j) for
i< j in the same subgroup, H;, and pq(i) < pq(j), forall k<i< j<k+g.

The action of wi on w, the element w!w, is given by the permutation
p(i) +smodk +g. What does that do to the decomposition of w? Consider for
simplicity the case s = 1. There are two possibilities.

Possibility (I). If p~'(k + g) < k then we get precisely the same decomposition as
before, w—(A,, 7). That r does not change is clear since it depends only on the
order of the roots of G and this stays the same. As of u, it does change, but A,
does not, since A° = A? and the set a; — i stays the same, except for this substitution.

Possibility (2). If p~Y(k+g)>k then clearly a,—i<g for all 1 <i<k Then
a;—a; + 1 implies that A, — a(A,), where o stands here for the automorphism of



460 D. Gepner

G. Similarly, g is rotated and so r— w,r. Thus we find precisely the field identi-

fication of the theory g

Now, our claim is that the map we have defined is 1-1 and onto from

R
W(H ” G)mod {w,} to the pairs (A,,r) modulo the action of ¢. Consider then
1

a representative from the first set. We can choose a representative such that

a;— i< g for all i by using rotations of type (1). It is clear from Eq. (4.24) that A,

is an integrable highest weight at level k. The map u— A, is also 1-1 and onto
k

since if A is an integrable highest weight, it can be written uniquely as ) A%,

i=1
where 0< b, £b,,... £ b, <g. Define the a;=b(i)+i and u=[a;]. Then A= A,
in a unique fashion. Choosing different representatives, for which a; — i < g, would
lead to rotations of type (2) giving precisely the field identification of the theory
G/H. Thus the map we have constructed is well-defined, 1-1 and onto, between
the two sets of cosets and we have proved,

Theorem (4.1). There is a one to one map from the chiral fields of the two theories
T(ny;ny,...,n)to T(O;ny,n,,...,n), where the n; are any non-negative integers. This
maps respects the U(1) charges and is given by the Weyl group decomposition
described above.

In particular, the two theories will have the same Poincaré polynomials.
Presumably, this map is a graded algebras isomorphism, namely, it respcts the
multiplication of the chiral fields. Albeit, in view of the fact that the structure
constants of the theories in question are not, in general, known, it is hard to
establish this directly.

Since the Weyl group of SU(N) consists of permutations, and since the level,
k, can be assumed to be equal to zero without any loss of generality, a purely
combinatorial formulation can be given for all the theories in this class. The

permutations pe W ) obviously correspond to the different orderings of

L X
[ type of objects, where we have n, of type 1,n, of type two, etc. To simplify the
notation, let us assume that /=3 and that there are three objects, n; red balls

R .
(say), n, blue ones and n; green ones. Let pe W<H——> be some permutation.
1 X
We then locate the red balls in the p(i) places 1 <i < n,, the blue ones in p(i) for
n, + 1 i< n, +n, and the green ones at the places p(i) forn, +n, + 1 <i<n, +
n, + n3. Quite evidently, this is a one to one and onto map between the various

arrangements of these balls on a line and W<H R G>'
1 X

In view of the field identifications by w,, which is a rotation of the balls, they
should actually be considered as arranged on a circle, and two configurations
which can be rotated to each other are one and the same. Our configuration space
is thus the different arrangements of these balls on a circle. We can now define
the “energy” of each configuration as a measure of its derivation from the ordered
state where the balls are lumped in three groups (p(i) = i). The energy is the U(1)
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charge Q = (ny + n, + n3)Q,,, which using Eq. (4.5) can be shown to be,
Q=-— ﬁzl(red, green) + n,l(red, blue) + ny l(blue, green). (4.25)

Here the I’s are defined as follows. Open the circle at some arbitrary point to a
line. Now count the number of green balls that are lower than red balls, by
summing up the number of green balls that are to the left of each red ball. This
number is denoted by I(red, green). (This is the minimal length of a permutation
needed to arrange all the green balls to the right of the red ones.) Similarly define
the other [s.

The energy Q, so defined, is, of course, a function of the arrangements on the
circle. If we pull, say, a green ball from the exteme right to the extreme left, we
add n, to l(red, green) and n, to I(blue, green). The change in the energy is then,
AQ = — n,(n,) + n3(0) + ny(n,) =0, showing that Q is invariant. Similarly, Q is
easily seen to be invariant under the pulling of red or blue balls. Thus Q is indeed a
function on the circular configurations. In fact, this property completely determines
the coefficients in Eq. (4.25) and it is thus the unique function of this type.

We can now define the partition function as the sum over all configurations
at the temperature f = —logt. We have

Z= Y e 2= Y 2 (4.26)

config. config.

Note that the partition function Z(t) is precisely the Poincaré polynomial of the
theory, P(t).

Thus we have translated the problem of understanding these theories to a very
simply stated statistical mechanics problem on the circle. One can then ask
questions about the zeros of the partition function, grand canonical partition
functions (summing over the n; with some chemical potentials) and thermodynamic
limits (the limit of an infinite number of balls). In fact, these are precisely the
questions that we will deal with in much of this paper. As explained in Sect. (1)
the zero’s of P(t) encode the algebraic information about it. The grand canonical
partition function is the polynomial generating function introduced in Sect. (6),
and the thermodynamic limit corresponds to taking k— oo, a valuable limit in
which the algebra becomes a free polynomial algebra.

This picture can be drawn equally well for [ > 3 by the introduction of [ distinct
types of balls. The energy Q then assumes the form

0=Y Y myls,o), (4.27)

where I(s, t) is the number of ¢ balls to the left of s-type ones. It is not hard to see
that Q will be cyclically invariant if and only if

Y. myn, =0, (4.28)
t
for any s and we defined my, = —m,,. A given m,, is a solution of Eq. (4.28) if and
only if it is of the form

my =Y Kg,ny,, (4.29)
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where K, is any fully antisymmetric tensor®. For each such tensor we would have
a cyclically invariant Q. The coefficients m, that correspond to the U(1) charge Q
can be calculated from Eq. (4.5) and we find that they correspond to the most
symmetric case of these, K, =1 if s <t <u and is antisymmetric in the three
indices. Explicitly,

s—1 t—1 1

me= Y m— Yy m+ Y n, (4.30)

i=1 i=s+1 i=t+1
for 1<s<t<land m;= —m,.

The rather formal proof that we have given above for Theorem (4.1) can be
understood, quite intuitively, in terms of these “colorful” balls. We leave the details
as an exercise.

We finally come to the dihedrality of the theory, Eq. (4.3). This follows simply
from the field identification. Under w,, w cyclically permutes, p(i)— p(i) + s mod (k + g).
Thus, the very same permutations correspond to T(ng,n,,...,n) and
T(n,,n3,...,n,n,). It follows that these theories have an identical configura-
tion space and identical polynomials. Similarly, since T(0;n,,n,,ns,...,n)=
T(ny,n,,...,n)(Theorem (4.1)), it follows that we can reflect n, > n;, , _;for2 <i <.
(It is the same algebra, with the same roots deleted.) Thus we have proved the
identity stated in the beginning of this section.

Theorem (4.2). We have the following equivalence of theories (in terms of their
Poincaré polynomials),

U(”z + nj + -t nl)m A U(np(Z) + np(3) + ot np(l))np(l) (4 31)
Uny) x Ung) x -« x U(ny)  Ulnygy) X Ulng) x - x Unyg)

where p is any diehedral permutation, generated by a rotation p(iy=i+1 or a
reflection p(i)=14+2—i for 2<i<1.

The isomorphism map between the chiral algebras of the theories is given by
the composition of two of the isomorphisms described in Theorem (1). Namely,
multiply w and A (represented by the corresponding Weyl element), then rotate
the result by w, to the appropriate power and, finally, decompose back according
to a different subgroup. In general, this two step isomorphism becomes quite
complicated, while each of the steps is relatively simple.

The case of | =3 of Theorem (4.2) was conjectured in ref. [21], whereas a case
of this theorem for ny =n, =--- =n; =1 was proved in ref. [32].

Both Theorem (4.1) and Theorem (4.2) hold for all [ and all n, > 0. If gcd(n;) # 1
there are fixed points of the action of o. However, since we established the
isomorphism as maps on cosets, this does not matter.

> To see this note that if V; ;, ., is a fully anti-symmetric tensor, ie., an element of the
exterior algebra A V, or a form, then we can define a boundary operator, 0V =3 n, Vi ., ..
It is easy to check that 0> =0 and thus we defined a complex. Equation (4.28) is the statement
that m is a closed form, while Eq. (4.29) implies that it is exact. Define, as usual, the cohomology
group as closed forms modulo the exact ones. Then this statement is equivalent to the second
cohomology group being trivial. By a direct calculation it is not hard to establish that all
the cohomology groups are trivial provided that n; # 0
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Note that although the central charge is completely symmetric in the n;’s
(Eq. (4.4)), permutations other than the diehedral ones described above, would,
indeed, lead to different theories. This can be seen by the direct calculation of the
Poincaré polynomials. The polynomials turn out to be different for theories related
by permutations other than the diehedral ones, showing that these are distinct

no
theories. At a given [ there are T = i(l — 1)! inequivalent theories (/ = 3) for every

generic choice of n;’s. Thus at | =3 there is a unique theory, three at [ =4 and at
[ =9 there are 20, 160 inequivalent theories, all with the same central charge!

5. Dihedral Polynomials

The typical polynomials that one anticipate in a scalar field theory have the form
(see Sect. (1)),

L=
Poy=[| ———
rl:ll (I —1™)
where g is the degree of the potential and the m, are a set of exponents which are
the degrees of the generators. It will prove useful to introduce a short-hand notation
for any polynomial of the type Eq. (5.1). Let g(x)e Z((x)), where by Z((x)) we denote
all the Laurent polynomials with coefficients in Z of which only a finite number
is nonzero. For every such Laurent polynomial we can associate a rational function
with integral coefficients as follows. Suppose

, (5.1)

N
qx)= 3 ax, (5.2)

r=—N

then define P (t) to be the rational function,

. N
Pm= ] (1=t~ (5.3)
r=-N
We shall call g(x) the degree series of the rational function P(t). It is also useful
to define the “dimension” of the series g(x) as a map from Z((x)) to Q (the field
of rational numbers),

N
Dig)= [] ™ 5.4
r=-N
It is clear that the map q— P,(t) is onto the field of rational functions over Z
whose zeros and poles are all primitive roots of unity, or zero. This map is almost
one-to-one, in the following sense. Let g be some degree series. Then P,(t) # 0 may
be written as

N
P)=(=1yt* ] (1 =", (5.5)
r=1

where k is the order of the zero at t =0 (equal to the sum of the negative power
terms of ¢), s is the sum of the negative coefficients and a, is the sum of the
coefficients of r and — r. Clearly, there might be some ambiguity, in case k #0, in
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reading g from Eq. (5.5). However, k and a, are uniquely determined from P (t).
The proof is a generalization of the polynomial case [12], and proceeds by
induction. k is the order of t =0 and thus it is enough to consider the case of
k=0.If P,(t) is of the form Eq. (5.5) then all the roots and poles are primitive
roots of unity. Clearly, for n large enough, P,(¢) has no poles or zeros which are
m primitive roots, with m > n. Let n be the biggest integer such that P,(t) has a
primitive n™ root of unity as a zero or a pole, with degree a,. Multiplying both
sides of Eq. (5.5) by (1 —¢")”“ lowers the value of n. Repeating this step proves
the assertion. The ambiguity associated with k # 0 will not be of a problem in our
subsequent discussion, as we shall be dealing with P (t) of the form Eq. (5.1) where
it does not arise.
An evident but very useful property of the maps defined above is,

Lemma (5.1). If q, and q, are two Laurent polynomials then
Poivg =Py Py, (5.6)
Dql"’qz:Dqquz' (57)
Proof. Immediate from the definition.

Suppose that g(x) is such that g(1) = 0. This implies that the sum of positive
and negative coefficients is equal. We can then write the polynomial P (1) as,

I1 (-
P)=5—, (5.8)
[Ta-em

and thus the function P,(t) is regular at t = 1. (Similarly, if ¢(1) is nonzero, P(t)
has a zero or a pole according to the sign of g(1) whose degree is |g(1)|.) We can
compute P, (1) by dividing both the denominator and numerator by (1 —¢)" and
expanding,

(Lt4+24 ™
1

Il
P ()= . (5.9)
[Ma+e+2+-+mh
i=1

Substituting t = 1 we find,

P,(1) = D(q). (5.10)
In case P, is the Poincaré series of a graded algebra, then P,(1) is the dimension
of the algebra over the base field, and thus this dimension is given by D(q) (hence

the name of this map). In particular, in this case D(q) must be a non-negative
integer. Similarly, if a Poincaré polynomial of a graded algebra is given in the form,

P(t)= Z P,.(1), (5.11)

then the dimension of the algebra is

n

P())= } D(q,), (5.12)

s=1
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where for simplicity we assumed that g (1) = 0 for all s. Note that each of the terms
separately is not necessarily a positive integer and that the P__ itself need not be
a polynomial.

We want to use the notation introduced above to investigate the following
question. Consider the N =2 superconformal field theory,

SU(n + m),
U(n) x SU(m) x U(1)’

We know from Sect. (4) that this theory is dihedral. Namely, it remains the same
under any permutation of k,n and m. Suppose the Poincaré polynomials of the
associated chiral algebras are given by expressions of the type Eq. (5.1). Then this
expressions must be dihedral as well, namely, invariant under a permutation of
k,m and n. As we will now show, this fact alone is almost enough to determine
the degree polynomials completely and hence also the Poincaré polynomials.

It is enough to supplement it with the following: assume also that the set of
degrees obey the duality relation

{m}={n+m—m;} (5.14)

and that the exponents m; are positive integers. In that case, since d =k + g and
g = n+ m, P(t) assumes the form

(5.13)

P(t) = n (L—em™ (5.15)

i=1 —t™)

The reason for this assumption is sxmple. For all hermitian symmetric spaces (h.s.s.)
theories the conformal field theory at k =0 is trivial, c =0. Thus at k=0, P(t) =1,
which is possible only if this duality holds.

Define the degree polynomial g(n, m) by

q(n, m)(x) = ) x™. (5.16)

The duality property Eq. (5.14) is equivalent to,
q(1/x)=x""""q(x). (5.17)

Then the denominator of Eq. (5.15) is given by P, ,, and the numerator is given
P,(t), where I(x) = x*q(x). Thus, the polynomial P() is

P(t)=P,(t), where u(x)=(x*—1)q(x). (5.18)

The dihedrality of permuting n, m and k implies that the Poincaré polynomials
are the same:

Pn.m‘k(t) — P"“"’k(t) — P"‘k‘m(t), (5.19)

where P*™* is the polynomial of SU(n +m)/SU(m) x SU(n). Let also Gy m(x) stand
for the degree polynomial of this algebra. Since the Poincaré polynomial determines
completely the degree polynomial (using also the positivity of the degrees), as
discussed earlier, it follows that

(1= X)) = (1 = ) =(1 = X"V - (5.20)
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Equation (5.20) determines completely the degree polynomial g, ,, for all n and m
up to a constant polynomial, which is independent of n and m. To see this substitute
k=1 in Eq. (5.20). We get (1 — x)q,,, = (1 — x")q, .. Repeating again we find,

(1 —x"(1—x")
W= q1,1(x)- (5:21)

Using now the duality of g, x"*™g(1/x) = g(x) we find ¢, ; = x. Thus we determined
completely the allowed exponents,
o x(I=x")(1—x")
T (1=x)?

It is easy to see that all the coefficients in Eq. (5.22) are indeed non-negative. An
equivalent way to write this equation is

(5.22)

Gum= Y. 2, X714 (5.23)
i=1j=1
allowing us to write the Poincaré polynomials Eq. (5.23) in the form
X n m tk+l+] 1)
Pty = U I__[ ——TlT (5.24)

By the preceding discussion, the Poincaré polynomial P™™() is given by P (1),
where

x(1 —x*)(1 — x")(1 — x™)
(1—x)?

and is thus manifestly symmetric in n,m and k and the dihedrality is explicit. Thus
we have shown that a Poincaré polynomial of the form Eq. (5.15) is dihedral if
and only if it is identical to P™™(¢) defined in Eq. (5.24).

One might wish to relax some of the assumptions made. In particular, all the
arguments can be seen to hold if some of the degrees {m;} appearing in Eq. (5.15)
are allowed to be negative. In this case the proof is exactly the same and we arrive
at the conclusion,

(5.25)

q(x)= —

Theorem (5.1). Assume that a family of polynomials P™™* is given in the form
Eq. (5.15) and P™™* = P (1), where q is the degree polynomial. Then this family is
dihedral in the sense that Pk — pronk — plmn if and only if the degree polynomial

qis
q(x) = (x* — 1)y (%), (5.26)

where p, ,(x) =Y x™ is the degrees generating polynomial and is of the form

xX(1 = x")(1 — x™)
(1—x)?

where s(x) is an arbitrary polynomial. The degrees {m;} will permute among each
other under the reflection m;—m+ n—m; if and only if s(x)=s(1/x). The number

Pmn(X) = s(x), (5.27)
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of generators is given by nms(1) and the sum of the degrees is
2= D(1). (5.28)

If s(x) = s(1/x) then s'(1) = 0 and the sum of the degrees is +s(1)nm(n + m). If all the
degrees are positive integers, then s(x) = a, where a is an arbitrary positive integer®.

It is possible to cast our answer for the dihedral polynomial for
SU(n+ m)
SU(n) x SU(m) x U(1)

in a root system form such that it would be evident how to generalize it to any
G/H. Note that the number of generators appearing in this formula is equal to
the number of positive roots in Ag . Furthermore, it is not hard to see that the

exponent generating polynomial g(x)= ) Y x'*/7! can be written as,
i=1j=1

gx)= Y x (5.29)
a€AG/H
In other words, the degrees are given by pa, where o runs over all the positive
roots which are in G but not in H, and the gradation is given by k + g.

Written in this form, it is obvious how to generalize Eq. (5.29) to all theories.
Simply replace 4, with the roots of the corresponding theory. The Poincaré
polynomial of the theory G/H graded at k + g will then be given by,

(1 _ tk+g~ap)
Peu®)= [] —————. (5.30)
o acAG/H (1 - tap)
Most importantly, for all G and H this polynomial has the correct central charge.
The central charge can be read from the degree of the polynomial, as explained
in Sect. (1), and we find

1 .
Jek+9)= Y. k+g—20p=(k+g)Dim(Asu) —4pclog —pu)  (5.31)

a€AG/H
which is precisely the formula for the central charge that was derived in Sect. (2),
Eq. (2.6). G
In the special case where I is an h.s.s. theory, since A,a =1 iff xe Ay, where

A, is the minimal fundamental weight that was deleted and « is any positive root
of G, it follows that the polynomials Eq. (5.30) can be written as

1— t(A+p)a

PO)= ] ———, (5.32)

acAG 1 —¢#=

5 Taking a=s(x)# 1 corresponds to replacing P(t) by P(t)* a freedom that always exists,
but that does not concern us in our discussion since it will result in an incorrect central
charge. This would be the Polynomial of a tensor product of a identical copies of the theory,
which is, obviously, dihedral
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where A=kA,. A well known result due to Weyl is that P(t) is the character of
L(A) graded by p (the so-called principal gradation) (see, for example, [29],
Proposition 10.10, where a generalization of this to all Kac—Moody algebras is
described), noted in this context in ref. [30],

P@)= 3} 47, (5.33)
AeL(A)

where the coefficient of ¢* is the number of vectors in L(A) of height a. It follows,
in particular, that P(t) is a polynomial in this case. (This is not necessarily so in
the non h.s.s. case.) Another consequence is that in the h.s.s. case, P(¢) is a unimodal
polynomial, i.e., if the positive coefficients of P(t) are denoted by d,,d,,...,d,, then
d;=d,,_; and the series increases up to dy, + 1y2), for any A [33]. This is not hard
to see since P(f) is, up to a factor of t~**, the character of L(A) as an SU(2)
representation, where the SU(2) algebra is generated by the sum of all positive or
all negative roots. It follows that d; — d; _, is the number of times the representation
with weight (m + 1)/2 — i appears in L(A) and is thus non-negative, fori < (m + 1)/2.

6. Polynomial Generating Functions

Let us return now to the graded chiral algebras of Sect. (2-3). We arrived there

at the following expression for the U(1) charges (grades) of the fields in these
algebras,

2[w= A+ p)— plps — Pr)

A_
Q,=1w) + kig

(6.1)

where A is an integrable highest weight, and we W(g) is an element of the Weyl

group of G, W(G), under which all the positive roots of H remain positive. For
each such A and w there is precisely one field in the principal theory modulo the
field identifications. The number of fields is then given by (in case there are no
fixed points), Eq. (3.13)

N O 6
|\W(H)|Z "

where Ny is the number of integrable highest weight fields at level k and Z is the
order of the center group.

Let us consider the Poincaré polynomial of some reductive pair (G, H) at level
k, graded by k + g and denote it by PF/¥(¢) or succinctly by P,(?),

POH(@p) = ¥ krodl, (6.3)
Aw

(6.2)

It is useful to introduce a polynomial generating function for all such polynomials
at an arbitrary level,

e8]

PM(z, )=y PgMH(t)z*. (6.4)

k=0
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We shall derive an explicit expression for the generating function P(z, t).
An integrable weight at level k can be written in the form

A: Z liAi7 (6-5)
i=1
where A; are the fundamental weights of G and n is the rank of the algebra. The
I, obey the integrability condition k=Y g,l;. It is convenient to adjoin also the
affine weight IyA,, where I, =k — ) g,1;, and the g; are defined by
n 24.
0=Y i, (6.6)
i=1 &
Define also g, = 1. 6 stands for the highest root. The sum ) g;=g is the dual
Coxeter number.
The expression for the charge Q of the field C2, Eq. (6.1), can now be written
in the form

Set Y all;
A i=0

=" 6.7
o, . (6.7)

where n = rank(G) and the “exponents” a’, are defined by
a., = Iw)g: +2(p — pu)w™ (), (6.8)

and
Sw = gl(w) —2(p — pr)lp —w™(p)]. (6.9)
We can now compute
P(z,t) = Z pk+adl, Z Z Swaili+ g2+ Flngngalli +aYla+ o +ayln
A,weW ik weWy lo,ly,...,ln

(6.10)

The sum factorizes into a product of geometric series and we find an expression

for the polynomial generating function,

5
Piz,t)= Y . 6.11)
weW 4 I‘[ (1 _Zgitaxw)
i=0
The case that G/H is an hermitian symmetric space corresponds to a reductive
pair (G, H) such that H is obtained from the diagram of G by a removal of one
node which is minimal, A, = ¢(0) for some automorphism ¢ of the extended Dynkin
diagram. A fundamental weight A; is minimal if and only if g; = 1 and the simple
root a; is a long root. Recall from Sect. (2) that an external automorphism can be
written as

a(A) = a(0) + w,(4), (6.12)

where w, is an element of the Weyl group. Furthermore, p at level g is invariant
under any external automorphism, o(p) = p. To prove this note that p at level g
corresponds to the affine “sum of positive roots” defined by the equation

pioy=3%a2, for i=0,1,...,n, (6.13)
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and is thus invariant under any permutation of the affine simple roots «; which
preserves the scalar products, proving that o(p) = p. Using Eq. (6.12) we get

p=wylp) +4A,, (6.14)
or p — wy(p)=gA,. Recall from Sect. (3), Eq. (3.16) that
p—wu(p)’: Z a= Z a, (615)
a>0 a>0
w, '@<0 2A;=1

where we used Lemma (2.1). The sum on the right-hand side of Eq. (6.15) ranges,
however, precisely over all positive roots that are in G but not in H, since every
such root is of the form f=a, + --- (since g; = 1) and is thus equal to 2(p — py).
We have proved,

2(p — pu) = 94, (6.16)
It follows also that
Ap—p)p—w Hp)=9gA, Y a=glw), (6.17)
a>0
w(@) <0

where we used Eq. (3.16). This is a more direct proof for Eq. (3.20). Thus s,,=0
for every we W(%) and it follows that

Lemma (6.1). When G/H is an hermitian symmetric space, s,, = 0 and the generating
function assumes the form

Pizt= Y TI ——1— (6.18)
weWyi=0 1 — z9it%
The U(1) charges can be written for this family as
-1
QQ:kl(w)+gAdw (A). 6.19)

k+g

Picking the z independent term in Eq. (6.11) we find the Poincaré polynomial
of the k =0 theory,

Pyt)= Y ™, (6.20)

weW y
or, the s,, are the charges of the k =0 theory. In the hermitian symmetric space
case the central charge vanishes when k =0 and P,(t) becomes a constant integer.

This represents the trivial algebra with only the unit field, appearing ’W(E)
times due to an over counting. H
In fact, as discussed in Sects. (2-3), the fields C4 and C3%) are one and the
same, i.e., we need to identify fields under the action of the external automorphisms.
We have assumed in our discussion that there are no fixed points of this action.
If there are then Eq. (6.11) needs to be modified as explained in Sect. (3). In case
there are no fixed points, the correct expression for P(z, t) is.obtained by dividing
it by Z, the order of the center. Further, it will be shown that s, , =s, and
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al,=a’ @ Eq.(6.32), and thus the terms in Eq. (6.11) associated with w and w,w
are the same. Assuming no fixed points is equivalent to demanding a faithful action
of w, on W, and thus the sum can simply range over a set of representatives of
W, mod {w,}, where the quotient is on the left.

It is not hard to extend the formalism described above to allow for fixed points.
This will be demonstrated through an example calculation of the polynomial

SO(5)
SO33) x U(1)
simple roots of SO(2n+ 1)~ B, are ¢ — ¢;,,, where 1 <i<n along with ¢,. The
Weyl group of SO(2n + 1) has 2"n! elements, which are the signed permutations
of the ¢;; the most general element being of the form w(e;) = s;¢,,;, where s; = + 1

generating function. Consider thus which is an h.s.s. theory. The

p(i)’

and p is any permutation. Thus the number of cosets in W<S—O—M> is 2n. It
SO(2n—1)

is not hard to see that there is only one non-trivial external automorphism, w, =6,

where 9, is the Weyl transformation that only flips the sign of ¢;. The elements of

(SO(Zn +1)

wl — -

SO(2n—1)
0 <r<n. Since d,p, = p,0, if r >0 it follows that w, exchanges the two cosets p,
and p,d, (since py = 1) and fixes all the other cosets, w,p, = p, and w,p,é, = p,d;,
for r>1.

Let us compute the polynomial generating function for n= 2. It is enough to
compute a’, for the three Weyl elements 1, w, and w,w, for which I(w) is 0,1,2,
respectively. For this theory, g;,=1, g=3, 2(p—pg)=9gA,, A;=¢, and
A, =%(g; +&,). Substituting into Eq. (6.8) we find that

a;=(0,3,3), da, =(L3), d,, =223 (6.21)

wawy

> are given by either p, or p,0,, where p,=w,w,_;---w; and

We can now repeat the calculation of the polynomial generating function Eq. (6.10),
taking into account the fixed points. For the first coset, w=1, the calculation
is unchanged since it is not a fixed point of w, and thus, as before, P(z,t)=
(1 =211 —zt%)~1(1 — zt3)~ 1. (We have replaced t with t? so as to make all the
powers integral.) For the coset w, we find

P(Z,t)=<l Z +1 Z >Zl’+12+l3t21‘+2[2+513, (622)

11,02,13 2 =113

where the first sum is the usual one, dividing by 2 in view of the action of ¢ on
A (which exchanges I, with [,) and the second sum adds half for every fixed point
so as to make the total equal to one for these as well. It is now easy to sum
Eq. (6.22) and we find P(z,t) = [(1 — zt*)(1 — z%t*)(1 — z¢>)]*. Similarly we get for
the third coset P(z,t) = [(1 — zt*)(1 — z%t3)(1 — zt)]~!. The generating function of
the theory is the sum of the contributions from the three cosets,

1
(1 —2)(1 — zt%)(1 — zt3)

1 4 1
1—zt?)(1 =221 —zt%) (1 —zt)(1 —228)(1 —zt)

This concludes the example.

P(z,t)=

+ : (6.23)
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Note the striking similarity between the expressions that we obtained for the
“bi-graded” Poincaré polynomial, P(z,t), and a classical Poincaré polynomial.
Recall from invariant theory (e.g., ref. [14]) that for any group G of matrices acting
on a vector space we can define the invariant polynomial algebra S(V)¢ defined
as all the polynomials in Dim(¥V) variables invariant under the action of G. The
Poincaré polynomial of such an algebra is according to Molien’s Theorem [14]
of the form

Pz)= Y detl —zg)"'= Y [] :

b
9eG geG i 1—2z4;

(6.24)

where the As are the eigenvalues of g in the representation acting on V. If we
. . . G . .
interpret t*w as the eigenvalue of W ﬁ) we see that the expression we have derived

in the h.s.s. case, Eq. (6.18), is identical to Eq. (6.24). This clearly suggests that
P(z,t) might be interpreted as the Poincaré polynomial of a symmetric polynomial
algebra. Namely, take all the polynomials generated by the A; graded at the level
g; and interpret these as tensor products which are invariant under the action of
W,. This is consistent since k is additive under such products, hence respecting
the z-grading. This polynomial cohomology will then have as the Poincaré series
the polynomial generating functions that we have computed. It is thus natural to
try and identify it with our bigraded chiral algebra.
The set of exponents a’, obeys the following property,

al;v =S8, + 2p(p - pH)a (625)
=0

1

which follows their definition, Eq. (6.8), using Y g, =g and }_A; = p. It follows that
the generating function P(z,t) can be written as

11
P< >=(—1)"+129t2"""”") L (6.26)

-
zt weW l—[ a!
(1 — z9¢%)
i=0

As discussed in Sect. (1), the Poincaré polynomial is dual,

P, <1> = ¢~ k+a3p, (g) (6.27)
t

implying that,
P(z,t)= Y Z*P(1/e)tk oM =4ele=rm = %" P, (1/t)(zt™M)< oM~ 40P (6.28)
k=0 k=0

and we proved
P(z,t) = oM~ 4et0=pr)p ( ztM, 1) (6.29)
t

The field identification,
CcA=cCo (6.30)

wew ?
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discussed in Sect. (2), implies, in particular, that the U(1) charges of the two fields
in Eq. (6.30) must be equal. Owing to Eq. (6.7) this is equivalent to

Swow + 5,0 =5, + a,,, (6.31)
for all w and i. Summing Eq. (6.31) over i and using Eq. (6.25), we find
Swow = Sws a,',vf"f(i) = a;v. (632)

In the h.s.s. case, since s,, = 0, comparing Eq. (6.18) with Eq. (6.26) we find that
the generating function has the property
A:P(z,t)=(—1)"“2‘9t"“/2’9MP<1,%>, (6.33)
z
where M = Dim(4¢,5) and we used Eq. (6.16) and the fact that 2A4,p = M (since
for every a >0, aedgy iff aA, = 1).

This property may be thought of as a generalization of the Poincaré duality
for infinite dimensional graded algebra and is common for many “simple” algebras.
For example every Gorenstein algebra obey this [34, 13]. Every Cohen—Macaulay
integral domain with this property is a Gorenstein algebra [13]. Thus the simplicity
of the polynomial generating function P(z,t) strongly suggests that a simple
bigraded algebraic structure arises. As discussed earlier, it is natural to identify
this structure as some invariant version of a tensor algebra which owing to
Lemma (6.1) must be a relatively simple algebra.

In the h.s.s. case, since gM = 4p(p — py), the Poincaré duality Eq. (6.29) assumes
the form,

B:P(z,t) = P(th, %) (6.34)

The two transformations, 4 and B, generate a Z, x Z, group of “bi-dualities,”
A*=B?=1and AB = BA.

SU(m + n)
SU@m) x SU(n) x U(1)’
case G ~ SU(N), we can write the exponents in a nicer form, for any subgroup H.
This is since for SU(N) all the fundamental weights can be written as A; = ¢°(0),
where o is the generating external automorphism (which generates a cyclic group
of order N, Zy). Thus, we can use Eq. (6.32) to write,

Let us consider now the theories of the type First, in

a, = a?v,»w = I(w' w). (6.35)
Thus in the case that G = SU(N) the generating function may be written as
Pzo= Y T[] [1—z™™] 1 (6.36)
weW imod N

We shall be mostly concerned with the h.s.s. family, where H =SU(n) x
SU(m) x U(1) and G = SU(n + m), which is obtained by the deletion of precisely
one weight from the Dynkin diagram of SU(n + m). Recall from Sect. (4) the
structure of the Weyl group W, in this case. As described there the simple roots
of SU(n + m) are given by ¢; — ¢;, ,, Where {¢;} is an orthonormal set of unit vectors,

and 1 i< n+ m. The elements of W(G) are given by the permutations w(g;) = ¢,
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where p is any permutation. The elements of W(G/H) correspond to permutations
G\. .
such that p(i)<p(j)for 1 Si<j<norn<i<j=<n+m. Thus, W E) is in a one

to one correspondence with the sequences w = [a,,q,,...,a,] such that 1 <a, <
a, < -+ <a,<n+ m,where a; = p(i). The length of the Weyl element w s, Eq. (4.21),
Iw)= Y a;—1i. 6.37)

i=1
We can compute w,w. w, corresponds to the cyclic rotation, p(i) =i+ 1 modn,
p=(1,2,3,...,n+ m). For any integer x, denote, by {x}, the integer i such that
1<i<n+m and i=xmod(n+m). Let w=[a,,q,,...,a,] be some element of

G . .
W<ﬁ> Then wiw is given by [a; + s]. In particular, I(w,w) is

—%n(n +1)+ Z{ai +s}= —%n(n +1)—(n+mk+ Zai, (6.38)

where k is the number of times we “wrapped” around with the g;’s.
Now assume that ged(n,m) = 1. Then a, = a', implies that s=tmod(n + m),
since if @}, = a,, where w=[a,,a,,...,a,], Eq. (6.38) gives

—inn+ D +sn+Y a,=—1inn+1)+m+) amod(n+m), (6.39)

implying that indeed i =jmod(n + m). Thus, there are no fixed points for any k if
ged(m,n) = 1. This is easily generalized for />3 (in the terminology of Sect. (4))
showing that there are no fixed points iff gcd(ny,n,,...,n)=1.

As ai, = [(ww), where I(w) is the number of positive roots of Ay that become
negative roots under the action of w, we find that 0 <a’, < M, where M =nm is
the number of elements in Agy”".

It follows that for the family SUln +m) , we can take as a common
.y SU(n) x SU@m) x U(1)

denominator in Eq. (6.36), [ (1 — zt?), showing that,
d=0

Lemma (6.2). For the family of h.s.s. theories SUn + m) , the generating
function assumes the form, SU(n) x SU(m) x U(1)
J
Z E(t)2’
Piz,)=2"— (6.40)
[T =zt

d=0

where M =nm, J=M +1—g, and the Et) are some polynomials. From the
bi-duality of the generating function, Egs. (6.33—6.34), it follows that the polynomials

7 For any G and H,d, =0 and s,20. To see this, apply the formula for the U(1) charge,
Eq. (6.7), to the weight sA;, where s is very large. Taking k =0 shows that 5,20
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E(t) obey
Eo()=S, E,(f)=StioMM+1-a) (6.41)
_ 1
A:E](t)=t(1/2)M(M+1 g)EM+l—g—j<;)’ (6.42)
: L) 6.43

where S = |W(G/H)| is the number of cosets in W(G) modulo W(H).

Proof. Described above. It remains only to show the properties listed. That

£y W(ﬁ)
H
follows as in Sect. (7), Theorem (7.2).

The only known series of theories which are scalar field theories at an arbitrary
SU(N + 1)
SU(N) x U(1)
The Poincaré polynomials agree precisely with the ones we computed using di-

hedrality alone, Eq. (5.24),

is clear by substituting z=0 in Eq. (6.36). The rest of the proof

level k, is the series [8]. The generators are of degrees {1,2,...,N}.

N _ sk+i
R} =[] Q(T_t—t)) (6.44)

The generating polynomial P(z,t), Eq. (6.36), in this case assumes the form

N
P(z,ty= [] (1 —z))71, (6.45)
i=0

since there is only one right coset of W, mod{w,}, and no fixed points. We thus

arrive at the identity,

1— tk+z)

(1-1)
The identity, Eq. (6.46), aside from being very pretty®, can be used to derive

closed formulas for the Poincaré polynomial P(t) at any k for many other theories.

SU(5)
SU3) x SUQ2) x U(1)
there are no fixed points and precisely two inequivalent elements of the Weyl

group that are needed to be considered. These are 1 and w, (a reflection by the
second simple root, that was deleted). We find,

di=(0,3,6,4,2) and a! =(1,4,253). (6.47)

=

g | L ( (6.46)

0 k

[

i

Consider for example

which is an h.s.s. theory. In this case

8 This identity is known in mathematics and goes back to Cauchy. It is called the g-binomial
theorem. See, for example, ref. [35]
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Thus, using Eq. (6.36),
1
(1 =2)(1 —zt3)(1 — zt®)(1 — zt*)(1 — z¢?)
N 1
(1 —zt)(1 — zt*)(1 — zt2)(1 — zt3)(1 — zt3)
2—z(1+t+t5+t%) + 2z%°
o )

[T —zt)

i=0
Using, Eq. (6.46), we find for the k'" term of P(z, t), the Poincaré polynomial P,(t),
P ()=2R] —(1+t+1>+t°)R]_ +2t°R]_,, (6.49)

P(z,t)=

and so

(1 _ tk+i)

ll::jp

Py(t)=—

]_[ (1-1)

.[2(1 -1 — t5)_ tk—l(l — t3)(1 _ t4)(1 _ t5) N t2k+3(2 St—16— 2t7):|'

1 -1 —1?) (1—1)
(6.50)

As we can see the answer, even in this case, is quite complicated. It displays some
sort of an algebraic structure, as evidenced by the many primitive roots of unity
that appear as zeros and poles, yet a big chunk of the answer does not seem to
have much of an explanation. Certainly the theory is not a scalar field theory,
except for k=1.

In order to make any further progress we need to cast the Poincaré polynomials
that we have computed in a form that would make their algebraic structure more
transparent. This we will do in the next section.

7. The Resolution Series

Let us go back to the canonical form for an SFT Poincaré Polynomial in the h.s.s.
case. In this case P(t) assumes the form (Sects. (1,5)),

k+M)

(1-
P(t)= . 7.1
)= z n S (.1)

Note that we generalized this expression to include more than one term. The

meaning of this generalization will become clear later in this section. We shall

further assume that the exponents {m;} are dual, {m;} = {g —m,} for some g and

that the sum ) m{ = R is independent of s. We will also assume that P,(t) =0 for
i
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—1=k=1-—g, which is satisfied if m;=1,2,...,9 — 1 are part of the exponent
set. The exponents, m; can be positive or negative and, of course, m; # 0.
We start with a theorem.

Theorem (7.1). Let P(t) be any polynomial given as above. Then R =3Mg. Define
as usual the generating function

0

Piz,t)= Y Z*P.0).

k=0

Then P(z,t) obeys the bi-duality property (Egs. (6.33-6.34)). Namely,

A:P(z,t)=(— 1M1z “”t‘RP<1 1) (7.2)

zt
and

B:P(z,1) = P(zt"ﬂ%). (1.3)

Proof. Property B is the consequence of the Poincaré duality of Pi(t) which is
easy to establish from the explicit expression Eq. (1). The proof of property B is
very similar to that given in Sect. (6) for the G/H generating functions and we shall
omit the details. This property can of course be generalized to the non-h.s.s. cases.

Consider then property A. For simplicity consider first the case S =0, where
there is only one polynomial Then we can compute

P(z,1) = z 1—[ ’mt"' _ Z H[Mﬁ"_‘_“]

t i=1 1—=(Q1/p™™
__M—R—g_w T\ & =]
== Z(z) W 79

where we used the assumptions on the exponents. Now, Eq. (4) looks precisely
like the desired A duality, except for one thing, the sum on the right-hand side
ranges over k= —g to — oo instead of k=0 to co. Since P,(t) = 0, for —1=

k= 1— g, we can change the range of the last summation from )  to ). So,
it is enough to show that k=-g -1
— 00 0
- Y ZFP)y= ) Z*P), (7.5)
k=-1 k=0
for any z, where this identity is understood in the sense of analytic continuation
of the series, each defined from its range of convergence.
We can expand Pk(t),

(1 k+m. M M

P(1)= H - H — ™)™t Y (= 1N, (7.6)
i=1 (1 t ' i=1 d=0
where the N ,(¢) are the polynomials
Nyt)= Y gmitmi et (7.7

i1 <iz<--<ig
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Using the expansion Eq. (7.6), Eq. (7.5) assumes the form,

N,(t) z 't TIN,(1)
= 7.8
g(l—zt“ ;(l—z“lt"’) (7:8)
where we summed the series on each side. This is evidently correct, completing

the proof.

Since the bi-duality is valid term by term, it follows also for S >0, if it holds
for $=0.

The fact that R = 1My is required for the consistency, AB = BA. Otherwise we
would find P(z,t) =t*P(z,t) with a nonzero a when combining the two dualities,
implying that P(z,t)=0.

Consider now the application theorem (7.1) to the Poincaré polynomials of
Sect. (5). From there, Eq. (5.30), in the h.s.s. case,

k+m.')

(1—tre (-

P(5) = = : 7.9

0= 11 S H a=m (7.9)

where M = Dim(4g, ), m; = o’ p, and we indexed the roots of Ag, in some irrelevant

manner. It is not hard to check that the exponents m; are dual {m;} = {g —m;}

and that M;=1,2,...,9—1 are part of the exponents, and so P, (t)=0 for

~1zkz=z1—g Furthermore R= Zm 2p(p — py) = 3gM. We thus find that the
generating function

© (1 _tk+a(p)

Pz,n)= Y z* []

k=0 acdg (1 —1t*)

> (7.10)

obeys the same bi-duality relation that we found for the actual generating functions
of the theory Egs. (7.2-7.3) with precisely the same exponents and we start to see
a firm connection between the two.

Let us continue now our investigation of the generating functions of the type
(7.10). The next step is to give a more explicit expression for these. This is described
in the next theorem.

Theorem (7.2). Let P(z,t) be as in Theorem (7.1). Then it can be written as
J

Y. ZIE(t)
P(z,f) =2, (1.11)
n (1—zth
where J = M + 1 — g and E(t) are some polynomials. Furthermore, the polynomials
E(t) obey
Ejt)=S+1, E;(t)=(S+ N)ft/DMM+1=g) (7.12)

A;Ej(t)=t(l/Z)M(M+1—y)EM+1_g_j<%>’ (7.13)

B:E,(t) = E,.G)tﬂ". (7.14)
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Proof. Let us first assume for simplicity S =0. We can expand P,(t), as in the
proof of Theorem (7.1), Egs. (7.6-7.7), and then evaluate the series,

M ©
Piz,=J](—-t™"* Y 2 Z (— 1N ()t
i=1 k=0 d=0
M M
_ N(1)
=[] ~ 1y 7.15
L= 3 (=7 (7.15)
Taking a common denominator leads to
M J
P(z,t) = H =) [ A=z Y Q07 (7.16)
i= d=0 j=0

where the Q;(t) are some polynomials and J is some integer.

In case S > 0 we will get precisely the same kind of expression, Eq. (7.16), since
each of the terms separately gives this. Now, since P(t) is a polynomial, there must
be no poles at t =c¢ in theMgenerating function Eq. (7.16), for any complex number

c. This implies that Q = [ (1 — ™) divides each of the Q,(t) and E,(t) = Q,(t)/Q(t)
is a polynomial. Thus, i=1

J
; (02
T

P(z,t) = (7.17)

(1 —zt%

which proves the first part of the theorem.
Now, it is not hard to compute E, by tracing back the steps in the proof above.
It follows that

2(=1)'Ny(0)

Eot)=" =1, (7.18)
ITa—e)
i=1
where we used Eq. (7.7). Similarly if S >0 we find Eq =S + 1.
We can now apply Theorem (7.1) to P(z,t). Using Eqgs. (7.2,7.17)

M&.

1 . )
L1y & E"<?>2_J E"G) B
__ =0 _ M+1,M i= t
P(;’;>"M—_——_( 1) + +1t(1/2)M(M+1) o . (719)
[Ta—=z"19 [T —zt9
d=0 d=0
From the A duality, Eq. (7.2), we find,
J
11 L, E0?
P<~ A>—( DM*120¢RP(2, t)=(—1)M“z"tR1;——. (7.20)
z

[T @ =zt

d=0
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Comparing the two expressions Eq.(7.19) and Eq.(7.20) proves property A,
Eq. (7.13).
Property B follows from the B-duality of P(z,t). From Eq. (7.17)

J 1
1 'Zo E,-(;)zjt"“
i=
plam 1) o A
[Ta-z)
s=0

Comparing with Eq. (7.3) proves property B, Eq. (7.14).

Since the coefficients of z/ in the denominator of Eq. (7.17) vanish when j <0,
the A duality implies that E;=0 for j>M +1—g and J=M + 1 —g as stated
in the theorem. Finally, combining the A and B dualities acting on E, leads to
the expression for E;, completing the proof.

A number of corollaries follow from the theorem.

(7.21)

Corollary (7.1). Consider the module V over the ring of polynomials P(t), the
polynomials in t, spanned by the P(z,t) polynomials of the form Eq. (7.1), which satisfy
the assumptions of Theorem (1). Then Dim(V) < [H(M — g + 1)], (where we denote
by [x] the maximal integer j such that j=<Xx). In particular, if M <g—1 then
dim(V) =0 and there are no such polynomials. If M =g — 1 then dim(V)=1 and

U+ 1) , R{ defined

there is a unique such polynomial, which is the polynomial of ———————
q poly poly fSU(g)X v

in Eq. (6.44).

Proof. If v(z,t)eV is a such a polynomial it follows from Theorem (2) that
M J

v=[] (1—zt%)"" 3 EYt)z’. In addition the 4B duality implies that E;(t) = E ., - (1)
d=0 j

ji=0

up to t to some power. Thus, at most [3(M — g + 1)] such polynomials can be
linearly independent over P(¢). If M < g — 1 the AB duality implies that there does
not exist a polynomial satisfying the assumptions of Theorem (7.1). If M =g —1
we have J=0 and E, =1 (or a positive integer), from Theorem (7.2), and thus
P(z,t) is given by R{, Eq. (6.44).

The inverse of Theorem (7.2) can also be stated. Namely, given a P(z, t) of the
form Eq. (7.11) one can calculate P,(t). This is done as in Sect. (6) by utilizing the
identity (6.46). We find

M <

ZE[1)

J ©
P(z,t)= 17=o__=[ Y Ej(t)z’]I: y sz,ff(z)}, (7.22)
[Taa—zy “=° k=0
=0
where o
M B (1 _ tk+i)
RM(1)= i[=]1 N (7.23)

Thus, P,(t) is given by

J
P = Y E;ORY (1). (7.24)
j=0
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This identity provides also a simple way to compute E;(t) from P,(t), since it
can be inverted into a recursion relation for E;(t),

Ej(t)=Pj(t)—J§_: EP,_ 0, for j=0,1,...,J. (7.25)
h=0

This recursion relation shows that the polynomials Ef) have only integral
coefficients. More importantly, we can show:

Lemma (7.1). Suppose P,(t) and M,(t) are two polynomials of the type Eq. (1). Then
if P(t) = My(t) for k=0,1,...,s, where s 2 3(M — g), then P,(t) = M,(¢) for all k 2 0.
Furthermore, if N(z,t) is of the form Eq. (7.11) with arbitrary coefficients E;(t), and
it obeys the bi-duality property, Eqs.(7.2) and (7.3), then the above holds also for N (t).

Proof. This follows directly from the recursion relation, Eq. (7.25). Let D,(t) stand
for P,(t) — M,(¢) for the first case, and P,(t) — N,(t) for the second. In both cases,
D,(t) assumes the form Eq. (7.11),

E; (t)z’

J

Z

D(z,t)= A; , (7.26)
H 1—2zt)

and D,(t)=0for j=0,1,...,J, where we used the bi-duality Egs. (7.13-7.14). The
coefficients E;(t) can now be computed from the recursion relation Eq. (7.25), and
we find E;(t) = 0 for all j. Thus, D(z,t) = 0 and D,(t) = O for all k, which proves the

lemma. . . SU(n +m)
Let us return now to the h.s.s. family of theories of type .
SU(n) x SU(m) x U(1)

In Lemma (6.2) it was proved that if gcd(n,m)=1 the polynomial generating
functions of the theory can be written in the form,

ZE(t

R
H (1—zt%

P(z,t)= , (7.27)

where M = nmand J = nm — m + 1. This is precisely the same form that we obtained
here for polynomials of the type Eq. (7.1) and in particular for the dual polynomials
of Sect. 5, Eq. (5.24). Furthermore, since in both cases the generating function obeys
the bi-duality property, the coefficients E; obey properties 4 and B, Egs. (7.13-7.14).

So the two polynomials would be equal if and only if, their E;(t)’s agree, for
0<jsiM—-J+1).

In addition, according to Lemma (7.1), if we can find enough polynomials of
the type Eq. (1) then we might be able to express the generating function in terms
of these.

To see how this works, let us first discuss an example. For the theory of

SU(5)

SU(3) x SU2) x U(1)

we found that the generating function is given by Eq. (6.48),
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14 14 P
P(z, 1) = E_+Z_EL, (7.28)

l_[ (1 —zth
i=0
where Eq=2, E, = —1—t—t>—1t% and E, = 2¢.
The dihedral polynomial P,(t), Eq (5 24) is in this case,

tk+1+) 1)

2
Oul) = [I lj ———~—t,ﬂ 5 (7.29)
According to Theorem (7.2) it is given in the same form Eq. (7.28) with the
coefficients EZ = 1, EZ = t6. EZ can be easily computed from the recursion relation
Eq.(7.25),and we find, E¢ = Q, — R] = t* + > + t*. Now consider the polynomial,
l_tk—l 1— tk+6 1-— k+]
(1= F0 —0) H (1= ) 730
1=t H(1—1¢® jo1 (1—=1t9)
Again it is of the form Eq. (7.1), with the same g and M, and L;(t)=0 for
—12j= —4,since 1,2, 3,4 are part of the exponent set. So again L(z,t) is of the

form Eq. (7.1) and the coefficients can be similarly computed from the recursion
relation Eq. (7.25). We find that Ef =1 and

L(®)=

(1—1t7)
(t—0

It follows that D,(t) = P,(t) — Q,(t) — L,(t) will have both E, and E, equal to zero!
Thus we have proved that for all k, D,(t) =0,

tk+1+1 1) (l_tkjl)(l k+6) 4 tk+j)
= .nl JH A IR ,IJI iy 0P
This is our first example of a “resolution series.” Note that the polynomial L,(t)
is of an SFT type, with the same central charge, but, with some of the degrees
being negative.

Now, how do we go about generalizing Eq. (7.32), to all n and m? Differently
put, from the close similarity in structure that we have found, it is natural to
suspect that the Poincaré polynomial of the theories is always given by an
expression of the form

=Li() - R{()= —R{()= —

(7.31)

P(z,t)= Z nﬂm(l—zt“w)" iz"Pk(t), (7.33)
weW; i= k=0
where
mn 1— k+m?
P=73 [I (—t—) (7.34)
s=0i=1 (1 —1t™)

and our main problem is to figure out the set of exponents m;. This we do by
invoking the dihedrality of exchanging n,m and k. We know that P,(t) is dihedral.
We thus assume that each of the polynomials appearing in Eq. (7.34) is dihedral
as well, or that this equation is dihedral term-by-term. Then we can use the powerful
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results of Sect. (5), where it has shown that dihedrality alone can almost fix the
allowed exponents. There we found that a set of polynomials of the type Eq. (7.34)
would be dihedral if and only if for all n and m, for which P(t) is defined, the
degrees m; are given by

x(1 —x™)(1—x")
(1-x?

where Q (x) is a fixed polynomial which obeys Q(x)= Q. (1/x), ensuring that
{m;} = {g —m}. Further, we want the number of exponents to be equal to nm
implying that Q (1) = 1. Now, the sum of the exponents may be computed by

s =g(1). (7.36)

g(x) =Y xm = 0(x), (7.35)

Since Q (x) = Q,(1/x) it follows that Q (1) =0 and
Y. m =Snm(n + m). (7.37)

Finally, we want gq,(x) to have as coefficients only non-negative integers and the
constant term to be equal to zero, since otherwise we will get a contradiction in
Eq. (7.35).

All these conditions severely restrict the possible polynomials Q (x). We can
calculate these simply by studying examples. Assuming that the polynomial L,(t)
is dihedral we can immediately generalize it to all n and m, by substituting n=13
and m =2 in Eq. (7.35) and calculating Q,(x). We find

(14 x3)?
x4 (1 +x)?
and thus obtain a first “deficiency” polynomial for all n and m. Continuing now
for a different n and m we find a second deficiency polynomial, which again can
be dihedralized, and so forth. The situation turns out to be the simplest for n =2
and any m, in which case we find that

_25(1 + x2s+ 1)2
(1 +x)?

for any integral s, gives all the exponents.
Thus we have found:

0:(x)= (7.38)

O,(x)=x (7.39)

Conjecture. For all n and m such that ged (n,m) = 1, the Poincaré polynomial of
SU(n+m) .
the theory is equal to
SU(n) x SU(n) x U(1)

N

P)=3 a P (1), (7.40)

s=0
where Pi(1) is
mn (1 _ tm‘:+k)

Po=1" " (41
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(n+m—1)
n'm!

a, are some integral coefficients and the g, are some degree series, g (x) = Y x™.
For n =2 the coefficients a, = 1 and the degree series is '

1o (=X —=x™) (1 + xs+ 12
(1—x% (I+x?

For n=2if nis odd S=4%(n—1). If n is even and k is odd, using dihedrality we
find k=25 + 1.

For n,m, k > 2 the situation is more complicated. By dihedrality, the exponents
4,ms above are part of the exponent set, in this case, but there are a few more.
The coefficients a; are not equal in general to 1. An example will be given below.

We shall prove the following theorem regarding this conjecture.

and S is equal to the number of cosets in W(G/H) mod {w, }, which is

Gy s(X) = Z x™ = x (7.42)

Theorem (7.3). Let n and m be some fixed integers. If the conjecture above holds for
k such that —n—m+ 1<k <3(nm+ 1 —n— m) then it holds for all k.

Proof. The polynomials P;(t) are of the form Eq. (7.1) and obey all the assumptions
of Theorem (7.1), as we checked above: the number of exponents is fixed at nm,
the sum of the exponents is constant by the calculation above and P,(t) vanishes
for 1 —g <k < —1 by the assumption of the theorem.’ The set of exponents is
dual under g, {m;} = {g — m,}, since s(x) = s(1/x) (Sect. (5)). Owing to Lemma (6.2)
SUn +m)
SU(n) x SU(m)
we can apply Lemma (7.1) and the theorem follows.

the Poincaré polynomial of the theory is also of this form. Thus

The number of chiral fields in the theories SUn + m) (we shall
SU(n) x SU(m) x U(1)
assume ged (n,m, k) = 1, so there are no fixed points) is given by (from Eq. (3.13))
| W(G)| N _(ntm+k-—1)!
ziw)|
where N, is the number of integrable weights of SU(n + m) at level k.
The number of fields in the corresponding polynomial

alm'k! (7:43)

B M (1 _ tk+m,)
P.(t)= i1=_[1 W (7.44)
is given by Eq. (5.12),
=] =D(p), (7.45)
i=1
where
M
plx)=(x*—1) Z (7.46)

° It can be verified that 1,2,...,9 — 1 are part of the exponent set for all the exponents that
we have computed, and it is probably so in general. Hence P,(t)=0for0>k=>1—g
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Thus, comparing the dimensions of both sides of Eq. (7.41), we find the
remarkable identity,

Corollary (7.2). Fix some n and m. Let p(x) = (x* — 1)q,(x). where q is as in the
conjecture above. Then

_(n+m+k—1)!

nlk!'m! ’ (7.47)

S
Z D(p,)

where S is as in the conjecture.

Example. Take the simple case of n=m=2,k odd. Then gy(x)=x!"2+2x? 4+ x3*2
and the above corollary translates into the series

kD2 4 22 (k +1—2s)(k + 3 + 25) _(k+ 1)k +2)(k +3)

)

s=0 4(1 —2s)(3 + 2s) 4

Even this simplest identity is quite hard to prove directly. This can be done by
eliminating the common factor of (k + 2)%/4, taking a second difference of both
sides with respect to k, and using the fact that

b 1 b 1 1 1 1 1
—4% >

_— = —_ = + —_ —_ ,
S(1—29)3+2s) Zu2s—1 25+3 2a—1 2a+1 2b+1 2b+3
(7.49)

(7.48)

as all the middle terms cancel.

A more complicated example is the case of n =3 and m = 4. Here we have five
sets of exponents (S = 4) which are listed in Table (1), along with s.

The exponents g, ,, (x) can be observed to have many intriguing properties.
First, g, , , has only primitive roots of unity as its zeros and poles, and thus it is
of the form

) (7.50)

where ¢; and f; are some exponents of the exponents!
Next, it can be seen that g, ,  is always given by some gradation of the positive

roots Ag y.

gx)= 3y x* (7.51)

acAG/H

for some 4 in the roots lattice of G. Further, we always find that A% = p2.

Table 1. 3 x 4 exponents

ag Exponents

— N R =
|
N
|
-
R
>
n
el
>
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Example. For the exponent g, ,, . with s = 1, Eq. (7.42), the gradation is given by
A=p+0—a, where a, is the deleted root, for any n and m. In the case of n =
all the gradations that appear can be seen to come from the affine Weyl group,
W(G). Namely, 4 = w(p), where w is some element of the affine Weyl group. E.g.,
for the first deficiency polynomial, A=p+ 6 —a, =w, w, (p). The elements w
calculated are then seen to be the same for any n and m, Thus, finding a general
formula for these would enable to write down the entire resolution series in a
closed form, similar to the one given for the first term, Eq. (5.30). Since W(H)
permutes 4; 4, taking w or hw, where he W(H) results in the same exponent,
through a different gradation. Attempts that have been made to identify the precise
elements of W(G) mod W(H) that give rise to the exponents have not been successful,
so far. w may be decomposed as t;w,, where w; e W(G/H) and t, is some translation.
Then w, can be seen to correspond to the cosets of W(G/H)mod {w,}. However,
the required translations remain mysterious.

8. Discussion

In this paper we have described the calculation of the chiral algebras in the
framework of rational N = 2 superconformal field theory. This offers a large testing
ground for the study of these algebras, which is central in the connection between
N =2 string theory and complex geometry. In view of the interrelations among
conformal field theories, the classification of such N =2 theories, through their
geometrical nature, is a long step towards the classification of all rational conformal
field theories, whereas in the context we have topological tools that are not
available elsewhere.

The emerging picture in the detailed study that we have made here is rather
complex, and as yet incomplete. We chose as the first objects to study the Poincaré
polynomials of the chiral algebras. As explained in the introduction, these encode
the algebraic information, where the degrees of the generators and relations can
be read off, in many instances. It turns out that the generic polynomials are not
of the complete intersection type, and thus, in particular, the generic theory is
not a scalar field theory.

However, one regular feature did arise in all the theories studied, and this is
the resolution series. In Sect. (7) we have shown that the Poincaré polynomials of
SU(n),

SU(n) x SU(m) x U(1)’
as a sum of scalar field theory type polynomials with all except for the first one
containing negative exponents. This is a highly nontrivial statement on the structure
of these algebras.

This is by no means special to this family, but is, in fact, a common feature of
all studied N =2 superconformal field theories. The reason that we choose to
explore this in detail in the context of SU(n) is the many simplifying properties of
this class of theories, such as the dihedrality, proved in Sect. (4) and explored in
detail in Sect. (5), and the lack of fixed points, which enables us to deduce the
polynomials of one theory from another.

all the theories of type where gcd (n, m) = 1 can be described
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Let us discuss an assortment of random examples of the resolution series. The
SO(5)a

Poincaré polynomial of the h.s.s. theory —————* __is given b
poy Ysop) xuq BV
3 _ t2k+m,
P(t) = Py(t) + I_[ T (8.1)
i=1 -

where P,(t) is the generic polynomial Eq. (5.30) (corresponding to m;=2,3,4),
m; = —2,3,8 and k =4. Note that these exponents are given by the gradation of
Ag iy by A=p+0—o0, (see the discussion at the end of Sect. (7)) and thus this
polynomial is precisely the generalization of the first deficiency polynomial to this
case. This suggests that once the gradations that give rise to the exponents are
identified, this will immediately generalize to, at least, all the h.s.s theories.

SU@3),
U@y

Another example is . Here we find,

1 _tk+3—-m
-

where P,(t) is the generic polynomial Eq. (5.30) (m;=1,1,2), m= —1 and k=2.

The examples above, as well as most of the discussion in this paper, were for
the principal theories, with the left—right symmetric modular invariants. The
resolution series can be seen also in the context of other modular invariants. An

SU@3)
SU@2) x U(1)
SU(3) factor. If we keep the left-right symmetric resolutions for the SU(2) x U(1)
factor, then the chiral fields are given by C/, now appearing each N, , times,
where N is the SU(3) invariant used in the defining the partition function, Eq. (3.12).
Thus we can attach a Poincaré polynomial to each modular invariant of SU(3).
Denote by S, ;,= N, ,where A =1, A, +1,A, and A, are the fundamental weights.
Then the polynomial is

P(t)=Py(t) +2 , (8.2)

instance of this is , where we can take any modular invariant for the

P)= 3 S2hth 83)
11,120
h+hsk

Every modular invariant can be assumed to contain the field C_, and so the
polynomial P(t) is dual, P(t) = t**P(1/t). Similarly, one can define the polynomial
SU(3)

for —

U(—17 with analogous properties,

PZ(Z) — Z Sl;,lz(t;’ll + 21, + [21‘ +k+ 1), (84)

11,120

li+125k
and P(t) = £>**1P(1/t). These two Poincaré dualities give strong constraints on the
multiplicities of the left-right symmetric representations which can appear in a
modular invariant. This system of equations is enough to determine completely
many of the multiplicities. It is clear that a classification of these Poincaré
polynomials will be more or less equivalent to the classification of the modular
invariants. This can of course be generalized to other Lie algebras.
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An instance of this is the exceptional solution at k=5 whose diagonal
representations are (0,0), (2, 0), (3, 0), (2, 1), (2,2), (5,0), (3, 2) along with the conjugate
representations of the non-real ones!®. Substituting into Eq. (8.3) we find

P(O)=1+24+34+2*+2654+ 200+t + 18 +¢1° (8.5)

which is evidently dual. Now, this polynomial is also an example of a resolution
series since it can be written as
1— tk +g-m
P, (t)=Py(t) + R (8.6)

where Py(t) is the generic polynomial of the left-right symmetric theory, Eq. (5.30),
k=35,g=3and m= —1. This example serves to demonstrate also the importance
of this problem to the classification of rational conformal field theories, in general.

Thus, the resolution series defines for us a notion of relatives among conformal
field theories. Namely, we can declare two theories to be relatives if they have
identical central charges and their Poincaré polynomials are equal only for
primitive roots of unity or zero. At a first glance this may seem as a bizarre criteria.
However, the algebraic significance of the polynomials, as elucidated in Sect. (1),
along with the many examples discussed, convince us that it is a correct one.
This can be seen even in the context of the minimal series, which is the case
SU2)

u(1)

in ref. [1]. As discussed in ref. [17] these theories are related to Arnold’s

of

with any modular invariant. The minimal models have been classified

Table 2. Minimal series polynomials

Type ¢ Potential Polynomial P—P,
O e U :

R = Rl T
B i =i (= :5;()1(1_ —t:))
R = = = e e
Eq 1?4 S4) ((11—— t;“))((ll_—ttlzo‘))) ((ll:tt_?;(ll—_ i’g;:l—_ t;:));(ll——tjz)

10 A level by level classification of all SU(3) modular invariants has been pursued in
collaboration with G. Harel. It can be checked explicitly that the physical invariants indeed
obey the properties discussed. This exceptional invariant has been found in this work
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classification of 0-modal singularities. We find two series (4, and D,) related to
the 4 and D algebras, and three exceptional solutions, E¢, E; and Eg. The
singularities are in 1-1 correspondence with the modular invariants of SU(2). In
Table (2) we list the potentials and the Poincaré polynomials of each of the theories.
The last column corresponds to the difference of the polynomial of each of the D
and E theories with the polynomial of the 4 theory at the same central charge,
denoted by P — P,.

Rather strikingly, it turns out that the deficiency polynomials P — P, have
only zero and primitives roots of unity as their zeros. In other words, they are all
of the form tP (t), where q is some degree series. Thus all the theories are related
to the A series in the precise sense defined above.

This brings us to an important, but rather complex, question. Namely, what is
the algebraic and geometrical significance of the resolution series. Clearly, the two
questions are connected and understanding the algebraic structure would lead also
to the correct geometrical interpretation. At this stage we can only speculate on
this. One possibility is that the deficiency polynomials correspond to ghost system
conformal field theories that are needed to be added to the theory. The fact that
these polynomials have the scalar field theory structure, with some of the exponents
being negative is very encouraging in this direction, hinting that one may be able
to consider the ghost systems as scalar field theories with some of the fields having
negative dimensions.

Alternatively, one may be able to think of the deficiency polynomials as the
result of imposing extra constraints on the theory. There are clear signs that this
is what is taking place. To see it, consider the limit of k— oo of the

SU(n + m),

SU(n) x SU(m) x U(1)

become null, and the algebra becomes a free polynomial algebra with n+m — 1
generators whose grades are [(w') (see the discussion in Sect. (6)). The generic
polynomial P,(t), Eq. (5.30), also becomes a free polynomial algebra, but the
number of generators is, in this case, nm. Thus the two can be equal only if
nm = n+ m — 1, which is solved either for n =1 or m = 1. In other cases, the Krull
dimensions of the algebras are different, the difference being nm — n — m + 1. Thus,
we would need precisely this number of additional equations in the naive theory
Py(t) in order to get the actual chiiral algebra. The deficiency polynomials express
precisely this reduction of the dimensionality through either the addition of ghosts
or extra imposed constraints. This picture is also consistent with geometrical
considerations. Work on this question is currently in progress and will be reported
elsewhere.

It is hoped that the results described in this paper will form a basis for a study
of the possibilities in string theory, and the classification of rational and
non-rational conformal field theory. The theories studied here are certainly very
intricate in structure and offer considerable complexity. Yet, we hope to have
demonstrated that the complete understanding of N = 2 string theory is not beyond
reach.

theories. In this limit all the relations in the chiral algebra
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The same reasons which permit us to extend our possibilities
of action in some cases will condemn us to importance in others.

- R. THOM, Catastrophe Theory: Its Present State and Future Perspectives (1974)
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