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Abstract. The short-distance assymptotics of the τ-function associated to the
2-point function of the two-dimensional Ising model is computed as a function of
the integration constant defined from the long-distance behavior of the τ-func-
tion. The result is expressible in terms of the Barnes double gamma function
(equivalently, the Barnes G-function).

1. Introduction and Summary of Results

If ξ = ξ(T) is the correlation length, T is temperature, and O00σMN> is the
spin-spin correlation function for the two-dimensional Ising model,1 then in the
scaling limit, defined by

such that
n

= — is fixed,

it is known [3,6] (see also [4]) that

F±(ί), (1.1)

where -f ( — ) denotes the limit is taken above (below) the critical temperature Tc.
Furthermore, the scaling functions F + (ί) are given by [3, 6]

(1.2)

* Supported in part by the National Science Foundation, Grant No. DMS-90-01794
1 For simplicity of presentation we assume that the horizontal and vertical interactions are equal
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where

,

and ψ(t,λ) satisfies the differential equation

%+ι*-ϊ**™
subject to the boundary condition

ψ(t9λ)~2λK<>(t) as t-+ + ao. (1.5)

Here K0(t) is the Bessel function and we assume 0<πΛ:gl. It is known [3] that
for 0<πi<l,

t/KU)= -σlogί-log£ + o(l) as ί->0+ (1.6)
with

σ = σ(λ) = - arcsin (π A), (1.7)
π

(1.8)

2

and 7"(z) the gamma function.
Using the short distance behavior (1.6) of ψ(t, λ) in (1.3), it is easy to show that

τ±(U)~τ0r
( 1- f f / 2 ) f f / 2 as f-*0+, (1.9)

where τ0 is independent of t but will depend upon the parameter λ. However, the
"constant" τ0 will not be determined by this elementary analysis. It is shown in
[3, 6] that (1.9) is also valid (with σ= 1) for πλ = 1. It is the purpose of this paper
to give τ0 as a function of λ, or equivalently in view of (1.7), τ0 as a function of σ.

To state our result for τ0, we first recall both the definition and some properties
of the Barnes double gamma function [1], Γ2(s):

°° /
. /2 π W2 g -s/2-(l/2)(y+l)s2 TΓT / j ,

Γ2(s+l) k

where y is Euler's constant and Γ2(s) satisfies [1]

(1.10)

where C'(-l) is the derivative of the Riemann zeta function evaluated at minus
one.2 Another common notation is G(s) = l/Γ2(s) which is called the Barnes
G-function. In this paper we prove

2 £'(-!)= -0.16542 114370045092925.... Some authors use the Glaisher, or Kinkelin-
Glaisher, constant A instead of £'(— l)-the two are related by log/4 =yj —£'(—1). Note the
1/12 is missing in (6.109) of [6] which came about from a sign error in (6.107) of [6]. Thus (6.110)
must be corrected but (6.104) of [6] is correct - which is the equation checked numerically in [6]
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Theorem 1. Let s = (1 — σ)/2, then

The proof of Theorem 1 uses techniques very similar to the proof of the connection
formulae in [3].

We now apply Theorem 1 to the Ising model. If one first sets T = Tc, then Wu
[5] has shown that

3ζ'(- l ) + ( l / 1 2 ) l o g 2 /

+

Now part of the scaling hypothesis is that the constant calculated at T = Tc in the
leading asymptotic behavior of the spin-spin correlation function, i.e. (1.11), should
equal F+(0)-in the language of asymptotic expansions, the two asymptotic
expansions should match. Setting 5 = 0 (πλ= 1) in Theorem 1 and using (1.9) for

πλ=l in (1.2) we see that the two constants are indeed equal (note R = ^/2N).
This closes a gap in the proof of the scaling hypothesis of the spin-spin correlation
function in the analysis given in [3,4,6].

2. Reduction to Integral Equations

In their generalization of the Ising field theory to holonomic quantum fields,
Sato, Miwa, and Jimbo [4] also discussed a neutral bosonic theory (the Ising
model, of course, is a fermionic theory) and associated to this bosonic theory a
τ-function which in the case of the 2-point function and in the notation of Sect. 1
is given by (we set their parameter / = l± — 12 = 0)

τβ(ί, λ) = expf - 1 j /(sinh ψ(s, λ))2 - (^J\ds\ (2.1)

Just as in the Ising case (see (1.14b) in [3]), τβ has a representation as an infinite
series of integrals (see SMJ (4.5.31)):

τβ(α) = exp(E(α)) = exp( £ ^e2k(t)\ (2.2)
\k=ι k J

where

o o j = i Xj Xj + 1

with xk+1 = XJL in the above integral. As in the Ising case, the integrals are of the
form of an iterated integral operator; and hence, both τ+ and τβ can be expressed
as infinite product formulae in terms of the unknown eigenvalues of the cor-
responding integral operator. In the Appendix we show that the series (2.2)
converges for all 0 ̂  πλ < 1 and for all t > 0.

We will show that

) as ί->0+, (2.4)

o(l) as ί->0+, (2.5)
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where

oo χ2k oo o 2 f c

α(A)= £ -τ«2k, β(X)= Σ ~β2k (2.6)
fc=ι k k = ι k

To begin, we take the Mellin transform of ek(t):

0 0 j = l

' '
0 0

, (2.7)
0

where

and we made the change of variables

xj = p^, (2-8)

with δk—l — δ1 ----- δk_ ί9 in going from the first multiple integral to the second
(note the Jacobian is ρk~l\ Using the integral

f <f~\ -'2 zBp2)z 2 r(z)
becomes

0 0 0 ;=1

where J>k(z) is defined by the last equation. This last expression for ek(z) provides
an analytic continuation to 9ί(z)>0 and gives the boundary values on the
imaginary axis except at z = 0 where we see that ek(z) has a pole of order 2. This
expression might give the analytic continuation for $R(z) > — 2, but we have not
proved this. For k = 2 (2.9) can be evaluated to give

e2(z) = V- 1 Γ2(z/2)Γ2(z/2 + l)/Γ(z + 2).

We now proceed to calculate the principal part of ek(z) at z = 0.

Proposition 2.1. For fc = 1, 2, . . . we /ιαι;e

= -- Bl -,- -
2 \ 2 27 4
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where B(x,y) = Γ(x)Γ(y)/Γ(x + y) is the beta function, and σk is defined by the last
equality.

Putting z = 0 into the definition of «/k(z) and comparing with (4.30) of [3], the
result follows immediately from Lemma 4.2 in [3].

To find (̂0) we consider the integral for k = 2,3,...,

1 X" -•- --- - i -.,

J - , 1 ~r xk

and make the change of variables (2.8) to find

Thus it suffices to look at Jk. We break Jk into the two pieces

Ί — J(V -4- 7<2) n 19ΪJ k ~ J k ^ J k \±.L£)

with

oo oo fe— 1

/•(i) _ Γ ΛV ... f /7V 0-χι~χk ΓT f v -I- v Ί" 1 lπίτ /Ί fv ϊ f? 1 λ^
k — 1 1 1 ^-^fc I I \ i ' i +1 / ^*^o ^kv ^/ \ /

0 0 j = l

and

(2.14)
o o

Using the identity

^/ o ζ

we break each J(

k

} into two pieces

4° - lim (Jf(ε) - j;/(/)(ε)), i = 1,2, (2.15)
ε-»0

where for i = 1,
oo ΊZ oo oo k— 1

J v -"-./i p J — I p ζ I /jv ... t /7Y ί? ^^ I I |V I V ^ ί> X^ (7 1 &\
i.. V^/ ~~ I «^ I M'Ά 1 I HΛ'ift. I I 1Λ- j i ^ Λ j _μ i I C . I Z > . X v / ι
f C v / J ^ J i j t X i ^ J J ' *-' 7 ^ '

ε ζ 0 0 7=1

oo i s oo oo /c-1

ε ξ 0 0 7=1

°e J K ^ T j T j expi — ̂ AiJVr 1 / x ιe xP(-^Afc) /^--v= \dξldμl '\dμk [] (x7 + ̂  +1)" , (2.17)
ε O 0 X j j = i Xfc

and we made the change of variables x7 -> ξ/x7 in obtaining that last integral and
have written άμ^ = e~XjdXj. Similarly for i = 2 we have

, (2.18)
ε 0 0 7=1
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and

ε ξ 0 0 j=l

= 7 dζ] dμ,-] dμke-^ Π (x + X +iΓ1^, (2.19)
0 0 0 7 = 1

where we made the change of variables ξxj -> x7 and then ζ = l/ξ in obtaining the
last integral.

Again referring to the proof of Lemma 4.2 in [3] we obtain

J'<2\8) = -σklog- + o(l)9 ε-»0+. (2.20)
4 ε

We now define the integral operator K on the Hubert space L2(0, co;e~xdx) =
L2(0,oo;dμ),

(Kf)(x):=]—f(y)dμ(y). (2.21)
o χ + y

The (generalized) eigenvalues and eigenfunctions of the operator K can be
determined from the Mehler-Fock transform (see, e.g., Lemmas 4.3 and 4.4 in [3]):

Kχp = λpχp, p^O, (2.22)

where

λp = πsechπp, 0?gp<oo, (2.23)

and

, (2.24)
2

where P_ 1 / 2 + l p(^) is the Legendre function, Kip(x) is the K-Bessel function of
imaginary order, and we used GR 7.1415 [2] to evaluate the integral. The
normalization is chosen so that if

00

θ(x) = ί XP(x)ό(p)dp,
o

then

g(p)=]χp(χ)g(χ)dμ(x).
0

Thus we have for any /, geL2(0, co ίίμ),
00 _

(2.25)
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Defining

f2(p,ξ)=χp(x)e-ξ*dμ(X), (2.26)
0

(2.17) and (2.19) become

ε 0

1/ε oo

,ζ)[2λk-1. (2.27)
0 0

The integrals (2.26) can be evaluated:

1/2+ . (2-28)
\ π

We record here the integral

1 °° k
, •-,--, ,-.- (2-29)

π o 4

3. Functions α(A) and β(λ) in Terms of a Single Integral

Comparing (2.26) with (4.67) of [3], we see that

where the right-hand side is in the notation of [3]. Thus using (4.84) of [3] we
obtain

-)+^^ε/ π 0 L \2 /J

πk

~ — + o(l) as ε-^0+, (3.1)

where \l/(z) = dlog Γ(z)/dz.
We will now show that

y + -fλ*^(2ip)dp + ί>(l) as ε-^0+, (3.2)
4 \ f i / 4 π 0

and hence combining the four J's (and using 2^(2x) = ψ(x) + ι/^(l/2 + x) + 2 log 2)



304 C. A. Tracy

we will get

Λ = ~~kyσk - felog2σk + * πfc - 2 f λk

pKψ(ip)dp. (3.3)
4 2 n o

To begin, we recall (2.27, 2.28) and interchange the order of integration, to see
that we must examine

F(ε):= ^ξ^lK^Iξ^dξ (3.4)
ε

for small ε. Hence we introduce the Mellin transform

z o

Γ2(z)Γ(z-2ip}Γ(z

4zΓ(2z)

π Γ(z)Γ(z + 2ip)Γ(z — 2ip)

(3.5)

(3.6)

where to obtain (3.5) we used GR 6.5764 [2] and (3.6) follows from applying the
gamma function duplication formula. Equation (3.6) provides the analytic
continuation of F(z) into the left-half plane where we see it has on the imaginary
axis a double pole at z = 0 and simple poles at z = ± 2ip. In the inverse Mellin
transform, we now deform the contour into the left-half plane picking up the
residues at the poles on the imaginary axis. The integral along the vertical direction
in the left-half plane is 0(1) as ε-*0+. This result when used in (2.27) gives an
asymptotic expansion for J'k

(1)(ε). The integrals which result from the residues of
the poles at z= ±2ip can be evaluated in the limit ε-»0+ by appealing to the
Riemann-Lebesgue lemma to see that the nonzero contribution to the integrals
is in the neighborhood of p ~ 0. The double pole requires expanding the /"-functions
about z = 0, hence the appearance of the φ function. The result of this calculation
is (3.2).

We can now calculate the principal part of ek(z) at z = 0. Proposition 2.1, (2.11),
and (3.3) shows that (2.9) has the Laurent expansion

where

_k
e-2,k-~<rk,

k
e_lk = -(-y + 2log2)σk-Jk. (3.8)4

Using the inverse Mellin transform and deforming the contour to the imaginary
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l£

z-plane

Fig. 1. Contour used in inverse Mellin transform

axis as shown in Fig. 1, we see that in the limit ε->0+ (note the 0(l/β) term from
the small semi-circle is cancelled by the 0(l/ε) term from the integrals on the
imaginary axis):

ek(t)= i? Γ- J cos(j logί) M(ek(i
no L

* dy

1 °°
- I sin (y log ή
n o

(3.9)

We now let ί->0+ in (3.9), use the Riemann-Lebesgue lemma to conclude that
the integrals are o(l), and hence (2.4) holds with (using (3.3) and (3.8))

βk = log 2 σk - ~ uk + J
2 2 π o

(3.10)

We now define the functions α(A) and β(λ) by (2.6). Then an elementary
calculation shows

(3.11)

.. (3.12)
π 0

cosh πp/
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Result (2.5) will now follow once we show the error estimate 0(1) in (2.4) remains
0(1) when summed over k. We postpone the error estimate analysis to Sect. 6
where we show that indeed (2.5) is true. It can be shown that

|σ2(l), (3.13)

where

σ(λ)= = - arcsin πλ, (3.14)

and σk are defined in Proposition 2.1.

4. Evaluation of an Integral

In this section we evaluate

sin -σ

I(σ) = - j log 1 ~
π o \ cosrr πp

(4.1)

which appears in the expression for β(λ). Differentiating /(σ) with respect to σ
results in

— = — sin - σ cos - σ f ( cosh2 πp — sin2 -σ } ^{\l/(ip)dp. (4.2)
dσ 2 2 o \ 2 /

To evaluate dl/dσ we define

cosh2 πz —sin2-σ
2

and evaluate J f(z)dz where the contour ^ is shown in Fig. 2 (the ε is chosen
v

small enough so that the two poles of / lying on the imaginary axis between 0

-R+i -ε+i

-ε ε

Fig. 2. Contour '

R+i
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and i are inside #). An elementary calculation shows that

-̂̂  / 7C 7Γ λ I 7Γ 71 GF/ / 1 -f- (7 \ / I — (7
> Residues(Π= 2πcos-σsin-σ -tan-σ— \ί/\ + ι/M
^ V 2 2 / l_2 2 2\ V 2 / V 2

In evaluating the integral over various portions of the contour #, one makes use
of the fact that for peR, 9lι/φ'p) (3φ(ip)) is an even (odd) function of p, and one
relates the values of ψ on the upper horizontal contour to those on the lower
horizontal contour by the functional equation for ψ. Doing this results in (after
letting R^co and ε -> 0)

dl . π π °r f , ~> o π \ ~ 1

ί

 π π

— = sin -σ cos -σ I coshz πp — sin^ -σ ] dp tan -σ
dσ 2 2 έ V 2 J ^ 4 2

(4.3)

The integral appearing in (4.3) has the value I 2 sin-σ cos-σ J σ so that (4.3)
V\f*r»/~\ mί*o \ 'becomes

d/
A ^ A "» ~ > ι l r ϊ ^ I ' T \ ^ I I' v ^

Since 7(0) = 0, we obtain upon integrating (4.4),

σ2 1 π

2 2 / 1 — σ

σ / 2 / /I \ /I \\
+ f logΓ (- + X -logΓ --x W (4.5)

o \ \2 / \2 //

where we integrated by parts and made an obvious change of variables to obtain
the last equality. Now Alexeiewsky's integral [1] is

2 2

+ log ^ ' y - (α -1) log Γ(a\ (4.6)
Γ2(α)

where Γ2(z) is the Barnes double gamma function. Using this we obtain our final
expression

Λί^W^Ϊ-ZlogΓΪiY ,4.7)
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5. Final Result

Referring to (1.3), (1.6), (2.1), (2.5), and (3.13), we obtain for 0 < σ < 1,

as ί->0+. (5.1)

Calling the constant term in the above expansion Iogτ0, using (1.8), (3.12), (4.1)
and (4.7), log τ0 becomes

1 σ ( σ\ /1 -4-rr\
log τ0 = - log 2 - - log π + 3 log 2 -1 1 — 1 + log ΓΊ j

2 2 \ 2/ \ 2 /

'* t I -*—, I -*• I ^ I -̂ — I -•- v 1 I Λ * -.-1 I •*• I / r s*\

Using (1.10) and standard identities for the F-function, Theorem 1 now follows.
There is one subtle point in applying Theorem 1 to the Ising case σ = 1; namely,

that in the expansion (1.6) of ψ(t,λ) there is a term of order ί2~2 σ (there are no
terms of order tn~nσ, n ̂  3 in η(t/2, λ) = e~ψ(t>λ) see [3] for discussion of this point).
Now both logB and β are divergent as σ-» 1, but the sum (which is what appears
in (5.2)) is not. However it is possible that the ί2~2 σ term in the expansion (5.1)
could contribute to the constant as σ-* 1. This can be settled by a local analysis
by computing, for 0 < σ < 1, d\ogτ±(t,λ)/dt as ί->0+ using expression (1.3) and
the asymptotic expansion of ψ(t,λ) to higher order (see (1.10) in [3] with v = 0).
A computation shows the term of order ί1"2* in dlogτ±(t,λ)/dt makes no
contribution as σ -> 1. Thus we are allowed to simply set σ = 1 (s = 0) in Theorem 1.

6. Error Estimates

As discussed in Sect. 3, we must show that the integrals appearing in (3.9) remain
0(1) as £-»0+ when summed over k in (2.2). Referring to (2.9) for z = iy,yeR, a
straightforward estimate that eliminates the term \_Δk(δ)']~iy/2 shows that the
resulting fc-dimensional integral is bounded by

2

0V

This shows that the series

converges uniformly in λ in compact subsets of (0,1/π) and uniformly in y in
compact subsets of (0, oo). Thus in (3.9) the summation over k may be brought
inside the integral. Standard estimates of Γ(iy) for large y shows that the integral
is uniformly convergent near the upper endpoint. For small y the integral is
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term-by-term improper so we put in a small ε at the lower endpoint. Again since
the convergence of the series is uniform in y and A, we may examine the small y
behavior of the summed integral by taking the limit of small y inside the integral
and inside the series. But these terms are constructed termwise in k to cancel any
singularity at y = 0. Thus we may remove the small ε cutoff at the lower endpoint
to obtain a uniformly convergent integral at the lower endpoint. Thus we may
apply the Riemann-Lebesgue lemma to the summed integrals to conclude that
they are 0(1) as ί->0 + .

Appendix

We define the integral operator K on the Hubert space L2(0, co;det) by

et(y), ί>0,
o χ+y

where

We denote by φj and λj the normalized eigenvectors and eigenvalues, respectively.
We take λ0 ^ λ1 ^ •••. Hubert's inequality states that if /eL2(0, oo), then

00 OO r

f tJ

o o x + y
Now

= f dxe
~(1/2)t(x+ί/x}

o o x+y

Letting /(x) = exp(-fφc + l/x))φQ(x), we have/eL2(0, oo) since (/>0eL2(0, co]det).
Thus applying Hubert's inequality we have

0

since φ0(x) is normalized in L2(0, co;det). Since this holds for all t > 0 we have

sup A0(ί) ̂  π.
ί>0

2The largest eigenvalue λ0(ί) satisfies for all φeL2(0, oo,def),

We now choose
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Using

,Kφ) = f Γ J -l
o LO X

we find

(φ,
o LO

Using

we find

where we made the change of variables u2 = t(t + 2ξ). Using the fact that the Bessel
function

/

V 2x

we can conclude upon integration by parts
00

(φ,Kφ) = 2πe~2tlog(l/t) + π J \ogxe~2xdx.
t

A similar calculation gives

Putting these two expressions together gives the final result for Bφ. Elementary
arguements show that

sup Bφ(t) = π,
ί>0

so we have
π ̂  sup λ0(t)9

ί>0

and hence
sup λQ(t) = π.
ί>0

Referring to (2.2) and (2.3) we see that if the series converges (which it clearly
does for large enough t)

The above series can be expanded in a power series in λ provided that \λQλ\ < 1.
But for 0 < πλ < 1 we have

\λ0(t)λ\ ^ sup λ0(t)λ = πλ<l.
ί>0
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