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Abstract. We describe a rigorous mathematical reduction of the spectral study for
a class of periodic problems with perturbations which gives a justification of the
method of effective Hamiltonians in solid state physics. We study the partial
differential operators of the form P = P(hy,y,Dy + A(hy}} on R" (when h>0 is
small enough), where P(x, y, η) is elliptic, periodic in y with respect to some lattice
Γ, and admits smooth bounded coefficients in (x,y). A(x) is a magnetic potential
with bounded derivatives. We show that the spectral study of P near any fixed
energy level can be reduced to the study of a finite system of /i-pseudodifferential
operators ^(x, hDx, h\ acting on some Hubert space depending on 7". We then
apply it to the study of the Schrδdinger operator when the electric potential is
periodic, and to some quasiperiodic potentials with vanishing magnetic field.

Introduction

The purpose of this paper is to give a rigorous mathematical treatment of an
approximation widely used in solid state physics, namely the method of the effective
Hamiltonian.

Let us briefly describe the essential ideas of this method: a typical problem to
which this approximation is applied is the motion of an electron in a periodic
crystal with a small external magnetic field. This problem is described by the
following Hamiltonian:

3

H = Σ(Dy. + Aj(hy))2 + V(y), (0.1)
1

where V is a real potential, /"-periodic for a lattice Γ in 1R3 describing the periodic
crystal, and A(x) is a function from R3 into R3* (in other words a 1-form), which
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is the vector potential of the magnetic field B = dA. We assume that all the
derivatives (of order ^ 1) of A are bounded functions.

The effective Hamiltonian approximation is to replace, for h small, H by the
collection of /ί-pseudodifferential operators:

Ej(hDx + A(x)) for jeN, (0.2)

where Ej(θ) are the Bloch eigenvalues of D2

y + V(y).
In solid state physics, one then usually uses W.K.B. approximations to study

the spectrum of Ej(hDx + A(x)). In the case of constant magnetic fields (i.e. when
AJ are linear) rigorous reductions from (0.1) to (0.2) have been given by Nenciu
[Ne] (single band case) and by Helffer-Sjόstrand [He-Sjl]. These reductions use
Wannier functions.

We refer to the article of Guillot-Ralston-Trubowitz [Gu-Ra-Tr] and the
survey by Buslaev [Bu], where the problem of constructing W.K.B. solutions using
an effective Hamiltonian is studied in detail. An extensive bibliography on the
physics literature about the effective Hamiltonian method can also be found in
[Bu].

Our goal in this paper is to give a rigorous way to recover the spectrum of H
near some energy level λ0 (and possibly also the nature of the spectrum) by studying
systems of /ι-pseudodifferential operators which have a principal symbol quite
close to Ej(ξ + A(x)) — λ, where λ is the spectral parameter.

Using our results we can for example justify the use of the effective Hamiltonian
approximation for (0.1) modulo error terms of order (9(h) near a simple band of
the spectrum of D2

y + V(y).
Let us now describe our results more in detail:
We consider partial differential operators of the form P0 = P(hy, y, Dy + A(hy))9

where P(x, y, η) is an elliptic polynomial in η, /"-periodic in y for some lattice Γ,
and with smooth bounded coefficients in (x,y). A(y) is a vector potential with all
its non zero derivatives bounded. (See Sect. I for the precise hypotheses.)

The observation of Buslaev [Bu] (implicitly also by Guillot-Ralston-Trubowitz
[Gu-Ra-Tr]), which is directly related to the two-scale expansion method is the
following one: if tφc, y)eD'(IR" x R") is a solution Γ-periodic in y of:

P(x, y, hDx + Dy + A(x))u = λu (0.3)

then ύ = u(hy,y) satisfies:

P0w = λύ. (0.4)

Buslaev then uses this idea to construct asymptotic solutions of (0.4) by considering
P(x,y,hDx + Dy + A(x)) as a /z-pseudodifferential operator in x with operator
valued symbol. This in turn is related to the study of operators (0.2). While this
procedure gives asymptotic solutions of (0.4), it is not clear how to relate the
spectrum of P0 near an energy level λ0 to that of P = P(x,y, hDx + Dy + A(x)).

We give a complete answer to this question in two cases. We obtain a N x N
system of /ι-ρseudodifferential operators of order 0, £_ +(x, hDx + A(x\ λ, h\ (which
will be our effective Hamiltonian) such that the symbol E _ + (x, ξ, λ, h) is /^-periodic
in ξ where Γ* is the dual lattice of 7" (note that this property is shared by the
Ej(ξ) in (0.2)) and such that one has the following equivalence:

For h small enough, λ is in the spectrum of P0 (with its natural domain, see
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Sect. I) if and only if 0 is in the spectrum of E _ + (x, hDx + A(x\ λ, h) acting on the
Hubert space (K0)

N, where

(See Theorem 3.7 and Corollary 3.8.)
In the case when all the operators Pz = P(z + hy,y,Dy + A(z + hy)) are iso-

spectral to P0 then the same result holds if we consider now £_ + (x, hDx + A(x\ λ, h)
acting simply on L2(R", CN). (See Remark 1 .2 and Theorem 2.4.) This is for example
the case for (0.1) when A is linear. We then apply these general results to Schrodinger
operators. We consider periodic Schrodinger operators with magnetic fields and
also some quasiperiodic Schrodinger operators.

For instance we construct a quasiperiodic Schrodinger operator in one
dimension which yields an effective Hamiltonian arbitrarily close to Harper's
operator cos hDx + cos x.

Let us now give the plan of the paper.
In Sect. I, a general reduction scheme is introduced. This reduces the spectral

study of P0 to that of P acting on a suitable Hubert space.
In Sect. II, a "Grushin problem" is constructed to study the spectrum of P on

L2(IR", L2(R"/T)). This is done by considering P as an /i-pseudodifferential operator
in x with operator valued symbol. With the help of this Grushin problem, we
prove Theorem 2.4.

In Sect. Ill, the methods of Sect. II are applied directly to the spectrum of P0

to prove the above mentioned spectral equivalence.
Finally some examples are discussed in Sect. IV, including periodic and some

quasiperiodic Schrodinger operators with magnetic fields.
Some technical results on magnetic Sobolev spaces and on pseudodifferential

calculus with operator valued symbols are given in an Appendix.

I. A General Reduction Scheme

In this section we introduce a method inspired by a work of Buslaev [Bu] to study
the spectrum of partial differential operators of the type (0.1).

We consider a function P(x,y,η)εCco$ί3n) which is real valued and satisfies
the following properties:

P is a polynomial of degree m with respect to η, (H.I)

' P(x,y+ y,η) = P(x,y,η) Vye/",
n

where Γ is a lattice ffi Zet (H.2)

If

. for a basis (e1 , . . . , en) of Rn.

P(x,y,η)= X αα(x,y>/α and Pj(χ,y,η)= £ aΛ(x,y)ηa,
H^m | α | = j
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then

\8p

x3
v

yaΛ(x9y)\^CβtY Vα,jS,yeK" (H.3)

def
p(x, y, η) = /?m(x, y, η) satisfies:

p(x9y9η)^ — \η\m for some C0 > 0. (H.4)
CO

We shall also admit a magnetic field and the corresponding vector potential will
be given by A = A(x)eC°°(JRn,JfLn*).

We assume that

VαeNn\{0}, 3 Ca such that \d*A\^ CΛ. (H.5)

Before going on, let us say a word about the quantization we use in this work.
We will always use the standard Weyl quantization of symbols: if P(x, η) is a
function on T*RW satisfying suitable estimates, Pw(y, Dy) is the operator defined by:

(1.1)

for weS(Rn).
Sometimes we will quantize a function P(x,y,ξ,η) only with respect to the

variables (y, η): in this case we will denote by Pw(x, y, ξ, Dy) the operator obtained
as above by considering (x, ξ) as parameters.

Finally when P(x,ξ) is a function on Γ*R" (possibly operator valued, see
Appendix B), we denote by Pw(x, hDx) the semiclassical quantization obtained as
above by quantizing P(x, hξ).

We start by considering the operator P = P™(x,y,hDx + Dy + A(x)\ which is
the quantization of P(x, y, hξ + η + A(x)). We will see later in this section that the
operator P0 = Pw(hy,y,Dy + A(hy)) can be viewed as the restriction of P to the
linear subspace x = hy.

To study P we make the change of variables:

(x,y)*-+(x,y) = (x-hy,y). (1.2)

Then using the invariance of WeyΓs quantization by metaplectic transformations
(see [Ho]) we see, by conjugating P by the change of variables (1.2), that P is
transformed into:

P = Pw(x + hy, y, Dy~ + A(x + hy)).

We will see in Appendix A that P is essentially self adjoint on C*(R2n) and self
adjoint with domain

fm = {weL2(R2n)|(D,~+ A(x + ̂ ))αweL2(R2n), V |α| g m}.

Using the change of variables (1.2) (which can be realized as a unitary trans-
*formation) we get that P is essentially self adjoint on C*(R2π) and self adjoint

with domain:

hDx + Λ(x))αweL2(R2n), V |α| ̂  m}.
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To study P we will use the Floquet-Bloch reduction in the y variable (see for
example [Sk]).

For θeR"*/Γ*, where Γ* is the dual lattice of Γ consisting of all y*GR"*
such that γ* γe2πZ for every yeΓ, we put:

vu(x9y9θ)=Σeto'°u(χ,y-y). (1-3)
yer

°U is unitary from L2(R^) into

c(R3")|ι;(x,y 4- y,0) = e^θv(^y,θ\

= v(x,y,θ) and |t;(v,θ)|6L2(lRw*/^*^2(R" x RJ/Π)}

when J*^ is equipped with its natural scalar product.
We see that ̂  commutes formally with (hDx + Dy + >4(x))α, so for every fceN, ̂

is unitary from Sk into

^k = {ve^0\(hDx + Dy + A(x))*υε^V\«\ίk}.

In particular P with domain $m is unitarily equivalent to the same formal differential
operator P acting on ̂ 0 with domain J*w.

In order to eliminate the 0-dependence as much as possible, we now consider
the operator:

Then it is straightforward to check the following facts:

! is unitary from L2(R2π) into

")| υ(x, y + γ,θ) = v(x, y, θ\

(1.4)
υ(x9 y,θ + 7*) = ei(x/h -y»*v(x9 y, θ\

\v(x,y,θ)\2dxdydθ<+<X).
" x R"/Γ x R"*/Γ*

sends Sm into ^m = {veJ4?0\(hDx + Dy + Λ(x))βue Jf0» l « l ^ w}. (1.5)

~ 1 = P, where P in the right-hand side is the differential operator

Pw(x, y, hDx + Dy + A(x)) acting on Jf 0 with domain JTM.

We can also write the operator P in the right-hand side of (1.6) as:

P=\Pdθ, (1.7)
£*

where we consider Jf0 as the space of measurable functions v(θ) with values in
the space

JT0 = \ueLl!(Rl*y)\u(x9y + γ) = u(x,y\ f |ιι(x,3;)|2dx^ < oo 1
I R; x RJ/Γ J
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such that: ι;( , , θ + γ*) = *'<*>* ->> "*ι;( , , θ) and:

J

and where £* c Rπ* is a fundamental domain for Γ*.
Accordingly P in the right-hand side of (1.7) is the differential operator

P = Pw(x,y,hDx + Dy + A(x)) acting in Jf0 which is selfadjoint with domain

JίTm = {uetf0\(hDx + Dy + A(x))"uetf0, V |α| ̂  m}.

Since the spectrum of P in the right-hand side of (1.7) is ^-independent, we have
proven the following result:

Proposition 1.1. The spectrum of P acting on L2(R2n) with domain $m is the same
as the spectrum of P acting on Jf0 with domain Jfm.

(Remark that the nature of the spectrum is not necessarily the same for the two
operators.)

Remark 1.2. Let us now indicate how one can use Proposition 1.1 to study the
spectrum of P0 in some cases.

Assume that P(x, y, η) is such that the spectrum of Pz = Pw(z + hy, y,Dy + A(z
acting on L2(IR") with domain

;, \(Dy + A(hy))*uεL2(lS.n

y), αeN",|α| ̂  m}

is independent of z. (Pz is selfadjoint in HmA and essentially selfadjoint on CJ(R")
by the arguments of Appendix A.)

This happens when P0 is the Hamiltonian of a particle in a constant magnetic
field with a periodic potential or with some class of quasiperiodic potentials. (See
Sect. IV.)

Then it is straightforward to justify the following formal identity:
e

P= J Pzdz.
R"

In fact (see [Re-Si]) we just have to check that zi— >(PZ -hi)"1 ^ weakly measurable,
which follows easily from the second resolvent formula and hypotheses (H.3), (H.5).

Then we get: σ(P) = σ(P) = (J σ(Pz) = σ(P0). So in this case P0 has the same
zeR*

spectrum as P acting on JΓ0 with domain Jfm.
In Sect. II, we will study P with domain Km by considering it as an operator

valued /i-pseudodifferential operator in x with symbol Pw(x,y, ξ + Dy + A(x)).
We now consider the operator P0 as a restriction of P to the linear subspace

x = hy.
Let us consider P0 = P™(hy,y,Dy + A(hy)) with domain HmA.
In Appendix A, we show that P0 is essentially selfadjoint on CJ(1RΠ) and

selfadjoint on HmΛ.
Using the change of variables (1.1) it is easy to see that P0 acting on L2(R")

with domain HmA is unitarily equivalent to P acting on the Hubert space:
2

y)}, (1.8)
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with domain:

{u(y)δ(x-hy),ueHm.A}. (1.9)

(The norm of u(y)δ(x — hy) is the norm of u in the corresponding space.)
This follows from the fact that

Pw(x + hy, y, Dy + A(x + hy))(δ(x) ® u(y)) = δ(x) ® P™(hy, y, Dy~ + A(hy))u.

ίΛ
In (1.8), (1.9) we can replace u(y) by υ(x) = til - 1, so the Hubert space (1.8) can be
written as: ^ /

{v(x)δ(x-hy)9υεL2(Rn

x)}, with the norm fc""/2||u||L2(Rn). (1.10)

Similarly the domain (1.9) can be written as:

{v(x)δ(x - hy)\(hDx

/ \ l / 2

with the norm h ~n'21 Σ \\(hDx + A(x))Λu\\l2(^n}] - (U1)

To further reduce the study of P0, we apply the same method as for P.
The image of v(x)δ(x — hy) under the map ei(x/h~y}'θ<% is the distribution

v(x) Σ δ(x — hy + hy) which does not depend on θ. From this we get that P acting
γeΓ

on (1.10) with domain (1.11) is unitarily equivalent to P acting on

LO = I Σ v(x)δ(x -hy + hy)9 veL2(Wx)

with obtain

Γ _
\<m•-{,?/<

Summing up, we have proved:

Proposition 1.3. P0 = Pw(hy,y,Dy + A(hy)) acting on L2(Rp with domain HmΛ is
unitarily equivalent to P = Pw(x, y, hDx + Dy H- A(x)) acting on L0 with domain Lm.

P acting on L0 will be further studied in Sect. III.

II. Spectral Reduction of P

In this section we consider more in detail the operator P = Pw(x, y, Dy + hDx 4- A(x)).
We will give a reduction of the study of σ(P) by considering P as an Λ-pseudo-
differential operator in the x variables with an operator-valued symbol
V(x,ξ + A(x)) = P™(x,y,Dy + ξ + A(x)), and by introducing a suitable "Grushin
problem." A review of some basic results we will use about operator valued pseudo-
differential operators is given in the Appendix, Sect. B.

To describe the estimates satisfied by some operator valued symbols, we
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introduce the following Hubert spaces with their natural norms:

Kmtζ = {uεK0\(Dy + ξ)*ueK0, V |α| ̂  m}.

We notice that only the norm on Km tξ depends on ξ and not the space itself and
we have:

\\u\\Kmtζ£C(ξ-ηy*\\u\\Kmt,9 VWeKm, 0, <^eR". (2.1)

If we denote by Kmfξ+A(x) the same spaces obtained by replacing ξ by ξ + A(x\
we see that (2.1) still holds if we replace <ξ — ήy by <£ — η) + <x — y>. (We use
here hypothesis (H.5) on A(x).) This means that the spaces Kmtξ+A(x) satisfy the
assumptions of Appendix B.

Finally we notice that IP(x, ξ + A(x)) satisfies:

\\d xdF>(x9ξ + A(X))\\£CΛ9β (2.2)
where the norm || || is taken in £f(Kmtξ+A(x}9K0).

To construct a suitable Grushin problem for P(x, W)x + A(x)), the first step is
to construct a Grushin problem on the symbolic level, i.e. for lP(x, ξ + A(x)). This
is done in the next Proposition:

We will fix some energy level A0eR+ and denote by ^Oθ the space
for θeK*/Γ*9 and by J^t

Then we have the following Proposition:

Proposition 2.1. Γ/iere exists ΛfeN, α complex neighborhood ^ o/Λ,0, and functions
φX^^^eC^ίR^jzΓ^πC^ίR^xR^xR") /or l^ ^N, SMC/Z ίftαί /or
(x, ξ)eR2n, and £#c/ι Aef^ the following operator:

™(x, y, Dy + ξ)-λ)u + R_ (x, £)κ

is invertible from Kmξ 0 C* into K0 © <C* wiίfc an inverse ^0(x, ξ, A) uniformly
bounded with respect to (x, ξ, A) together with all derivatives in &(KQ x <CN, Km ξ x (CN)

Moreover the functions φj satisfy the estimates:

M

Remark. In fact, we shall see in the proof that we can even choose the φ/s
independent of x. But sometimes it can be convenient to use φ/s depending also
on x. In the proposition, it is also possible to let λ0 be a compact interval instead
of a number.

Proof. We will follow the ideas of [He-Sjl] Sect. 3.

In fact for λ = λ1 fixed, Theorem 3.1 of [He-Sjl] gives the existence of N
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analytic sections ψj(y, θ) of the bundle with base RΛ*/^* an^ with fiber over θ
equal to J*0>0, having the following property:

The Grushin problem

is bijective from 3Fm# x (CN into ^Otθ x <CN if we take:
N

(*>),. = <u,</^0)>^ and K,-tt-=£i<7^(-,0).
.7=1

More precisely, we have an a priori inequality of the following type:

3C 0>0 such that VweJ^nVectO/^,...,^)1

(here ( )λ is the orthogonal subspace with respect to ^0,0)? one has:

9. (2.3)

^0

Using hypotheses (H.3), (H.4), we get by standard inequalities:

<P"(x,.y,D>, «>*,..£-!-<(- 4f2ιι,u>Λ,.- C, ||u||^oβ, (2.4)

uniformly for xeR",
Hence for weVect^,...,^)1 and λεi^ we get:

o i !

If we take λ± big enough (and let N increase correspondingly) we get:

x,y,Dy)-λ)u,uy^θ^-\\u\\2^θ (2.5)
C2

with C2 > 0, uniformly for xeR", λe'T, θeR"*/^* and ue^mtβn Vect(^ι, . . . , ψN)L.
It is easy to see that (2.5) implies that the Grushin problem (2.2)' with (— Δ)m/2

replaced by Pw(x, y, Dy) is bijective from 2Fm θ x CN into ^0θx(CN with an inverse
uniformly bounded for xeR", fleR^/r*, ϊe^.

Moreover the ψj constructed in [He-Sjl] are of the form:

Ψj(y,θ)=ΣΦj(y-y)eiθ'\ (2.6)
γeΓ

with φj(y)eCQ(E) where £ is a fundamental domain of ΈLn/Γ, and the (/>/s are
linearly independent.

Then if we take ψj(y, ξ) = φj(y, ξ)e~iy'ξ, it is easy to see that the Grushin problem
in Proposition 2.1 is invertible, with an inverse <ί0 uniformly bounded in
JS?(K0

 x <CN, Kmtξ x (C*). Indeed this follows from the fact that u\-+e~ίy'ξu is unitary
from ̂ ξ into km>ξ.

The estimates on B*xd
β

ξ$Q follow easily from similar estimates on δ"δ^, and
the properties (2.1)' on φj are immediate consequences of the above remark. Π
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From now on, we denote by ^(x,£,λ) any operator constructed as in
Proposition 2.1 with functions <p/s satisfying (2.1)'. We also denote by

£0(x, ξ, λ) £0

+ (x, {, λ) \ the matriχ elements Qf g( ξ λ} W

E-(x9ξ9λ) E-+(x9ξ9λ)J
quantization of ^(x, ξ, λ) and δΌ(x9 ξ, A).

Proposition 2.2. T/ze operator δ%(x, hDx + Λ(x), λ) is continuous from ^(R", X0 0 C*)
inίo ^(R^m,^(x)©CN),/rom S'(RM, K0 0 C") into '̂(RM, Km,^(JC) 0 C") and
uniformly bounded from L2(R^ x R;/Γ)0L2(R;,<CN) mίo Jfm0L2(R^,<C") /or

Moreover we have:

^w(x, M), + Λ(x), λ)°£™(x, hDx + A(x), A) = 1 + fc#w(x, W)x + A(x), A, Λ), (2.7)

where dk

λ^(x,ξ,λ9h)ES0(l^2n^(K0®(CN,K0 x CN)) V/ceN, and: Λ(x,ξ,λ,h) fcas
an asymptotic expansion <%Q(x9 ξ9 λ) + hόl^x, ξ, λ) 1 ---- uniformly with respect to
λer, with dk

λ^jGS0(R2n^(K0φ€N,K0®(CN)).

Proof. The continuity of δ™(x, hDx + A(x\ λ) in y and 9" follows from the calculus
of operator valued p.d.o's established in Appendix B, where (2.7) is also obtained.

It remains to prove the L2 boundedness statement. For that, we remark using
the results of Appendix A (more precisely formulas (A.I), (A.2)) that Jfm can be
described as

A(x) + Dy )T«eJf0, |α| ̂  m},

(where by ((hDx -f A(x) + Dy)T we mean the quantization of(hξ + A(x) + ^/)α), with
equivalent norms. One can also view ((hDx + X(χ) + Dy)

Λ)w as an /z-pseudo-
differential operator with the operator valued symbol ((ξ + ̂ l(x) + Dy)

a)w:Kmtξ+A(x)^K0.
From the composition and L2 -boundedness results of Appendix B, we get that, since

0

s n S π , J^(K x

i5 0(1) in J^(Jf0 0 L2(R^, CN), JΓ00L2(R^, CN)), which proves the Proposition. Π

We can now use R. Beals' characterisation of pseudodifferential operators
(cf. [Be]) with symbols in 5°, in the semiclassical version of [He-Sj2] and with
operator valued symbols, to see that for h > 0 small pnough:

(1 -h /i^Πx, hDx + A(x\ λ, Λ)) - 1 = 1 + h Jw(x, hDx + A(x), A, Λ),

where @Γ is an /ι-pseudodifferential operator with the same properties as ̂ w.
We then replace g™(x9 hDx + ̂ (x), A) by δ™(x9 hDx + ^(x), λ)°(l + /z^w), which

we can write (fw(x, ftD^. H- >4(x), λ, h) or <? w for simplicity.
Summing up, we have proved a part of the following result:

Theorem 2.3. Assume (HI) to (H5).
For h sufficiently small and λei^, ^(x,hDx + ,4(x), A) /zαs α uniformly bounded
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inverse of the form <f w(x, hDx 4- A(x\ λ, h), where

δ(x, ξ, λ, h)eS°(R2",

has an asymptotic expansion ^w(x, ξ, λ,h)~Σ $ i (x> £> λ)h J, <?0

 =: (̂*> £> A) ~ * as
above. °

77ϊ/s inverse has the same continuity properties as $0(x, hDx -f- A(x\ λ, h) in
Proposition 2.2.

Proof. From the constructions above it is clear that δ = ̂ w(x, hDx + A(x\ λ, h) is
a right inverse for ̂ w(x, /ιDx + Λ(x)9 λ) with all the properties stated in the Theorem.
We only have to show that δ is also a left inverse. If λe'T nR, 0>w(x, /ιDx + /l(x), A)
is self adjoint on X00L2(]RM,CN) with domain Xm 0 L2(RW, CN). Then
£w(x,hDx + A(x)9λ,h) is also a left inverse for ΛeiΓnlR, and also for λei^ by
analytic continuation.

This proves the theorem. Q

We denote by [ + ) the matrix elements of δ and remark the
y\E-(λ,h) E

E_+(λ,h) = Ew_ + (x,hDx + A(x\λ,h) is a /z-pseudodifferential operator with its
symbol in S°(R2n, ̂ ((CN, <CN)). In particular E_+(/U) is bounded on L2(Rrt,CN).

We come now to the main result of this section, namely the reduction of the
spectral study of P:

Theorem 2.4. Under assumptions (HI) to (H.5\for λεi^, h small enough, one has
the following equivalence:

Proof. We use the following formulas which can be checked easily:

(P - λΓ 1 = E(λ, h) - E+(λ, h)E_ +(λ, hΓlE-(λ, Λ), (2.8)

E_ +(/l, Λ)" 1 = -R"(x, hDx + A(x))(P - λ)' lR"(x, hDx -h A(x)). (2.9)

Here R^.(x, hDx -f A(x)) is the Weyl quantization of R ± (x, hζ + A(x)) in Proposition
2.1. Then (2.8), (2.9) and the continuity properties of $ established in Theorem 2.3
imply Theorem 2.4. Π

As a preparation for the next section, we will now establish some commutation
properties of $.

Because of (2.1)', we have:

_ - ,

+(x,ξ + y*) = R+(x,ξ)eiy ?*.

On the operator level we get:

e-iχ vΊi>R»(x9hDx + A(x))eix'y*/h = e-iy'**Rw_(x,hDx 4-

e-ίxγ*/hR™(x,hDx -f A(x))eix'^/h = Rw

+(x,hDx + A(x))

Combining this with the fact that

P*(x,y, ξ + y* + Dy) = e~iy'y*Pw(x,y, ξ -f Dy)eiy'y
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we get

e-iyy* 0\ / £<>•?* 0

. 0 ιy x ' * * "v o i
This can be rewritten as:

'ei(χlh-y)-r*

Of course (2.11) stays true if we replace 0>w(x,hDx + ^4(x)) by its inverse <f, which
is what we will need in the next section.

III. Spectral Reduction of P(}

In this section, we give a reduction of the study of the spectrum of P0 by using
Proposition 1.3. Hence we replace P0 by P acting on L0 with domain Lm (see Sect. I)
and we shall use the Grushin problem of Sect. II to study this operator.

First, let us remark that a distribution u = ]Γ v(x)δ(x — h(y — y)) in L0 can also
yer

be written as Σ δ(x — h(y — γ))v(h(y — y)), i.e. as an element of '̂(R"; K0) where,
yeΓ

as before, K0 = L2(R"/T): indeed, if

φe^(Rn,K0)^ {<x>Na>6L2(lRw x F), VΛΓ,α}

def

(where F is a fundamental domain of JR"/Γ\ then φ(x, y) = φ(Jc -f Λy, y) is also in

KQ\ and we have:

yeΓF

which can be bounded by seminorms of φ in ̂ (R", K0), and thus also by seminorms

Hence, we can hope to adapt some results of Sect. II for the study of P acting
on L0.

Let us denote by V0 the subspace of <^(R") consisting of the distributions of
the form:

W(X)=ΣΛ^-M ί3'1)
yeΓ

with (fy)yeΓe^2(Γ). V0 is equipped with its natural Hubert space structure, and
we first study this space in more detail. Let τy* be the operator of multiplication
by eix'γ*/h. We have:

Proposition 3.1. Let χe5°(R2π) be such that there exists a compact set K o/Rπ with
supp χ c R£ x X, and £ χ(x9 ξ + γ*)=l.

y*eΓ*

Then, for u,veV0, the quantity (χw(x,hDx)u,v)L2(^n} is finite, independent of the
choice of χ, and satisfies:

(χ-ίx, W», PW, =
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Proof. We have:

(χ»(x9 hDx)u, v)L2 = £ /M(y)/.(/)θr(*. «W - hy\ δ( - A/))L,
ϊ.y

where fu(y), /„(/) denote the coefficients in (3.1) for u and v.
Thus

(χ"(x, ADJii, »)„ = (2πΛ)-" £
y,y'

with

y*F* \ 2

where F* denotes a fundamental domain of R"*/^*-
Since £χ(x, £ + 7*) = 1 for any x, ξ, we then get:

/z"Vol(R"/ΓΓ

We now give another characterisation of K0:

Proposition 3.2. For every ueV0, there exists M0eL2(Rn) such that:

def
If wy* = τy*M0, then u = ^ wy* where the sum converges in '̂(R"). (3.2)

y*eΓ*

3 C > 0 such that for any bounded set ̂  in 5°(R2π) and
any NeN, there exists a constant CN > 0 such that

with dist(SuppΛ,R" x {0})^ C we have,

uniformly for h > 0 small enough. (3.3)

Moreover, the constants CN can be taken &(\\u\\Vo) uniformly with respect to u.
Conversely, ϊ/w0eL2(Rn) satisfies (3.3) and ifuy* = τ_ y *w 0 , then the sum ]Γ wy*

y*eΓ*

converges in '̂(R) towards an element u ofV0, with \\u\\Vo bounded by a constant
times hn/2 times the sum of \\ w 0 | |L2 and a finite number of the CN's in (3.3).

Proof. If weK0, we take u0 = χ(hDx)u with χeC£(Rn), Σχ(ξ + 7*)=l. Then
y*

u0 = (2πh)~n X /M(y)χ 7 - is in HS(R") for any s (here χ(x) = f e-^χ(ξ)^), and
yeΓ \ Λ /

satisfies:

VαeN", || (ΛDJ-tto ||L2(RΛ) ̂  C,^"/2 1| u ||Ko. (3.4)
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The property (3.3) follows then, by integrating by parts in the oscillatory integral
which gives Aw(x, hDx)u0, and using the Calderon-Vaillancourt theorem.

To prove (3.2), we only remark that My* = τy*χ(hDx)τ-y*u = χ(hDx — y*)u.
Let us now prove the converse statement:
If MO satisfies (3.3), we can find for any y*eΓ* a real function

Ay.(ξ)eC£(\ξ\<±\γ*\) such that the family (Ay*)y*eΓ* is bounded in S°(R2w) and

\\(l-Ay4hDx))u0\\L2^CN\y*\-NhN

for 1 7* I large enough. Then, if φey(R"), we can write

(uy, φ)L> = (MO, τ _ y*φ)L2 = (ιι0, Ay*(hDx)τ _ y*φ)L2 + 0(hN \y*\~N)

and, because of the condition on the support of A^9 we have

We conclude from this that £ My* converges in &". It remains to show that u = ]Γ My*
is in V0.

Let us take χ as before, and consider

(χ(hDx)u^ uβ*)Lι = (χ(hDx + α*)w0, w^_α*)L2.

If we take another cutoff function χ such that χχ = χ, we get:

(χ(hDx)u^ uβ*)L2 = (χ(hDx + α*)u0, χ(hDx + α*)M^ _α<)

= (τ+.pχ(hDx + α*)w0, χ(ΛD, 4- j8*)tt0).

Hence, using (3.3), we get:

I (χ(WλX*, M/r )L2 1 ̂  || χίW), + α*K || || jRfcD, + Γ K I I

gCX(|α*| + |jS*|)^ (3.5)

when |α*| + \β*\ is sufficiently large. Here, CN can be estimated by the sum of
|| M0 1| and a finite number of the CN's in (3.3).

It follows from (3.5) that (χ(hDx)u9 u)L2 is well defined and finite, and we conclude
by Proposition 3.1 that u in V0. Π

We next study the action of pseudodiίferential operators on K0:

Proposition 3.3. Let B(x, ξ)εS°(Ί&2n) with B(x, ξ + 7*) - B(x, ξ)for any 7* eΓ*. Then,
Bw(x, hDx) ίs bounded on F0, uniformly with respect to h small enough.

Proof. Let MeF0 and let us write M = £MV* as in Proposition 3.2. Then

Bw(x, hDx)u = X ty, where vy* = Bw(x, hDx)uy*.
r*

Then since B(x, ξ + y*) = J3(x, ξ), we get that t;y* = τ _ y,t?0, where ι;0 = 5w(x, hD*x)uQ

is in L2(Rn). This shows that ι;y, satisfy (3.2).
Using standard pseudodifferential operator calculus, we see easily that VQ

satisfies (3.3), with constants CN estimated by similar constants for MO. This proves
that υe K0 and that || v ||Ko ̂  C0 1| M ||Ko, by Proposition 3.2. Π

Remark 3.4. An alternative proof of it would have been to conjugate βw(x, hDx)
by a Fourier transform, and then get a pseudodifferential operator acting on
L2(RΠ7^*) However, this kind of proof cannot be easily generalized to the space
LO we have now to consider.
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Remark 3.5. Under _the assumptions of Proposition 3.3, the adjoint of Bw(x,hDx)
on KO is given by (B)w(x,hDx).

We will now see that essentially the same discussion applies to L0. Indeed if
u = Σ v (χ)δ(χ — hy — hy\ we can consider for each fixed y:

yeΓ

uy = Σ v(hy + hγ)δ(x -hy- hy).
γeΓ

It turns out that up to the translation by hy, uy is an element of F0 for almost
all y. This follows from the following identity:

) = Λ" f

= *" ί KlUA <3-6>
R"/Γ

If we take now χ as in Proposition 3.1, and consider χ(x9hDx) as acting on
y'(R" x R") with y as a parameter, we see by (3.6) that the analog of Proposition
3.1 holds for L0. Namely:

I I « llίo = h"Cn(χ"(x, hDx)u, u)2 χ . (3.7)

We will now prove the analog of Proposition 3.2 for L0. Let Γy* be the operator
multiplication by ei((xlh)~y)y* and notice that Tγ*u = u for u in L0 and γ*eΓ*.

Proposition 3.6. For any weL0, ί/iere exists w0eL2(IR" x R^F) SMC/I ί/iαί:

T/ze property (3.2) holds for A = A(x,ξ) (independent of y,η)
if we replace L2(RΠ) by L2(R^ x R /Γ). (3.8)

constants CN are 0( \\ u \\ Lo).

i^ series converges in S"(R", X0). (3.9)

Conversely if u0eL2(R" x RJJ/F) satisfies (3.8) and if wy* = Ty*w0, ί/ien ί/ie series
]Γ wy* converges in ^"(JR.n

x,K0) towards a distribution u in L0 wiί/i | |w||L o bounded
y*eΓ*

fry α constant times hn/2 times the sum of \\ u0 \\ and a finite number of the
L (JR x R IF)

CN in (3.8).

The proof is similar to that of Proposition 3.2 and we omit it.
Proposition 3.6 gives a proof of the fact that L0 c ̂ '(R£, K0). A more direct

proof can be obtained by computing the scalar product of u = Σ v(x)δ(x — h(y — γ))
γeΓ

with (pe^(R" x RJ//") and by estimating it by ||^||L2(Rr l) times a seminorm of φ

The same argument gives also that

where ΛΛ(ξ) is the operator valued symbol ((ξ + Dy)
α)w.

One also gets that:

(3.10)
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We can now state prove the main results of this section, namely the spectral
reduction of P0. We keep the notations of Sect. II:

Theorem 3.7. Assume (HI) to (H5). Then, for h>Q small enough and
λe-r,0>w(x9hDx + A(x),λ) is uniformly bounded from Lm®(V0)

N to L0®(V0)
N, and

has the uniformly bounded two sided inverse ^w(x, hDx + A(x\ λ, h) from L0 © (V0)
N

to Lm@(V0)
N.

Proof. We already know that ^w(x, hDx + A(x\ /ί):y"(Rw; #m(Rn/Γ)) x &"(Rn)N ->
'̂(Rn; L2(R"/Γ)) x &"(Rn)N is bijective with inverse given by £™(x, hDx + A(x)9 λ\ h).

So, we only have to show that ̂ w(x, hDx + A(x)) and <Tw(x, hDx + A(x)) are bounded
between Lm® V% and L0Θ ̂ o as indicated.

We already know that Pw(x,hDx -f A(x) + Dy) is uniformly bounded from Lw

to LQ. It then remains to show that the following operators are uniformly bounded:

R»(x9hDx + A(x)):LQ-+V»9 (3.11)

R»(x9hDx + A(x)):V»-+Lm9 (3.12)

El(hDx + A(x)9 λ; h): F^Lm, (3.13)

EϋXx, hDx + A(x)9 λ; h):L0 -> V», (3.14)

£w(x, hDx 4- A(x), ̂  Λ):L0 -> Lm, (3.15)

£ί +(x, hDx + ̂ (x), A; A): K£ -, Fj. (3.16)

Here (3.16) is a consequence of Proposition 3.3, and (3.11)-(3.15) can all be proved
essentially as in the proof of this proposition. Let us show for instance (3.13). It
suffices to show that for all αeN" with |α| ̂  m, Λ™(hDx + A(x))°E™(x, hDx + A(x))
is uniformly bounded from V% to L0. This composed operator is of the form
Cw(x9hDx + A(x)9λ9h) with C(x9ξ9λ;h) in 5°(R2π;j^(CN;L2(RVΓ))), and further:

Γy*Cw(x, hDx -f A(x)) = Cw(x, ftDx -f ^l(x))τy*

for all y*eΓ* (cf. (2.11) with & replaced by g).
Let U€VQ, and decompose u = Σu

y*
 as in Proposition 3.2. Then we have

Cw(x, hDx + A(x))u = X t?y* with

, hDx -h A(x))My* = Γy*Cw(x, hDx + A(x))uQ,

and thus we are in a situation where Proposition 3.6 applies and gives the
result. Π

Corollary 3.8. For λei^ and h>0 sufficiently small, we have: λeσ(Pw(hy,y,Dy +
A(hy))) (where the operator is equipped with the domain Hm^A) if and only if
Qeσ(Ew_+(x,hDx + A(x\λ\h)\ where this last operator is considered as a bounded
operator: Fj[->Fj[.

Proof. This follows from the last theorem and the two formulas:

(Pw - λ) ~ l = E™ - El (λ)(Ew_ + (λ)) - 1 Ew_ (A),

(E™+(λ)Γl = -Rl(P"-λΓlR™,

where all these operators have to be considered as bounded ones on the spaces
given by Theorem 3.7. Q
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Remark 3.9. Using the same idea as in Remark 3.4, one can also conjugate
E"L + (x, hDx + A(x\ λ, h) by the semiclassical Fourier transform

Fu(ξ,h) = (2πhΓn/2$e-iy'ξ/hu(y)dy,

henceforth replacing

E
by

E™

(see [Ho]) and (VQ)N by L2(Rn/Γ*,<CN)9 where Rrt/Γ* is given with its manifold
structure. In this form it might be more transparent to derive Bohr-Sommerfeld
type quantization rules to decide when Oeσ(E^+(x,Λ£)JC + A(x),λ,h). We remark
that the Stark ladders of resonances for a periodic crystal in a constant electric
field (which is outside the scope of this work) are obtained precisely in this way.

It is of some interest to see what kind of Grushin problem we obtain for the
original operator if we compose the Grushin operator of Theorem 3.7 with the
earlier identifications. We recall that we have the unitary map L2(IR")9Mi—>
f = v(x) Σ δ(x — /ι(y + y))eL0, defined by v(hy) = u(y). We shall "compute"

yer
R + (x, hDx + A(x))fm terms of u. In order to simplify the notations we shall assume
that JV = 1 and write φ = φί9 φ = ι/^. (Equivalently, if we do not assume N = 1,
we shall compute the j-component of JR + (x, hDx + A(x))f for some fixed ;'). Recall
that φ(x9 ξ; y) = ψ(x, ξ; y)e~iy'ξ, that ̂  is Γ*-periodic in ξ and (Γ9 ξ)-Floquet periodic
in y. We also recall that the Weyl symbol R + (x,ξ) is given by

R + (x,ξ)u= J u(y)φ(x9ξ;y)dy.

Hence if E is a fundamental domain of Γ\

( v -4- Y / γ-4- γ\ \

^-,ξ + A(~-);y )dydxdξ.
2. \ 2 / /

X
If y = γ(x)εΓ is the unique element with y = — ye£, we see that the sum in the

def/ j

last integral reduces to

Using then the /"-periodicity in y of φ, the sum reduces to
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Hence

^

Here we recall that v(x) = u( - | so if we make the change of variables x = hy and
\lϊ /

the substitution x = hy, we get

^

The distribution kernel of R+ becomes:

In general, if f(η) is a Γ*-periodic function, then

— f eiy'ηf(η)dη = Σa?δ(y - y) with ay = ίΓ27C)" IRn i> I L*t Ύ ^ I' y \7-_i r?* J

Since ψ(x, Y\\ y) is /"-periodic in η, we get

1 ,—7Γ-

f

J. V 2

with

f ψ(x,η',y)dη.
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In the situation studied in [He-Sjl] we can take ψ independent of x and then
W(y) is a Wannier type function used in that work as well as in [Ne].

We get R + u(y) = ̂ R + u(y)δ(y - y\ where R + we/2(Γ) is given by:

. (3.17)

In the situation of [He-Sjl] we start with a constant magnetic field
h
- ΣΣbj,kdXj Λ dxk with bjtk = — bkj, where contrary to [He-Sjl] we do not assume

that I bjjk I are small. (In that paper h = 1 at this stage.) We can then take Ax = — ̂ Bx,
and a simple computation shows that

where Th

y

B is the magnetic translation defined in [He-Sjl]. This means that R +
is the same operator as Rh* in the terminology of [He-Sjl].

Since the various identifications in our computation are unitary and since
R™(x9hDx + A(x)) = R^(x9hDx + A)*9 it is clear that this operator is naturally
identified with R_ = R* . Summing up we have proved:

Corollary 3.10. Define R*_=R + by (3.17) or rather the natural generalization of
this relation for arbitrary N. Thus for λ in a neighbourhood of Λ0, the operator

R+
+

is bijective with bounded inverse I ^ ^ + 1. The matrix ofE.+ is equal to the
\£_ E_ + J

matrix of E™(x, hDx + A, λ\ h) acting on KQ, if we identify the latter space with
/2(Γ;CN) in the natural way.

IV. The Case of the Schrodinger Operator

In this section, we assume that A(x) is a linear function of x (corresponding to the
case of a constant magnetic field). Let K(x,y)eC°°(R2") be F-periodic with respect
to y and satisfy

I^K(x,y)|^CM, (4.1)

on R2n for every (α,/?)eN2π. We are then interested in the operator

£(D,, + hAj(y))2 + V(hy, y) = P™(hy, y, Dy + A(hy))9 (4.2)

where

). (4.3)

Following the procedure of Sect. II, we fix an energy level z0, and we choose
Ψι(x9ξiy)9 ' 9ψN(x,ξ,y) smooth in all variables, /^-periodic in ξ and with
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ψj(x, ξ', y + y) = eiy'ξψj(x, ξ; y), such that the problem:

V κ°(x,ξ) o
is bijective for ξeR"*, and z close to z0. Here the spaces ^k ξ are defined in Sect. II
and R°_ = R°+*, (R°+(x9ξ)u)j = (u\ψj). Let £0_+(x,£,z) be the N x N matrix which
appears in the lower right corner of the inverse of (4.4). Putting P(x, ξ) = Pw(x, y, ξ + Dy\

ξ) 0
we then know from Sect. II that when h is small enough,

0>w(x9hDx

is bijective and has the uniformly bounded inverse £"v(x,hDx + A(x\z\h\ If
E_+(x,hDx + A(x\z\h) is the NxN block in the lower right corner, then
£_+(x, ξ,z;/ι)eS° has a complete asymptotic expansion in powers of h and the
leading term is £0_+(x, ξ,z). Moreover we know that E_+ is /^-periodic with
respect to ξ. The main result of Sect. Ill tells us that zeσ(Pw(hy,y,Dy + A(hy)))
(as an operator acting on L2(Rn)) iff Qeσ(E*+(x,hDx + A(x),z;h))), where E™_ +

now acts on the space V% (of functions which are F*-periodic in the dual variable).
We now discuss two special cases:

]. The Case of Periodic Potentials. We here assume that V = V(y) is independent
of x (and F-periodic in y). If we choose φj = φ^ξ; y) independent of x, then the
symbol & — &(ξ) is independent of x. The operator gP™(hDx + A(x)) then acquires
some additional symmetry properties: We introduce the magnetic translation

T^u(x) = e~iA(v)'xlhu(x - v), (4.8)

and check that [T*,hDXj + A/x)] =0, VvelR", ;'=l,...,n. T* may be viewed
as a /i-Fourier integral operator associated to the affϊne linear map: (y,η)\-+
(y + v, f/ — v4(v)), and we have for symbols q of class 5°:

(T?Γ V(x, hDx)TΪ = q?(x9 hDx), qv(x, ξ) = q(x + v, ξ - A(v)). (4.9)

This remains true also for operator valued symbols and in particular £P™(hDx -f A(x\ z)
commutes with T*, for all veR". This is then also true for $™(x,hDx + A(x\z\h)
and using (4.9) we conclude that $(x,ξ\h} is independent of x:

\h). (4.10)

In particular for z in a neighborhood of z0:

zeσ(Σ(Dyj + Aj(hy))2 + F(y))oOeσ(£^ +(hDx + A(x\ z; h}\ (4.1 1)

where £_+(ξ,z;/ι) is F*-periodic in ξ and Ew_+ acts on V%.
We further notice in this case that the operators Pz in Remark 1.2 have the

same spectrum since

Σ(DW + Aj(z 4- hy))2 + F(y) = e'^A^(^(Dyj +

Hence Pw(y, hDx -f A(x) + Dy) has the same spectrum as
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so we may ignore Sect. Ill, and consider E™_+(hDx + A(x\z\h) as a bounded
operator on L2(R";(PN) in the equivalence (4.11). This result was obtained in
[He-Sjl] by use of Wannier functions and some implicit arguments. See also
Nenciu [Ne].

2. Quasiperiodic Potentials with Vanishing Magnetic Fields. We assume that V(x, y)
is /"-periodic with respect to y (as before) and Aperiodic with respect to x, where
f is a second lattice. We shall not assume that A vanishes right away. We can
then Choose φ, in (4.4) with the additional property: φ/x + y, £; y) = φ/(x, £; y),
Vyef (trivially since we may even take φj independent of x). This implies that
^(x, ξ9z) appearing in (4.5) is not only "/^-periodic with respect to ξ", but
also Aperiodic with respect to x. Considering magnetic translations T* as in

case 1, we see that ^w(x, hDx + A(x\ z) commutes with all T* with veΓ. Then
<^w(x, hDx + A(x\ z; h) will have the same property and we conclude that ^(x, ξ9 z; h)
is Aperiodic with respect to x. In particular:

zeσ(Σ(Dyj + hAj(y))2 + V(hy9y))oOeσ(E»_ + (x,hDx + A(x)9r9h))9 (4.12)

where E^+ acts on V% and E_ + (x, ξ h) is Aperiodic with respect to x and
/^-periodic with respect to ξ.

If
f + h Γ is dense in Rn, (4. 1 3)

then we can let E"L+(x,hDx + A(x),z;h) operate on L2(R";C*), the reason being
again that for every xeRw, the operator

Px = Pw(x + hy, y Dy + A(x + hy)) = Pw(x + hy, y\ Dy + hA(y) + A(x))

is isospectral to jP0.
In fact, conjugating Px with e ~ iA(x)'y, we see that Px is unitarily equivalent to:

(4.14)

Let f* be defined as T^ but with h replaced by 1/fc. Then T^ commutes with
(Dy + hA(y) )w. Conjugating (4.14) with T^,yeΓ and using also that P(x,y;η) is
Aperiodic in x and Γ-periodic in y9 we see that for all yeΓ, γeΓ, the operator
(4.14) is unitarily equivalent to:

Pw(x + hy + y + hy, y; Dy + hA(y)). (4. 1 5)

Using the assumption (4.13) we can take a sequence (γj9 y^eΓ x Γ9 j = 1, 2, . . . such
that x -h hjj -h TJ -> 0. Then K(x -f ̂  + 7^, 3;) -> K(0, 3;) uniformly and we conclude
that Px is isospectral to P0, as stated.

We now take n = 1, >4 = 0, and we shall see that we can get an effective
hamiltonian which is close to Harper's operator cos(hDx) -f cos x. We take Vλ(x9 y) =
Uλ(x) + λ2 W(y\ where λ ̂  1 is a large parameter. We also let Γ = Z, Γ = Γ* = 2πZ.
We assume that W(y) ^ 0 with equality precisely on Zζ, and also that W"(ϋ) > 0.
We first consider

D2 -h λ2 W(y] = λ2((hDy)
2 -h W(y)\ h = ~. (4.16)

Λ

We can here apply known results concerning the tunnel effect in periodic semi-
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classical situations of Harrell [Ha], Outassourt [Ou], Simon [Si], and we know
that the first band in the spectrum of (4.16) is of the form

λ5/2a(λ)e~s°\ λE(λ) + λ5l2a(λ)e~SGλl (4.17)

where 50 > 0 is a certain complex action between neighboring wells, and
£(A),α(λ)eS^0(R+) are real valued classical symbols of order 0 with asymptotic
expansions:

ao + M"1*"'* (4.18)

with £0,α0>0. Moreover, for λ>Q large enough, the band (4.17) is all of the
spectrum of (4.16) in the half axis ] — oo,21E0].

The band (4.17) is generated by the Floquet eigenvalue:

μλ(ξ) = λE(λ) + λ5'2a(λ)e-s°λ(cos ξ + r(λ, 0), (4.19)

where

\d\d\r(λ, ξ)\ ̂  Ck^e~(ll2}S°\ (4.20)

for all A:,/.
We take

U=Uλ(x) = μλ(x)-2λE(λ). (4.21)

Choosing i^ to be a complex neighborhood of the interval (4.17), we can take
N=l in our choice of Grushin problem with φ1 independent of x,
(D2 + λ2 W)φl = μλ(ξ)φι, and choose this problem in such a way that

E0_ + (x, ξ,z) = z- λ5l2a(λ)e-Soλ(cos ξ + r(A, ξ) + cos* + r(λ,x)). (4.22)

We are therefore quite close to Harper's operator. It is quite likely that (4.20) can
be extended to a large band around the real axis and that we get a corresponding
result for £_ + (x, ξ, z; h). In order to apply the results of [He-Sj3], one would also
need Fourier invariance: £L+(x, ξ,zm,h) = E_+(ξ, — x,z;/ι) (and another simpler
property which may be less important). Perhaps this is also possible to obtain by
means of some delicate correction terms depending both on x and y in the choice
of Vλ(x,y). A more natural solution would be however to extend the study in
[He~Sj3] to the case without Fourier invariance.

Appendix A. Magnetic Differential Operators and Sobolev Spaces

Here, we shall discuss magnetic Sobolev spaces, and we assume (H.5). We define
for weN:

H% = {w6L2(Rπ);(Dx + A(x))«ueL2(Rn\ |α| ̂  m}.

Using the composition formula for Weyl quantizations, and the fact that for any
αeJN", jSeN2", |j8| ̂  1, we have:

γ<Λ

where the αα/3y's and all their derivatives are bounded functions on 1R", it is not
difficult to see (by induction on |α|) that for any αeNn and any function α(x),
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bounded with all its derivatives:

a(x)(Dx + A(x)Y = ίa(x)(Dx + A(x))*Y + £ [_bΛβ(x)(Dx + A(x))^ (A.I)
β<Λ

where the bα/3's and all their derivatives are bounded on IRΛ
We can also deduce from (A.I) that:

la(x)(Dx + A(x))Ύ = a(x)(Dx + A(x))* + £ cΛβ(x)(Dx + A(x))', (A.2)
β<a

where the cα/?'s have the same property as the baβ$.
In view of (A.I), (A.2), we then get the same space Em

A if we replace (Dx + A(x))a

by l(Dx + A(x))*]* in its definition.

Proposition A.I. Hm

A is a Hilbert space in which CQ is dense.

Proof. It is enough to prove the density. Let utHm

A and χjeCJ(|x| < j + 1) with
Xj(x) = 1 for |x| ^ j and |d% (x)| ^ Cα for all αeN" with Cα independent of; ( eN).
Clearly XjU€H*omp(R

n) c //^. Moreover, for |α| ̂  m:

where the Cα/?'s are constants, and Cα0 = 1. Thus

(D, + A(x))«(χju) -> (Dx + A(x)γu in L2 (as -» + oo).

Hence, every u in H^ can be approximated by elements with compact support,
and each u in H™ with compact support can be approximated by CJ -functions
by means of a standard regularization. Π

Notice that we have the inclusion:

We next introduce differential operators. Let

P(x,ξ)= X a.(x)ξ
. . H^m

with
\dβ

xaa(x)\^Cβ (Vα,/U). (A.4)

Then \d'xd
β

ξP(x,ξ)\ ^ Cα/Om~^' (where <{>=(! + ̂ 2)1/2) for any χ,ξ in Rπ and

We then put p7 (x, ξ) = ^ «α(^)ξα, p = pm, and we assume that m is even and
M=J

for some C0 > 0:

(A.5)

We are interested in Op^(P) = Pw(x,Dx -h ^(x)), which can also be written:

OpΛP)= Σ bαWΦx + ̂ W)", (A.6)
|α |^m

where the foα's satisfy (A.4), and ba = aΛ when |α| = m.
It is easy to see that Oρ^(P) is bounded H™+k^>Hk

A for every fceN.
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If we fix x0e]R" and put ξ0 = A(x0), we have:

γ. (A.7)

This operator is bounded: H™^k

ξQ-+Hk

A_ξo. If Ω is an open set of RM, we write:

ll«l& ( α > = Σ \\(Dx + A(X))"u\\l(ΩΓA k i ^ f c

Then, thanks to (H.5), we see that the norms || ||Hk (β(Xo,2)) an^ I I ' \\Hk(B(x0,2)) are

equivalent uniformly with respect to x0. (Here B(x0,2) denotes the open ball of
center x0 and radius 2.)

The operator (A.7) can be written:

£ cα(x,x0)/)« (A.8)
|α |^m

with eα(x,x0) = αα(x) for |α| = w, and |dfcα(x)| ^ C^ for any α, xe£(x0,2), and with
Cβ independent of x0.

Standard a piori estimates for elliptic operators then give for any u in
H* + "(B(x0,2)):

II u UH-^O,I)) ̂  C*t 'I °P^M " i f* c uo.2)) + I I u «L>c^.2))l (A 9)

where Cfc is independent of x0.
If we also assume, as we shall do from now on, that P is real valued, then

OpA(P) is formally selfadjoint and the classical Garding inequality becomes:

(OpA(P)u, u)L2 Z±-\\u \\2

am/2 - Co || « II I (A.10)
C0 *

for all Me^/(5(x0,2))n//^/2, and with C0 independent of x0.
Combining (A.9) with a simple covering argument, we get:

Proposition A.2. // weL2(RM) and OpA(P)ueHk

A(J^nl then ueHk

A

+m(J^n) and we
have:

\\ + || ιι || tϊ], (A. 11)
A UA

where Ck is independent ofu.

Using a partition of unity, we also get from (A.10) (with a new constant C0):

(Op^(P)M, u)L2 £ -L U u || 2 - C0 1| u \\2

L2 (A. 12)
C0

for all ueH™. (The commutator terms are estimated by C || u \\ (m/2)-1 -\\u\\ m/2 and
we can use that || u \\ H, _ t ^ ε || w || ̂  -f- Cε>k || u ||L2 for any ε > 0). A

If we consider Oρ^(P) as a symmetric operator with domain C^IR"), (A. 12)
shows that Op^(P) is semibounded from below, and admits at least one self-adjoint
extension (the Friedrichs one). Proposition A.2 actually shows that Op^(P) is
essentially self-adjoint, and that the domain of its unique self-adjoint extension is
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Appendix B. Pseudodifferential Operators with Operator Valued Symbols

We review some standard facts. Our main reference is here the unpublished work
of A. Balazard-Konlein [Ba].

We denote a point (x, ξ)eR2π by X. We shall consider a family of Hubert
spaces j / X 9 XeR2π satisfying:

j/χ = s#Ύ as vector spaces for all X, YeR2", (B.I)

There exist N0 ^ 0 and C ̂  0 such that
|| ιι || Λ g C(X - 7>No || u || ̂  for all uε^ X, YeR2". (B.2)

Let έ$x,XεΈί2n be a second family with the same properties. We say that
peCw(R2^(^0,^o)) belongs to S°(R2π;J^(j/x,^)) if for every αeN2", there
is a constant Cα such that

IIW*(Λ.fc)^Cβ, *eR2". (B.3)

If p depends on the additional parameter /ιe]0, Λ0], h0 > 0, we say that p belongs
to S°(R2"; JS?(j^,#x)) if so is the case for every fixed h and if (B.3) holds with
constants Cα which are independent of h.

Proposition B,l. Let peS°(R2w; &(s/x, 8X)\ where stfx, @x satisfy (B.I), (B.2). Then
OpΛ(p) = pw(x,W)x) is uniformly continuous

Proof. We neglect certain standard density arguments like approximating the
symbols by symbols with compact support. In the formula

OpΛ(P)«(x) = f J e « * - » < / * p , ί « ω , (B.4)

where ue^^R",^) we use the fact that:

(1 + \x - y\2 + Iξl2)'1^ - ξ hDy + (χ- y) hDξ)ei(χ-*™h = ««*-')«/*, (B.5)

and obtain after N steps:

(B.6)

Here

q(x,y, ξ h) = <P(1)(1 + \ξ\ + \x- y\ΓN(ί + |x| + M + lίl)2Λr°(l + |jΊΓw in 00.

This implies:

ϊ(x,y, ξ h) = Θ(\)(l + \ξ\)-ww*(i + \x- y\ΓN'2(l + \y\ΓN+2N°(l + \x\)2N"

ζ&(i)(i+\ξ\Γ(Nm+2No(i + \χ-y\Γ{NI2ί+2No(i + \y\ΓN+*No in a0,
and choosing N sufficiently large we see from this and (B.6) that

l|Op»(p)«(x)IU0 = 0(1)(1 + |x|Γ* for every N.

The derivatives in x can be estimated similarly. Π
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The formal complex adjoint of Oph(p) is Oph(p*), and using this remark we
see that under the same assumptions as in Proposition B.I.

We next review the composition. Let %>x be a third family of Hubert spaces
which also satisfies (B.I), (B.2).

Proposition B.2. Let /?eS°(R2"; &(ΛX9 Vx))9 4eS°(R2"; X(s/X9 3tx)\ Then OpΛ(p)°
Oph(q) = OpΛ(r), where reS°(R2π; &(s/x,<gx)) is given by

r = exp σ(Dx9 Dξ; Dy, Dη) (p(x9 ξ)q(y, η))
2

where σ is the usual symplectic 2-form.
We have the asymptotic formula:

Σ

(B.7)

(B.8).

in the following standard sense: write Sk = h kS°. If SjeSmj

9 ; = 0,1,2,... with

0 ̂  nij \ — oo, j-> oo, then we write s ~ ̂ s7 if s — ̂  sy eSmk+ * /or βuerj fe.

. The only slightly new fact to check (compared to the scalar case) is that
(B.7) really defines a symbol of class S° and that we have (B.8). Write (x, ξ) = X,

(y9η) = y. Then exp — σ(Dx;Dy) can be viewed as the operator of convolution with

CM/ι~2 nexp( -- σ(X'9 Y) ), where the constant Cn only depends on the dimension.
\ ft /

Modulo the usual density arguments starting with the case when /?, q have compact
support, we get:

Y = X

-X)q(X-Ϋ)dXdΫ. (B.9)

Here we introduce a function χeC^(R2n) which is equal to 1 near 0 and we
introduce χ(X)χ(Y) as a cutoff function inJB.9). We first examine the contribution
for the remainder, that is for 1 - χ ( X ) χ ( Ϋ ) . On the support of the integrand we

~ 1
then have \X\ + | Y\ ̂  — for some C0 > 0. With

L_ i(Vχ<r(X,Ϋ)) Dχ
~2~^

we have

and we also notice that

,f) = e-(2i/h)σ(X,f)
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The contribution to (B.9) under study, then becomes:

/ι"-2"cJJe-<2ί/Λ)*^
= Cnh

N-2ntfe-(2i/h}ff(*>Y}tN(X,X, Ϋ-9h)dXdΫ. (B.11)

Here

tN = Θ((l + \ X [ + \ Ϋ \ Γ N ) in

so

tN = 0(1)(1 + |*| + | Γ|Γ")(1 + \X\)2No(l + I Y\)2No in

The contribution (B.ll) in therefore Θ(hN) in &(s/x,<gx) for every N, and the same
holds for all derivatives with respect to X.

We then turn to the main contribution, from χ(X)χ(Ϋ\ which we write as

with

u(X9X9 Y) = χ(X - X)P(X)χ(X - Ϋ)q(Ϋ). (B.13)

Here u has its support in a domain \X — X\ + \Ϋ — X\^ const., so we can work
directly in &(ΛX9<βx)°&(jiX9dix)c:&(s/x,<βx\ and analyze (B.12) by using the
Fourier transform. Π

The L2-boundedness can be established exactly as in the scalar case:

Proposition B.3. Assume ^x = s/0, »x = ̂ 0,VXeR2". // peS°(R2";
then OpΛ(p) is uniformly bounded:

This is the classical Calderon-Vaillancourt result which can be proved as usual
with the help of Collar's lemma. We also have the following result proved in
[He-Sj2] in the scalar case:

Proposition B.4. Let ^^ = ̂ Q,^X = ̂ Q, and assume that Ψι,ψ2> P belong to
bounded sets of S0(R2π;^0,^0)), 5°(lR2π;j^(j/0,^0)), 5°(R2w;^(^0,^0))
respectively.

We also assume that dist(supp I/Ί, supp φ2) = εo > 0 for some fixed ε0. Then for
every NeN there exists a constant CN, such that
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