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Abstract. We study the ̂ -invariant of boundary value problems of Atiyah-Patodi-
Singer type. We prove the formula for the spectral flow of the families over S1.
Assuming a product structure in a collar neighbourhood of the boundary, we show
that the 77-invariant behaves the same way as on a closed manifold. We also study
the "adiabatic" limit of the ̂ -invariant. In fact, we present a general method for the
calculation of the "adiabatic" limits of the spectral invariants. In nice cases we are
able to split them into a contribution from the interior, one from the cylinder, and
an error term. Then we show that the error term disappears with the increasing
length of the cylinder.

0. Introduction

Let A.C^iX; V)^C™(X; V) denote a generalized Dirac operator on an odd-
dimensional manifold X with boundary Y, and g:X-*U(N) denote a unitary
gauge transformation equal to the identity on a certain neighbourhood of Y. We
define the operators D0 = A®Id€N and Dx = (IdF(χ)g)D0(Idκ® g)" ι and the family
{Dr = rDx + (1 — r)D0}. We fix a self-adjoint boundary condition P for all Dr and as
a result we obtain a self-adjoint Fredholm operator (Dr)P. In fact, reduced modulo
unitary equivalence {(Dr)P}re[0Λ] provides us with a family of self-adjoint
Fredholm operators over the circle S1.

The spectral flow is the only homotopy invariant of such families. It is the
difference between the number of eigenvalues which change sign from — to +
when r goes from 0 to 1 and the number of eigenvalues which change sign from +
to —. We want to compute this invariant. In the case of a closed manifold we use
//-invariant. Let {Br} denote a family of self-adjoint elliptic operators of positive
order on a closed manifold. The topological formula for the spectral flow is the
result of the following equality:

sϊ{Br}=]d/dr(ηBr(0))dr, (0.1)
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where ηBr(0) is the value of the ̂ -function of the operator Br at 5 = 0. It is defined as:

ηBι.(s) = (l/Γ(^y-Jj • J ί<s~ «'2 τr(Bre-^)dt, (0.2)

for Re(s)^>0 and it has a meromorphic extension to the entire complex plane,
which is regular at s = 0 (see [2, 9]).

In the following, we assume a product structure near the boundary, which
means that there exists a collar neighbourhood N = [0,1] x Y of the boundary Y
such that in this neighbourhood A has the form G(du + B), where G is an
automorphism of V\ 7, du denotes differentiation in the normal direction, and B is
the corresponding Dirac operator on Y. Let us assume now that B is an invertible
operator. Under these assumptions the boundary condition Π+=Π+(B) of
Atiyah, Patodi, and Singer (see [2]) is a self-adjoint condition. The /̂-function of
such a boundary problem is well-defined and we can think about the following way
of proving the formula for the spectral flow. We attach the cylinder [—R, 0] x Y to
X and we obtain a manifold XR = ([—R, 0] x Y)\JX. A extends to XR in a natural
way. Let SR denote the kernel of the operator Ae~tA2. It is natural to expect that as
R->oo SR separates into an interior piece and a cylinder piece, plus an error term
which disappears in the limit. The contribution to η, which comes from the cylinder
equals 0 and only the interior contribution is left, equal to the integral from the
"local" /̂-function on a closed manifold. Obviously there are technical problems,
which have to be solved. In fact, to consider spectral flow, or more generally, the
variation of the f/-in variant, it is much easier to use the Duhamel principle directly
on the manifold X.

Nevertheless, the following question arise:

(i) Can we compare, at least in the "adiabatic" limit (i.e. as R^> oo), the τ/-invariant
of Aπ+ with the corresponding object on a closed manifold?

and (this results from the non-locality of the ^/-invariant)

(ii) What is the "corresponding object"?

We found the answer for (ii) in the paper [8] (see also [18]), where we were
constructing relative cycles in K-homology. The cycles for K^X, Y) are represen-
ted by the operators on X, the closed double of X. These are operators of the form
A = Au(—A), by which we mean that A is equal to A on one copy of X and — A on
the other copy. The ^/-invariant of A is equal to 0, but in the case of a generalized
Dirac operator we have a well-defined "local" ̂ /-invariant. Let $R(t\ x, y) denote the
kernel of the operator Άe~tλ2. We define the "local" ^-function by the formula:

-±-J •^-^•tt{i{t;x,x))dt. (0.3)

Once again, this is a well-defined holomorphic function of s for Re(s) large.
Moreover, in the case of a generalized Dirac operator, it extends to a meromorphic
function on the entire complex plane which is holomorphic in a neighbourhood of
5 = 0 (see [4, 5]). For any value of 5 it equals 0 on the collar neighbourhood of Y.
Therefore, the integral of this density provides an answer to the question (ii).

We offer also an answer to question (i). Let AR denote the operator A on the
manifold XR. The main result of this paper is the following theorem:
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Theorem 0.1. lim \ηiAR)Π+(0)~ f ηλR(0;x)dx]=0.
R-+co\ XR j

The proof of the Theorem 0.1 is an application of the Duhamel principle. We
construct a parametrix for the kernel of the operator Ae~t{AR)^+ from the
corresponding heat kernel for the operator A on X, and the heat kernel of the
boundary problem on the cylinder [0, + oo) x Y. Then we use Levi's sum
expansion (see [12]) to obtain a series which gives the heat kernel of the boundary
problem on XR. This gives us suitable pointwise estimates for the kernel of this
operator independent of R.

The same method provides a proof of the corresponding estimates for the
kernel of the operator ΆRe~tAR. We take two copies of the heat kernels on X
restricted to X, and the kernel on the infinite cylinder and construct our
parametrix. Then we show that the corresponding series is convergent and we give
a pointwise estimate.

After we show the existence of the "nice" kernels on the manifolds XR and XR,
we use a different parametrix, which is constructed from the heat kernel of AR on
XR and the heat kernel on the cylinder. Using this parametrix we show that the
"error" term (difference between the parametrix and the original heat kernel)
disappears when R^oo.

The main technical achievements of this paper are: the precise construction of
this parametrix, which allows us to get rid of the error term and the estimate, which
establishes the exponential decay of the heat kernel on XR as ί-» oo, after scaling by
the size of the manifold. The latter is discussed in the second part of Sect. 7, and
enables us to consider, in the corresponding ^-density only the integral from 0 to

, which simplifies the calculation.
The "rescaling" technique can also be used in the case of our boundary

problem. However, we would like to present a result kindly communicated to us by
Werner Mueller instead. The lowest non-trivial eigenvalue of (AR)Π+ is uniformly
bounded away of 0. Under this circumstance we can apply the Cheeger-Gromov
inequality in order to get rid of the large time contribution to the ̂ -invariant. This
approach gives us the possibility to define a spectral flow and more general
analytic index for families of operators on the manifold Xoo = Xu[0, + oo) x Y.
This will be discussed elsewhere.

Theorem 0.1 discusses only the limit of the difference of the ^/-invariants.
Actually, we can show that lim J ^^(O, x)dx exists. We will discuss this result

R->ao XR

and its application elsewhere. The existence of this limit is a starting point of the
discussion of the "cutting and pasting" of the //-invariant in the spirit of the earlier
work on the "cutting and pasting" of the elliptic operators (and their indices) on
even-dimensional manifold, by the second author and Bernhelm Booss (see [6,
17]). This agrees also with the philosophy of the beautiful note by Singer [15] and
we acknowledge that this paper was greatly influenced by his work.

We have produced a general method for the calculation of the "adiabatic"
limits of the spectral invariants of boundary problems. We are able to split them
into a contribution from the interior and from the cylinder, plus the error term.
Then we rigorously show that the error term disappears with the increasing length
of the cylinder. In this paper we deal with the situation in which the boundary
contribution is fixed (in fact equal 0), but we also apply this method in order to
solve the problems in which the cylinder contribution is non-trivial. The important
case of such a situation is discussed by Singer in [15] and lead the second author to
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a new proof of the Holonomy Theorem of Witten (see [20]). Another example is
given by the computation of the phase of the determinant of the "Chiral Bag"
model presented in [11].

The second goal of this paper is to give a formula for the spectral flow of the
family of operators introduced at the beginning of the paper. It was pointed out
before that the formula follows from Theorem 0.1. However, it is simpler to give
the direct proof based on a straightforward application of the Duhamel principle.
For simplicity we assume that X carries a Spin-structure and that
A = 0®lάv: C°°(X; S® F)->C°°(X; S® V) denotes the Dirac operator on X (S is a
spinor bundle) with the coefficients in the auxiliary Hermitian vector bundle V. We
assume once again that B, the tangential part of A, is invertible. Let g: X-+ U(N)
denote a unitary gauge transformation, such that g = Id in a certain open
neighbourhood of the boundary Y. We have the family {(Dr)π+}re[0Λ] of self-
adjoint Fredholm operators, where the operators (Dr)π+ are given by the formula:

(0.4)
Π(\Y) 0}

H e r e D0 = A®ld<CN = N A a n d Dι=(ίdS(B)Vg)0(s®vgy +

= 77+(χ)Id(CΛr and H1 denotes the space of sections from the first Sobolev space.

Theorem 0.2. The spectral flow of the family {{Dr)π+} is given by the formula:

(0.5)

where sf denotes the spectral flow of the family and ch(g) denotes the "odd" Chern
character of the element [g] in K~ί(X, Y\ given by the formula:

ch(g) = Σ(//2π)fc t ^ tr(g-^g). (0.6)

This formula is well-known in the case of families on closed manifolds (see [3,6,
16,17]). In [7] the second author and Bernhelm Booss discussed the application of
Theorem 0.2 to the spectral theory of the boundary problems. It was assumed in
[7], that formula (0.6) holds also in case kerBΦ {0} and for the general boundary
condition of the Atiyah-Patodi-Singer type. We present the proof of this general
result in Appendix 1 to this paper. In the proof we use the fact that the space of
boundary conditions we consider is path-connected. In Appendix 2 we present the
calculations of the homotopy groups of this space.

In Sect. 1 we discuss estimates on the heat kernels of the Dirac operators on the
closed manifolds. While completely elementary, they are nevertheless basic for our
estimates of the large time contribution to the /̂-function.

In Sect. 2 we discuss A, the "double" of A. We review the elementary spectral
properties of this operator. In the second part we discuss a uniform (with respect to
R) estimate on the heat kernel of AR. Here we use the Duhamel principle. As this is
the model situation for all our applications of DuhamePs principle in this paper,
we carefully explain all details.

Section 3 deals with the heat kernel of the odd-dimensional Atiyah-Patodi-
Singer problem on the cylinder.
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In the first part of Sect. 4, we discuss the heat kernel of the boundary problem
(AR)Π+. We take a parametrix constructed from the heat kernel on X and the heat
kernel on the cylinder and use the Duhamel principle to show the existence of the
heat kernel on the manifold XR (see Theorem 4.1). In the second part of Sect. 4, we
discuss the existence of the ̂ -invariant of the operator Λπ+ on the manifold X. We
also present the formula for the variation of the ^-invariant, which allows us to
reduce the calculation of the spectral flow to the case of the closed manifold. We
close this section with a proof of Theorem 0.2.

Unfortunately, we cannot use the construction from Sect. 4 to show that the
difference between the interior contribution and the trace of the operator
ΛRe~t{AR)π+ approaches 0 when #-> oo. Therefore, in Sect. 5, we construct another
parametrix from the heat kernel on XR and the heat kernel on the cylinder. Here
also the choice of the corresponding cut-off functions is crucial [see (5.1) and
Lemma 5.1].

In Sect. 6 we show that in the case of an invertible operator B the lowest non-
trivial eigenvalue of the operator (ΛR)Π+ is uniformly bounded away from 0. Here
we use the fact that for large JR, we can compare the small eigenvalues of the
operator (ΛR)Π+ with the small eigenvalues of A, the self-adjoint extension of A to
the manifold I u [ 0 , +oo)x 7. This extension has a discrete spectrum in a
neighbourhood of 0 if and only if B is invertible.

In Sect. 7 we finish the proof of Theorem 0.1. First, we show that:

lim \η((AR)π+;0)-(\/\/π)']ft-1'2' J tv(ΆRe~tΆHt;x,x))dx} =0.
Λ^oo t 0 XR )

In the second part of this section we show that as R-* oo the second integral gives
u s ί tJχJO; x)dx. Here we rescale the metric on XR and show that this leads to

better estimates for the kernels involved.
In the Appendix 1 we discuss the proof of the spectral flow formula for

generalized Atiyah-Patodi-Singer problems.
Appendix 2 contains the calculation of the homotopy groups of the space of

generalized Atiyah-Patodi-Singer problems.

1. Heat Kernel on Closed Manifold

In this section we state an elementary result which describes the behaviour of a
heat kernel related to a Dirac operator on a closed manifold.

Let M denote a closed (compact, without boundary) Riemannian manifold of
dimension d. Let A.C^iM E^C^iM E) denote an elliptic differential self-
adjoint operator of first order acting on sections of the Hermitian vector bundle E
over M.

Proposition 1.1. Let us assume that A is invertible and let λ% denote the lowest
eigenvalue of the operator A2. Let us denote by e(t; x,y) the kernel of the operator
e~tA2 and by ${t\ x,y) the kernel of the operator Ae~tA2. There exists a positive
constant c such that the following inequalities hold for any ί>8 and x,yeM:

,y)\\^ce-{t/2)'u and \\Λ{t;x9y)\\ ^ce~m)'^\ (1.1)
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which in our case give us the following inequalities for certain positive constants
c l 5 c 2 >0 and any positive t:

d2(x,y)
2

Proof Let {λt\ φ^ieΈ denote the spectral decomposition of A. We have:

We use the Sobolev imbedding theorem (see for instance [9]) to get a pointwise
estimate for the eigenfunction φt: There exists a constant fc>0 (which does not
depend on i) such that:

\\φi(x)\\^b'(l+λfd). (1.3)

Therefore, we have for f^8:

(1.4)

This proves (1.1) for the kernel of the operator Ae~tA2. Let us observe that there
exist positive constants b3, b4, bs:

Sb3 for any O^ί

^b5 for ί^8,

hence, for ί^8, (1.2) follows directly from (1.1). We prove (1.1) and (1.2) for the
kernel of e~tΛ2 in the same way. The corresponding results for the finite interval of
time 0 < t < 8 are well-known and they follow from the asymptotic expansion of
the kernels on the "diagonal" (see [9]). This means that (1.1) and (1.2) holds for any
positive ί. •

Now, let us assume that ker(.4)Φ {0}, and let λl denote the lowest non-trivial
eigenvalue of the operator A2. The proof of the inequality (1.4) for ${t\ x,y) is
unchanged and (1.1) and (1.2) still hold in this case. This gives us the following
theorem:

Theorem 1.2. Let λl denote the lowest non-trivial eigenvalue of the operator A2.
There exist positive constants cγ and c2 such that the following inequality holds for
any t>0 and any x,yeM:

2. Spectral Properties of the "Double" of a Dirac Operator

We recall here the construction from [18] and [8]. Let X be an odd-dimensional
compact manifold with boundary Y, and V denote a complex vector bundle over
X. We fix a Riemannian structure on X and hermitian structure on V such that
they are the product on some collar neighbourhood N = [0,1] x Y of Y. We
assume that Fis a bundle of Clifford modules over TX (see [10] for the notation)
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and let A denote the generalized Dirac operator on V. A is a self-adjoint elliptic
differential operator of first order. Moreover, it has the following form on N:

A = G (du + B), (2.1)

where G: V\ Y-> V\ Y is a bundle isomorphism (Clifford multiplication by the
inward normal vector) and B: C°°(Y; V\ y)->C°°( Y; V\ Y) is a corresponding Dirac
operator on Y. G and B do not depend on the normal variable in N and they satisfy
the following equalities:

G2=-Id, GB=-B G,
(2.2)

G*=-G and B* = B.

We form X = X M X, the closed double of X, and FG, the double of V over X.
Y

We glue two copies of V along 7 using the automorphism G. A section of VG is a
pair (s l5s2) such that sx is a section of Fextended to Z u ( ( - l , 0 ] x Y) and s2 is a
section of V (on the other copy of X) extended to ([0,1) x Y)uXQX such that
on ( —1,1) x Y we have:

(2.3)

We extend A to I u ( ( - 1 , 0 ] x Y) using formula (2.1) and then we define an elliptic
operator Ά=Av(-A):C0O(VG)-+Cco(VG) by the formula:

A(sl9s2) = {Asl9-As2). (2.4)

Lemma 2.1. f/(s, ,4) = 0 for any value of s.

Proof. The equation Ά(sus2) = λ(sus2) is equivalent to

Asx = λsί, As2 = —λs2.

It is clear that (s2, — Si) is a well-defined section of F G and A(s29—sί)
= -λ(s2, -5i). Π

Remark 2.2. (1) It follows from the Green's formula that ker^ = {0} (see [14]),
hence we have no 0-eigenvalue.
(2) Lemma 2.1 does not imply the vanishing of the local ^-function of Ά. However,
we are able to prove the vanishing of η(s, Ά; x) in the collar neighbourhood of the
boundary (see Lemma 2.3 below).
(3) In the simplest case, when we take X = [0, π], X is a circle and the double of

— i -—is unitarily equivalent to the operator —i--j—h -, the natural generator of

K^S1). This is the Dirac operator which corresponds to the non-trivial Spin-
structure on S1.

Lemma 2.3. ηχ(s;x) = 0 for any s and any x which belongs to N = NuN
=(-U)χr.

Proof Let (sj, s2) denote an eigensection of Ά which corresponds to the eigenvalue
λ, and x = (M, y) belongs to N. Then

ηλ(s; (u,y))= Σsignμ) \λ\-\s{; s\)}(u,y)
λ

= Σ \M-s{<si;si))-{Gsi;Gsi}}(u,y)
λ>0

= Σ W-s{\\sU2(u,y)-\\Gsi\\2(u,y)} = 0. D
λ>0
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In the rest of this section we investigate the behaviour of the heat kernel of the
double of the Dirac operator, on XR the double of X in which we replace the
bicollar N by the cylinder of the length R. By XR we denote the manifold
([-£,0]xY)uX and by XR the double of the manifold XR/2.
XΛ = (—X)u{[—.R,0] x 7 } u l and we assume that collar N in the copy of {—X)
is parametrized by [ — R — 1, K] x Y. AR denotes the natural extension of A to XR

and ΆR = ARKJ( — AR). We have the following theorem:

Theorem 2.4. Let SR denote the kernel of the operator ΆRe~tΆκ on XR. There exist
positive constants cu c2, c3 which do not depend on R such that the following equality
holds for any t>0 and any R>0:

~C3~^L (2.5)

Example 2.5. Let us consider the operator from the Remark 2.2(3). The double of
d d 1

— i — on [0,π] is the operator — i -—h - on the circle. Now let us consider the
dx dx 2 ,

circle of length 2πR. The double of the operator — i — on the interval of length
d 1

πR is the operator — i — + — on the circle of length 2πR. We denote by
dx ZR

eR(t; x,y) the corresponding heat kernel. Then we have:

2

2;x/R,y/R)}.

Therefore, if we fix constants ct and c2 as in (1.2), such that:

then the following estimate holds for eR:

\{-i{d/dx) + (ί/2R))eR(t; x , y U ^ ' C ,

Now let us consider the operator DR = G(du-\-B\ the Dirac operator we
discussed before, but defined on the space SR x Y. Here SR denotes the circle of
length 2πR. We have:

e-tDk = etd
2

i.e-tB2

Let us denote by eR the kernel of the operator e~tD* and by SR the kernel of
DRe~tDκ. Elementary calculations similar to those which gave (2.6) show that there
exist positive constants bub2 such that the following estimates hold for any R:

. d2(x,y)
~b2
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where μ% > 0 denotes the lowest eigenvalue of B2, d is dimension of SR x Y, and the
constants b1 and b2 do not depend on R. We may also assume that this estimate
holds for the kernel of the operator e~tλ2 on X. Then we have positive constants
bί,b2,b3 such that the estimate:

d2(x,y)

Γb* e ~<~,

where b3 depends only on the lowest eigenvalue of B (and A), holds for all kernels
involved.

Remark 2.6. Suppose that B is not invertible. We have to remove the factor e~hlt

from (2.8). This follows from the fact that A acts as G du on the infinite dimensional
space ker(B)®L2(SR% and Example 2.5 shows that b2 has to approach 0 when
R^> + oo. The presence of a non-trivial constant b2 (independent of R) is essential
for the argument from the second part of Sect. 7 in order to avoid the large time
contribution to the ^-invariant.

Proof of Theorem 2.4. We use the Duhamel principle (see [12]). We define SR, the
parametrix for the operator e~tΛ* on XR, as the operator with the smooth kernel
given by the formula:

3

SR(t;x,y) = Σ Ψi(χ)'ei(t', x,y)ψi(y)- (2.9)
i=l

In this formula ex and e^ denote the heat kernel e^t x, y\ but given on the different
halves of the manifold X. e2 stands for the kernel eR on S\R x Y. {ψi}f= 1 is a smooth
partition of unity on XR such that:

(i) suppφ2 = [-K-(l/2);l/2]xY.

(ii) xp2 = l on [-#-(1/4); 1/4] x Y.
(2.10)

(iii) ψγ and ψ3 have supports in the corresponding copies of X = Xt.

(iv) On the cylinder ψt is a function of the normal variable.

φt is a smooth function with values in [0,1] and slightly larger support than the
support of the corresponding function ψt. Moreover, we assume that φ( has the
following properties:

(a) ψι = 1 on the suppt/^ .

(b) On the cylinder φt is a function of the normal variable.

(c) There exists δ >0 such that dist(s\xppdφjdu; suppi/^)> δ. (2.11)

(d) There exists constant c such that |δ-/'φi/δw /'|^c/δ.

(e) sxxppdψi/du is contained in a set of the form \_a,a + δ'] x Y.

It is obvious that estimate (2.8) holds also for the kernel SR. Now we
follow [12]:

1 --> t _ ~2

o R R
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Let C(t) denote the operator (ΆR + d/dt)SR(ή and C(ί; x, y) denote the kernel of the
operator C(t). Equation (2.12) is equivalent to the equality:

eR(t; x,y) = SR(t; x,y)+ f ds J dzeR(s; x,z)C(t-s; z,y), (2.13)

where C(t; x,y), the kernel of C(t), is given by the formula:

C(t;x,y) =- Σ {(d2φi/du2)(x)ei(t;x,y)ψi(y) + 2'(dφjdu)(x)(deβu)(t;^
/ = 1 (2.14)

where u denotes the normal coordinate of the variable x. This gives us the
following result which follows from (2.11) and (2.14):

Lemma 2.7. C(t;x,y) = 0 for d(x,y)<δ. The support of C with respect to the
variable x is contained in the set [ — R — 1, — K] x 7 u [ 0 , 1 ] x 7 and:

vol(supPjc(C(ί; x, y)))^ 2δ vol(Y). (2.15)

Moreover, the following inequality holds:
_ d2(x,y)

\\C(t;x,y)\\S(bJδ)'e-b* e 5 ' . (2.16)

We write (2.13) in the following way:

eR(t; x, y) = SR(t; x, y) + (eR # C)(ί; x9 y), (2.17)

where

α#j?(ί; x9y)= $ds J dza{s; x9z)β{t-s; z9y).
0 XR

Now, let us apply the operator AR to both sides of (2.17):

AeR(t; x,y) = ASR(t; x,y) + (eR*AC)(t; x,y), (2.18)

where for simplicity, we write A instead of ΆR and we remember that A acts on the
first space variable of eR, C, and SR. Now we write the formal series for AeR(t; x, y):

AeR(t; x,y) = ASR(t; x9y) + SR*<K^t; x9y), (2.19)

where

and Ck = C^Ck.1 and Cγ

It is not difficult to find an estimate for AC,

C(t x, y) = A2(Σ Ψi^iΨί) ~ Σ G{dφildu){Ae^Ψi,

and it follows from (2.11) and (2.14) that we have:

9y)\\^(bJδye-h*-e~h*~J^. (2.20)

We can assume that SR satisfies (2.8) and C and AC satisfy (2.20) for certain fixed
positive constants bl9 b2, b3. Now we show that we have a nice estimate on (€. We
start with the summand C2 = CφAC(t; x,y):

)2 e~*2ί ί ^ ί dze ^ s <~s J.
0 suρρzC
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We use the "generalized triangle inequality:"

d\x,y) ̂ d\x,z) ι d\z,y)

to obtain the final estimate for C2:

\\C2(t;xiy)\\S(b1/δ)'(t'bί'Vθl(Y))'e-^t'e~b3~^, (2.21)

and in general:

^ ' / " ' «-» . - ' ^ a (2.22)

This gives the following estimate for %>R:

~b3i^ή, (2.23)

(2.24)

\\^R(t;x,y)\\^

where the constant bA is given by:

fc4 = V

bjδ)-e°'"-e

•vol(Y)-b2

We estimate SRΦ<VR in the same way:

b ί d2(x,z) { d

xe V s

= b\ δ~2e~b2t e

D

! dz

(2.25)

3. Computation on the Cylinder

In this section we consider the Dirac operator

A = G(du + B):C™(Yx 10, +00); F)-+C°°(Yx [0, +00); V),

on the infinite cylinder. For simplicity, we assume that B is an invertible Dirac
operator on the even-dimensional compact manifold Y (which does not depend on
the normal variable u). It has symmetric spectrum and if 0 < λί ^ λ2 ^ .. denotes
the sequence of positive eigenvalues, then B has the following spectral
decomposition:

Let Π+(B) = Π+ denote the spectral projection of B onto the subspace of
L2(V\Y) generated by the eigenvectors corresponding to positive eigenvalues. We
consider the operator A with the domain:

7x[0,+α));F);i7 + ( W |7) = 0}. (3.2)

A has a unique self-adjoint extension which we denote by Aπ+. Then A2

Ί+ is the
operator A2 with the domain:

{M6if2(7x[0,+oo);F);iI+(M|7) = 0 and Π__((du + B)(u\Y) = 0}, (3.3)
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where we put:
Π_(B) = Id-Π+(B)=-G'Π+(B)G. (3.4)

We have a direct formula for the heat kernel of Λjj+ (see [2, pp. 52]) Let λ run
through the positive eigenvalues of B and e(t; u,x; v,y) denote the heat kernel
(u,veΊR.+, x,yeY). The heat kernel e has the following form:

(u - υ)2

4ί

(u-v)2

-e
(«

(t

Art

ι + v)2

Σ
λ>0

f _(

+ {e-λ2t/\/4rt)'\e 4 ί +e 4 ί J Gφλ{x)®Gφf(y)

- λeλ{μ+v) erfc {(u + υ)/2]/i+λ]/t} Gφλ{x)® Gφf (y).

It follows directly from (3.5) that: _ 2

Wt UtX Ό^llKcΓWV e ' ^ , (3.6)

where d is the dimension of the cylinder (see [2, Proposition 2.21])2.
We want to find a formula for the trace of the operator Ae~tAπ+. We have:

+ Bx)e{t;u,x;v,y\u = v
\x = y

Σ ( / ] / ) \(/) ) \ -Gφλ(x)®φi(x)
λ>0

y). (3.7)

Terms which contain {λe~ λ2')f\/4πt are responsible for the fact that we are not
able to integrate with respect to the u variable, but pointwise we have:

ΊτAe~tA"*{t;u,x;u,x)

It j ( 3 8 )

Therefore, we have the following lemma which is sufficient for our applications:

Lemma 3.1. Let φ: [0, + oo)->R be a smooth function with compact support. Then
the trace of the operator φ(u)Ae~tΛ2π+ is equal to 0.

4. Heat Kernel on the Manifold with Boundary.
]/-Invariant and the Spectral Flow Formula in the Invertible Case

In this section we come back to the set up from the beginning of Sect. 2. We have
the generalized Dirac operator A on the odd-dimensional manifold X with
boundary Y. A satisfies (2.1) and (2.2).

Our first task is to show that estimate (2.5) holds for the heat kernel of the
boundary problem for the operator AR. We repeat calculations from Sect. 2. We
patch together the heat kernel on the manifold X, restricted to one copy of the
manifold X, with the heat kernel of the boundary problem on the cylinder. Let δγ

denote the kernel of the boundary problem on [0, + oo) x Y introduced in Sect. 3.
Actually, we consider here this kernel on the cylinder parametrized as
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[ — R, +00) x Y. We denote this kernel by Sf. Let S2 denote the kernel of
the operator Άe~tΆ2 on X. We patch Sf with S2 on iV = [0,1] x Y, the normal
neighbourhood of Y in X. Let ρ(α, b) denote an increasing smooth function of the
real variable u which vanishes for u ̂  a and is equal to 1 for b 5Ξ w. We fix a constant
δ such that 0<(5<l/4 and we define:

φ 1 ( ι ι)=l-ρ(3/4 + δ,l), Ψι() ψ2,

φ2(u) = ρ(l/4,1/2 - (5), ψ2(u) = ρ(l/2,3/4).

These functions are defined as functions of the normal coordinate u on the collar
N. They have obvious extensions to the whole manifold X (or to the manifold
((— 00,0] x 7 ) u l ) . We define QR a "parametrix" for SR the kernel of the operator
ARe~tiAR)h* on the manifold X Λ = ([- i? ,0] x Y)uX by the formula:

QR(t; x, y)=Ψi(χ) < (t x, y) ψi(y)+ΦiM *4t\ x, y) φ2(y) ( 4 2 )

We also introduce a similar parametrix for £R the kernel of the operator e~t(AR)π+.
We repeat the calculation from the proof of the Theorem 2.4, and we obtain the
following theorem:

Theorem 4.1. Let eR and SR denote the heat kernel of the Atiyah-Patodi-Sίnger
problem on the manifold XR. There exist positive constants cuc2,c3 which do not
depend on R such that for any £>0 and any R>0:

Now we can discuss the existence of the ^-invariant for the Atiyah-Patodi-
Singer problem. In this section we restrict ourselves to the case of fixed JR. In fact,
we put R = 0 and consider the original manifold Xo = X. For convenience, let us
state once again the simplest version of the Duhamel principle in our context:

Lemma 4.2. The heat kernel S = $0on the manifold X is given by the formula:

ί; χ,y), ( 4 4 )

where C denotes the "error" term (see (2.14),). There exist positive constants cl9 c3, c 4

(we may assume that cγ and c 3 are the constants from (4.3),) such that (see (2.16),):

^nSc.e-^'e03^. (4.5)

Moreover, C(t; x,y) equals 0, whenever d(x,y)<δ.

Theorem 4.3. // ηAπ (s) is defined by formula (0.2), then ηAπ is a well-defined
meromorphic function on the entire complex plane. In fact, there exists a
holomorphίc function h^s), such that we have the following equality:

n+ ί

where ηχ(s; x) denotes the "local" η-functίon of the operator A (see formula (0A)).

Proof. We start with an elementary calculation, which shows that for any constant
^ί the integral:
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is a holomorphic function of s. Let μ0 denote the absolute value of lowest
nontrivial eigenvalue of Aπ+. The following estimate holds for any t> 1:

\ΎτAπ+e-tΛπ \S Σ \μ\e-tμ2ύe-{t-1)μo Σ MέΓμ2^fciέΓ ίμo (4 7)
ΦO * 0

We use the estimate (4.7) to show that (4.6) is bounded for any complex s (K^ 1)
and now it is easy to show that it is in fact a holomorphic function of s. We are left
with the integral:

K K K

J tis-1)/2Ίτ(Ae-tΛ"+)dt= J tis-ί)/2Ύτ(Q(ή)dt+ J ί ( s-1 ) / 2Tr((^#C)(ί))Λ. (4.8)
0 0 0

We will show that the second term is non-singular. This will imply that rjAπ+(s) has
the same singularities as the integral of the local /̂-function of A. Once again, we
follow the argument from Sect. 2. We have:

-r;z,x) (4.9)

and we know that the integrand is 0, for d(x,z)<δ. We apply (4.3) and (4.4):

t; x,x)\\ ^cjeC2t } dr f 2 2

o x

'til

t/i)

-a+d)/2--cSc5 ft }
5 (4.10)

Equation (4.10) shows that the only part which gives poles in the meromorphic
extension of η, is the one which comes from Tr(β(ί)) We know from Lemma 3.1
that

t;u,v)ψ(v))w=v = O. (4.11)

It follows from the Lemma 2.3 and from the definition of the cut-off functions φ2

and φ2 that

tr(φ2(x)£2(t; x, y)w2{y)\x=y = tτ£2{t\ x, x), (4.12)

hence we have just shown that:

^x))dx (4.13)

r'+

2

is a holomorphic function of s. •

Now we want to study the variation of the ̂ /-invariant. We assume here that we
have given {Ar}, a family of generalized Dirac operators, such that:

A = A0 and Ar — A0 is a bundle endomorphism equal 0 on AT. (4.14)
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In particular, this implies that for any r dom(Ar)π+ =domAπ+. Following [9,
Sect. 1.8] we proceed with the formal calculations:

d/dri

= J tis~1)/2 Tr(Άe-tAh+)dt + 2' J ί(s+1)/2 d/dt{Ae~tA2n+)dt
o o

0 0

= (-s) f ί(s-1)/

Here, as usual, A = d/dr(Ar). In order to eliminate the l i m T r ^ e " ' ^ we must
t-*co

assume that Aπ+ is an invertible operator, which involves ultimately the

deformation of the original family. Alternatively, we may use UmTrAe~εte~tA2π%
ε->0

which is the correct regularization procedure. This leaves us with a formula

ή((A,l;s)= A-rv-1 ύs-^2Ίx{λe~tA^)dt. (4.16)
f S f l \ 0

Following the proof of Theorem 4.3 we may apply DuhameΓs principle, to show
that the difference

h2(s)=-

x ( j t{s-1)/2Ύτ(Ae-tAh+)dt- f dt-ύs~l)l2 J tr(Ae2(t; x,x))dx\ (4.17)
[o o x )

is a holomorphic function of s. Here e2{t;x,x) denotes the kernel of the
operator e~tA .

Proposition 4.4. // {Ar} denote a one-parameter family of generalized Dirac
operators on the manifold X, which satisfies (4.14), then

ή(Aπ+;0) = ή(AM-Ao);0), (4.18)

where Aru( — A0) is a generalized Dirac operator on X equals to Ar on one copy
of the manifold X, and (—Ao) on the other copy.

Proof. We have:

ή(Λπ+; s)= -J^--1J &-»'2dt J tv(Ae2(t; x9

and the second summand disappears as s->0. Now, we use the fact that the
derivative of the ^-invariant on a closed manifold is given by a local formula (see
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[9, Sect. 1.8]). This gives us:

- lim .* - ] & - ™2dt f tv(Ae2(t; x, x))dx = f ήArU{-Ar)(0; x)dx
0 (S + 1 \ 0 X X

lim . ]
s-0 (S + 1 \ 0

•
Proof of Theorem (0.2). Let {φ r W + } Γ 6 [ O f 1} denote the family defined in (0.5). We
have the obvious equalities:

1 1

o r NΠ+ o

J H (4.19)
x x

where g denotes the gauge transformation on X, which is equal to g on one copy of
X and identity on the other copy. The formula for sf {Dru( — Do)} is proved in [3]
(see also [5, 6, 16, 17]). •

In the appendices we discuss the extension of this result to the more general
boundary problems. There we also consider the case of the non-invertible B.

5. Heat Kernels on the Manifold XR

Unfortunately, we cannot use Theorem 4.1 to show that the contribution to the
^-invariant, which comes from the "error" term C vanishes with R^co. Therefore,
we introduce a different parametrix for the kernel SR.

Once again, let S'1 denote the heat kernel of the Atiyah-Patodi-Singer problem
on the cylinder, which was discussed in Sect. 3. Let S2 denote the heat kernel
of the operator AR on the manifold XR restricted to one copy of XR. We may as-
sume that both δγ and S2 satisfy inequality (4.3). Let ρ(a, b) denote an increasing
C00 function of the real variable u vanishing for u^a and equal to 1 for u^b.
We define:

, (2/7)Λ), o2 = ρ((3/7K, (4/7)Λ).

Moreover, we may assume that

faM (5.2)

where c0 denotes a certain positive constant. We extend functions ^ and o1 to XR

in an obvious way and we define QR by the formula:

QR(t; x, y)=*i(χ) *&; x, y)*2(y)+*2(χ) <??(t; *, y)o2{y). (5.3)

We have the following formula for SR, the kernel of the operator ARe~t(ΛR)π+:

*άt) = Q£) + *R*Cάt). (5.4)

We know the formula for the kernel CR [see (2.14)]. Equation (2.14) together with
(5.1) gives us the following reformulation of Lemma 2.7.

Lemma 5.1. CR(t; u,v) vanishes for u not in [(l/7)i^,.R]. Moreover, CR(t; u,v) = 0
whenever \u — v\^R/7. We also have the following elementary estimate, which is a
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consequence of (2.16): R2

llC^ x^ll^ e-^V'3'". (5.5)

As a consequence, we have the following proposition:

Proposition5.2. Ύτ£>

R(t;x,x) = ΎrQR(t; x,x) + Ύr£'R#CR(t;x,x\ and we have the
following inequality for the "error" term:

t- v γ ϊ l l < k>, x>x)\\ =f<Ί

for certain positive constants kuk2,k3>0.

Proof. We estimate the error term:
d2(x,z) _ d2(z,x)

, _ t-R2

£<$**• jds J dzs- "2-e C 3 s< I" s>
0 suppzC(ί-s ; z,x)

gc4e
C2ί ίΓC5(*2/ί). Π (5.7)

6. The Estimate for the Lowest Non-Trivial Eigenvalue

Proposition 5.2 shows2that, at least for t smaller than ]/JR, the trace of the kernel of
the^ operator Ae~t{AR)π+ approaches trQR(t;x,x) pointwise [and therefore
\x(ΆRe~tλR)~] as R-ΪCO. We want to show that we can neglect the contribution to
the ̂ /-invariant which comes from the large time asymptotics. The natural way is to
apply the Cheeger-Gromov estimate (see the proof of Lemma 7.1). In order to do
this we have to show that the lowest non-trivial eigenvalue of Aπ is bounded away
from 0. The following theorem was communicated to the authors by Werner
Muller.

Theorem 6.1. Let >11(R)>O denote the first positive eigenvalue of the operator
{AR)π+. There exists a constant C>0 such that

(6.1)
for all RE[0,4- oo).

We start the proof with a discussion of an operator on the non-compact
manifold. As before, let AR denote the natural extension of A to XR. We also define
the open manifold X^ to be:

Xoo = (_oo,0]χyuX. (6.2)

Let A^: C^iX^; VJ^C^X^; VJ denote the natural extension of A to I α .
A^ has a unique self-adjoint extension on L2(F00) (see [10]). We denote this

extension by A. Let μγ denote the smallest (in absolute value) non-zero eigenvalue
of B.

Lemma 6.2. The spectrum of A in the interval (—μl5 μx) consists of finitely many
eigenvalues of finite multiplicity.

Proof. Let us consider the operator A = G(du + B) on (— oo, + oo) x Y. Since (A2s; s)
^μil|s| |2, one has that A2 (and therefore A) has bounded inverse in
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L2((—oo, +oo)x7; V). More general, for any λe(—μl9 +μ) we have a well-
defined bounded inverse of the operator {A — λ\ which we denote by Rx{λ). The
standard calculation shows that Ri(λ) is a smooth family of elliptic pseudodif-
ferential operators of order — 1. Now we consider the operator A = Av( — A) on
the manifold XuX. We denote by R2(λ) a parametrix for the operator A—λ. In
fact, we may assume that R2(λ) is a smooth family of elliptic operators of order — 1
on X such that:

{Ά-λ)R2{λ) = ld-Ki{λ) and R2{λ){Ά~λ) = ld-K2{λ),

where K^λ), K2(λ) are operators with smooth kernels. Now we can construct a
parametrix for the operator A. We introduce the following auxiliary smooth
function on 1 ^ :

l-ρ(3/8,l/2) on ( - c o , l ] x r

i on x\( [o, i ]χy) ' ψ z - γ Ψί>

l-ρ(5/8,3/4) on (-<x>,l]xr

0 on Z\([0l]χy' ( 6 3 )

fρ(l/8,l/4) on ( - o o , l ] x Γ
ψ2 \i on X\([0,l]xr"

and we define the parametrix R(λ) for the operator A by the formula:

R(λ)= i ΨiR&)ψi- (6-4)

We will show that for any λ e (—μl9 + μx) there exists the constant c = c(λ) such that
the space:

Hc(λ) = {seL2(XV); VJ; ||(^-A)s||^c||s||}

is finite dimensional. Let s e Hc(λ) then

\\(ld-R(λ) (A-λ))s\\ ^ \\s\\ - \\R(λ)(A-λ)s\\

^(l-c||Λ(A)||) |NI^8 W , (6.5)

for c sufficiently small. It is enough to show that the operator Id — R(λ)(Ά—λ)
2

= £ φiRi{λ)G(dψildu) is compact. The operator φ2R2(λ)G(dxp2/du) is compact, so

the only thing to investigate is the first summand, but this term has the following
decomposition:

(G(dΨί/du)). (6.6)

The first factor on the right side of (6.6) is a bounded operator (pseudodifferential
operator of order — 1), and the second has compact support, hence it is compact.
The operator (Id—R(λ)(A—λ)) is compact and invertible when restricted to Hc(λ),
hence Hc(λ) must be a finite-dimensional subspace of L^X^ V^). This completes
the proof of the lemma. •

Remark 63. 1. Let us assume that A = G(du + B) is not invertible on
L2((— oo, + oo) x Y; V). We still can construct the parametrix R1 for A, but this
time:
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Here K3 is an operator with a smooth kernel, but in general the support of this
kernel is not a compact set, therefore the second summand provides us with a non-
compact "error" term.
2. The proof we offer is elementary. Actually, using more advanced methods one
can show that the essential spectrum of A is equal to(—oo,—μ 1 ]u[μ 1 ,+oo) (see
for instance [13, Chap. VI]).

Let Φ e L2(VR) denote an eigensection of (AR)Π for the eigenvalue λ. We assume
that:

0<\λ\<μi/\/2.

Let μ run over the positive eigenvalues of B with corresponding eigenfunction φμ.
It follows from (2.2) that — μ is an eigenvalue of B with eigensection Gφμ. Φ has the
following expansion on the cylinder [ - Λ , 0 ] x 7 :

Φ(u,y)= Σ aA 2

 λ

μ>0 l(μ —A )

We assume that | | Φ | | L 2 = 1. Then we have:

1 £ f \\Φ(u,y)\\2dudy
[-R,O]xY

= Σ <g{--Ar* + (l/4K a 23
μ>o I μ — Λ \μ —A )

+ (1/4) (ί + -J^j • (μi-λ2)-1'2 • Sh(Άμ2-λ2)ll2R)

+ (1/2) - ^ • ch(2(μ2 - λ2Y'2R)}. (6.7)
μ —λ )

Hence, there is a positive constant C, such that

Σ a2

μ e"RϊC, (6.8)
μ>0

for all R^R0 for some positive Ro.
Now we extend Φ to a section of V^ by the formula

Φ(x), xeXR,

μ>0 β

Lemma 6.4. Φ^ is continuous on X^ and smooth on X^\({ — R}) x Y). Moreover,
Φoo belongs to the 1st Sobolev space H1^^ V^).

We omit the easy proof of this result.
It follows from (6.8) that

Σ a
μ>o

^l + ^
2μ1

for some C>0.

(6.10)
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Next, let WekerA and assume that || ψ\\ = 1. On ( - oo,0] x Y, Ψ has the form:

bμerGφμ{y), with Σ (l/2μ) \bμ\
2 < + oo.

μ > 0

Set /= Ψ\XR. Then / satisfies the equations:

ARl = 0 and i7+(/|{_

Hence, / belongs to kQτ(AR)π. This implies the

ΛR XR

=(ίβ) JζΦJx);

Y

On the other hand,

f (Φ (xY Ψ(x)\dx— V a
(-oo,-R]XY μ>0

Therefore:

following equality:

); l(x)}dx

Al(x)}dx

— R, y)) /(— JR, y)}dy = C

ί X —-— <C1e~ClR.
2μ

(6.11)

I. (6.12)

(6.13)

- ^ . (6.14)

Let {ΪΊ,..., Ψm}QkeτA denote an orthonormal basis of keτA and put

Φ = Φoo- Σ <Φx;Ψί>Ψi. (6.15)

Φ is orthogonal to kerZ and belongs to Hί(XOQ; V^). Furthermore,

\\φ\\2 = \\ΦΛ2- Σ <^oo;^> 2 .
i = l

It follows from (6.10) and (6.14) that

| | |Φ | | - l |5ΞC 3 ί >- c ^. (6.16)

Define Φ = Φ/1| Φ||. Then:

Φ = aΦ, where | α - l | ^ C 3 e - C 2 j J . (6.17)

Set

λt= mm M Pp/ll PII2. (6.18)
•Plkerl

Φ belongs to H1 and is orthogonal to ker^, hence

U l Φ I I 2 ^ . (6.19)

We also have

\\AΦ\\2 = a2\\AΦ\\2 = (x2\\AΦ\\2

XR = oc2λ2. (6.20)

Since α-^1 as R^co, we have:

λ2^λj29 (6.21)

for R sufficiently large. Assume that 0<λ2<μj/2, then λγ<μ\. The essential
spectrum of (A)2 is equal to the interval \_μ\, + oo) and it follows that λt >0 is an
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eigenvalue of A2. Now we have

λ2>λj2, (6.22)
which proves the theorem. •

7. Adiabatic Limits of the //-Invariants

In this section we prove Theorem 0.1. T r ^ splits into the sum:

Ίτ<$R(t) = ΊτQR(t) + Tr βR # CR(t), (7.1)

where we follow the notation from Sect. 5. The following lemma tells us that in the
"adiabatic" limit we can ignore the "large" time contribution to the ̂ /-invariant.

Lemma 7.1.
00 2

lim J t~1/2tr(A e~t(AR)π)dt = O.

Proof. The lemma follows from the Cheeger-Gromov inequality. For μ > 0 we
have:

00 00

f f — l/2„£ — fμ2/ /*_ 9 f g~y2dv "^ 2 p~ V^'P2

which gives:
oo

/ίΦO μΦO
ϊ r l l 2 ' Ύ r ( Λ e t ( A R ) π ) d t S 2 ' Σ e R l f ι = 2' Σ e

(Rl/2i)μ2 e
R*>2

AR)h. (7.2)

Here l0 is a positive constant and μ0 denotes the lowest non-trivial eigenvalue,
which is bounded away from 0 by Theorem 6.1. It follows from Theorem 4.1 that
the trace of the operator e~{AR)π is bounded by a constant times the volume of the
manifold XR. Now we obtain the final estimate:

f Γ1/2 Ίv{Ae-«AR)h)dtShe~Rll2μl vo\(XR)^l2 R e~R"2μl

^l2.e~
hR1/2 •O. D (7.3)

R^oo

We write I J M J O J I + =ηiAR)πβ) as the sum:

-Tr(QR(t))dt+ J ί-1/

(7.4)

\/R

f
VR

The last summand is bounded by l2e~hyΊ*. The second summand also disappears
as R->ao:

/π) J

Λ e- f c 3 R 3 / 2 ^fe 5 e" ' ί 6 JJl/2 (7-5)
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It follows from the results of Sects. 2 and 3 (Lemmata 2.3 and 3.1) that:

t;x,x). (7.6)

This gives us the following result:

Theorem 7.2.

ί V* dt 1
lim \η{{AR)π-ϋ)-π-'i2 J -= J tτ£«(t;x,x)dx\ =0.

R-+oo I o yt xR J

Of course, we want to show that

lim J Γ1/2dt J tτ£?(t;x,x)dx = 0. (7.7)
Λ->oo γR~ XR

The problem is that in estimate (2.5) we have the factor eC2t for a certain positive
constant c2-

In the second part of this section we will show that, in fact c2 can be taken to be
a negative constant, which gives us the desired result. The key is the estimate (2.24),
which shows that if we increase the lowest eigenvalue of our operator, then
constant b4 becomes negative [see (1.1) and (1.2)]. Now, let g denote the
Riemannian metric on the manifold X and let us introduce the metric gε:

ge = s2g (7.8)

We do not change any other structure involved. The corresponding Dirac
operator Aε can be described as follows (see [1, pp. 306, 315]). We define an
isometry T*X-> T*X by the formula (x, ξ)-+{x, ε ξ). This extends to isomorphism
of the corresponding Spinor bundles Φε:S-+Sε and the corresponding Dirac
operator Aε is given by the formula:

A^-Φ.AΦ;1. (7.9)

The heat kernel of this operator is equal to

Aεe~tAl= -- Φ .Ae-^^Φ;1. (7.10)

ε
If we consider the case of the Dirac operator B on a closed manifold, then the
corresponding "global" ^/-invariant is unchanged:

W ) = Σ sign(λ/e) \λ/sΓ = εs'ηB(s), (7.11)
Λ*0

which gives ηBJίβ) = ηB(0) for any positive ε.
Now we want to consider the corresponding "local" invariant. We have the

following lemma:

Lemma 7.3. Let B denote a Dirac operator with coefficients in an auxiliary vector
bundle on the odd-dimensional manifold. The "local" η-invarίant of B is independent
of the scaling of the Riemannian metric in the following sense:

)dx9 (7.12)

where dεx denotes the volume form of the metric ε2g.
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Proof. We have the following sequence of equalities:

ηAε(0; x) dεx = |(l/[/ί) J r 1 / 2 e" 1 tr{Φε(*K(ί/ε2; x,x)Φ~ \x)}dt} dεx

= sd - | ( π ) " 1 / 2 J iΓ 1 / 2 tr{Φε(xK(ι^; x,x)Φε~ \x)}dλ dx, (7.13)

where <? once again denotes the kernel of the operator Άe~tA1. Let {ej?= i denote
an orthonormal basis of TXX. £ is in fact a sum:

S(υ\ x,x) = ΣKM *,x)®ej, (7.14)

where the sum runs through all multi-indices J = {jί9..., jk), 1^/c^d and {e,}
denotes the corresponding orthonormal basis of the Clifford bundle. The trace we
consider is a product of the trace of the matrix Ks(v; x, x) and of the trace of es in
the spinor representation. Since d is odd, the only non-trivial spinor trace comes
from the scalar 1 and ex ... -ed the Clifford product of all elements of the basis (see
for instance [4, Sect. 1]). We deal with the trace of the "odd" operator Ae~tΆ2,
hence we have:

trΦε(x)£(v; x, x)Φ; \X) = tr(K(lt...td)(i>; x9 x)) tτ(Φβ(x)(*i ^)ΦΓ'(*))

= s~d'tr(K(U_d)(v;x,x))'tτ(ei...ed)

x,x). D (7.15)

_ It follows from (7.9) and (7.10) that, in order to estimate the heat kernel for
(ΛR)ε, we have to estimate the kernel of the operator (ΆR)e~ε~2tΆκ on the manifold
XR. Once again we patch together the corresponding kernels on the cylinder and
on the double of X. We reason in an obvious way. The estimate from Sect. 1 gives

Ue-'-^t x^^bit-v+M e-*-2** (7.16)

on X and on the cylinder. We use the Duhamel principle as in Sect. 2, using (7.16)
instead of (2.8) [we can ignore the factor which involves the exponent of d2(x, y)/t].
This gives us a negative constant b4 in (2.24) and now the error term (the difference
between parametrix and the heat kernel) is bounded by cγe~C2ΐ for some positive
constants. We have just proved the following lemma:

Lemma 7.4. If ε>0 is sufficiently small, then the heat kernel of the operator (ΛR)ε

decays exponentially as t->co. In other words the following inequality holds for
any R:

WΆ^-^Ht xΛn^e-'*. (7.17)

Now we split the integral from the "local" /̂-density into two parts:

J η(ΆR,0;x)dx = (l/\/^) J f Γ1/2 tr^(ί; x,x)dtdx

=(Vl/ϊΦ ί 7 +(V|/5θ ί 1
xR o xR VR



162 R. G. Douglas and K. P. Wojciechowski

We estimate the second summand using (7.17):

J dx f Γ1/2tr(Ae-tA2)(t;x,x)dt ^ J dx j Γ^c^^dt
XR VR XR VRχR V

] Γx/2-e-C2ε2tdt

ιc2R- [4e~v2dv

ic R'P~ε2VR ^0 (1 18)

This proves (7.7) and ends the proof of Theorem 0.1. •

Appendix 1. Spectral Flow Formula for the Families
of Generalized Atiyah-Patodi-Singer Problems

In this appendix we discuss the spectral flow formula for the boundary problems
introduced in [7]. For simplicity, we assume that X is a Spin-manifold and that
A=0®Idv:C

co(X; S®F)->C°°(X; S®V) is a Dirac operator with coefficients in
an auxiliary Hermitian bundle V. We assume product structure in JV, the collar
neighbourhood of the boundary. Therefore, A has the form (2.1) in JV.

ί. The "Ideal" Boundary Conditions. We consider here the case ker7?Φ{0}.
Green's formula [14, Chap. XVII, Proposition 1] gives the following equality for
smooth sections / and g:

(Af, g)-(/, Ag)= J <G(/| Y); (g\Y)}dy. (Al)
y

This shows that the operator Aπ+ is symmetric if and only if:

-GΠ+G = Id-Π+. (A2)

It follows from (2.2), that this is the case if and only if kerB = {0}. However, we can
still define a nice self-adjoint boundary condition for the case of non-invertible B.
This is guaranteed by the following deep result:

Theorem Al. The operator B=βγ®Idv\Y "bounds" the operator A and, therefore:

difn ker B + = dim ker B _ , (A3)

where as usual B± = ί/4-(J.d±iG)B(Id + iG) acts between the spinors of different
chirality. In particular, the kernel of the operator B is even-dimensional

This is Theorem 2 from Chap. XVII of Palais book [14]. G|kerj5 is still an
antiinvolution, and Theorem Al implies the existence of an orthogonal splitting of
kerβ, keτB=W+®W., such that:

G(W±)=WT. (A4)

Let S+ denote the orthogonal projection of ker2? onto W±. We extend S+ to an
operator with a smooth kernel, which acts on C°°(7; (S(χ)F)|7). Let us denote by
77+ the spectral projection of B onto the subspace of L2(Y; (S® V)\ Y) spanned by
the eigensections of B corresponding to the positive eigenvalues of B. We define
the boundary condition 77^

ΠW = Π+ + S+, (A5)
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and the operator AΠw by the formula

\άomΛΠw = {seHί(X;S®V); Πw(s\Y) = 0}.

Remark Λ2. 1. Πw is a pseudodifΓerential operator with principal symbol p+ equal
to the principal symbol of the projection 77+.
2. We do not have a canonical choice for the orthogonal splitting W+. The set of
the orthogonal splittings of ker£ which satisfy (A4) provides us with a special class
of the boundary conditions, the so-called "ideal" boundary conditions. It seems to
be an interesting problem to investigate the topological structure of the space of
"ideal" conditions.

We repeat the argument from Sect. 4, to show that ηAπ (s) is a well-defined
meromorphic function, regular at 5 = 0. The point is that "we still have a nice
representation of the heat kernel on the cylinder (see Sect. 3), and we^pply the
Duhamel principle to construct the kernel of the operator Ae~tA**w on X.
Theorem 4.3 and Proposition 4.4 hold also in this case. Now, we study the family
(0.5), where we replace the boundary condition Π+ by the condition Πw. We
repeat the consideration from the end of Sect. 4 to obtain:

Theorem A3. sf {{Dr)NΠ } = rk(F) f ch(g), where Dr is the operator defined in (0.5)
x

and Πw is any ideal boundary condition.

2. Generalized Atiyah-Patodi-Sίnger Problems. Identity (A2) suggests that we may
consider as a boundary condition any orthogonal pseudodifferential projection P,
which satisfies the following conditions:

-GPG = Id-P,

*dP)=P+, ( A 7 )

where σL(P) denotes the principal symbol of the pseudodifferential operator P (see
[7]). The operator AP: dom AP^>L2(X; S® W) is a self-adjoint Fredholm operator,
and ker^lp consists of smooth sections. We denote by ELL*(A) the space of all
pseudodifferential projections, which satisfy (A7). We put aside the question of the
existence of the ^/-invariant of the operator AP, where P e ELL*(A). We concen-
trate here only on the spectral flow formula.

Let us consider a family {{Dr)NP}, where P e ELL*(A). It is the family of self-
adjoint Fredholm operators over circle, and hence it has a well-defined spectral
flow. We want to show that there exists a continuous deformation of this family to
a family {(Dr)NΠ}9 where Π is an "ideal" boundary condition for A. In Appendix 2
we show that ELL*(A) is path-connected. More precisely, we know that there
exists a family {ft}teI of elliptic pseudodifferential operators of order 0, such that:

(a) ft:L
2(Y; (S®V)\Y) is a unitary operator for any t.

(b) The principal symbol of ft is equal to the identity.

(c) / i =Id and foPfo1=Π, where Π is an "ideal" boundary condition.

(d) βt commutes with G for any t.

The family {(Dr}N(ftP#- i)}reIt tei provides us with a continuous deformation of the
family {{Dr)NP} into a family defined by the "ideal" boundary condition. At this
point, it is unclear whether the spectral flow remains unchanged under this
deformation. The problem is that we vary the domain of the unbounded operator.
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However, there is an easy way of showing that the spectral flow is constant. We
may assume that the family {/,} is constant for t close to 0 and 1, and we define an
automorphism of the bundle S®V®<£? by the formula:

, ίAΘIdc* on {u}xYQN,
/"jld on X\N. ( A 9 )

The operator {Dr)NP is unitarily equivalent to the operator {/Drf~
1)NΠ. We have

also the equality:
(A10)

where 3Γr is a bounded operator on L2(X; S® F(8)CN), and thus we may consider
the spectral flow of the family {(/Dr/~ ^NΠ}- NOW, we can define a continuous
deformation of the family {{/Drf~

ι)NΠ} into the family {(Dr)NΠ):

f}r.,., (All)

This gives us the most general variant of the Theorem 0.2:

Theorem A4. sf {{Dr)NP} = rk(F) J ch(g) for any generalized Atiyah-Patodi-Singer
x

boundary condition P e ELL*(A).

Appendix 2. The Homotopy Groups of ELL*(A)

Krzysztof P. Wojciechowski

Department of Mathematics, IUPUI, Indianapolis, IN 46205, USA

To make the paper self-contained, we present here the calculation of the homotopy
groups of the space ELL*(A). First, we compute the homotopy groups of the space
ELL(A) of all pseudodifferential projections with principal symbol equal to p+, the
principal symbol of 17+. Then we show how to modify this argument in order to
get the homotopy groups of ELL*(A).

1. The Homotopy Groups of ELL{A). In this section we study the space ELL(A\
which consists of all pseudodifferential projections on S(χ)F, with the principal
symbol p+. We use the norm topology coming from the space L2(Y; (S®V)\Y).

Theorem Bl.
for i = 2Jk,

Remark B2. 1. This theorem is well-known for the closure of ELL(A) in the space
of all bounded operators acting on L2(Y; (S®V)\Y) (see for instance [B2, B3]). A
slight difficulty here comes from the fact that we have considered only pseudodif-
ferential projections.
2. The proof we present here is slightly different from the proofs presented for
instance in [B2] and [B3]. In these references the homotopy groups of the group
GLπ+ = {TeGL(L2); [T; 77+] is compact} were computed, and then it was shown
that ELL(A) and GLΠ+ were homotopy equivalent. Here we compute the
homotopy groups of the Grassmannian directly and, in fact, we can use this result
to compute the homotopy of GLΠ+.
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3. The idea of using the Grassmannian in the index theory appeared first in the
work of B. Bojarski (see [Bl]).

Let us introduce a group of invertible elliptic operators on (S(x)F)| Y:

$ύU~1 = {#\ p is an invertible pseudodifferential operator

of order 0 with the principal symbol Id}. (Bl)

Using a standard deformation argument we can show that the homotopy groups
of S^ί~x are equal to the homotopy groups of GLC, which consists of all operators
f, such that ^ is invertible on L2(Y; (S®V)\Y) and ^ —Id is a compact operator.
Thus we have:

We show that each connected component of ELL(A) is a base of a principal fibre
bundle with the total space < W *. This is a consequence of the following lemma:

LemmaB3 (see [B3]). Let Pθ9P1eELI^A) and | | P 0 - ^ i l l < l The operator:

T=Id + (P 1 -P 0 )(2P 0 -Id) (B3)

belongs to the space SW1 and satisfies:

TP0T-1 = Pί. (B4)

Corollary B4. The space ELL(A) is locally contractible. In particular, connected
components of ELL(A) are path-connected.

Now let us fix a projection P from ELL(A). We denote by ELLP(A) the
connected component of ELL(A), such that P belongs to ELLP(A). Let us
introduce the subgroup $%P~

1, consisting of all elements of S(^ί~i

i such that they
commute with P. It is obvious that we can identify ELLP(A) with a homogeneous
space $>%~1/£>ό2ίP~

ί. Since Lemma B2 provides us with a local section in a
neighbourhood of the class of identity in this space, we have the following
theorem:

Theorem B5. Let f\S°ll~l^ELLP(A) denote the continuous map given by the

formula f(#) = # P'#~1. $ύll~1—+ELLP(A) is a principal fibre bundle with
structure group equal to S^lf1 (S^lίf1 acts from the right on £<%~l).

Proof of Theorem Bί. P fixes a splitting of L2(Y; (S®V)\Y) as the direct sum of
Ran(P) and Ran (Id — P). δ^ίp 1 decomposes with respect to this splitting into two
factors, such that each of them has the homotopy groups of GLC. Therefore, the
homotopy groups of S^lίf1 are given by:

We employ the exact homotopy sequence for fibre bundles to compute the
homotopy groups of ELLP(A). •

Remark B6. 1. We have calculated the homotopy groups πlELL^A)) for i ^ 1. It is
easy to show that πo(ELL(A))=Z and that the index classifies connected
components of ELL(A) (see for instance [B3]). More precisely, P1,P2^ELL{A)
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belong to the same connected component of ELL(Λ) if and only if
index(P2 Px: RanP 1 ^RanP ? ) = O.
2. We describe a local trivialization in a neighbourhood of P, which is a
consequence of Lemma B3. Let UPQELLP(A) denote the open set
{S e ELL(A); \\P - S\\ < 1}. If S e UP and ^ ef ~ \S)9 then Ts ^"* is an element of
f~x(P). Ts is the operator from Lemma B3:

Γ5 = Id + (S-P)(2P-Id).

The local trivialization in UP is given by the map ΦP\f~x{UP)^UP x $%P

γ\

(S=?-P ?-1;TS-
1-?). (B6)

2. The Homotopy Groups of ELL*(A). Now we fix an "ideal" boundary condition
Π. Π is an element of the space ELL*{A) = {ReELL{A); -GRG = Id-R}.
ELL*(A) is a subspace of ELL*(A\ which consists of orthogonal projections. We
have the following lemma:

Lemma B7. ELL*{A)QELLΠ{A).

Proof Let P e ELL*{A). We will show that the index of the operator P Π: Ran(i7)
->Ran(P) equals 0 [see Remark B6(l)]. We have:

index(P77: Ran(77)->Ran(P))

= index(GPGG77G: Ran( - GPG)-+ Ran( - GPG)

= index((Id - P)(Id - 77): Ran(Id - 77)^Ran(Id - P)), (B7)

which implies
2 index (P 77) = index (PΠ + (Id - P)(Id - 77)). (B8)

The operator on the right side of (B8) is an elliptic operator with the principal
symbol equal to the identity; hence its index is 0. •

Lemma B8. Let SeELL*(A) and | |S-77| |<1. The operator Ts = Id
+ (S-77)(277-Id) commutes with G.

Now we repeat some considerations from the previous section. We introduce
the group 1

g<%-ί = ye£%~1;trG = G-?}, (B9)

and define the map fG:S^ίG

Λ-+ELL*(A\ by the formula fG(#)=pΠ•^~1.

Theorem B9. fG is a principal fibre bundle with structure group S^lί^ π, where S^ίGf \j

Proof. We repeat the proof of Theorem B5.
Let ^eS>%Gf

1

π. We have:

(Id-77) ^ (Id-77) = G 77 G ̂  G 77 G = - G 77 ^ 77 G. (BIO)

Therefore, if we fix a decomposition of L2(Y; (S®V)\Y) into Ran(77) and
Ran (Id — 77) (G identifies these two subspaces), we see that ̂  has the following form
with respect to this decomposition:

* i - I (Bll)* o Ί
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where #γ denotes the operator Π-p-Π. Now we can calculate the homotopy
groups of ELL*(A). Thanks to (BIO and (Bll) we know the homotopy groups of

We use the exact homotopy sequence for fibre bundles to conclude the proof of the
main theorem:

Theorem BIO.

{ % ;:
In particular, ELL*(A) is a path-connected space.

Remark. Bli. 1. It is obvious that ELL*(A) has the same homotopy groups as
ELL*(A). This follows from the fact, that the subgroup of S°UQ *, which consists of
unitary operators, has the same homotopy groups as S^Q ι. In fact, the operator
AP, for P e ELL(A)\ELL(A) still has a discrete spectrum and we can prove the
spectral flow formula for the families defined by such a condition P.
2. The closure of ELL*(A) in the space of all bounded operators in
L2(Y; (S®V)\Y) is a classifying space for the functor K'1. We omit the proof.
3. Let us consider the groups:

GLΠ= {A 6 GL(L2); A 77-77 A is a compact operator},

}

Now, we can use the group GLC instead of &% "*. We repeat our argument to show
that GLΠ and GLP G are homotopy equivalent to the spaces ELL(A) and ELL*(A\
respectively.
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